TWI565202B - Power converter with both of positive gain and negative gain and dynamic voltage restorer using the same - Google Patents

Power converter with both of positive gain and negative gain and dynamic voltage restorer using the same Download PDF

Info

Publication number
TWI565202B
TWI565202B TW103119033A TW103119033A TWI565202B TW I565202 B TWI565202 B TW I565202B TW 103119033 A TW103119033 A TW 103119033A TW 103119033 A TW103119033 A TW 103119033A TW I565202 B TWI565202 B TW I565202B
Authority
TW
Taiwan
Prior art keywords
coupled
unidirectional
converter
conductive element
electronic switch
Prior art date
Application number
TW103119033A
Other languages
Chinese (zh)
Other versions
TW201545447A (en
Inventor
陳裕愷
吳財福
Original Assignee
國立虎尾科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立虎尾科技大學 filed Critical 國立虎尾科技大學
Priority to TW103119033A priority Critical patent/TWI565202B/en
Publication of TW201545447A publication Critical patent/TW201545447A/en
Application granted granted Critical
Publication of TWI565202B publication Critical patent/TWI565202B/en

Links

Landscapes

  • Rectifiers (AREA)

Description

正負電壓增益電源轉換器及使用其之動態電壓恢復器 Positive and negative voltage gain power converter and dynamic voltage restorer using same

本發明係關於一種電源轉換器的應用之技術,更進一步來說,本發明係關於一種正負電壓增益之交流對交流轉換器、直流對直流轉換器及使用其之動態電壓恢復器。 The present invention relates to the application of a power converter, and more particularly to an AC-to-AC converter, a DC-to-DC converter, and a dynamic voltage restorer using the same.

近年來由於工業自動化中電子設備對電力品質要求愈來愈嚴格,如電壓驟降、電壓突升、諧波要求等。一般而言,電壓驟降是電力系統中最常見的擾動,其佔電力品質各種問題的90%以上,其主因為大型馬達負載的啟動與短路故障發生;電壓突升則發生於切換式大型電容或大型負載移除及單相接地的故障發生時。輸出電壓驟降對系統影響甚大,現今高科技設備如電腦通信系統、量測儀器與生產機台等,均對電壓的變化十分敏感,即使電壓變化只有3~5週期,亦可能造成設備當機,影 響工廠的生產。由此可知,以台灣科學園區中的高科技產業而言,均採用對電壓敏感性極大的電腦自動化設備,故穩定的輸出電壓與電力品質是必要的投資與需求。 In recent years, due to the strict quality requirements of electronic equipment in industrial automation, such as voltage dips, voltage surges, and harmonic requirements. In general, voltage dips are the most common disturbances in power systems, accounting for more than 90% of various power quality problems, mainly due to startup and short-circuit faults of large motor loads; voltage surges occur in switched large capacitors. Or when large load removal and single phase ground faults occur. The sudden drop of output voltage has a great impact on the system. Today's high-tech equipment such as computer communication systems, measuring instruments and production machines are sensitive to voltage changes. Even if the voltage changes only 3~5 cycles, it may cause the equipment to crash. Shadow The production of the factory. It can be seen that in the high-tech industry in Taiwan Science Park, computer automation equipment with great voltage sensitivity is adopted, so stable output voltage and power quality are necessary investment and demand.

電壓異常的原因依據不同的變化程度與持續時間,可分為以下幾種狀態:1.低頻衰減震盪波形(low-frequency decaying ringwave)、2.高頻突波(high-frequency impulse and ringwave)、3.穩態容忍度(stability tolerance)、4.電壓突升(voltage swell)、5.電壓驟降(voltage sag)、6.回動(dropout)。舉例而言:電壓突升為輸出電壓均方根值超過120%且持續在0.5秒以上。電壓驟降可分為兩個區段,一為輸出電壓下降後電壓為均方根值的90%以內(<10%)且持續10秒以上,其二為下降後電壓為均方根值的85%以內(<15%)且持續0.5秒以上。回動則分為兩大類,電壓驟降超過30%或是電壓完全中斷。其事件發生後立即恢復到正常狀態,其持續時間小於20ms。 The cause of voltage anomalies can be divided into the following states according to different degrees of change and duration: 1. low-frequency decaying ringwave, high-frequency impulse and ringwave, 3. Steady tolerance, 4. Voltage swell, 5. Voltage sag, 6. Dropout. For example: the voltage rises to an output voltage rms value of more than 120% and lasts for more than 0.5 seconds. The voltage dip can be divided into two sections, one is that the voltage is within 90% of the rms value (<10%) and lasts for more than 10 seconds after the output voltage drops, and the second is the rms voltage after the falling. Within 85% (<15%) for more than 0.5 seconds. The reversal is divided into two categories, with a voltage dip of more than 30% or a complete voltage interruption. Immediately after the event occurs, it returns to a normal state with a duration of less than 20ms.

動態電壓恢復器(Dynamic Voltage Restorer:DVR)是近年來解決上述問題如電壓驟降、電壓突升等問題的重要方法。其以串聯的方式來補償電源電壓之變動,可達到較佳的系統效率及穩定輸出電壓。第1圖繪示為先前技術的動態電壓恢復器之電路圖。請參考第1圖,此動態電壓恢復器包括一變壓器101、一能量儲存元件102以及一直流對交流轉換器103。另外,在第1圖中,標示了交流等效阻抗ZAC。在此動態電壓恢復器中, 額外的直流對交流轉換器103產生補償電壓,並透過變壓器101進行輸入電壓的補償。然而,受限於能量儲存元件102的容量,其補償時間、成本與電路體積將會受限。 Dynamic Voltage Restorer (DVR) is an important method to solve the above problems such as voltage dips and voltage surges in recent years. It compensates for variations in the supply voltage in series to achieve better system efficiency and stable output voltage. Figure 1 is a circuit diagram of a prior art dynamic voltage restorer. Referring to FIG. 1, the dynamic voltage restorer includes a transformer 101, an energy storage component 102, and a DC-to-AC converter 103. In addition, in the first figure, the AC equivalent impedance ZAC is indicated. In this dynamic voltage restorer, The additional DC-to-AC converter 103 generates a compensation voltage and compensates for the input voltage through the transformer 101. However, limited by the capacity of the energy storage element 102, its compensation time, cost, and circuit volume will be limited.

本發明的一目的在於提供一種動態電壓恢復器,藉由具有正負電壓增益之交流對交流轉換器配合串接在電壓源的補償用變壓器,進行對電源電壓的補償,達到即時穩壓的功能。 An object of the present invention is to provide a dynamic voltage restorer that compensates for a power supply voltage by an AC-to-AC converter having a positive and negative voltage gain and a compensation transformer connected in series with a voltage source to achieve an instant voltage regulation function.

本發明的另一目的在於提供一種正負增益之交流對交流轉換器,此交流對交流轉換器依照供應的脈波之責任週期,反應出正或負之電壓增益。 Another object of the present invention is to provide an AC-to-AC converter with positive and negative gains that reflects a positive or negative voltage gain in accordance with the duty cycle of the supplied pulse.

本發明的另一目的在於提供一種直流對直流轉換器,此直流對直流轉換器依照供應的脈波之責任週期,反應出正或負之電壓增益,並且,此直流對直流轉換器具有高升壓比,使其可應用範圍更加廣泛。 Another object of the present invention is to provide a DC-to-DC converter that reflects a positive or negative voltage gain according to a duty cycle of a supplied pulse wave, and the DC-to-DC converter has a high rise. The pressure ratio makes it more applicable.

有鑒於此,本發明提供一種動態電壓恢復器,此動態電壓恢復器適用於補償輸出電壓驟降與輸出電壓突升,此動態電壓恢復器包括一變壓器以及一電流源型態交流對交流轉換器。變壓器包括一次側線圈以及一二次側線圈,其中,二次側線圈的第一端耦接一第一交流端,二次側線圈的第二端用以提供一補償輸入電壓。上述交流對交流轉換器包括一單端初級電感轉換器(SEPIC)、一電源控制電路以及一電流回授電路。單端初級電感轉換 器包括一第一輸入端、一第二輸入端、一第一輸出端、一第二輸出端以及一前端電感。單端初級電感轉換器的第一輸入端耦接第一交流端,單端初級電感轉換器的第二輸入端耦接第二交流端,單端初級電感轉換器的第一輸出端耦接變壓器的一次側線圈的第一端,單端初級電感轉換器的第二輸出端耦接變壓器的一次側線圈的第二端,其中,前端電感的第一端耦接該單端初級電感轉換器的第一輸入端。 In view of this, the present invention provides a dynamic voltage restorer suitable for compensating for an output voltage dip and an output voltage surge. The dynamic voltage restorer includes a transformer and a current source type AC to AC converter. . The transformer includes a primary side coil and a secondary side coil, wherein the first end of the secondary side coil is coupled to a first alternating current end, and the second end of the secondary side coil is configured to provide a compensation input voltage. The AC-to-AC converter includes a single-ended primary inductor converter (SEPIC), a power supply control circuit, and a current feedback circuit. Single-ended primary inductance conversion The device includes a first input terminal, a second input terminal, a first output terminal, a second output terminal, and a front end inductor. The first input end of the single-ended primary inductor converter is coupled to the first AC terminal, the second input end of the single-ended primary inductor converter is coupled to the second AC terminal, and the first output end of the single-ended primary inductor converter is coupled to the transformer The first end of the primary-side coil is coupled to the second end of the primary-side coil of the transformer, wherein the first end of the front-end inductor is coupled to the single-ended primary inductor The first input.

