TWI565532B - 奈米球溶液塗佈方法與其應用 - Google Patents

奈米球溶液塗佈方法與其應用 Download PDF

Info

Publication number
TWI565532B
TWI565532B TW101128412A TW101128412A TWI565532B TW I565532 B TWI565532 B TW I565532B TW 101128412 A TW101128412 A TW 101128412A TW 101128412 A TW101128412 A TW 101128412A TW I565532 B TWI565532 B TW I565532B
Authority
TW
Taiwan
Prior art keywords
nanosphere
substrate
solution
layer
coating
Prior art date
Application number
TW101128412A
Other languages
English (en)
Other versions
TW201406466A (zh
Inventor
孟心飛
冉曉雯
趙寅初
王凱瑞
徐永軒
Original Assignee
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立交通大學 filed Critical 國立交通大學
Priority to TW101128412A priority Critical patent/TWI565532B/zh
Priority to US13/665,215 priority patent/US8748221B2/en
Publication of TW201406466A publication Critical patent/TW201406466A/zh
Application granted granted Critical
Publication of TWI565532B publication Critical patent/TWI565532B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0058Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/006Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/211Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/781Possessing nonosized surface openings that extend partially into or completely through the host material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/893Deposition in pores, molding, with subsequent removal of mold

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)

Description

奈米球溶液塗佈方法與其應用
本發明係有關一種奈米球溶液塗佈方法與及其應用,特別是指一種適用於量產需求且製程簡化的奈米球溶液塗佈方法與及其應用。
Kiyoshi Fujimoto等人在2005所發表的文獻「organic static induction transistors with nano-hole arrays fabricated by colloidal lithography」與2007年所發表的文獻「high-performance,vertical-type organic transistors with built-in nanotriode arrays」記載將玻璃基材浸於純水與丙酮之中,並置於超音波震盪器做清理,清理完畢後烘乾,再曝於紫外光/臭氧中20分鐘,隨後利用靜電方法將聚苯乙烯奈米球吸附於基材上,也就是將基材浸泡於0.01wt%之奈米球溶液中30分鐘,以使奈米球飽和吸附於基材上,然後再浸泡攝氏98度的加熱超純水,利用沸滾熱流將殘留於基材上的多餘奈米球沖走,隨後再用冷水沖洗一次,並將吸附奈米球之基材吹乾,以完成於基材上吸附奈米球的製程步驟。但此種吸附奈米球的方法,奈米球溶液的均勻度對於基材上所吸附奈米球的均勻度影響較大,且整體製程時間過於冗長,因此不利於量產。