TWI559811B - Light emitting device driver circuit and driving method of light emitting device circuit - Google Patents

Light emitting device driver circuit and driving method of light emitting device circuit Download PDF

Info

Publication number
TWI559811B
TWI559811B TW104101146A TW104101146A TWI559811B TW I559811 B TWI559811 B TW I559811B TW 104101146 A TW104101146 A TW 104101146A TW 104101146 A TW104101146 A TW 104101146A TW I559811 B TWI559811 B TW I559811B
Authority
TW
Taiwan
Prior art keywords
input voltage
circuit
light
signal
emitting element
Prior art date
Application number
TW104101146A
Other languages
Chinese (zh)
Other versions
TW201626852A (en
Inventor
陳曜洲
饒東錚
李一惟
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to TW104101146A priority Critical patent/TWI559811B/en
Publication of TW201626852A publication Critical patent/TW201626852A/en
Application granted granted Critical
Publication of TWI559811B publication Critical patent/TWI559811B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

發光元件驅動電路及發光元件電路之驅動方法 Light-emitting element driving circuit and driving method of light-emitting element circuit

本發明係有關一種發光元件驅動電路及發光元件電路之驅動方法,特別是指一種具有總諧波失真(total harmonic distortion,THD)補償之發光元件驅動電路及發光元件電路之驅動方法。 The present invention relates to a light-emitting element driving circuit and a driving method of the light-emitting element circuit, and more particularly to a driving method of a light-emitting element having a total harmonic distortion (THD) compensation and a driving method of the light-emitting element circuit.

第1A圖顯示一種先前技術發光二極體(light emitting diode,LED)驅動電路10及其相關電路的示意圖。如第1A圖所示,LED驅動電路10包含開關電路11、開關控制電路12、與固定電流源13。LED驅動電路10用以驅動LED電路20,其中LED電路20包含複數個串聯之LED,如第1A圖所示,此複數個串聯之LED,分為LED群組G1、G2、G3、與G4。開關電路11包含開關S1、S2、S3、與S4四個開關。如第1A圖所示,開關S1-S4分別電連接於LED電路20中適當的位置,以控制LED群組G1-G4。交流電源40產生交流電壓,整流電路30對此交流電壓進行整流,而產生整流輸入電壓Vin。而LED驅動電路10驅動LED電路20的基本方式,係根據整流輸入電壓Vin的位準,導通或不導通其中不同的開關S1-S4,而使LED電路20中的LED群組G1-G4,其中一個或複數個LED群組發光。 Figure 1A shows a schematic diagram of a prior art light emitting diode (LED) driver circuit 10 and its associated circuitry. As shown in FIG. 1A, the LED drive circuit 10 includes a switch circuit 11, a switch control circuit 12, and a fixed current source 13. The LED driving circuit 10 is configured to drive the LED circuit 20, wherein the LED circuit 20 includes a plurality of LEDs connected in series. As shown in FIG. 1A, the plurality of LEDs connected in series are divided into LED groups G1, G2, G3, and G4. The switch circuit 11 includes four switches S1, S2, S3, and S4. As shown in FIG. 1A, switches S1-S4 are electrically coupled to appropriate locations in LED circuit 20, respectively, to control LED groups G1-G4. The AC power source 40 generates an AC voltage, and the rectifier circuit 30 rectifies the AC voltage to generate a rectified input voltage Vin. The basic manner of driving the LED circuit 20 by the LED driving circuit 10 is to turn on or off the different switches S1-S4 according to the level of the rectified input voltage Vin, so that the LED groups G1-G4 in the LED circuit 20, wherein One or more LED groups emit light.

舉例而言,如第1B圖中訊號波形圖所示意,當整流輸入電壓Vin1的位準低於位準L1時,開關S1-S4皆不導通,LED群組G1-G4皆不發光;當整流輸入電壓Vin1的位準介於位準L1與L2之間, 開關S1導通,開關S2-S4不導通,LED群組G1發光;當整流輸入電壓Vin1的位準介於位準L2與L3之間,開關S2導通,開關S1、S3-S4不導通,LED群組G1-G2發光;當整流輸入電壓Vin1的位準介於位準L3與L4之間,開關S3導通,開關S1-S2、與S4不導通,LED群組G1-G3發光;當整流輸入電壓Vin1的位準超過位準L4,開關S4導通,開關S1-S3不導通,LED群組G1-G4發光。相關的LED驅動電路10根據整流輸入電壓Vin的驅動方式,可參考美國專利案第7,081,722號案與美國專利申請案第2011/0273102號案。 For example, as shown in the signal waveform diagram in FIG. 1B, when the level of the rectified input voltage Vin1 is lower than the level L1, the switches S1-S4 are not turned on, and the LED groups G1-G4 are not illuminated; when rectifying The level of the input voltage Vin1 is between the levels L1 and L2. The switch S1 is turned on, the switch S2-S4 is not turned on, and the LED group G1 is illuminated; when the level of the rectified input voltage Vin1 is between the level L2 and L3, the switch S2 is turned on, and the switches S1, S3-S4 are not turned on, the LED group Group G1-G2 emits light; when the level of the rectified input voltage Vin1 is between the level L3 and L4, the switch S3 is turned on, the switches S1-S2, and S4 are not turned on, and the LED groups G1-G3 emit light; when the rectified input voltage The level of Vin1 exceeds the level L4, the switch S4 is turned on, the switches S1-S3 are not turned on, and the LED groups G1-G4 are illuminated. The related LED driving circuit 10 is based on the driving method of the rectified input voltage Vin, and can be referred to the case of U.S. Patent No. 7,081,722 and U.S. Patent Application No. 2011/0273102.

其中,在整流輸入電壓Vin的波峰位準固定的條件下,固定電流源13提供固定大小的電流,以使LED群組G1-G4中一個或複數個LED群組發光時,流過其中的LED的電流為定值。如第1B圖中電流I1的訊號波形所示意,無論LED群組G1-G4中一個或複數個LED群組發光時,所流經的電流皆為固定,只有在整流輸入電壓Vin1的位準低於位準L1時,也就是開關S1-S4皆不導通的情況下,電流I1為零電流。 Wherein, under the condition that the peak level of the rectified input voltage Vin is fixed, the fixed current source 13 provides a fixed-size current so that one of the LED groups G1-G4 emits light when one or more LED groups emit light. The current is constant. As shown in the signal waveform of the current I1 in FIG. 1B, no matter whether one of the LED groups G1-G4 or a plurality of LED groups emits light, the current flowing through is fixed, and only the level of the rectified input voltage Vin1 is low. When the level L1, that is, when the switches S1-S4 are not turned on, the current I1 is zero current.

相較於以直流電壓驅動LED電路的驅動電路而言,先前技術LED驅動電路10的優點在於不需要將整流輸入電壓Vin轉換為直流電壓,可以節省製造的成本;且當整流輸入電壓Vin的頻率夠高,肉眼也看不出LED電路20的閃爍。而先前技術LED驅動電路10的缺點在於,其總諧波失真(total harmonic distortion,THD)較高。此外,當整流輸入電壓Vin的波峰位準不同時,如第1B圖所示,整流輸入電壓Vin1與Vin2的波峰位準不同,會導致流過導通的LED之電流I1與I2不同。 Compared with a driving circuit for driving an LED circuit with a DC voltage, the prior art LED driving circuit 10 has an advantage in that it is not necessary to convert the rectified input voltage Vin into a DC voltage, which can save manufacturing cost; and when rectifying the frequency of the input voltage Vin It is high enough that the flicker of the LED circuit 20 is not visible to the naked eye. A disadvantage of the prior art LED drive circuit 10 is that its total harmonic distortion (THD) is high. In addition, when the peak levels of the rectified input voltage Vin are different, as shown in FIG. 1B, the peak positions of the rectified input voltages Vin1 and Vin2 are different, which may cause the currents I1 and I2 flowing through the turned-on LEDs to be different.