電源控制電路用以提供至少一脈波給單端初級電感轉換器,以進行電源轉換。電流回授電路的第一端耦接前端電感的第二端,電流回授電路的第二端耦接單端初級電感轉換器的第二輸出端,其中,電流回授電路用以將單端初級電感轉換器的第一輸出端以及第二輸出端之間的電流,依照一特定比例,回授至單端初級電感轉換器的前端電感。交流對交流轉換器依照供應給單端初級電感轉換器的脈波之責任週期的大小,決定輸入電壓對該輸出電壓的增益為正或負。 The power control circuit is configured to provide at least one pulse to the single-ended primary inductor converter for power conversion. The first end of the current feedback circuit is coupled to the second end of the front end inductor, and the second end of the current feedback circuit is coupled to the second output end of the single-ended primary inductor converter, wherein the current feedback circuit is used to connect the single end The current between the first output and the second output of the primary inductor converter is fed back to the front end inductance of the single-ended primary inductor converter in accordance with a particular ratio. The AC-to-AC converter determines whether the input voltage has a positive or negative gain on the output voltage according to the duty cycle of the pulse supplied to the single-ended primary inductor converter.

本發明提供一種電流源型態交流對交流轉換器,此電流源型態交流對交流轉換器適用於補償輸出電壓驟降與輸出電壓突升的一動態電壓恢復器。此動態電壓恢復器包括一變壓器,變壓器包括一次側線圈以及一二次側線圈,二次側線圈的第一端耦接一第一交流端,二次側線圈的第二端用以提供補償輸入電壓,此電流源型態交流轉交流轉換器包括一單端初級電感轉換器(SEPIC)、 一電源控制電路以及一電流回授電路。單端初級電感轉換器包括一第一輸入端、一第二輸入端、一第一輸出端、一第二輸出端以及一前端電感。單端初級電感轉換器的第一輸入端耦接第一交流端,單端初級電感轉換器的第二輸入端耦接第二交流端,單端初級電感轉換器的第一輸出端耦接變壓器的一次側線圈的第一端,單端初級電感轉換器的第二輸出端耦接變壓器的一次側線圈的第二端。前端電感的第一端耦接單端初級電感轉換器的第一輸入端。 The invention provides a current source type AC to AC converter. The current source type AC to AC converter is suitable for compensating for a dynamic voltage restorer of output voltage dip and output voltage surge. The dynamic voltage restorer comprises a transformer, the transformer comprises a primary side coil and a secondary side coil, the first end of the secondary side coil is coupled to a first alternating current end, and the second end of the secondary side coil is used to provide a compensation input Voltage, this current source type AC to AC converter includes a single-ended primary inductor converter (SEPIC), A power control circuit and a current feedback circuit. The single-ended primary inductor converter includes a first input terminal, a second input terminal, a first output terminal, a second output terminal, and a front end inductor. The first input end of the single-ended primary inductor converter is coupled to the first AC terminal, the second input end of the single-ended primary inductor converter is coupled to the second AC terminal, and the first output end of the single-ended primary inductor converter is coupled to the transformer The first end of the primary side coil is coupled to the second end of the primary side coil of the transformer. The first end of the front end inductor is coupled to the first input of the single-ended primary inductor converter.

電源控制電路用以提供至少一脈波給單端初級電感轉換器,以進行電源轉換。電流回授電路的第一端耦接前端電感的第二端,電流回授電路的第二端耦接單端初級電感轉換器的第二輸出端。電流回授電路用以將單端初級電感轉換器的第一輸出端以及第二輸出端之間的電流,依照一特定比例,回授至單端初級電感轉換器的前端電感。此電流源型態交流對交流轉換器依照供應給單端初級電感轉換器的脈波之責任週期的大小,決定輸入電壓對輸出電壓的增益為正或負。 The power control circuit is configured to provide at least one pulse to the single-ended primary inductor converter for power conversion. The first end of the current feedback circuit is coupled to the second end of the front end inductor, and the second end of the current feedback circuit is coupled to the second output end of the single-ended primary inductor converter. The current feedback circuit is configured to feed back the current between the first output end and the second output end of the single-ended primary inductance converter to the front end inductance of the single-ended primary inductance converter according to a specific ratio. The current source type AC-to-AC converter determines whether the input voltage has a positive or negative gain on the output voltage according to the duty cycle of the pulse supplied to the single-ended primary inductor converter.

依照本發明較佳實施例所述之電流源型態交流對交流轉換器以及使用其之動態電壓恢復器,上述單端初級電感轉換器還包括一電子開關、一第一電容、一第二電感、一單向性導通元件以及一第二電容。電子開關包括一第一端、一第二端以及一控制端。電子開關的第一端耦接前端電感的第二端,電子開關的第二端耦接第二交流端,電子開關的控制端耦接電源控制電路以接收脈 波。第一電容包括一第一端以及一第二端,其中,第一電容的第一端耦接該電子開關的第一端。第二電感包括一第一端以及一第二端,其中,第二電感的第一端耦接第一電容的第二端,第二電感的第二端耦接單端初級電感轉換器的第二輸入端。單向性導通元件包括一第一端以及一第二端,其中,該單向性導通元件的第一端耦接第二電感的第一端,其中,單向性導通元件的導通方向為第一端向第二端導通。第二電容包括一第一端以及一第二端,其中,第二電容的第一端耦接單向性導通元件的第二端,第二電容的第二端耦接單端初級電感轉換器的第二輸出端。 According to a current source type AC-to-AC converter and a dynamic voltage restorer using the same according to a preferred embodiment of the present invention, the single-ended primary inductor converter further includes an electronic switch, a first capacitor, and a second inductor. a unidirectional conduction element and a second capacitor. The electronic switch includes a first end, a second end, and a control end. The first end of the electronic switch is coupled to the second end of the front end inductor, the second end of the electronic switch is coupled to the second AC end, and the control end of the electronic switch is coupled to the power control circuit to receive the pulse wave. The first capacitor includes a first end and a second end, wherein the first end of the first capacitor is coupled to the first end of the electronic switch. The second inductor includes a first end and a second end, wherein the first end of the second inductor is coupled to the second end of the first capacitor, and the second end of the second inductor is coupled to the first end of the single inductor Two inputs. The unidirectional conduction element includes a first end and a second end, wherein the first end of the unidirectional conduction element is coupled to the first end of the second inductor, wherein the conduction direction of the unidirectional conduction element is One end is turned on to the second end. The second capacitor includes a first end and a second end, wherein the first end of the second capacitor is coupled to the second end of the unidirectional conductive element, and the second end of the second capacitor is coupled to the single-ended primary inductor The second output.

依照本發明較佳實施例所述之電流源型態交流對交流轉換器以及使用其之動態電壓恢復器,上述電流回授電路包括一回授電感。此回授電感包括一第一端以及一第二端,其中,回授電感的第一端耦接前端電感的第二端,回授電容的第二端耦接耦接單端初級電感轉換器的第二輸出端。在另一實施例中,上述單向性導通元件係以電子開關取代之。 According to a current source type AC-to-AC converter and a dynamic voltage restorer using the same according to a preferred embodiment of the present invention, the current feedback circuit includes a feedback inductor. The feedback inductor includes a first end and a second end, wherein the first end of the feedback inductor is coupled to the second end of the front end inductor, and the second end of the feedback capacitor is coupled to the single end main inductor The second output. In another embodiment, the unidirectional conduction element is replaced with an electronic switch.