Yu-Chiang Chiang Chao等人在2006年所發表的文獻「polymer space-charge-limited transistor」與2008所發表的文獻「light-emitting polymer space-charge-limited transistor」記載將基材浸泡於0.4wt%的奈米球溶液中數十秒,在浸泡加熱的異丙醇溶液十秒鐘,目的在於利用加熱異丙醇之熱流沖走殘留於基材之多層奈米球,只留下單層奈米球於基材表面,最後用氮***將基材上的異丙醇快速吹乾。但是這種塗佈奈米球的方式,僅能使用 於小面積元件,無法利用於大面積元件且成品穩定性欠缺。Kun-Yang Wu等人在2011所發表之文獻「high-performance space-charge-limited transistor with well-ordered nanoporous aluminum base electrode」與Chi-Chih Ho在2011年所發表之文獻「fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface」記載讓聚苯乙烯球懸浮於水面中,再加入1至3ppm的聚氧化乙烯(polyethylene oxide),可增加奈米球的凝聚力,使之沈積於基材上,在利用氧電漿蝕刻,將奈米球縮小,得到規則孔洞結構。但是這樣的製程方式時間過於冗長且製程所需步驟過於繁瑣,不利於實際產業上應用。中華民國專利申請號為097146142之專利揭示用自旋塗佈方式將奈米球溶液沈積於玻璃基材上,在利用氧電漿蝕刻調控奈米球尺寸。此製程使用到自旋塗佈機,但使用自旋塗佈機來塗佈是相當耗費奈米球材料的,不利於量產。公開號為US2011/0048947的美國專利記載用靜電吸附奈米球,首先需使欲沈積之基材帶正電,然後將帶正電的基材浸泡於帶負電之PS奈米球溶液(1%於水中,並摻雜硫酸鹽,奈米球的直徑為110奈米)兩分鐘,再用水沖洗一分鐘,再用自旋方式或是用氮***將基材弄乾,由於表面張力的因素,在乾燥基材過程中會造成奈米球位移或分離,為了減少表面張力的影響,水常常被低張力的溶液所取代。此外,此製程方式步驟過多,不利於量產。
有鑑於此,本發明遂針對上述習知技術之缺失,提出一種嶄新的奈米球溶液塗佈方法與其應用,以有效克服上述之該等問題。
本發明之主要目的在提供一種奈米球溶液塗佈方法與及其應用,其利 用刮刀塗佈奈米球並利用加熱揮發性溶液沖洗的方法來使奈米球重新排列,大幅度簡化了奈米球塗佈的製程,以利於量產,且使用刮刀塗佈的方式不僅可穩定運用於大面積半導體元件,更可得到較高密度的奈米球分佈。
為達上述之目的,本發明提供一種奈米球溶液塗佈方法,其係用以將一奈米球溶液之奈米球沈積吸附於一基材表面上。此奈米球溶液塗佈方法之特徵在於將奈米球溶液滴於基材表面上後利用一刮刀將奈米球溶液刮塗於基材表面上,以在基材表面上塗佈附著數個奈米球。隨後,使用一加熱的揮發性溶液沖洗基材表面,使未附著於基材表面之奈米球懸浮於揮發性溶液上。最後,利用刮刀刮除揮發性溶液,以帶走未附著於基材表面之奈米球。
本發明尚提供一種具有奈米孔洞之薄膜的製作方法,其包含有:步驟a.提供一基材,並於基材上滴一排奈米球溶液;步驟b.利用一刮刀將奈米球溶液刮塗於基材表面上,以在基材表面上塗佈附著數個奈米球;步驟c.形成一覆蓋於基材與奈米球之薄膜層;步驟d.於薄膜層上貼覆一具黏著力之材料;以及步驟e.剝離具黏著力之材料,以物理性移除覆蓋有薄膜層之該奈米球,形成一具有奈米孔洞之薄膜層。
本發明更利用上述之方法來製作垂直式有機電晶體的製作方法,其包含有首先,供一表面形成有一透明導電層之基材;於透明導電層上形成一射極層或一集極層;於射極層或集極層上塗佈一絕緣層;利用一刮刀將一奈米球溶液刮塗於絕緣層表面上,以在絕緣層表面上塗佈附著數個奈米球;形成一覆蓋於基材與奈米球之基層;步驟k.於基層上貼覆一具黏著力之材料;剝離具黏著力之材料,以物理性移除被覆蓋有基層之奈米球,而 形成一具有穿孔之基層;以基層為罩幕對絕緣層進行蝕刻,以形成數個顯露出射極層或集極層之孔洞結構;形成一主動層,其係覆蓋射極層或集極層與孔洞結構;以及於主動層上形成一集極層或射極層。
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。
本發明主要是關於一種將奈米球沈積吸附於基材表面上的方法。請參閱第1圖,其係本發明之一種奈米球溶液塗佈方法的步驟流程圖。如圖所示,此奈米球溶液塗佈方法如步驟S1所述,提供一基材10,並於基材10上滴一排奈米球溶液12,如第2圖所示。如步驟S2所述,利用一刮刀14將奈米球溶液12刮塗於基材10表面上,以在基材10表面上塗佈附著數個奈米球,在圖中係以元件16來表示此些奈米球,如第3圖所示。如步驟S3所述,使用一加熱的揮發性溶液沖洗基材表面,此揮發性溶液係為與奈米球溶液可相溶之液體,例如水或室溫下為液態之醇類,在此揮發性溶液係以異丙醇溶液作為範例詳加說明,使未附著於基材表面之奈米球懸浮於異丙醇溶液中。如步驟S4所述,利用刮刀刮除異丙醇溶液,以帶走未附著於基材表面之奈米球,使奈米球分佈得以重新排列。最後,如步驟S5所述進行乾燥,利用冷風將異丙醇溶液吹乾,或是加熱基材使異丙醇溶液快速乾燥,但不限定於此仍包括其他乾燥方法,這樣即可於基材表面上吸附形成一層密度高且均勻分佈的奈米球。