有鑑於此,本發明即針對上述先前技術之不足,提出一種具有THD補償之發光元件驅動電路及發光元件電路之驅動方法,並使流經導通之發光元件電流不因整流輸入電壓不同而異。 In view of the above, the present invention has been made in view of the above-mentioned deficiencies of the prior art, and proposes a driving method of a light-emitting element having a THD compensation and a driving method of the light-emitting element circuit, and the current flowing through the light-emitting element does not vary depending on the rectified input voltage.

就其中一個觀點言,本發明提供了一種發光元件驅動電路,用以驅動一發光元件電路,其中該發光元件電路具有複數個串聯之發光元件,以接收一整流輸入電壓,該發光元件驅動電路包含:一開關模組,包括複數開關與一開關控制電路,其中該複數開關分別與對應之該發光元件耦接,且該開關控制電路與該複數開關耦接,用以根據該整流輸入電壓,決定導通的發光元件;一電流源電路,與該開關模組耦接,用以根據一調整訊號,提供一發光元件電流予導通之發光元件,其中該發光元件電流最大在一週期中至少部分時間具有接近該整流輸入電壓之波形輪廓並與該整流輸入電壓具有實質相同之相位角,並且,該發光元件電流之電流峰值或極大值不因該整流輸入電壓之振幅不同而顯著變化;以及一總諧波失真(total harmonic distortion,THD)補償電路,包括:一適應性乘法器電路,用以根據該整流輸入電壓,而產生一輸入電壓加權取樣訊號,該輸入電壓加權取樣訊號之值相關於該整流輸入電壓之峰值;以及一THD控制電路,與該適應性乘法器電路耦接,用以根據該輸入電壓加權取樣訊號,產生該調整訊號,以決定該發光元件電流。 In one aspect, the present invention provides a light-emitting element driving circuit for driving a light-emitting element circuit, wherein the light-emitting element circuit has a plurality of light-emitting elements connected in series to receive a rectified input voltage, and the light-emitting element driving circuit includes a switch module includes a plurality of switches and a switch control circuit, wherein the plurality of switches are respectively coupled to the corresponding light-emitting elements, and the switch control circuit is coupled to the plurality of switches for determining according to the rectified input voltage a light-emitting element; a current source circuit coupled to the switch module for providing a light-emitting element current to be turned on according to an adjustment signal, wherein the current of the light-emitting element is at least partially in a period of time Approaching the waveform profile of the rectified input voltage and having substantially the same phase angle with the rectified input voltage, and the current peak or maximum value of the current of the illuminating element does not change significantly due to the amplitude of the rectified input voltage; and a total harmonic Total harmonic distortion (THD) compensation circuit, including: The adaptive multiplier circuit is configured to generate an input voltage weighted sampling signal according to the rectified input voltage, wherein the value of the input voltage weighted sampling signal is related to a peak value of the rectified input voltage; and a THD control circuit, and the adaptability The multiplier circuit is coupled to weight the sampled signal according to the input voltage to generate the adjustment signal to determine the current of the light emitting element.

在其中一種較佳的實施例中,當該整流輸入電壓之振幅不同時,該發光元件電流之電流峰值或極大值維持為固定值。 In a preferred embodiment, when the amplitude of the rectified input voltage is different, the current peak or maximum value of the current of the illuminating element is maintained at a fixed value.

在其中一種較佳的實施例中,該THD補償電路更包括一電流設定電路,與該THD控制電路耦接,用以提供一電流設定訊號,且該THD控制電路也與該電流設定電路耦接,根據該輸入電壓加權取樣訊號和該電流設定訊號,產生該調整訊號。 In a preferred embodiment, the THD compensation circuit further includes a current setting circuit coupled to the THD control circuit for providing a current setting signal, and the THD control circuit is also coupled to the current setting circuit. And adjusting the sampling signal according to the input voltage and the current setting signal to generate the adjustment signal.

在其中一種較佳的實施例中,該調整訊號與該整流輸入 電壓具有實質相同之一相位角。 In a preferred embodiment, the adjustment signal and the rectification input The voltages have substantially the same phase angle.

在其中一種較佳的實施例中,該適應性乘法器電路使該輸入電壓加權取樣訊號與該整流輸入電壓間具有正比的關係,且該正比之比例係數相關於該整流輸入電壓之峰值。 In a preferred embodiment, the adaptive multiplier circuit has a proportional relationship between the input voltage weighted sampling signal and the rectified input voltage, and the proportional proportional coefficient is related to the peak value of the rectified input voltage.

在其中一種較佳的實施例中,當該整流輸入電壓之振幅相對較大時,該係數相對較低;當該整流輸入電壓之振幅相對較小時,該係數相對較高,藉此適應性地調整輸入電壓加權取樣訊號,使得在不同振幅之該整流輸入電壓下,均得到實質相同或接近的輸入電壓加權取樣訊號。 In a preferred embodiment, when the amplitude of the rectified input voltage is relatively large, the coefficient is relatively low; when the amplitude of the rectified input voltage is relatively small, the coefficient is relatively high, thereby adapting The input voltage weighted sampling signal is adjusted such that substantially equal or close input voltage weighted sampling signals are obtained at the rectified input voltages of different amplitudes.

在其中一種較佳的實施例中,該適應性乘法器電路包括:一輸入電壓感測電路,用以感測該整流輸入電壓,而產生一輸入電壓分壓;一峰值感測電路,與該輸入電壓感測電路耦接,用以感測該輸入電壓分壓之峰值,產生一峰值感測訊號;一多工器電路,與該峰值感測電路耦接,用以根據該峰值感測訊號,產生一調整係數;以及一乘法器,與該多工器電路耦接,用以根據該輸入電壓分壓與該調整係數,產生該輸入電壓加權取樣訊號。在其中一種較佳的實施例中,該適應性乘法器電路包括:一輸入電壓感測電路,用以接收該整流輸入電壓,並根據一回授訊號,而產生該輸入電壓加權取樣訊號;一比較電路,與該輸入電壓感測電路耦接,用以比較該輸入電壓加權取樣訊號與一參考訊號,產生一比較結果訊號;以及一計數電路,與該比較電路耦接,用以根據該比較結果訊號,產生該回授訊號。 In a preferred embodiment, the adaptive multiplier circuit includes: an input voltage sensing circuit for sensing the rectified input voltage to generate an input voltage division; a peak sensing circuit, and the The input voltage sensing circuit is coupled to sense a peak value of the input voltage divided to generate a peak sensing signal; a multiplexer circuit coupled to the peak sensing circuit for sensing the signal according to the peak And generating an adjustment coefficient; and a multiplier coupled to the multiplexer circuit for generating the input voltage weighted sampling signal according to the input voltage division voltage and the adjustment coefficient. In a preferred embodiment, the adaptive multiplier circuit includes: an input voltage sensing circuit for receiving the rectified input voltage, and generating the input voltage weighted sampling signal according to a feedback signal; a comparison circuit coupled to the input voltage sensing circuit for comparing the input voltage weighted sampling signal with a reference signal to generate a comparison result signal; and a counting circuit coupled to the comparison circuit for comparing the comparison The result signal, the feedback signal is generated.

在其中一種較佳的實施例中,該適應性乘法器電路更包括一鉗位電路,用以根據一預設位準,而限制該輸入電壓加權取樣訊號之一最大值。 In a preferred embodiment, the adaptive multiplier circuit further includes a clamping circuit for limiting a maximum value of the input voltage weighted sampling signal according to a predetermined level.