本發明提供一種電流源型態直流對直流轉換器,此電流源型態直流對直流轉換器包括一單端初級電感轉換器(SEPIC)、一電源控制電路以及一電流回授電路。單端初級電感轉換器包括一第一輸入端、一第二輸入端、一第一輸出端、一第二輸出端以及一前端電感。單端初級電感轉換器的第一輸入端耦接直流電源的正端,單端初級電感轉換器的第二輸入端耦接直流電源的負端,單 端初級電感轉換器的第一輸出端與單端初級電感轉換器的第二輸出端輸出一輸出電壓,其中,前端電感的第一端耦接單端初級電感轉換器的第一輸入端。電源控制電路用以提供至少一脈波給單端初級電感轉換器,以進行電源轉換。電流回授電路包括一第一端以及一第二端。電流回授電路的第一端耦接前端電感的第二端,電流回授電路的第二端耦接單端初級電感轉換器的第二輸出端,其中,電流回授電路用以將單端初級電感轉換器的第一輸出端以及第二輸出端之間的電流,依照一特定比例,回授至單端初級電感轉換器的前端電感。 The present invention provides a current source type DC-to-DC converter comprising a single-ended primary inductance converter (SEPIC), a power supply control circuit, and a current feedback circuit. The single-ended primary inductor converter includes a first input terminal, a second input terminal, a first output terminal, a second output terminal, and a front end inductor. The first input end of the single-ended primary inductor converter is coupled to the positive terminal of the DC power supply, and the second input end of the single-ended primary inductor converter is coupled to the negative terminal of the DC power supply, The first output of the primary inductor converter and the second output of the single-ended primary inductor converter output an output voltage, wherein the first end of the front end inductor is coupled to the first input of the single-ended primary inductor converter. The power control circuit is configured to provide at least one pulse to the single-ended primary inductor converter for power conversion. The current feedback circuit includes a first end and a second end. The first end of the current feedback circuit is coupled to the second end of the front end inductor, and the second end of the current feedback circuit is coupled to the second output end of the single-ended primary inductor converter, wherein the current feedback circuit is used to connect the single end The current between the first output and the second output of the primary inductor converter is fed back to the front end inductance of the single-ended primary inductor converter in accordance with a particular ratio.

本發明的精神在於利用現有的單端初級電感轉換器(SEPIC)配合一電流取樣並聯混合的回授網路(Shunt-Series Feedback),將輸出電流回授至單端初級電感轉換器的輸入端,發展出一新形態的電源轉換器。此電源轉換器應用於直流對直流轉換時,可以具有高升壓比。另外,此電源轉換器應用於交流對交流轉換時,可以同時具有正電壓增益與負電壓增益。因此,依照本發明的精神實施的交流對交流轉換器適合用於補償交流輸出電壓驟降與輸出電壓突升的動態電壓恢復器。 The spirit of the present invention is to use the existing single-ended primary inductance converter (SEPIC) with a current sampling parallel hybrid feedback network (Shunt-Series Feedback) to feedback the output current to the input end of the single-ended primary inductance converter. , developed a new form of power converter. This power converter can have a high step-up ratio when applied to DC-to-DC conversion. In addition, when used in AC-to-AC conversion, this power converter can have both positive and negative voltage gains. Accordingly, an AC-to-AC converter implemented in accordance with the teachings of the present invention is suitable for use in a dynamic voltage restorer that compensates for AC output voltage dips and output voltage spikes.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects, features and advantages of the present invention will become more <RTIgt;

101‧‧‧變壓器 101‧‧‧Transformer

102‧‧‧能量儲存元件 102‧‧‧ energy storage components

103‧‧‧直流轉交流轉換器 103‧‧‧DC to AC converter

ZAC‧‧‧交流等效阻抗 ZAC‧‧‧ AC equivalent impedance

Vcan‧‧‧交流補償電壓 Vcan‧‧‧ AC compensation voltage

Vac‧‧‧交流輸入電壓 Vac‧‧‧AC input voltage

201‧‧‧交流對交流轉換器 201‧‧‧AC to AC converter

202‧‧‧電源控制器暨驅動電路 202‧‧‧Power controller and drive circuit

203‧‧‧變壓器 203‧‧‧Transformer

204‧‧‧輔助電源電路 204‧‧‧Auxiliary power circuit

Vo‧‧‧輸出電壓 Vo‧‧‧ output voltage

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

50‧‧‧單端初級電感轉換器 50‧‧‧Single-ended primary inductor converter

51‧‧‧電源控制電路 51‧‧‧Power Control Circuit

52‧‧‧回授電路 52‧‧‧Return circuit

501‧‧‧前端電感 501‧‧‧ front end inductor

502、601‧‧‧電子開關 502, 601‧‧‧ electronic switch

503‧‧‧第一電容 503‧‧‧first capacitor

504‧‧‧第二電感 504‧‧‧second inductance

505‧‧‧單向性導通元件 505‧‧‧ unidirectional conduction element

506‧‧‧第二電容 506‧‧‧second capacitor

507‧‧‧負載電容 507‧‧‧ load capacitance

508‧‧‧負載電阻 508‧‧‧Load resistor

521‧‧‧回授電感 521‧‧‧Responsive inductance

602‧‧‧並聯電容 602‧‧‧Shut capacitor

第1圖繪示為先前技術的動態電壓恢復器之電路圖。 Figure 1 is a circuit diagram of a prior art dynamic voltage restorer.

第2圖繪示為本發明一較佳實施例的動態電壓恢復器之電路圖。 FIG. 2 is a circuit diagram of a dynamic voltage restorer according to a preferred embodiment of the present invention.

第3A圖繪示為先前技術的單端初級電感轉換器(Single-Ended Primary-Inductor Converter,SEPIC)之電路圖。 FIG. 3A is a circuit diagram of a prior art single-ended primary-inductor converter (SEPIC).

第3B圖繪示為先前技術的之輸入電壓與輸出電壓轉移函數圖。 FIG. 3B is a diagram showing the input voltage and output voltage transfer function of the prior art.

第4A圖繪示為本發明一較佳實施例的電流源型態交流對交流轉換器201之輸入電流與輸出電流轉移函數圖。 FIG. 4A is a diagram showing the input current and output current transfer function of the current source type AC to AC converter 201 according to a preferred embodiment of the present invention.

第4B圖繪示為本發明一較佳實施例的電壓源型態交流對交流轉換器201之輸入電壓與輸出電壓轉移函數圖。 FIG. 4B is a diagram showing the input voltage and output voltage transfer function of the voltage source type AC to AC converter 201 according to a preferred embodiment of the present invention.

第5A圖繪示為本發明一較佳實施例的電流源型態直流對直流電源轉換器之電路圖。 FIG. 5A is a circuit diagram of a current source type DC-DC power converter according to a preferred embodiment of the present invention.

第5B圖繪示為本發明一較佳實施例的第5A圖的電流源型態直流對直流電源轉換器之等效電路圖。 FIG. 5B is an equivalent circuit diagram of a current source type DC-DC power converter according to FIG. 5A according to a preferred embodiment of the present invention.

第6圖繪示為本發明一較佳實施例的電流源型態交流對交流轉換器之電路圖。 FIG. 6 is a circuit diagram of a current source type AC to AC converter according to a preferred embodiment of the present invention.

第7圖繪示為本發明一較佳實施例的電流源型態之電源轉換器之增益函數圖。 FIG. 7 is a diagram showing a gain function of a current source type power converter according to a preferred embodiment of the present invention.

第8A圖繪示為本發明實施例之電流源型態交流對交流轉換器在脈波責任週期等於0.2時的輸入電壓與輸出電壓之波形圖。 FIG. 8A is a waveform diagram of input voltage and output voltage of a current source type AC-to-AC converter when the pulse wave duty cycle is equal to 0.2 according to an embodiment of the present invention.

第8B圖繪示為本發明實施例之電流源型態交流對交流轉換器在脈波責任週期等於0.4時的輸入電壓與輸出電壓之波形圖。 FIG. 8B is a waveform diagram of the input voltage and the output voltage of the current source type AC-to-AC converter when the pulse wave duty cycle is equal to 0.4 according to an embodiment of the present invention.

第8C圖繪示為本發明實施例之電流源型態交流對交流轉換器在脈波責任週期等於0.7時的輸入電壓與輸出電壓之波形圖。 FIG. 8C is a waveform diagram of the input voltage and the output voltage of the current source type AC-to-AC converter when the pulse wave duty cycle is equal to 0.7 according to an embodiment of the present invention.

第2圖繪示為本發明一較佳實施例的動態電壓恢復器之電路圖。請參考第2圖,在此實施例中,利用直接交流對交流轉換器201來實現對輸入電壓的補償機制。其利用交流輸入電壓或輸出電壓配合低頻變壓器來補償其過低或過高電壓,架構圖如第2圖所示。此方法效率較高且無上述第一種方法之缺點,雖其電源中斷時無法提供其所需之輸出電壓,但只要配合其他緊急發電設備亦可實現不斷電功能。在此實施例中,動態電壓恢復器(DVR)所需要的補償輸出電壓變化與快速響應,故以直接轉換的交流對交流轉換器來實現,此動態電壓恢復器包括交流對交流轉換器201、電源控制器暨驅動電路202以及變壓器203。另外,為了維持電源控制器暨驅動電路202的運作,還需要額外的一輔助電源電路204。另外,在第 2圖中,標示了交流等效阻抗ZAC。 FIG. 2 is a circuit diagram of a dynamic voltage restorer according to a preferred embodiment of the present invention. Referring to FIG. 2, in this embodiment, the AC converter 201 is directly exchanged to implement a compensation mechanism for the input voltage. It uses an AC input voltage or output voltage in conjunction with a low frequency transformer to compensate for its low or excessive voltage. The architecture is shown in Figure 2. This method is highly efficient and has no shortcomings of the first method described above. Although it does not provide its required output voltage when the power supply is interrupted, it can be implemented with other emergency power generation equipment. In this embodiment, the dynamic voltage restorer (DVR) requires a compensated output voltage change and a fast response, so that the AC-to-AC converter is directly converted, and the dynamic voltage restorer includes an AC-to-AC converter 201, The power controller and drive circuit 202 and the transformer 203. In addition, in order to maintain the operation of the power controller and drive circuit 202, an additional auxiliary power circuit 204 is required. In addition, in the first In the figure 2, the AC equivalent impedance ZAC is indicated.