此外,為使得奈米球分佈狀況更為均勻,可在步驟S5之前重複進行步驟S3與步驟S4。
本發明利用刮刀來塗佈奈米球的方式,可以得到高密度且分佈均勻的奈米球,不僅簡化奈米球塗佈的製程步驟且有利於量產,並且可用於大面積元件。刮刀與基材間的間隙可採2微米(μm)到300微米(μm),刮刀形狀可為圓形、方形、多角型或刃型。
本發明更應用上述的刮刀塗佈奈米球方法來製作具有奈米孔洞之薄膜,其步驟流程如第4圖所示。首先,如步驟S10所示,在基材表面上塗佈附著數個奈米球,此步驟是利用上述的步驟S1至S5來完成。刮刀與基材間的間隙可採2微米(μm)到300微米(μm),刮刀形狀可為圓形、方形、多角型或刃型。
再如步驟S11所述,形成一覆蓋基材10與奈米球18表面之薄膜層20,如第5圖所示。接續,如步驟S12所述,於薄膜層20上貼覆一具黏著力之材料,例如膠帶。然後,如步驟S13所述,剝離此具黏著力之材料,以物理性移除覆蓋有薄膜層20之奈米球18,如此即於基板10上形成一具有奈米孔洞19之薄膜層20,如第6圖所示。另外,在移除覆蓋有該薄膜層20之奈米球18的步驟中,除了使用物理性方式移除之外,更可使用一溶劑溶解基材10上的奈米球18,使此奈米球18溶解同時移除奈米球18上方之薄膜20,剩餘的即形成具有奈米孔洞19之薄膜層20。
本發明尚應用上述之刮刀塗佈奈米球的方法來製作垂直式有機電晶體,其製程步驟如第7圖至第13圖所示。
首先,提供一表面形成有一透明導電層(圖中未示)之基材10,且透明導電層上形成一射極層24,在此實施例中是形成射極層24,但並不因此僅能是射極層,也可以是集極層。再於射極層24上塗佈一絕緣層26,此絕 緣層之材質為聚乙烯砒喀烷酮(PVP),厚度為200奈米且經過200℃退火一小時,形成如第7圖所示之結構。接續,採先前所述之步驟S1至S5,以在絕緣層26上塗佈吸附奈米球18,形成如第8圖所示之結構。
隨後,如第9圖所示,形成一覆蓋於絕緣層26與奈米球18之基層28,此基層28之材質為鋁。於基層28上貼覆一具黏著力之材料,例如膠帶,隨後剝離此具黏著力之材料,以物理性移除被覆蓋有基層28之奈米球18,而形成一具有穿孔22之基層28,形成如第10圖所示之結構。接續,以此具有穿孔22之基層28為罩幕利用氧電漿蝕刻對絕緣層26進行蝕刻,以形成數個顯露出射極層24,如第11圖所示。
再利用自旋塗佈或刮刀塗佈方法來形成一主動層30,主動區30覆蓋基層28並且填滿穿孔22,隨後經過200℃退火十分鐘,形成如第12圖所示之結構,而主動層之材質可以為3-已基噻吩(P3HT)聚合物。最後,於主動層上電鍍一氧化鉬(MoO3)層與一鋁層來作為集極層32,或者是射極層,如此即形成如第13圖所示之垂直式電晶體元件34。
此外,在絕緣層26上塗佈奈米球前可先於絕緣層26上塗佈一3-已基噻吩(P3HT)聚合物層,以增加絕緣層表面附著奈米球的能力。若有塗佈3-已基噻吩(P3HT)聚合物層,可用二甲苯(xylene)沖掉多餘P3HT後在進行奈米球刮刀塗佈。
綜上所述,本發明提供一種嶄新的奈米球溶液塗佈方法及其相關應用,其教示利用刮刀塗佈來獲得密度高且均勻分佈的奈米球,以及利用加熱異丙醇溶液沖洗的方法來使奈米球重新排列。本發明大幅度的簡化了奈米球塗佈的製程,以利於量產,且使用刮刀塗佈的方式不僅可穩定運用於 大面積半導體元件,更可得到較高密度的奈米球分佈。因此,本發明不但可以應用於前述具有奈米孔洞之薄膜以及垂直式有機電晶體的製作,更可適用於其他半導體元件的製作或製程,應用相當廣泛。
唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。
10‧‧‧基材
12‧‧‧奈米球溶液
14‧‧‧刮刀
16‧‧‧元件
18‧‧‧奈米球
19‧‧‧奈米孔洞
20‧‧‧薄膜層
22‧‧‧穿孔
24‧‧‧射極層
26‧‧‧絕緣層
28‧‧‧基層
30‧‧‧主動層
32‧‧‧集極層
34‧‧‧垂直式電晶體元件
第1圖是本發明之一種奈米球溶液塗佈方法的步驟流程圖。
第2圖是實施本發明之奈米球溶液塗佈方法的機台架構示意圖。
第3圖是使用第2圖之機台於基材表面塗佈奈米球後的意圖。
第4圖是應用本發明之刮刀塗佈奈米球方法來製作具有奈米孔洞之薄膜的流程圖。
第5圖至第13圖是應用本發明之刮刀塗佈奈米球方法來製作垂直式有機電晶體的各步驟剖面示意圖。