在其中一種較佳的實施例中,該適應性乘法器電路與一對應之發光元件之反向端連接而不與該整流輸入電壓直接連接,用以接收一內部電壓,以間接根據該整流輸入電壓,而產生該輸入電壓加權取樣訊號。 In one preferred embodiment, the adaptive multiplier circuit is coupled to the opposite end of a corresponding illuminating element and is not directly coupled to the rectified input voltage for receiving an internal voltage to indirectly depend on the rectified input. The voltage is generated to generate the input voltage weighted sampling signal.

就另一個觀點言,本發明提供了一種發光元件電路之驅動方法,一種發光元件電路之驅動方法,其中該發光元件電路具有複數個串聯之發光元件,該發光元件電路之驅動方法包含:提供一整流輸入電壓;根據該整流輸入電壓,以決定導通的發光元件;根據該整流輸入電壓,而產生一輸入電壓加權取樣訊號,該輸入電壓加權取樣訊號之值相關於該整流輸入電壓之峰值;根據該輸入電壓加權取樣訊號,產生一調整訊號;以及根據該調整訊號,提供一發光元件電流予導通之發光元件,在一週期中至少部分時間具有接近該整流輸入電壓之波形輪廓並與該整流輸入電壓具有實質相同之相位角,並且,該發光元件電流之電流峰值或極大值不因該整流輸入電壓之振幅不同而顯著變化。 In another aspect, the present invention provides a driving method of a light-emitting element circuit, and a driving method of the light-emitting element circuit, wherein the light-emitting element circuit has a plurality of light-emitting elements connected in series, and the driving method of the light-emitting element circuit includes: providing a Rectifying an input voltage; determining a conductive element according to the rectified input voltage; generating an input voltage weighted sampling signal according to the rectified input voltage, wherein the value of the input voltage weighted sampling signal is related to a peak value of the rectified input voltage; The input voltage weights the sampling signal to generate an adjustment signal; and, according to the adjustment signal, provides a light-emitting element current to be turned on, and has a waveform profile close to the rectified input voltage and is coupled to the rectification input for at least part of a cycle The voltages have substantially the same phase angle, and the current peak or maximum value of the current of the light-emitting element does not vary significantly due to the difference in amplitude of the rectified input voltage.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 The purpose, technical content, features and effects achieved by the present invention will be more readily understood by the detailed description of the embodiments.

10‧‧‧LED驅動電路 10‧‧‧LED drive circuit

11‧‧‧開關電路 11‧‧‧Switch circuit

12‧‧‧開關控制電路 12‧‧‧Switch Control Circuit

13,120a‧‧‧固定電流源 13,120a‧‧‧Fixed current source

20‧‧‧LED電路 20‧‧‧LED circuit

21‧‧‧發光元件電路 21‧‧‧Lighting element circuit

30‧‧‧整流電路 30‧‧‧Rectifier circuit

40‧‧‧交流電源 40‧‧‧AC power supply

100,200‧‧‧發光元件驅動電路 100,200‧‧‧Lighting element drive circuit

110‧‧‧開關模組 110‧‧‧Switch Module

120‧‧‧電流源電路 120‧‧‧current source circuit

130‧‧‧THD補償電路 130‧‧‧THD compensation circuit

131‧‧‧適應性乘法器電路 131‧‧‧Adaptive multiplier circuit

133‧‧‧THD控制電路 133‧‧‧THD control circuit

135‧‧‧電流設定電路 135‧‧‧ Current setting circuit

1311‧‧‧輸入電壓感測電路 1311‧‧‧Input voltage sensing circuit

1312‧‧‧比較電路 1312‧‧‧Comparative circuit

1313‧‧‧峰值感測電路 1313‧‧‧ Peak sensing circuit

1314‧‧‧計數電路 1314‧‧‧Counting circuit

1315‧‧‧多工器電路 1315‧‧‧Multiprocessor circuit

1316‧‧‧鉗位電路 1316‧‧‧Clamp circuit

1317‧‧‧乘法器 1317‧‧‧Multiplier

1324‧‧‧上/下數控制電路 1324‧‧‧Up/Down Control Circuit

1326‧‧‧計數器 1326‧‧‧ counter

1411,1421‧‧‧閂鎖電路 1411, 1421‧‧‧Latch circuit

1413‧‧‧上數控制電路 1413‧‧‧Upper control circuit

1423‧‧‧下數控制電路 1423‧‧‧Lower control circuit

G1-G4‧‧‧LED群組 G1-G4‧‧‧LED Group

A1-A3‧‧‧誤差放大器 A1-A3‧‧‧Error Amplifier

CR,CRU,CRD‧‧‧比較結果訊號 CR, CRU, CRD‧‧‧ comparison result signal

DC‧‧‧下數訊號 DC‧‧‧Digital signal

Id‧‧‧調整電流 Id‧‧‧Adjust current

ILED,ILED1,ILED2‧‧‧發光元件電流 ILED, ILED1, ILED2‧‧‧Lighting element current

ISET‧‧‧電流設定訊號 ISET‧‧‧ current setting signal

I1,I2‧‧‧電流 I1, I2‧‧‧ current

K1-Kn‧‧‧係數 K1-Kn‧‧ coefficient

LH,LHU,LHD‧‧‧閂鎖訊號 LH, LHU, LHD‧‧‧Latch signal

L1-L4‧‧‧位準 L1-L4‧‧‧

Q1-Q6‧‧‧電晶體 Q1-Q6‧‧‧Optoelectronics

Ra-Rb,R1,R3,R4‧‧‧電阻 Ra-Rb, R1, R3, R4‧‧‧ resistance

R2‧‧‧可變電阻 R2‧‧‧Variable resistor

S1-S4‧‧‧開關 S1-S4‧‧‧ switch

t0-t3‧‧‧時間點 T0-t3‧‧‧ time point

UC‧‧‧上數訊號 UC‧‧‧Upload signal

UD‧‧‧上/下數訊號 UD‧‧‧Up/Down Signal

Vin,Vin1,Vin2‧‧‧整流輸入電壓 Vin, Vin1, Vin2‧‧‧ rectified input voltage

Vint‧‧‧內部電壓 Vint‧‧‧ internal voltage

Vp1,Vp2‧‧‧波峰位準(峰值) Vp1, Vp2‧‧‧ peak level (peak)

Vref,Vref1,Vref2‧‧‧參考訊號 Vref, Vref1, Vref2‧‧‧ reference signal

第1A圖顯示一種先前技術發光二極體(light emitting diode,LED)驅動電路10及其相關電路的示意圖。 Figure 1A shows a schematic diagram of a prior art light emitting diode (LED) driver circuit 10 and its associated circuitry.

第1B圖顯示先前技術LED驅動電路10及其相關電路的訊號波形示意圖。 Figure 1B shows a schematic diagram of the signal waveforms of prior art LED driver circuit 10 and its associated circuitry.

第2A與2B圖顯示本發明的第一個實施例。 Figures 2A and 2B show a first embodiment of the present invention.

第3圖顯示本發明的第二個實施例。 Figure 3 shows a second embodiment of the invention.

第4圖顯示本發明第三個實施例。 Figure 4 shows a third embodiment of the invention.

第5圖顯示本發明第四個實施例。 Fig. 5 shows a fourth embodiment of the present invention.

第6圖顯示本發明的第五個實施例。 Figure 6 shows a fifth embodiment of the present invention.

第7圖顯示本發明的第六個實施例。 Fig. 7 shows a sixth embodiment of the present invention.