另外,為了說明本發明的精神,在此實施例中,變壓器的一次側與二次側的線圈比假設為1:n。在此實施例中,為達到動態電壓恢復器(DVR)所需要的補償輸出電壓的上下變化,交流對交流轉換器需要同時具有正電壓增益與負電壓增益。本實施例為解決輸出電壓驟降與電壓突升的問題,交流對交流轉換器所需補償電壓Vout如下式(1)所示: Further, in order to explain the spirit of the present invention, in this embodiment, the ratio of the primary side to the secondary side of the transformer is assumed to be 1:n. In this embodiment, to achieve the up and down variation of the compensated output voltage required by the dynamic voltage restorer (DVR), the AC to AC converter needs to have both a positive voltage gain and a negative voltage gain. In this embodiment, in order to solve the problem of output voltage dip and voltage surge, the compensation voltage V out required for the AC to AC converter is as shown in the following formula (1):

其中Vo為輸出電壓、Vin為輸入電壓、G(D)為交流對交流轉換器的增益、n則為低頻變壓器的圈數比。由方程式(1)可知,電壓驟降時所需補償的電壓Vout為正,反之電壓突升時補償電壓Vout為負。亦即交流對交流轉換器的增益G(D)必須可以為正亦可以為負。因脈波的責任週期D的範圍為0~1之間,為得到可正可負的數值,在此實施例,以脈波的責任週期0.5為分界點。當責任週期D<0.5時,G(D)為正值,當責任週期D>0.5時,G(D)為負值。由上可知,增益轉移函數G(D)的分母或分子若為1-2D則符合上述需求。 Where Vo is the output voltage, Vin is the input voltage, G(D) is the gain of the AC to AC converter, and n is the ratio of the turns of the low frequency transformer. It can be known from equation (1) that the voltage V out required to be compensated for the voltage dip is positive, whereas the voltage V out is negative when the voltage is suddenly raised. That is, the gain G(D) of the AC to AC converter must be positive or negative. Since the duty cycle D of the pulse wave ranges from 0 to 1, in order to obtain a positive or negative value, in this embodiment, the duty cycle of the pulse wave is 0.5 as the demarcation point. When the duty cycle D<0.5, G(D) is a positive value, and when the duty cycle D>0.5, G(D) is a negative value. It can be seen from the above that if the denominator or the numerator of the gain transfer function G(D) is 1-2D, the above requirements are met.

第3A圖繪示為先前技術的單端初級電感轉換器(Single-Ended Primary-Inductor Converter,SEPIC)之電路圖。第3B圖繪示為先前技術的之輸入電壓 與輸出電壓轉移函數圖。請同時參考第3A圖以及第3B圖,在此實施例中,首先以單端初級電感轉換器為基礎來推導出具1-2D的轉移函數。第3A圖的單端初級電感轉換器為電流源之型式,單端初級電感轉換器的輸入電流與輸出電流之關係式為如第3B圖所示之(1-D)/D。若以電路回授之觀念,將其輸出電流Io經由回授得到If電壓與輸入電流Ii相加,並經由控制理論的梅森(Mason)增益公式可得: FIG. 3A is a circuit diagram of a prior art single-ended primary-inductor converter (SEPIC). FIG. 3B is a diagram showing the input voltage and output voltage transfer function of the prior art. Please refer to FIG. 3A and FIG. 3B simultaneously. In this embodiment, the transfer function with 1-2D is first derived based on the single-ended primary inductor converter. The single-ended primary inductor converter of Figure 3A is of the current source type, and the relationship between the input current and the output current of the single-ended primary inductor converter is (1-D)/D as shown in Fig. 3B. If the circuit feedback is used, the output current Io is added by the feedback to the If voltage and the input current Ii, and is obtained by the Mason gain formula of the control theory:

第4A圖以及第4B圖繪示為本發明一較佳實施例的電流源型態交流對交流轉換器201之輸入電壓與輸出電壓轉移函數圖。請同時參考第4A圖以及第4B圖,藉由單端初級電感轉換器配合回授一倍的輸出電流,即可獲得分子為-(1-2D)的電壓增益。 4A and 4B are diagrams showing input voltage and output voltage transfer functions of the current source type AC to AC converter 201 according to a preferred embodiment of the present invention. Please refer to Fig. 4A and Fig. 4B at the same time. By using a single-ended primary inductor converter with feedback of twice the output current, the voltage gain of the molecule is -(1-2D).

第5A圖繪示為本發明一較佳實施例的電流源型態直流對直流電源轉換器之電路圖。請參考第5圖,此電流源型態直流對直流轉換器包括一單端初級電感轉換器50、電源控制電路51以及一回授電路52。在此實施例中,單端初級電感轉換器50包括一前端電感501、一電子開關502、一第一電容503、一第二電感504、一單向性導通元件505以及一第二電容506。回授電路52則是以一回授電感521實施,用以將輸出電流Io回授到單端初級 電感轉換器50的輸入端。另外,此電路圖額外繪示了一負載電容507以及負載電阻508。所屬技術領域具有通常知識者可以看出,此實施例的電流源型態電源轉換器利用並串回授(shunt-series feedback,電流取樣並聯混合Current-Sampling Shunt-mixing)觀念,將一倍的輸出電流Io回授到輸入端。第5B圖繪示為本發明一較佳實施例的第5A圖的電流源型態直流對直流電源轉換器之等效電路圖。請同時參考第5A圖與第5B圖,若將第5A圖的元件進行整理後,便可以獲得如第5B的電路。 FIG. 5A is a circuit diagram of a current source type DC-DC power converter according to a preferred embodiment of the present invention. Referring to FIG. 5, the current source type DC-to-DC converter includes a single-ended primary inductor converter 50, a power control circuit 51, and a feedback circuit 52. In this embodiment, the single-ended primary inductor converter 50 includes a front end inductor 501, an electronic switch 502, a first capacitor 503, a second inductor 504, a unidirectional conductive element 505, and a second capacitor 506. The feedback circuit 52 is implemented by a feedback inductor 521 for feeding back the output current Io to the single-ended primary The input of the inductive converter 50. In addition, this circuit diagram additionally shows a load capacitor 507 and a load resistor 508. It can be seen by those skilled in the art that the current source type power converter of this embodiment utilizes the concept of shunt-series feedback (Current-Sampling Shunt-mixing), which is doubled. The output current Io is fed back to the input. FIG. 5B is an equivalent circuit diagram of a current source type DC-DC power converter according to FIG. 5A according to a preferred embodiment of the present invention. Please refer to FIG. 5A and FIG. 5B at the same time. If the components of FIG. 5A are arranged, the circuit as shown in FIG. 5B can be obtained.

第6圖繪示為本發明一較佳實施例的電流源型態交流對交流轉換器之電路圖。請同時參考第5B圖以及第6圖,在此實施例中,單向性導通元件505被一電子開關601取代,另外,電子開關502與電子開關601是以雙向交流開關的形式實施。由於本發明是針對輸入的交流電進行補償,第6圖的轉換器的電路為交流型轉換器,故將電子開關502以及單向性導通元件505改以雙向開關來實現。此雙向交流開關是以功率電晶體與四個二極體所實施,其耦接關係如圖所繪示。 FIG. 6 is a circuit diagram of a current source type AC to AC converter according to a preferred embodiment of the present invention. Referring to FIG. 5B and FIG. 6 simultaneously, in this embodiment, the unidirectional conduction element 505 is replaced by an electronic switch 601. In addition, the electronic switch 502 and the electronic switch 601 are implemented in the form of a bidirectional AC switch. Since the present invention compensates for the input alternating current, the circuit of the converter of Fig. 6 is an alternating current type converter, so that the electronic switch 502 and the unidirectional conductive element 505 are changed by a bidirectional switch. The bidirectional AC switch is implemented by a power transistor and four diodes, and the coupling relationship is as shown in the figure.

電流源型交流對交流轉換器的導通週期與輸入/輸出轉移函數可分成以下3個區間:1、0<D<0.5,增益為負值且為降壓;2、0.5<D<0.67,增益為正值且為降壓;3、0.67<D<1,增益為正值且為升 壓。 The current source type AC to AC converter conduction period and input/output transfer function can be divided into the following three intervals: 1, 0 < D < 0.5, the gain is negative and is buck; 2, 0.5 < D < 0.67, gain Positive value and step-down; 3, 0.67<D<1, gain is positive and is liter Pressure.