Claims (19)

  1. 一種奈米球溶液塗佈方法,其係用以將一奈米球溶液之奈米球沈積吸附於至少一基材表面上,該奈米球溶液塗佈方法包括下列步驟:步驟a.該奈米球溶液滴於該基材表面上後利用一刮刀將該奈米球溶液刮塗於該基材表面,使該基材表面上塗佈附著複數個奈米球;步驟b.使用一加熱的揮發性溶液沖洗該基材表面,使未附著於該基材表面之該奈米球懸浮於該揮發性溶液中;以及步驟c.利用該刮刀刮除該揮發性溶液,以帶走未附著於該基材表面之該奈米球。
  2. 如請求項1所述之奈米球溶液塗佈方法,其中該刮刀與該基材間的間隙可採2微米(μm)到300微米(μm),該刮刀形狀可為圓形、方形、多角型或刃型。
  3. 如請求項1所述之奈米球溶液塗佈方法,其中該揮發性溶液係為與該奈米球溶液可相溶之液體。
  4. 如請求項3所述之奈米球溶液塗佈方法,其中與該奈米球溶液可相溶之該液體係為水或室溫下為液態之醇類。
  5. 如請求項1所述之奈米球溶液塗佈方法,其中更可重複進行該步驟b和步驟c,使該奈米球更為均勻分布於該基材上。
  6. 如請求項1或5所述之奈米球溶液塗佈方法,更包括步驟d.乾燥該基材上之該揮發性溶液。
  7. 如請求項6所述之奈米球溶液塗佈方法,其中乾燥該基材之步驟係使用冷風吹乾該揮發性溶液或加熱基材使揮發性溶液快速乾燥。
  8. 一種具有奈米孔洞之薄膜的製作方法,其包含有下列步驟:步驟a.提供一基材,並於該基材上滴一排奈米球溶液;步驟b.利用一刮刀將該奈米球溶液刮塗於該基材表面上,以在該基材表面上塗佈附著數個奈米球;步驟c.形成一覆蓋於該基材與該奈米球之薄膜層;以及步驟d.移除覆蓋有該薄膜層之該奈米球,即形成一具有奈米孔洞之薄膜層。
  9. 如請求項8所述之具有奈米孔洞之薄膜的製作方法,其中進行該步驟c前更包含有下列步驟:使用一加熱的揮發性溶液沖洗該基材表面,使未附著於該基材表面之該奈米球懸浮於該揮發性溶液中;以及利用該刮刀刮除該揮發性溶液,以帶走未附著於該基材表面之該奈米球。
  10. 如請求項8所述之具有奈米孔洞之薄膜的製作方法,其中該步驟d更包括:於該薄膜層上貼覆一具黏著力之材料;以及剝離該具黏著力之材料,以物理性移除覆蓋有該薄膜層之該奈米球,形成該具有奈米孔洞之薄膜層。
  11. 如請求項8所述之具有奈米孔洞之薄膜的製作方法,其中該步驟d更包括:使用一溶劑溶解該奈米球,使該奈米球溶解同時移除該奈米球上方之薄膜,進而形成該具有奈米孔洞之薄膜層。
  12. 如請求項8所述之具有奈米孔洞之薄膜的製作方法,其中該揮發性溶液 係為異丙醇溶液。
  13. 如請求項8所述之具有奈米孔洞之薄膜的製作方法,其中進行該步驟b前更包含有於該基材上塗佈一3-已基噻吩(P3HT)聚合物層,以增加該基材表面上附著該奈米球的能力。