第8A-8C圖舉例說明鉗位電路1316的實施例和操作機制。 8A-8C illustrate an embodiment and operational mechanism of the clamp circuit 1316.

第9A圖顯示本發明的另一個實施例;第9B圖顯示第9A圖實施例與前幾個實施例的對照。 Fig. 9A shows another embodiment of the present invention; Fig. 9B shows a comparison of the embodiment of Fig. 9A with the previous several embodiments.

第10A-10E圖舉數例顯示電流源電路120如何根據調整電流Id來提供發光元件電流ILED。 10A-10E illustrate how the current source circuit 120 provides the light-emitting element current ILED according to the adjustment current Id.

請參閱第2A與2B圖,顯示本發明的第一個實施例。如第2A圖所示,發光元件驅動電路100用以驅動發光元件電路,其具有複數個串聯之發光元件。其中,發光元件電路例如但不限於為前述之LED電路20,例如但不限於包含複數串聯之LED,且此複數串聯之LED分為複數個LED群組,例如但不限於如LED電路20,分為G1、G2、G3、與G4四個LED群組。如第2A圖所示。需說明的是,發光元件電路並不限於LED電路20,僅包含單一LED串,發光元件電路亦可以由複數個LED串並聯所組成的LED陣列或是其他發光元件串或發光元件陣列等。整流電路30產生整流輸入電壓Vin,隨應用場合的不同,此整流輸入電壓Vin的振幅可能不同、或是因供電不穩,而即使在相同的應用場合,整流輸入電壓Vin的振幅也可能變化;參閱第2B圖,整流輸入電壓Vin可能為較低振幅的整流輸入電壓Vin1或是較 高振幅的整流輸入電壓Vin2。發光元件電路接收整流輸入電壓Vin,且發光元件驅動電路100根據整流輸入電壓Vin而改變發光元件電路中,被驅動的發光元件。 Referring to Figures 2A and 2B, a first embodiment of the present invention is shown. As shown in FIG. 2A, the light-emitting element driving circuit 100 is for driving a light-emitting element circuit having a plurality of light-emitting elements connected in series. The LED device circuit is, for example, but not limited to, the LED circuit 20, such as, but not limited to, a plurality of LEDs connected in series, and the plurality of LEDs connected in series are divided into a plurality of LED groups, such as but not limited to, for example, the LED circuit 20, Four LED groups for G1, G2, G3, and G4. As shown in Figure 2A. It should be noted that the light-emitting element circuit is not limited to the LED circuit 20, and only includes a single LED string. The light-emitting element circuit may also be an LED array composed of a plurality of LEDs connected in series or in parallel, or other light-emitting element strings or light-emitting element arrays. The rectifying circuit 30 generates a rectified input voltage Vin. The amplitude of the rectified input voltage Vin may be different depending on the application, or the power supply may be unstable, and the amplitude of the rectified input voltage Vin may change even in the same application; Referring to Figure 2B, the rectified input voltage Vin may be a lower amplitude rectified input voltage Vin1 or High amplitude rectified input voltage Vin2. The light emitting element circuit receives the rectified input voltage Vin, and the light emitting element drive circuit 100 changes the driven light emitting element in the light emitting element circuit in accordance with the rectified input voltage Vin.

請繼續參閱第2A圖,發光元件驅動電路100包含開關模組110、電流源電路120、以及總諧波失真(total harmonic distortion,THD)補償電路130。其中,開關模組110包括例如但不限於如第1A圖所示之開關電路111與開關控制電路112。其中,開關電路111包含複數開關(例如包含S1、S2、S3、與S4四個開關,如第1A圖所示),分別與對應的LED群組G1、G2、G3、與G4電連接。開關控制電路112根據整流輸入電壓Vin,決定複數LED中,被驅動的LED,以導通這些對應的LED而發光。舉例而言,與先前技術LED驅動電路10相同機制,例如當整流輸入電壓Vin(Vin1或Vin2)的位準低於位準L1時,開關S1-S4皆不導通,LED群組G1-G4皆不發光;當整流輸入電壓Vin(Vin1或Vin2)的位準介於位準L1與L2之間,開關S1導通,開關S2-S4不導通,LED群組G1發光;當整流輸入電壓Vin(Vin1或Vin2)的位準介於位準L2與L3之間,開關S2導通,開關S1、S3-S4不導通,LED群組G1-G2發光;當整流輸入電壓Vin(Vin1或Vin2)的位準介於位準L3與L4之間,開關S3導通,開關S1-S2、與S4不導通,LED群組G1-G3發光;當整流輸入電壓Vin(Vin1或Vin2)的位準超過位準L4,開關S4導通,開關S1-S3不導通,LED群組G1-G4發光。 Referring to FIG. 2A , the light-emitting element driving circuit 100 includes a switch module 110 , a current source circuit 120 , and a total harmonic distortion (THD) compensation circuit 130 . The switch module 110 includes, for example but not limited to, a switch circuit 111 and a switch control circuit 112 as shown in FIG. 1A. The switch circuit 111 includes a plurality of switches (for example, four switches including S1, S2, S3, and S4, as shown in FIG. 1A), and is electrically connected to corresponding LED groups G1, G2, G3, and G4, respectively. The switch control circuit 112 determines the LED to be driven among the plurality of LEDs based on the rectified input voltage Vin to turn on the corresponding LEDs to emit light. For example, the same mechanism as the prior art LED driving circuit 10, for example, when the level of the rectified input voltage Vin (Vin1 or Vin2) is lower than the level L1, the switches S1-S4 are not turned on, and the LED groups G1-G4 are No light; when the level of the rectified input voltage Vin (Vin1 or Vin2) is between the level L1 and L2, the switch S1 is turned on, the switch S2-S4 is not turned on, the LED group G1 is illuminated; when the rectified input voltage Vin (Vin1) Or the level of Vin2) is between the level L2 and L3, the switch S2 is turned on, the switches S1, S3-S4 are not turned on, the LED group G1-G2 is illuminated; when the level of the rectified input voltage Vin (Vin1 or Vin2) is rectified Between the level L3 and L4, the switch S3 is turned on, the switches S1-S2, and S4 are not turned on, and the LED groups G1-G3 emit light; when the level of the rectified input voltage Vin (Vin1 or Vin2) exceeds the level L4, The switch S4 is turned on, the switches S1-S3 are not turned on, and the LED groups G1-G4 are illuminated.