第7圖繪示為本發明一較佳實施例的電流源型態之電源轉換器之增益函數圖。請參考第7圖,由上述的分析可知,在0.67<D<1時,此電源轉換器的增益函數G(D)可達到相當高的增益倍數,但是,增益函數並非正負對稱。因此,電源控制電路51必須採用線性的比例積分(PI,Proportional-Integral)數位控制器或以非線性的模糊控制器經由離線(offline)查表的方式,獲取電源轉換器所需的脈波寬度調變(PWM)訊號的責任週期D。 FIG. 7 is a diagram showing a gain function of a current source type power converter according to a preferred embodiment of the present invention. Referring to Fig. 7, from the above analysis, the gain function G(D) of the power converter can achieve a relatively high gain multiple at 0.67 < D < 1, but the gain function is not positive or negative symmetry. Therefore, the power supply control circuit 51 must obtain a pulse width required for the power converter by using a linear proportional-integrated (PI) Proportional-Integral digital controller or a nonlinear fuzzy controller via an offline look-up table. The duty cycle D of the modulation (PWM) signal.

第8A圖繪示為本發明實施例之電流源型態交流對交流轉換器在脈波責任週期等於0.2時的輸入電壓與輸出電壓之波形圖。第8B圖繪示為本發明實施例之電流源型態交流對交流轉換器在脈波責任週期等於0.4時的輸入電壓與輸出電壓之波形圖。第8C圖繪示為本發明實施例之電流源型態交流對交流轉換器在脈波責任週期等於0.7時的輸入電壓與輸出電壓之波形圖。請同時參考第8A圖、第8B圖、第8C圖、第7圖以及上述轉移函數之分析,由模擬結果可以對應的驗證上述轉移函數的分析的正確性與電路的可行性。 FIG. 8A is a waveform diagram of input voltage and output voltage of a current source type AC-to-AC converter when the pulse wave duty cycle is equal to 0.2 according to an embodiment of the present invention. FIG. 8B is a waveform diagram of the input voltage and the output voltage of the current source type AC-to-AC converter when the pulse wave duty cycle is equal to 0.4 according to an embodiment of the present invention. FIG. 8C is a waveform diagram of the input voltage and the output voltage of the current source type AC-to-AC converter when the pulse wave duty cycle is equal to 0.7 according to an embodiment of the present invention. Please refer to the analysis of the 8A, 8B, 8C, 7 and the transfer function, and the simulation results can verify the correctness of the above transfer function and the feasibility of the circuit.

另外,請參考第5圖,第5圖雖然是以直流對直流轉換器的形式,由上述的推導,所屬技術領域具有通常知識者可以看出,此直流對直流轉換器在責任週期在0.8<D<1之間具有非常高的升壓比(增益)。一般為了得到高倍數升壓比,所屬技術領域具有通常知識者會使 用耦合電感之方式來達到高升壓比是本領域具有通常知識者較普遍應用的方法,但是變壓器的漏感會造成開關的電壓應力變大而導致效率降低。在此例中,採用非耦合電感的方式,改變整個直流轉換器的拓樸,獲得高升壓比。 In addition, please refer to FIG. 5, which is in the form of a DC-to-DC converter. From the above derivation, it can be seen from the ordinary knowledge in the art that the DC-DC converter has a duty cycle of 0.8< There is a very high boost ratio (gain) between D<1. Generally, in order to obtain a high multiple boost ratio, those skilled in the art will Using a coupled inductor to achieve a high boost ratio is a common method in the art, but the leakage inductance of the transformer causes the voltage stress of the switch to become large and the efficiency is lowered. In this example, the topology of the entire DC converter is changed using a non-coupled inductor to achieve a high boost ratio.

另外,在上述實施例中,回授電壓雖然是以一倍的輸出電壓回授到輸入端,然所屬技術領域具有通常知識者應當知道,若要得到同時具有正增益與負增益的電源轉換器,回授的電壓並非一定要用一倍的輸出電壓。例如用併聯分流的方式回授1.5倍輸出電流、0.5倍輸出電流、0.7倍輸出電流,皆可以獲得同時具有正增益與負增益G(D)的電源轉換器。因此,本發明不以此為限。 In addition, in the above embodiment, although the feedback voltage is fed back to the input terminal with a double output voltage, those skilled in the art should know that a power converter having both positive gain and negative gain is obtained. The feedback voltage does not have to use twice the output voltage. For example, by supplying 1.5 times output current, 0.5 times output current, and 0.7 times output current in parallel shunt mode, a power converter having both positive gain and negative gain G(D) can be obtained. Therefore, the invention is not limited thereto.

綜上所述,本發明的精神在於利用現有的單端初級電感轉換器(SEPIC)配合一電流取樣並聯混合的回授網路(Shunt-Series Feedback),將輸出電流回授至單端初級電感轉換器的輸入端,發展出一新形態的電源轉換器。此電源轉換器應用於直流對直流轉換時,可以具有高升壓比。另外,此電源轉換器應用於交流對交流轉換時,可以同時具有正電壓增益與負電壓增益。因此,依照本發明的精神實施的交流對交流轉換器適合用於補償交流輸出電壓驟降與輸出電壓突升的動態電壓恢復器。 In summary, the spirit of the present invention is to use the existing single-ended primary inductance converter (SEPIC) with a current sampling parallel hybrid feedback network (Shunt-Series Feedback) to return the output current to the single-ended primary inductance. At the input of the converter, a new form of power converter has been developed. This power converter can have a high step-up ratio when applied to DC-to-DC conversion. In addition, when used in AC-to-AC conversion, this power converter can have both positive and negative voltage gains. Accordingly, an AC-to-AC converter implemented in accordance with the teachings of the present invention is suitable for use in a dynamic voltage restorer that compensates for AC output voltage dips and output voltage spikes.

在較佳實施例之詳細說明中所提出之具體實施例僅用以方便說明本發明之技術內容,而非將本發明狹義地限制於上述實施例,在不超出本發明之精神及以下申請專利範圍之情況,所做之種種變化實施,皆屬於 本發明之範圍。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The specific embodiments of the present invention are intended to be illustrative only and not to limit the invention to the above embodiments, without departing from the spirit of the invention and the following claims. The scope of the situation, the implementation of all kinds of changes, are The scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

50‧‧‧單端初級電感轉換器 50‧‧‧Single-ended primary inductor converter

51‧‧‧電源控制電路 51‧‧‧Power Control Circuit

52‧‧‧回授電路 52‧‧‧Return circuit

501‧‧‧前端電感 501‧‧‧ front end inductor

502‧‧‧電子開關 502‧‧‧Electronic switch

503‧‧‧第一電容 503‧‧‧first capacitor

504‧‧‧第二電感 504‧‧‧second inductance

505‧‧‧單向性導通元件 505‧‧‧ unidirectional conduction element

506‧‧‧第二電容 506‧‧‧second capacitor

507‧‧‧負載電容 507‧‧‧ load capacitance

508‧‧‧負載電阻 508‧‧‧Load resistor

521‧‧‧回授電感 521‧‧‧Responsive inductance

Claims (10)