  14. 一種垂直式有機電晶體的製作方法,其包含有下列步驟:步驟f.提供一表面形成有一透明導電層之基材;步驟g.該透明導電層上形成一射極層或一集極層;步驟h.於該射極層或集極層上塗佈一絕緣層;步驟i.利用一刮刀將一奈米球溶液刮塗於該絕緣層表面上,以在該絕緣層表面上塗佈附著數個奈米球;步驟j.形成一覆蓋於該基材與該奈米球之基層;步驟k.於該基層上貼覆一具黏著力之材料;步驟1.剝離該具黏著力之材料,以物理性移除被覆蓋有該基層之該奈米球,而形成一具有穿孔之基層;步驟m.以該基層為罩幕對該絕緣層進行蝕刻,以形成數個顯露出該射極層或該集極層之孔洞結構;步驟n.形成一主動層,其係覆蓋該射極層或該集極層與該孔洞結構;以及步驟o.於該主動層上形成一集極層或射極層。
  15. 如請求項14所述之垂直式有機電晶體的製作方法,其中在該步驟j前更包含有下列步驟:步驟p.使用一加熱的異丙醇溶液沖洗該基材表面,使未附著於該基材表 面之該奈米球懸浮於該異丙醇上;步驟q.利用該刮刀刮除該異丙醇溶液,以帶走未附著於該基材表面之該奈米球;以及步驟r.乾燥該異丙醇溶液。
  16. 如請求項14所述之垂直式有機電晶體的製作方法,其中更可重複進行該步驟i~q,以重新排列該奈米球。
  17. 如請求項14所述之垂直式有機電晶體的製作方法,其中於該步驟i前更包含有於該絕緣層上塗佈一3-已基噻吩(P3HT)聚合物層,以增加該絕緣層表面附著該奈米球的能力。
  18. 如請求項14所述之垂直式有機電晶體的製作方法,其中該主動層之材質為3-已基噻吩(P3HT)聚合物且經過退火。
  19. 如請求項14所述之垂直式有機電晶體的製作方法,其中該絕緣層之材質為聚乙烯砒喀烷酮(PVP)且經過退火。
TW101128412A 2012-08-07 2012-08-07 奈米球溶液塗佈方法與其應用 TWI565532B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101128412A TWI565532B (zh) 2012-08-07 2012-08-07 奈米球溶液塗佈方法與其應用
US13/665,215 US8748221B2 (en) 2012-08-07 2012-10-31 Nanoball solution coating method and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101128412A TWI565532B (zh) 2012-08-07 2012-08-07 奈米球溶液塗佈方法與其應用