與先前技術LED驅動電路10不同的是,在本實施例中,電流源電路120除了與開關模組110耦接之外,另與THD補償電路130耦接,以根據調整訊號,提供發光元件電流ILED予導通之發光元件。THD補償電路130與電流源電路120耦接,用以根據整流輸入電壓Vin(Vin1或Vin2),產生調整訊號。調整訊號用以調整發光元件電 流ILED,使其在一週期中至少部分時間(例如任一LED群組導通時)具有接近整流輸入電壓Vin之波形輪廓(例如為接近半弦波之波形輪廓)並與整流輸入電壓Vin具有實質相同之相位角,並且,發光元件電流ILED之電流峰值(即一週期中之極大電流)不因整流輸入電壓之振幅不同而顯著變化,亦即,最大於不同振幅之整流輸入電壓Vin1與Vin2(波峰位準Vp1與Vp2不同)的狀況下,發光元件電流ILED之電流峰值維持在一預設的範圍內且較佳為固定值。所謂「電流峰值」,可能不只於單一時間點達到該極大值(參閱第2B圖之ILED波形),亦可能在一持續時間內維持該極大值(參閱第8B圖之ILED波形,容後詳述)。亦即,本發明的特點是:發光元件電流ILED在一週期中至少部分時間與整流輸入電壓Vin具有實質相同之一相位角,因此降低了THD,並且發光元件電流ILED之電流峰值不因整流輸入電壓之振幅不同而顯著變化,因此在不同的應用場合,發光元件電流ILED仍然相同或接近,且也不易發生閃爍(flicker)的現象。 Different from the prior art LED driving circuit 10, in the embodiment, the current source circuit 120 is coupled to the THD compensation circuit 130 in addition to the switch module 110 to provide a light-emitting element current according to the adjustment signal. ILED pre-conducting light-emitting element. The THD compensation circuit 130 is coupled to the current source circuit 120 for generating an adjustment signal according to the rectified input voltage Vin (Vin1 or Vin2). Adjust the signal to adjust the light component Flowing the ILED such that it has a waveform profile close to the rectified input voltage Vin (eg, a waveform profile close to a half-sine wave) at least part of the time (eg, when any of the LED groups are turned on) and has substantiality with the rectified input voltage Vin The same phase angle, and the current peak of the light-emitting element current ILED (ie, the maximum current in one cycle) does not change significantly due to the difference in the amplitude of the rectified input voltage, that is, the rectified input voltages Vin1 and Vin2 that are at most different amplitudes ( In the case where the peak level Vp1 is different from Vp2, the current peak value of the light-emitting element current ILED is maintained within a predetermined range and preferably a fixed value. The so-called "current peak" may not only reach this maximum value at a single point in time (see the ILED waveform in Figure 2B), but may also maintain the maximum value for a duration (see the ILED waveform in Figure 8B, detailed later). ). That is, the present invention is characterized in that the light-emitting element current ILED has substantially the same phase angle with the rectified input voltage Vin for at least part of the period in one cycle, thereby lowering the THD, and the current peak of the light-emitting element current ILED is not due to the rectified input. The amplitude of the voltage varies significantly, so in different applications, the light-emitting element current ILED is still the same or close, and flicker is less likely to occur.

在一種較佳的實施例中,調整訊號之訊號波形例如但不限於如第2B圖所示意;調整訊號為半弦波且與整流輸入電壓Vin具有實質相同之相位角。需說明的是,所謂具有實質相同之相位角並不表示必須絕對無誤差地恰好具有相同的相位角,而應視為可容許有微幅的偏離,只要相較於固定值的發光元件電流(如第1B圖中的先前技術電流I1與I2的訊號波形所示意),應用本發明,使整流輸入電壓Vin與發光元件電流ILED相對而言具有較接近的相位角,而可降低THD即可。在本實施例中,於整流輸入電壓Vin(Vin1或Vin2)超過位準L1時,發光元件電流ILED與整流輸入電壓Vin(Vin1或Vin2)具有實質相同的相位角。 In a preferred embodiment, the signal waveform of the adjustment signal is, for example but not limited to, as shown in FIG. 2B; the adjustment signal is a half-sine wave and has substantially the same phase angle as the rectified input voltage Vin. It should be noted that having substantially the same phase angle does not mean that the same phase angle must be absolutely error-free, but should be considered to allow a slight deviation, as long as the current of the light-emitting element is compared with a fixed value ( As shown by the signal waveforms of the prior art currents I1 and I2 in FIG. 1B, the present invention is applied such that the rectified input voltage Vin has a relatively close phase angle with respect to the light-emitting element current ILED, and THD can be lowered. In the present embodiment, when the rectified input voltage Vin (Vin1 or Vin2) exceeds the level L1, the light-emitting element current ILED and the rectified input voltage Vin (Vin1 or Vin2) have substantially the same phase angle.

在本實施例中,THD補償電路130包括適應性乘法器電 路131、THD控制電路133、與電流設定電路135。適應性乘法器電路131用以根據整流輸入電壓Vin(Vin1或Vin2),而產生輸入電壓加權取樣訊號,其取樣值相關於整流輸入電壓Vin之峰值。THD控制電路133與適應性乘法器電路131耦接,用以根據輸入電壓加權取樣訊號與電流設定訊號ISET,產生調整訊號。電流設定電路135與THD控制電路133耦接,用以提供電流設定訊號ISET。在另一實施例中,THD補償電路130可以僅包括適應性乘法器電路131和THD控制電路133,而省略電流設定電路135(因此圖中以虛線繪示電流設定電路135和電流設定訊號ISET)。 In the present embodiment, the THD compensation circuit 130 includes an adaptive multiplier The path 131, the THD control circuit 133, and the current setting circuit 135. The adaptive multiplier circuit 131 is configured to generate an input voltage weighted sampling signal according to the rectified input voltage Vin (Vin1 or Vin2), the sampling value of which is related to the peak value of the rectified input voltage Vin. The THD control circuit 133 is coupled to the adaptive multiplier circuit 131 for weighting the sampled signal and the current setting signal ISET according to the input voltage to generate an adjustment signal. The current setting circuit 135 is coupled to the THD control circuit 133 for providing a current setting signal ISET. In another embodiment, the THD compensation circuit 130 may include only the adaptive multiplier circuit 131 and the THD control circuit 133, and the current setting circuit 135 is omitted (the current setting circuit 135 and the current setting signal ISET are shown by dashed lines in the figure). .

第3圖顯示本發明第二個實施例,本實施例舉例顯示適應性乘法器電路131的一種實施方式。在本實施例中,適應性乘法器電路131包括輸入電壓感測電路1311、峰值感測電路1313、多工器電路1315、與乘法器1317。輸入電壓感測電路1311用以感測整流輸入電壓Vin而產生與整流輸入電壓Vin相關的訊號,其中,該「與整流輸入電壓Vin相關的訊號」例如但不限於為整流輸入電壓Vin的分壓(「輸入電壓分壓」)。峰值感測電路1313與輸入電壓感測電路1311耦接,用以感測輸入電壓分壓之峰值而產生峰值感測訊號。因輸入電壓分壓與整流輸入電壓Vin相關,因此峰值感測訊號也與整流輸入電壓Vin之峰值相關。多工器電路1315與峰值感測電路1313耦接,用以根據峰值感測訊號,產生調整係數。如圖所示,多工器電路1315例如根據峰值感測訊號,以例如查表的方式,選擇係數K1-Kn中適當的係數,作為調整係數。乘法器1317與多工器電路1315耦接,用以根據輸入電壓分壓與調整係數,產生輸入電壓加權取樣訊號。本實施例示意一種具有開迴路控制模式的適應性乘法器電路131,其根據輸入電壓分壓,乘上一個係數,使輸入電壓加權取樣訊號與整流輸入電壓間例如 具有正比的關係,且該係數相關於整流輸入電壓Vin之峰值,因此輸入電壓加權取樣訊號之值也相關於整流輸入電壓Vin之峰值。 Fig. 3 shows a second embodiment of the present invention, which shows an embodiment of the adaptive multiplier circuit 131. In the present embodiment, the adaptive multiplier circuit 131 includes an input voltage sensing circuit 1311, a peak sensing circuit 1313, a multiplexer circuit 1315, and a multiplier 1317. The input voltage sensing circuit 1311 is configured to sense the rectified input voltage Vin to generate a signal related to the rectified input voltage Vin, wherein the “signal related to the rectified input voltage Vin” is, for example but not limited to, a divided voltage of the rectified input voltage Vin ("Input voltage divider"). The peak sensing circuit 1313 is coupled to the input voltage sensing circuit 1311 for sensing a peak value of the input voltage divided to generate a peak sensing signal. Since the input voltage division is related to the rectified input voltage Vin, the peak sense signal is also related to the peak value of the rectified input voltage Vin. The multiplexer circuit 1315 is coupled to the peak sensing circuit 1313 for generating an adjustment coefficient according to the peak sensing signal. As shown, the multiplexer circuit 1315 selects an appropriate coefficient among the coefficients K1-Kn as an adjustment coefficient, for example, based on the peak sensing signal, by, for example, looking up a table. The multiplier 1317 is coupled to the multiplexer circuit 1315 for generating an input voltage weighted sampling signal according to the input voltage division and the adjustment coefficient. This embodiment illustrates an adaptive multiplier circuit 131 having an open loop control mode that multiplies a factor by the input voltage division voltage to cause an input voltage to be weighted between the sampled signal and the rectified input voltage. There is a proportional relationship, and the coefficient is related to the peak value of the rectified input voltage Vin, so the value of the input voltage weighted sampling signal is also related to the peak value of the rectified input voltage Vin.