一種動態電壓恢復器,適用於補償輸出電壓驟降與輸出電壓突升,包括:一變壓器,包括一次側線圈以及一二次側線圈,其中,該二次側線圈的第一端耦接一第一交流端,該二次側線圈的第二端用以提供一補償輸入電壓;以及一電流源型態交流對交流轉換器,包括:一單端初級電感轉換器(SEPIC),包括一第一輸入端、一第二輸入端、一第一輸出端、一第二輸出端以及一前端電感L1,其中,該單端初級電感轉換器的第一輸入端耦接該第一交流端,該單端初級電感轉換器的第二輸入端耦接一第二交流端,該單端初級電感轉換器的第一輸出端耦接該變壓器的一次側線圈的第一端,該單端初級電感轉換器的第二輸出端耦接該變壓器的一次側線圈的第二端,其中,該前端電感的第一端耦接該單端初級電感轉換器的第一輸入端;一電源控制電路,用以提供至少一脈波給該單端初級電感轉換器,以進行電源轉換;以及一電流回授電路,包括一第一端以及一第二端,其中,該電流回授電路的第一端耦接該前端電感的第二端,該電流回授電路的第二端耦接該單端初級電感轉換器的第二輸出端,其中,該電流回授電路用以將該單端初級電感轉換器的第一輸出端以及第二輸出端之間的電流,依照一特定比例,回授至該單端初級電感轉換器的前端電 感,其中,該電流源型態交流對交流轉換器依照供應給該單端初級電感轉換器的該脈波之責任週期的大小,決定該輸入電壓對該輸出電壓的增益為正或負。 A dynamic voltage restorer is adapted to compensate for an output voltage dip and an output voltage surge, comprising: a transformer comprising a primary side coil and a secondary side coil, wherein the first end of the secondary side coil is coupled to a first An AC terminal, the second end of the secondary side coil is configured to provide a compensation input voltage; and a current source type AC to AC converter includes: a single-ended primary inductance converter (SEPIC), including a first An input terminal, a second input terminal, a first output terminal, a second output terminal, and a front end inductor L1, wherein the first input end of the single-ended primary inductor converter is coupled to the first AC terminal, the single The second input end of the primary inductance converter is coupled to a second AC end, and the first output end of the single-ended primary inductance converter is coupled to the first end of the primary side coil of the transformer, the single-ended primary inductance converter The second output end is coupled to the second end of the primary side coil of the transformer, wherein the first end of the front end inductor is coupled to the first input end of the single-ended primary inductor converter; a power control circuit is provided to provide At least one Transmitting the single-ended primary inductor converter for power conversion; and a current feedback circuit comprising a first end and a second end, wherein the first end of the current feedback circuit is coupled to the front end inductor The second end of the current feedback circuit is coupled to the second output end of the single-ended primary inductor converter, wherein the current feedback circuit is configured to use the first output end of the single-ended primary inductor converter And the current between the second output is fed back to the front end of the single-ended primary inductor converter according to a specific ratio Sense, wherein the current source type AC to the AC converter determines the gain of the input voltage to be positive or negative according to the duty cycle of the pulse wave supplied to the single-ended primary inductor converter. 如申請專利範圍第1項所記載之動態電壓恢復器,其中,該單端初級電感轉換器包括:一第一電子開關,包括一第一端、一第二端以及一控制端,其中,該第一電子開關的第一端耦接該前端電感的第二端,該第一電子開關的第二端耦接該第二交流端,該第一電子開關的控制端耦接該電源控制電路;一第一電容Cf,包括一第一端以及一第二端,其中,該第一電容的第一端耦接該第一電子開關的第一端;一第二電感L2,包括一第一端以及一第二端,其中,該第二電感的第一端耦接該第一電容的第二端,該第二電感的第二端耦接該單端初級電感轉換器的第二輸入端;一第二電子開關,包括一第一端以及一第二端,其中,該第二電子開關的第一端耦接該第二電感的第一端,該第二電子開關的控制端耦接該電源控制電路;一第二電容C1,包括一第一端以及一第二端,其中,該第二電容的第一端耦接該第二電子開關的第二端,該第二電容的第二端耦接該單端初級電感轉換器的第二輸出端。 The dynamic voltage restorer of claim 1, wherein the single-ended primary inductor converter comprises: a first electronic switch, comprising a first end, a second end, and a control end, wherein The first end of the first electronic switch is coupled to the second end of the front end, the second end of the first electronic switch is coupled to the second AC end, and the control end of the first electronic switch is coupled to the power control circuit; a first capacitor Cf includes a first end and a second end, wherein the first end of the first capacitor is coupled to the first end of the first electronic switch; and the second inductor L2 includes a first end And a second end, wherein the first end of the second inductor is coupled to the second end of the first capacitor, and the second end of the second inductor is coupled to the second input end of the single-ended primary inductor converter; a second electronic switch includes a first end and a second end, wherein the first end of the second electronic switch is coupled to the first end of the second inductor, and the control end of the second electronic switch is coupled to the a power control circuit; a second capacitor C1, including a first end and a second The first end of the second capacitor is coupled to the second end of the second electronic switch, and the second end of the second capacitor is coupled to the second output end of the single-ended primary inductor converter. 如申請專利範圍第2項所記載之動態電壓恢復器,其中,該電流回授電路包括:一回授電感Lf,包括一第一端以及一第二端,其中,該回授電感的第一端耦接該前端電感的第二端,該回授電容的第二端耦接耦接該單端初級電感轉換器的第二輸出端。 The dynamic voltage recovery device of claim 2, wherein the current feedback circuit comprises: a feedback inductor Lf, comprising a first end and a second end, wherein the feedback inductor is first The second end of the feedback capacitor is coupled to the second output end of the single-ended primary inductor converter. 如申請專利範圍第2項所記載之動態電壓恢復器,其中,該第一電子開關包括:一功率電晶體,包括一閘極、一第一源汲極以及一第二源汲極,其中,該功率電晶體的閘極耦接該第一電子開關的控制端;一第一單向性導通元件,包括一第一端以及一第二端,其中,該第一單向性導通元件的第一端耦接該功率電晶體的第一源汲極,該第一單向性導通元件的第二端耦接該第一電子開關的第一端,其中,該第一單向性導通元件的電流方向為該第一單向性導通元件的第一端到該第一單向性導通元件的第二端;一第二單向性導通元件,包括一第一端以及一第二端,其中,該第二單向性導通元件的第一端耦接該第一單向性導通元件的第二端,該第二單向性導通元件的第二端耦接該功率電晶體的第二源汲極,其中,該第二單向性導通元件的電流方向為該第二單向性導通元件的第一端到 該第二單向性導通元件的第二端;一第三單向性導通元件,包括一第一端以及一第二端,其中,該第三單向性導通元件的第一端耦接該功率電晶體的第一源汲極,該第三單向性導通元件的第二端耦接該第一電子開關的第二端,其中,該第三單向性導通元件的電流方向為該第三單向性導通元件的第一端到該第三單向性導通元件的第二端;以及一第四單向性導通元件,包括一第一端以及一第二端,其中,該第四單向性導通元件的第一端耦接該第三單向性導通元件的第二端,該第四單向性導通元件的第二端耦接該功率電晶體的第二源汲極,其中,該第四單向性導通元件的電流方向為該第四單向性導通元件的第一端到該第四單向性導通元件的第二端。 The dynamic voltage restorer of claim 2, wherein the first electronic switch comprises: a power transistor comprising a gate, a first source drain and a second source drain, wherein The gate of the power transistor is coupled to the control end of the first electronic switch; a first unidirectional conductive component includes a first end and a second end, wherein the first unidirectional conductive component The first end of the first unidirectional conduction element is coupled to the first end of the first electronic switch, wherein the first unidirectional conduction element is coupled to the first source of the first unidirectional conduction element The current direction is the first end of the first unidirectional conduction element to the second end of the first unidirectional conduction element; and the second unidirectional conduction element includes a first end and a second end, wherein The first end of the second unidirectional conductive element is coupled to the second end of the first unidirectional conductive element, and the second end of the second unidirectional conductive element is coupled to the second source of the power transistor a drain, wherein a current direction of the second unidirectional conductive element is the second unidirectionality Conducting the first end of the component to a second end of the second unidirectional conducting element; a third unidirectional conducting element comprising a first end and a second end, wherein the first end of the third unidirectional conducting element is coupled to the a first source drain of the power transistor, the second end of the third unidirectional conductive element is coupled to the second end of the first electronic switch, wherein a current direction of the third unidirectional conductive element is the first a first end of the three unidirectional conducting element to the second end of the third unidirectional conducting element; and a fourth unidirectional conducting element comprising a first end and a second end, wherein the fourth The first end of the unidirectional conductive element is coupled to the second end of the third unidirectional conductive element, and the second end of the fourth unidirectional conductive element is coupled to the second source drain of the power transistor, wherein The current direction of the fourth unidirectional conduction element is the first end of the fourth unidirectional conduction element to the second end of the fourth unidirectional conduction element. 如申請專利範圍第2項所記載之動態電壓恢復器,其中,該第二電子開關包括:一功率電晶體,包括一閘極、一第一源汲極以及一第二源汲極,其中,該功率電晶體的閘極耦接該第一電子開關的控制端;一第一單向性導通元件,包括一第一端以及一第二端,其中,該第一單向性導通元件的第一端耦接該功率電晶體的第一源汲極,該第一單向性導通元件的第二端耦接該第二電子開關的第一端,其中,該第一單向性導通元件的電流方向為該第一單向性導通元件的第一端到該第一 單向性導通元件的第二端;一第二單向性導通元件,包括一第一端以及一第二端,其中,該第二單向性導通元件的第一端耦接該第一單向性導通元件的第二端,該第二單向性導通元件的第二端耦接該功率電晶體的第二源汲極,其中,該第二單向性導通元件的電流方向為該第二單向性導通元件的第一端到該第二單向性導通元件的第二端;一第三單向性導通元件,包括一第一端以及一第二端,其中,該第三單向性導通元件的第一端耦接該功率電晶體的第一源汲極,該第三單向性導通元件的第二端耦接該第二電子開關的第二端,其中,該第三單向性導通元件的電流方向為該第三單向性導通元件的第一端到該第三單向性導通元件的第二端;以及一第四單向性導通元件,包括一第一端以及一第二端,其中,該第四單向性導通元件的第一端耦接該第三單向性導通元件的第二端,該第四單向性導通元件的第二端耦接該功率電晶體的第二源汲極,其中,該第四單向性導通元件的電流方向為該第四單向性導通元件的第一端到該第四單向性導通元件的第二端。 The dynamic voltage restorer of claim 2, wherein the second electronic switch comprises: a power transistor comprising a gate, a first source drain, and a second source drain, wherein The gate of the power transistor is coupled to the control end of the first electronic switch; a first unidirectional conductive component includes a first end and a second end, wherein the first unidirectional conductive component The first end of the first unidirectional conduction element is coupled to the first end of the second electronic switch, wherein the first unidirectional conduction element is coupled to the first source of the first unidirectional conduction element The current direction is the first end of the first unidirectional conduction element to the first a second end of the unidirectional conductive element; a second unidirectional conductive element includes a first end and a second end, wherein the first end of the second unidirectional conductive element is coupled to the first single a second end of the second unidirectional conductive element is coupled to the second source drain of the power transistor, wherein a current direction of the second unidirectional conductive element is the first end a first end of the unidirectional conductive element to the second end of the second unidirectional conductive element; a third unidirectional conductive element comprising a first end and a second end, wherein the third single The first end of the directional conductive element is coupled to the first source drain of the power transistor, and the second end of the third unidirectional conductive element is coupled to the second end of the second electronic switch, wherein the third The current direction of the unidirectional conduction element is a first end of the third unidirectional conduction element to a second end of the third unidirectional conduction element; and a fourth unidirectional conduction element includes a first end And a second end, wherein the first end of the fourth unidirectional conductive element is coupled to the third unidirectional guide The second end of the fourth unidirectional conductive element is coupled to the second source drain of the power transistor, wherein the current direction of the fourth unidirectional conductive element is the fourth one-way The first end of the conductive element is to the second end of the fourth unidirectional conductive element. 一種電流源型態交流對交流轉換器,適用於補償輸出電壓驟降與輸出電壓突升的一動態電壓恢復器,該動態電壓恢復器包括一變壓器,該變壓器包括一次側線圈以及一二次側線圈,該二次側線圈的第一端耦接一第一交流 端,該二次側線圈的第二端用以提供一補償輸入電壓,此電流源型態交流轉交流轉換器包括:一單端初級電感轉換器(SEPIC),包括一第一輸入端、一第二輸入端、一第一輸出端、一第二輸出端以及一前端電感L1,其中,該單端初級電感轉換器的第一輸入端耦接該第一交流端,該單端初級電感轉換器的第二輸入端耦接一第二交流端,該單端初級電感轉換器的第一輸出端耦接該變壓器的一次側線圈的第一端,該單端初級電感轉換器的第二輸出端耦接該變壓器的一次側線圈的第二端,其中,該前端電感的第一端耦接該單端初級電感轉換器的第一輸入端;一電源控制電路,用以提供至少一脈波給該單端初級電感轉換器,以進行電源轉換;以及一電流回授電路,包括一第一端以及一第二端,其中,該電流回授電路的第一端耦接該前端電感的第二端,該電流回授電路的第二端耦接該單端初級電感轉換器的第二輸出端,其中,該電流回授電路用以將該單端初級電感轉換器的第一輸出端以及第二輸出端之間的電流,依照一特定比例,回授至該單端初級電感轉換器的前端電感,其中,該電流源型態交流對交流轉換器依照供應給該單端初級電感轉換器的該脈波之責任週期的大小,決定該輸入電壓對該輸出電壓的增益為正或負。 