Publications (2)

Publication Number Publication Date
TW201406466A TW201406466A (zh) 2014-02-16
TWI565532B true TWI565532B (zh) 2017-01-11

Family

ID=50066501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101128412A TWI565532B (zh) 2012-08-07 2012-08-07 奈米球溶液塗佈方法與其應用

Country Status (2)

Country Link
US (1) US8748221B2 (zh)
TW (1) TWI565532B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565650B (zh) * 2014-09-16 2017-01-11 國立交通大學 微奈米球結構之製作方法及其應用之孔洞製作方法
CN107469634B (zh) * 2017-09-06 2023-08-04 成都易态科技有限公司 一种过滤材料前驱体及由它制备而成的过滤材料
EP3839060B1 (en) * 2018-08-15 2022-10-12 BGI Shenzhen Gene chip and preparation method therefor
CN111244274A (zh) 2018-11-29 2020-06-05 康宁股份有限公司 具有垂直设计结构及基于给体-受体的有机半导体材料的高电流otft装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050126628A1 (en) * 2002-09-05 2005-06-16 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
TW200923030A (en) * 2007-09-21 2009-06-01 Microchem Corp Compositions and processes for manufacturing printed electronics
TW201016598A (en) * 2008-10-24 2010-05-01 Hon Hai Prec Ind Co Ltd Carbon nanotube composite material and method for making the same
TW201034970A (en) * 2008-12-31 2010-10-01 Ind Tech Res Inst Nano metal solution, nanometal complex grains and manufacturing method of metal film
US20110292568A1 (en) * 2008-11-28 2011-12-01 Sumitomo Chemical Company, Limited Electrode film, electrode, method for manufacturing the electrode, and electrical storage device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351607B2 (en) * 2003-12-11 2008-04-01 Georgia Tech Research Corporation Large scale patterned growth of aligned one-dimensional nanostructures
JP4418300B2 (ja) * 2004-05-25 2010-02-17 株式会社日立製作所 記録媒体作製方法とこれを用いた記録媒体及び情報記録再生装置
TWI451597B (zh) * 2010-10-29 2014-09-01 Epistar Corp 光電元件及其製造方法
US7901776B2 (en) * 2006-12-29 2011-03-08 3M Innovative Properties Company Plasma deposited microporous carbon material
JP5042110B2 (ja) 2008-04-22 2012-10-03 サルナス、ペトロニス ナノ細孔の製造
DE102008039798A1 (de) * 2008-08-15 2010-02-25 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Verfahren zur Übertragung von Nanostrukturen in ein Substrat
TW201021222A (en) 2008-11-28 2010-06-01 Univ Nat Taiwan Metal film electrode for organic solar cells and the method for forming the same
CN102870193B (zh) * 2010-04-02 2016-01-13 罗地亚管理公司 选择性纳米颗粒组装***和方法
TWI427288B (zh) * 2010-10-11 2014-02-21 Univ Nat Chiao Tung 垂直式感測器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050126628A1 (en) * 2002-09-05 2005-06-16 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
TW200923030A (en) * 2007-09-21 2009-06-01 Microchem Corp Compositions and processes for manufacturing printed electronics
TW201016598A (en) * 2008-10-24 2010-05-01 Hon Hai Prec Ind Co Ltd Carbon nanotube composite material and method for making the same
US20110292568A1 (en) * 2008-11-28 2011-12-01 Sumitomo Chemical Company, Limited Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
TW201034970A (en) * 2008-12-31 2010-10-01 Ind Tech Res Inst Nano metal solution, nanometal complex grains and manufacturing method of metal film

Also Published As

Publication number Publication date
US8748221B2 (en) 2014-06-10
US20140045297A1 (en) 2014-02-13
TW201406466A (zh) 2014-02-16

Similar Documents

Publication Publication Date Title
TWI565532B (zh) 奈米球溶液塗佈方法與其應用
JP2015517021A5 (zh)
US20130149463A1 (en) Method of manufacturing patterned graphene film
JP2013525253A5 (zh)
RU2014104692A (ru) Система связи с использованием частичного источника питания повышенной мощности и способ их изготовления
CN104328389A (zh) 石墨烯纳米网的制备方法
CN112968144A (zh) 基于丝网状衬底层的pi柔性基板剥离方法、柔性基板和oled
CN110534641B (zh) 一种基于弹性聚合物作为活性层的可拉伸忆阻器及其制备方法与应用
AKINOGLU et al. Nanosphere lithography-exploiting self-assembly on the nanoscale for sophisticated nanostructure fabrication
KR20090087353A (ko) 자기조립 블록 공중합체를 이용한 나노 구조물 제조방법
JP6771485B2 (ja) パターニングされた透明導電膜及びこのようなパターニングされた透明導電膜の製造方法
CN104766724B (zh) 一种基于四氧化三钴纳米结构的微型电容器微制作工艺
WO2020199299A1 (zh) 一种在非硅基底上制造压电薄膜谐振器的方法
CN109725752B (zh) 一种柔性触摸基板的制备方法和柔性触摸基板
JP6334380B2 (ja) 樹脂フィルム層の剥離方法及び薄膜素子デバイスの製造方法
KR20100092091A (ko) 나노 구조물 제작방법
JP6955637B2 (ja) 熱膨張係数を用いた薄膜電極分離方法
CN103227102B (zh) 一种图形化纳米颗粒自组装制造方法
KR101937370B1 (ko) 투명 전도성 건식 접착 필름 및 이의 제조방법
KR20140099409A (ko) 자기조립 단분자막의 표면 개질을 이용한 패턴의 전사 방법
CN113031151B (zh) 一种硫系狭缝光波导结构及其制备方法
WO2020019566A1 (zh) 柔性显示装置及其制备方法
CN104591082A (zh) 一种可对纳米粒子进行精确图形化组装的方法
KR101940974B1 (ko) 플렉시블 전자 소자의 제조방법 및 그로부터 제조된 플렉시블 전자 소자
TWI565650B (zh) 微奈米球結構之製作方法及其應用之孔洞製作方法