當然,根據本發明,多工器電路1315不限於以查表的機制決定調整係數,亦可以利用其他的機制,例如以金屬熔絲(metal fuse)修整(trim)方式決定調整係數。峰值感測電路1313亦不限於感測輸入電壓分壓的峰值,亦可以感測輸入電壓分壓的斜率等,而產生峰值感測訊號。總之,第二實施例係示意:以開迴路控制模式,將輸入電壓分壓乘上一個係數作為輸入電壓加權取樣訊號,且該係數相關於整流輸入電壓Vin之峰值。其實際的實施方式有各種變化,不侷限於圖示的方式。當整流輸入電壓Vin之振幅相對較大(因此峰值較高)時,該係數相對較低;當整流輸入電壓Vin之振幅相對較小(因此峰值較低)時,該係數相對較高,藉此適應性地調整輸入電壓加權取樣訊號,使得無論整流輸入電壓Vin為Vin1或Vin2,均得到實質相同或接近的輸入電壓加權取樣訊號。(視係數的可調整範圍而定,若Vin1 x K1=Vin2 x K2,則在不考慮電路元件誤差的情況下,可使整流輸入電壓Vin1或Vin2均得到實質相同的輸入電壓加權取樣訊號,在此情況下,不論整流輸入電壓為Vin1或Vin2,發光元件電流ILED之電流峰值或極大值可維持為固定值;但若可選用的係數值不能恰好使Vin1 x K1=Vin2 x K2,則僅能得到接近的輸入電壓加權取樣訊號,在此情況下,若整流輸入電壓在Vin1和Vin2之間變化,發光元件電流ILED之電流峰值或極大值可維持在一預設的範圍內而不會顯著變化。) Of course, according to the present invention, the multiplexer circuit 1315 is not limited to determining the adjustment coefficient by the mechanism of look-up table, and other mechanisms such as trimming the metal fuse to determine the adjustment factor may be utilized. The peak sensing circuit 1313 is also not limited to sensing the peak value of the input voltage division, and may also sense the slope of the input voltage division and the like to generate a peak sensing signal. In summary, the second embodiment illustrates that in the open loop control mode, the input voltage divided by a coefficient is used as the input voltage weighted sampling signal, and the coefficient is related to the peak value of the rectified input voltage Vin. There are various variations to the actual implementation, and are not limited to the manner illustrated. When the amplitude of the rectified input voltage Vin is relatively large (thus the peak value is high), the coefficient is relatively low; when the amplitude of the rectified input voltage Vin is relatively small (thus the peak value is low), the coefficient is relatively high, thereby The input voltage weighted sampling signal is adaptively adjusted such that the input voltage weighted sampling signal is substantially the same or close regardless of whether the rectified input voltage Vin is Vin1 or Vin2. (Depending on the adjustable range of the coefficient, if Vin1 x K1=Vin2 x K2, the rectified input voltage Vin1 or Vin2 can be obtained with substantially the same input voltage weighted sampling signal without considering the circuit component error. In this case, the current peak value or maximum value of the light-emitting element current ILED can be maintained at a fixed value regardless of whether the rectified input voltage is Vin1 or Vin2; however, if the optional coefficient value cannot be exactly such that Vin1 x K1=Vin2 x K2, then only Obtaining an approximate input voltage weighted sampling signal. In this case, if the rectified input voltage changes between Vin1 and Vin2, the current peak value or maximum value of the light emitting element current ILED can be maintained within a preset range without significant change. .)

THD控制電路133根據輸入電壓加權取樣訊號與電流設定訊號ISET、或是根據輸入電壓加權取樣訊號而不需要電流設定訊號ISET,產生調整訊號,此調整訊號用以控制電流源電路120來提供發光元件電流ILED。有關THD控制電路133之細節,請參閱同一申請人 所申請的台灣專利申請案第103120122號(中國專利申請案第201410275924.2號)的第5A-10C圖,其可以有種種變化,不一一詳述於此。簡言之,因輸入電壓加權取樣訊號與整流輸入電壓間例如具有正比的關係,因此THD控制電路133只要根據輸入電壓加權取樣訊號來產生具有對應輪廓的波形(可為同相或反相),就可以作為調整訊號,該調整訊號可以是電流訊號或電壓訊號。而電流設定電路135所產生的電流設定訊號ISET可決定一電流基準值,例如用以決定調整訊號的下限或上限等,藉此設定發光元件電流ILED的下限或上限等。 The THD control circuit 133 generates a calibration signal by using the input voltage to weight the sampled signal and the current setting signal ISET or by weighting the sampling signal according to the input voltage without the current setting signal ISET. The adjusting signal is used to control the current source circuit 120 to provide the light emitting element. Current ILED. For details on the THD control circuit 133, please refer to the same applicant. The 5A-10C diagram of the Taiwan Patent Application No. 103120122 (Chinese Patent Application No. 201410275924.2), which is incorporated herein by reference, is incorporated herein by reference. In short, since the input voltage weighted sampling signal has a proportional relationship with the rectified input voltage, for example, the THD control circuit 133 only needs to weight the sampling signal according to the input voltage to generate a waveform having a corresponding contour (which may be in-phase or inverted). It can be used as an adjustment signal. The adjustment signal can be a current signal or a voltage signal. The current setting signal ISET generated by the current setting circuit 135 can determine a current reference value, for example, to determine a lower limit or an upper limit of the adjustment signal, thereby setting a lower limit or an upper limit of the light-emitting element current ILED.

電流源電路120如何根據調整訊號來提供發光元件電流ILED,有種種方式,本發明並不侷限於其中任何一種。調整訊號例如但不限於包括一種電流的形式,即如第10A-10E圖所示,以調整電流Id做為調整訊號。舉例說明,請參閱第10A-10B圖,電流源電路120可以是一個電流複製電路(電流複製電路有各種形式,本發明並不侷限於其中任何一種),而發光元件電流ILED例如等於或正比於調整電流Id(當開關S1-S4中的任何開關導通時,下同),視該電流複製電路的複製比例而定。第10C圖顯示電流源電路120的另一種實施方式,在本實施例中調整電流Id乘上電阻Ra的電阻值等於發光元件電流ILED乘上電阻Rb的電阻值,故根據電阻Ra和Rb的設定,發光元件電流ILED同樣可以等於或正比於調整電流Id。第10D-10E圖顯示發光元件電流ILED亦可以為調整電流Id減去或加上一固定電流。第10D圖顯示前者,電流源電路120中例如但不限於包含一固定電流源120a,而發光元件電流ILED為調整電流Id減去該固定電流源120a所決定之固定電流;第10E圖顯示後者,電流源電路120中包含固定電流源120a,而發光元件電流IIED為調整電流Id加上該固定電流源120a所決定之固定電流。 The current source circuit 120 provides the light-emitting element current ILED according to the adjustment signal. In various ways, the present invention is not limited to any one of them. The adjustment signal is, for example but not limited to, including a form of current, that is, as shown in FIGS. 10A-10E, the adjustment current Id is used as the adjustment signal. For example, referring to FIGS. 10A-10B, the current source circuit 120 can be a current replica circuit (the current replica circuit has various forms, the invention is not limited to any one of them), and the light-emitting element current ILED is, for example, equal to or proportional to The current Id is adjusted (when any of the switches S1-S4 is turned on, the same below), depending on the reproduction ratio of the current replica circuit. FIG. 10C shows another embodiment of the current source circuit 120. In the present embodiment, the resistance value of the adjustment current Id multiplied by the resistance Ra is equal to the resistance value of the light-emitting element current ILED multiplied by the resistance Rb, so the setting according to the resistances Ra and Rb is set. The light-emitting element current ILED can likewise be equal to or proportional to the adjustment current Id. Figure 10D-10E shows that the light-emitting element current ILED can also be subtracted or added to a fixed current Id. 10D shows the former, the current source circuit 120 includes, for example but not limited to, a fixed current source 120a, and the light-emitting element current ILED is the fixed current Id minus the fixed current determined by the fixed current source 120a; FIG. 10E shows the latter, The current source circuit 120 includes a fixed current source 120a, and the light-emitting element current IIED is a regulated current Id plus a fixed current determined by the fixed current source 120a.