A current source type AC-to-AC converter suitable for compensating for a dynamic voltage restorer of output voltage dip and output voltage surge, the dynamic voltage restorer comprising a transformer comprising a primary side coil and a secondary side a coil, the first end of the secondary side coil is coupled to a first alternating current The second end of the secondary side coil is configured to provide a compensation input voltage. The current source type AC to AC converter comprises: a single-ended primary inductance converter (SEPIC), including a first input end, and a first input end a second input terminal, a first output terminal, a second output terminal, and a front end inductor L1, wherein the first input end of the single-ended primary inductor converter is coupled to the first AC terminal, and the single-ended primary inductance conversion The second input end is coupled to a second AC end, the first output end of the single-ended primary inductive converter is coupled to the first end of the primary side coil of the transformer, and the second output of the single-ended primary inductive converter The second end of the primary side coil of the transformer is coupled to the first end of the single-ended primary inductor converter; the power control circuit is configured to provide at least one pulse wave The single-ended primary inductor converter is configured to perform power conversion; and a current feedback circuit includes a first end and a second end, wherein the first end of the current feedback circuit is coupled to the front end of the inductor Two ends, the current feedback The second end of the circuit is coupled to the second output end of the single-ended primary inductance converter, wherein the current feedback circuit is used between the first output end and the second output end of the single-ended primary inductance converter Current is fed back to the front end inductor of the single-ended primary inductor converter according to a specific ratio, wherein the current source type AC-to-AC converter is in accordance with the duty cycle of the pulse supplied to the single-ended primary inductor converter The size determines whether the input voltage has a positive or negative gain on the output voltage. 如申請專利範圍第6項所記載之電流源型態交流 對交流轉換器,其中,該單端初級電感轉換器包括:一第一電子開關,包括一第一端、一第二端以及一控制端,其中,該第一電子開關的第一端耦接該前端電感的第二端,該第一電子開關的第二端耦接該第二交流端,該第一電子開關的控制端耦接該電源控制電路;一第一電容Cf,包括一第一端以及一第二端,其中,該第一電容的第一端耦接該第一電子開關的第一端;一第二電感L2,包括一第一端以及一第二端,其中,該第二電感的第一端耦接該第一電容的第二端,該第二電感的第二端耦接該單端初級電感轉換器的第二輸入端;一第二電子開關,包括一第一端以及一第二端,其中,該第二電子開關的第一端耦接該第二電感的第一端,該第二電子開關的控制端耦接該電源控制電路;一第二電容C1,包括一第一端以及一第二端,其中,該第二電容的第一端耦接該第二電子開關的第二端,該第二電容的第二端耦接該單端初級電感轉換器的第二輸出端。 Current source type communication as described in item 6 of the patent application scope The AC converter, wherein the single-ended primary inductor converter includes: a first electronic switch, including a first end, a second end, and a control end, wherein the first end of the first electronic switch is coupled The second end of the first electronic switch is coupled to the second AC end, and the control end of the first electronic switch is coupled to the power control circuit; a first capacitor Cf includes a first end And a second end, wherein the first end of the first capacitor is coupled to the first end of the first electronic switch; the second inductor L2 includes a first end and a second end, wherein the first end The first end of the second inductor is coupled to the second end of the first capacitor, the second end of the second inductor is coupled to the second input end of the single-ended primary inductor converter; and the second electronic switch includes a first And a second end, wherein the first end of the second electronic switch is coupled to the first end of the second inductor, the control end of the second electronic switch is coupled to the power control circuit; a second capacitor C1, The first end and the second end are included, wherein the first end of the second capacitor The second terminal of the second electronic switch, a second terminal of the second capacitor coupled to the second output terminal of the single-ended primary inductor converter. 如申請專利範圍第6項所記載之電流源型態交流對交流轉換器,其中,該電流回授電路包括:一回授電感Lf,包括一第一端以及一第二端,其中,該回授電感的第一端耦接該前端電感的第二端,該回授電容的第二端耦接耦接該單端初級電感轉換器的第二輸出端。 The current source type AC-to-AC converter as described in claim 6 , wherein the current feedback circuit comprises: a feedback inductor Lf, including a first end and a second end, wherein the back The first end of the inductor is coupled to the second end of the front end inductor, and the second end of the feedback capacitor is coupled to the second output of the single-ended primary inductor converter. 如申請專利範圍第7項所記載之電流源型態交流對交流轉換器,其中,該第一電子開關包括:一功率電晶體,包括一閘極、一第一源汲極以及一第二源汲極,其中,該功率電晶體的閘極耦接該第一電子開關的控制端;一第一單向性導通元件,包括一第一端以及一第二端,其中,該第一單向性導通元件的第一端耦接該功率電晶體的第一源汲極,該第一單向性導通元件的第二端耦接該第一電子開關的第一端,其中,該第一單向性導通元件的電流方向為該第一單向性導通元件的第一端到該第一單向性導通元件的第二端;一第二單向性導通元件,包括一第一端以及一第二端,其中,該第二單向性導通元件的第一端耦接該第一單向性導通元件的第二端,該第二單向性導通元件的第二端耦接該功率電晶體的第二源汲極,其中,該第二單向性導通元件的電流方向為該第二單向性導通元件的第一端到該第二單向性導通元件的第二端;一第三單向性導通元件,包括一第一端以及一第二端,其中,該第三單向性導通元件的第一端耦接該功率電晶體的第一源汲極,該第三單向性導通元件的第二端耦接該第一電子開關的第二端,其中,該第三單向性導通元件的電流方向為該第三單向性導通元件的第一端到該第三單向性導通元件的第二端;以及 一第四單向性導通元件,包括一第一端以及一第二端,其中,該第四單向性導通元件的第一端耦接該第三單向性導通元件的第二端,該第四單向性導通元件的第二端耦接該功率電晶體的第二源汲極,其中,該第四單向性導通元件的電流方向為該第四單向性導通元件的第一端到該第四單向性導通元件的第二端。 The current source type AC-to-AC converter as described in claim 7 , wherein the first electronic switch comprises: a power transistor, including a gate, a first source drain, and a second source; a first unidirectional conduction element includes a first end and a second end, wherein the first one-way is connected to the control terminal of the first electronic switch; The first end of the first unidirectional conductive element is coupled to the first end of the first electronic switch, wherein the first end is coupled to the first end of the first electronic switch The current direction of the directional conduction element is the first end of the first unidirectional conduction element to the second end of the first unidirectional conduction element; and the second unidirectional conduction element includes a first end and a a second end, wherein the first end of the second unidirectional conductive element is coupled to the second end of the first unidirectional conductive element, and the second end of the second unidirectional conductive element is coupled to the power a second source drain of the crystal, wherein a current direction of the second unidirectional conductive element is a first end of the second unidirectional conductive element to a second end of the second unidirectional conductive element; a third unidirectional conductive element comprising a first end and a second end, wherein the first The first end of the three-way conductive element is coupled to the first source drain of the power transistor, and the second end of the third one-way conductive element is coupled to the second end of the first electronic switch, wherein a current direction of the third unidirectional conduction element is a first end of the third unidirectional conduction element to a second end of the third unidirectional conduction element; a fourth unidirectional conductive element includes a first end and a second end, wherein the first end of the fourth unidirectional conductive element is coupled to the second end of the third unidirectional conductive element, The second end of the fourth unidirectional conduction element is coupled to the second source drain of the power transistor, wherein the current direction of the fourth unidirectional conduction element is the first end of the fourth unidirectional conduction element To the second end of the fourth unidirectional conduction element. 如申請專利範圍第7項所記載之電流源型態交流對交流轉換器,其中,該第二電子開關包括:一功率電晶體,包括一閘極、一第一源汲極以及一第二源汲極,其中,該功率電晶體的閘極耦接該第一電子開關的控制端;一第一單向性導通元件,包括一第一端以及一第二端,其中,該第一單向性導通元件的第一端耦接該功率電晶體的第一源汲極,該第一單向性導通元件的第二端耦接該第二電子開關的第一端,其中,該第一單向性導通元件的電流方向為該第一單向性導通元件的第一端到該第一單向性導通元件的第二端;一第二單向性導通元件,包括一第一端以及一第二端,其中,該第二單向性導通元件的第一端耦接該第一單向性導通元件的第二端,該第二單向性導通元件的第二端耦接該功率電晶體的第二源汲極,其中,該第二單向性導通元件的電流方向為該第二單向性導通元件的第一端到該第二單向性導通元件的第二端; 一第三單向性導通元件,包括一第一端以及一第二端,其中,該第三單向性導通元件的第一端耦接該功率電晶體的第一源汲極,該第三單向性導通元件的第二端耦接該第二電子開關的第二端,其中,該第三單向性導通元件的電流方向為該第三單向性導通元件的第一端到該第三單向性導通元件的第二端;以及一第四單向性導通元件,包括一第一端以及一第二端,其中,該第四單向性導通元件的第一端耦接該第三單向性導通元件的第二端,該第四單向性導通元件的第二端耦接該功率電晶體的第二源汲極,其中,該第四單向性導通元件的電流方向為該第四單向性導通元件的第一端到該第四單向性導通元件的第二端。 The current source type AC-to-AC converter according to claim 7, wherein the second electronic switch comprises: a power transistor, including a gate, a first source drain, and a second source. a first unidirectional conduction element includes a first end and a second end, wherein the first one-way is connected to the control terminal of the first electronic switch; The first end of the first conductive element is coupled to the first source of the power transistor, and the second end of the first unidirectional element is coupled to the first end of the second electronic switch, wherein the first The current direction of the directional conduction element is the first end of the first unidirectional conduction element to the second end of the first unidirectional conduction element; and the second unidirectional conduction element includes a first end and a a second end, wherein the first end of the second unidirectional conductive element is coupled to the second end of the first unidirectional conductive element, and the second end of the second unidirectional conductive element is coupled to the power a second source drain of the crystal, wherein a current direction of the second unidirectional conductive element is a first end of the second unidirectional conductive element to a second end of the second unidirectional conductive element; a third unidirectional conduction element includes a first end and a second end, wherein the first end of the third unidirectional conduction element is coupled to the first source drain of the power transistor, the third The second end of the unidirectional conductive element is coupled to the second end of the second electronic switch, wherein the current direction of the third unidirectional conductive element is the first end of the third unidirectional conductive element to the first a second end of the three unidirectional conductive element; and a fourth unidirectional conductive element, including a first end and a second end, wherein the first end of the fourth unidirectional conductive element is coupled to the first end a second end of the third unidirectional conducting element, the second end of the fourth unidirectional conducting element is coupled to the second source drain of the power transistor, wherein the current direction of the fourth unidirectional conducting element is a first end of the fourth unidirectional conduction element to a second end of the fourth unidirectional conduction element.
TW103119033A 2014-05-30 2014-05-30 Power converter with both of positive gain and negative gain and dynamic voltage restorer using the same TWI565202B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103119033A TWI565202B (en) 2014-05-30 2014-05-30 Power converter with both of positive gain and negative gain and dynamic voltage restorer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103119033A TWI565202B (en) 2014-05-30 2014-05-30 Power converter with both of positive gain and negative gain and dynamic voltage restorer using the same

Publications (2)

Publication Number Publication Date
TW201545447A TW201545447A (en) 2015-12-01
TWI565202B true TWI565202B (en) 2017-01-01

Family

ID=55407230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103119033A TWI565202B (en) 2014-05-30 2014-05-30 Power converter with both of positive gain and negative gain and dynamic voltage restorer using the same

Country Status (1)

Country Link
TW (1) TWI565202B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992675A (en) * 2017-05-09 2017-07-28 辽宁工程技术大学 A kind of switched inductors capacitance group and unit supercharging high voltage gain DC converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW299519B (en) * 1995-02-01 1997-03-01 Westinghouse Electric Corp
TW392388B (en) * 1997-04-17 2000-06-01 Ind Tech Res Inst Circuit system of switch mode power converter having dual DC output stages
TW200925843A (en) * 2007-12-12 2009-06-16 Phoenixtec Power Co Ltd Converting device with multiple power inputs and UPS system having the same
US20090224729A1 (en) * 2008-02-28 2009-09-10 Jian Duo Li Dynamic voltage compensator used in three-phase power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW299519B (en) * 1995-02-01 1997-03-01 Westinghouse Electric Corp
TW392388B (en) * 1997-04-17 2000-06-01 Ind Tech Res Inst Circuit system of switch mode power converter having dual DC output stages
TW200925843A (en) * 2007-12-12 2009-06-16 Phoenixtec Power Co Ltd Converting device with multiple power inputs and UPS system having the same
US20090224729A1 (en) * 2008-02-28 2009-09-10 Jian Duo Li Dynamic voltage compensator used in three-phase power supply system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Modeling PWM DC/DC Converters Out of Basic Converter Units", Tasi-Fu Wu, Yu-Kai Chen, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 5, Sep. 1998, pp. 870 - 881 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992675A (en) * 2017-05-09 2017-07-28 辽宁工程技术大学 A kind of switched inductors capacitance group and unit supercharging high voltage gain DC converter

Also Published As

Publication number Publication date
TW201545447A (en) 2015-12-01

Similar Documents

Publication Publication Date Title
TWI492500B (en) AC / DC converter control circuit and the application of its AC / DC converter
TWI514744B (en) Offset voltage generation circuit and the application of its switching power supply
CN102801300B (en) Primary-side feedback controlled switching power line loss compensating system and method
CN107925343A (en) The Hysteresis control of power supply changeover device based on transformer
CN102332827B (en) Power supply converter with electricity-saving mechanism and power supply conversion method
JP2013021861A (en) Power-supply device and method of controlling the same
Moon et al. Design and implementation of a 1.3 kW, 7-level flying capacitor multilevel AC-DC converter with power factor correction
CN103201940A (en) Cascade power system architecture
US20140063868A1 (en) Power supply apparatus with power factor correction and pulse width modulation mechanism and method thereof
CN103023323B (en) Average inductive current type voltage control method and variable reference voltage generating device used by method
KR20150083039A (en) Cable compensation by zero-crossing compensation current and resistor
CN109088536B (en) Active power factor correction circuit and method for improving harmonic waves and driving system
CN104539154A (en) Switch converter and control circuit thereof
CN105790580A (en) Power source system and inductive current peak control method
CN104283420A (en) Voltage conversion controller with voltage drop compensation function and voltage conversion circuit
TWI556078B (en) Dynamic voltage restorer and transient voltage control mechanism thereof
Wang et al. Analysis and design of a series resonant converter with constant current input and regulated output current
CN207819770U (en) The feed forward circuit and controlled resonant converter of controlled resonant converter
CN204517683U (en) Non-isolated AC/DC regulator circuit and Switching Power Supply
TWI514736B (en) A power supply with power factor correction circuit
TWI565202B (en) Power converter with both of positive gain and negative gain and dynamic voltage restorer using the same
CN202750021U (en) Converter for converting alternating current into direct current
CN103916020A (en) Switching power supply and control circuit thereof
CN103580508A (en) Ac/dc converter circuit
US20190181744A1 (en) Bus converter current ripple reduction