以上第10A-10E圖的實施方式不限於單獨應用,亦可以兩種以上組合應用。 The embodiments of the above 10A-10E are not limited to separate applications, and may be applied in combination of two or more.

第4圖顯示本發明的第三個實施例,本實施例舉例顯示適應性乘法器電路131的另一種實施方式。在本實施例中,適應性乘法器電路131包括輸入電壓感測電路1311、比較電路1312、與計數電路1314。輸入電壓感測電路1311用以感測整流輸入電壓Vin,並根據回授訊號,而產生輸入電壓加權取樣訊號。比較電路1312與輸入電壓感測電路1311耦接,用以比較輸入電壓加權取樣訊號與參考訊號(未示出,可為單數或複數參考訊號,容後說明),產生比較結果訊號。計數電路1314與比較電路耦接,用以根據比較結果訊號,產生回授訊號。與第二個實施例不同的是,本實施例示意一種具有閉迴路的控制模式的適應性乘法器電路131,根據輸入電壓加權取樣訊號,回授控制輸入電壓感測電路,以適應性調整輸入電壓加權取樣訊號與整流輸入電壓Vin間的關係,使其間隨時保持例如正比的關係,且輸入電壓加權取樣訊號之值相關於整流輸入電壓為Vin的振幅或峰值。 Fig. 4 shows a third embodiment of the present invention, which shows another embodiment of the adaptive multiplier circuit 131. In the present embodiment, the adaptive multiplier circuit 131 includes an input voltage sensing circuit 1311, a comparison circuit 1312, and a counter circuit 1314. The input voltage sensing circuit 1311 is configured to sense the rectified input voltage Vin and generate an input voltage weighted sampling signal according to the feedback signal. The comparison circuit 1312 is coupled to the input voltage sensing circuit 1311 for comparing the input voltage weighted sampling signal with a reference signal (not shown, which may be a singular or complex reference signal, as described later) to generate a comparison result signal. The counting circuit 1314 is coupled to the comparison circuit for generating a feedback signal according to the comparison result signal. Different from the second embodiment, this embodiment illustrates an adaptive multiplier circuit 131 having a closed loop control mode, weighting the sampling signal according to the input voltage, and feeding back the control input voltage sensing circuit to adaptively adjust the input. The relationship between the voltage-weighted sampling signal and the rectified input voltage Vin is such that it maintains a proportional relationship at any time, and the value of the input voltage-weighted sampling signal is related to the amplitude or peak value of the rectified input voltage as Vin.

第5圖顯示本發明的第四個實施例。本實施例顯示適應性乘法器電路131一種較具體的實施例。如圖所示,在本實施例中,適應性乘法器電路131包括輸入電壓感測電路1311、比較電路1312、與計數電路1314。輸入電壓感測電路1311例如具有串聯之電阻R1與可變電阻R2,且可變電阻R2之電阻值由回授訊號調整。輸入電壓加權取樣訊號例如取自可變電阻R2上的分壓。比較電路1312例如具有誤差放大器A1,比較輸入電壓加權取樣訊號(在此實施例中,輸入電壓加權取樣訊號為可變電阻R2上的分壓)與參考訊號Vref,產生比較結果訊號CR。計數電路1314包括閂鎖電路1322、上/下數控制電路1324、與計數器1326。閂鎖電路1322根據比較結果訊號CR,決定閂鎖訊號 LH。上/下數控制電路1324根據閂鎖訊號LH,決定上/下數訊號UD。計數器1326根據上/下數訊號UD,執行上/下數操作,以產生回授訊號,用以調整可變電阻R2的電阻值。如此一來,無論整流輸入電壓Vin的振幅如何,利用本實施例的閉迴路控制機制,可回授控制輸入電壓加權取樣訊號,使其不受整流輸入電壓Vin的振幅影響,例如使輸入電壓加權取樣訊號的波峰位準固定,進而使發光元件電流ILED不因整流輸入電壓Vin的振幅不同而改變。 Fig. 5 shows a fourth embodiment of the present invention. This embodiment shows a more specific embodiment of the adaptive multiplier circuit 131. As shown, in the present embodiment, the adaptive multiplier circuit 131 includes an input voltage sensing circuit 1311, a comparison circuit 1312, and a counter circuit 1314. The input voltage sensing circuit 1311 has, for example, a series resistor R1 and a variable resistor R2, and the resistance value of the variable resistor R2 is adjusted by a feedback signal. The input voltage weighted sampling signal is taken, for example, from the divided voltage on the variable resistor R2. The comparison circuit 1312, for example, has an error amplifier A1 that compares the input voltage weighted sampling signal (in this embodiment, the input voltage weighted sampling signal is a divided voltage on the variable resistor R2) with the reference signal Vref to generate a comparison result signal CR. The counting circuit 1314 includes a latch circuit 1322, an up/down number control circuit 1324, and a counter 1326. The latch circuit 1322 determines the latch signal according to the comparison result signal CR. LH. The up/down number control circuit 1324 determines the up/down signal UD based on the latch signal LH. The counter 1326 performs an up/down operation according to the up/down number signal UD to generate a feedback signal for adjusting the resistance value of the variable resistor R2. In this way, regardless of the amplitude of the rectified input voltage Vin, the closed loop control mechanism of the embodiment can be used to feedback the control input voltage weighted sampling signal so as not to be affected by the amplitude of the rectified input voltage Vin, for example, the input voltage is weighted. The peak level of the sampled signal is fixed, and the light-emitting element current ILED is not changed by the amplitude of the rectified input voltage Vin.

第6圖顯示本發明的第五個實施例。本實施例顯示適應性乘法器電路131另一種較具體的實施例。如圖所示,在本實施例中,適應性乘法器電路131包括輸入電壓感測電路1311、比較電路1312、與計數電路1314。輸入電壓感測電路1311例如具有串聯之電阻R1與可變電阻R2,且可變電阻R2之電阻值由回授訊號調整。輸入電壓加權取樣訊號例如取自可變電阻R2上的分壓。比較電路1312例如具有誤差放大器A2與A3,分別比較輸入電壓加權取樣訊號(在此實施例中,輸入電壓加權取樣訊號為可變電阻R2上的分壓)與參考訊號Vref1/Vref2,而分別產生比較結果訊號CRU與CRD。計數電路1314包括閂鎖電路1411與1421、上數控制電路1413、下數控制電路1423、與計數器1431。閂鎖電路1411與1421分別根據比較結果訊號CRU與CRD,決定閂鎖訊號LHU與LHD。上數控制電路1413根據閂鎖訊號LHU,決定上數訊號UC。下數控制電路1423根據閂鎖訊號LHD,決定下數訊號DC。計數器1431根據上數訊號UC與下數訊號DC,執行上/下數操作,以產生回授訊號,用以調整可變電阻R2的電阻值。如此一來,無論整流輸入電壓Vin的振幅如何,利用本實施例的閉迴路控制機制,可回授控制輸入電壓加權取樣訊號,使其不受整流輸入電壓Vin的振幅影響,例如使輸入電壓加權取樣訊號的波峰位準固定, 進而使發光元件電流ILED不因整流輸入電壓Vin的振幅不同而改變。 Figure 6 shows a fifth embodiment of the present invention. This embodiment shows another more specific embodiment of the adaptive multiplier circuit 131. As shown, in the present embodiment, the adaptive multiplier circuit 131 includes an input voltage sensing circuit 1311, a comparison circuit 1312, and a counter circuit 1314. The input voltage sensing circuit 1311 has, for example, a series resistor R1 and a variable resistor R2, and the resistance value of the variable resistor R2 is adjusted by a feedback signal. The input voltage weighted sampling signal is taken, for example, from the divided voltage on the variable resistor R2. The comparison circuit 1312 has, for example, error amplifiers A2 and A3, respectively comparing the input voltage weighted sampling signals (in this embodiment, the input voltage weighted sampling signal is a divided voltage on the variable resistor R2) and the reference signals Vref1/Vref2, respectively. Compare the result signals CRU and CRD. The counting circuit 1314 includes latch circuits 1411 and 1421, an upper number control circuit 1413, a lower number control circuit 1423, and a counter 1431. The latch circuits 1411 and 1421 determine the latch signals LHU and LHD based on the comparison result signals CRU and CRD, respectively. The upper number control circuit 1413 determines the upper signal UC based on the latch signal LHU. The lower number control circuit 1423 determines the next signal DC according to the latch signal LHD. The counter 1431 performs an up/down operation based on the upper signal UC and the lower signal DC to generate a feedback signal for adjusting the resistance value of the variable resistor R2. In this way, regardless of the amplitude of the rectified input voltage Vin, the closed loop control mechanism of the embodiment can be used to feedback the control input voltage weighted sampling signal so as not to be affected by the amplitude of the rectified input voltage Vin, for example, the input voltage is weighted. The peak level of the sampled signal is fixed. Further, the light-emitting element current ILED is not changed by the amplitude of the rectified input voltage Vin.

第7圖顯示本發明的第六個實施例。如第7圖所示,發光元件驅動電路100用以驅動發光元件電路21,其具有複數個串聯之發光元件。其中,發光元件電路21例如但不限於為前述之LED電路20。發光元件驅動電路100包含開關模組110、電流源電路120、以及THD補償電路130。其中,THD補償電路130包括適應性乘法器電路131、THD控制電路133、與電流設定電路135。其中,適應性乘法器電路131包括輸入電壓感測電路1311、比較電路1312、計數電路1314、與鉗位電路1316。適應性乘法器電路131用以根據整流輸入電壓Vin,而產生輸入電壓加權取樣訊號。並且,適應性乘法器電路131中的鉗位電路1316對輸入電壓加權取樣訊號加以鉗位處理,而產生鉗位輸入電壓加權取樣訊號。鉗位電路1316與輸入電壓感測電路1311耦接,用以根據預設位準(未示出,於後詳述),而限制輸入電壓加權取樣訊號之最大值。THD控制電路133與適應性乘法器電路131中的鉗位電路1316耦接,用以根據鉗位輸入電壓加權取樣訊號與電流設定訊號ISET,產生調整訊號。電流設定電路135與THD控制電路133耦接,用以提供電流設定訊號ISET。最大須說明的是,本實施例中的電流設定電路135與電流設定訊號ISET同樣可以省略。 Fig. 7 shows a sixth embodiment of the present invention. As shown in Fig. 7, the light-emitting element driving circuit 100 is for driving the light-emitting element circuit 21, which has a plurality of light-emitting elements connected in series. The light-emitting element circuit 21 is, for example but not limited to, the aforementioned LED circuit 20. The light emitting element drive circuit 100 includes a switch module 110, a current source circuit 120, and a THD compensation circuit 130. The THD compensation circuit 130 includes an adaptive multiplier circuit 131, a THD control circuit 133, and a current setting circuit 135. The adaptive multiplier circuit 131 includes an input voltage sensing circuit 1311, a comparison circuit 1312, a counting circuit 1314, and a clamping circuit 1316. The adaptive multiplier circuit 131 is configured to generate an input voltage weighted sampling signal according to the rectified input voltage Vin. Moreover, the clamp circuit 1316 in the adaptive multiplier circuit 131 clamps the input voltage weighted sample signal to generate a clamped input voltage weighted sample signal. The clamp circuit 1316 is coupled to the input voltage sensing circuit 1311 for limiting the maximum value of the input voltage weighted sampling signal according to a preset level (not shown, as described in detail later). The THD control circuit 133 is coupled to the clamp circuit 1316 of the adaptive multiplier circuit 131 for weighting the sample signal and the current setting signal ISET according to the clamp input voltage to generate an adjustment signal. The current setting circuit 135 is coupled to the THD control circuit 133 for providing a current setting signal ISET. It should be noted that the current setting circuit 135 in this embodiment can be omitted similarly to the current setting signal ISET.

本實施例旨在說明,適應性乘法器電路131可更包括鉗位電路1316,利用將輸入電壓加權取樣訊號鉗位的做法,使輸入電壓加權取樣訊號不高於預設的位準。由於調整訊號相關於輸入電壓加權取樣訊號,而發光元件電流ILED又相關於調整訊號,因此限制輸入電壓加權取樣訊號之最大值後,便可對應地限制發光元件電流ILED的最大電流值,或是在相同的最大值之下,改變發光元件電流ILED的波形與積分值。至於THD與發光元件電流ILED的電流值的調整,可視使 用者的需求,調整鉗位電路1316的預設位準而達成。 This embodiment is intended to illustrate that the adaptive multiplier circuit 131 can further include a clamping circuit 1316 that clamps the input voltage weighted sampling signal so that the input voltage weighted sampling signal is not higher than a preset level. Since the adjustment signal is related to the input voltage weighted sampling signal, and the light-emitting element current ILED is related to the adjustment signal, the maximum value of the input voltage-weighted sampling signal is limited, and the maximum current value of the light-emitting element current ILED can be correspondingly limited, or Below the same maximum value, the waveform and integral value of the light-emitting element current ILED are changed. As for the adjustment of the current value of the THD and the light-emitting element current ILED, it can be seen that The user's needs are adjusted by adjusting the preset level of the clamp circuit 1316.

第8A-8C圖舉例說明鉗位電路1316的實施例和操作機制。在第8A圖中,鉗位電路1316例如但不限於包含一多工器,用以選取輸入電壓加權取樣訊號與預設位準中較低者作為鉗位輸入電壓加權取樣訊號。其中之訊號波形如第8B圖所示意。本實施例中,整流輸入電壓Vin如圖所示為半弦波,輸入電壓加權取樣訊號例如為整流輸入電壓Vin之分壓,因而亦為如圖所示之半弦波,而鉗位輸入電壓加權取樣訊號於輸入電壓加權取樣訊號未超過預設位準時,與輸入電壓加權取樣訊號相同,當輸入電壓加權取樣訊號超過預設位準時,則維持在預設位準如圖所示。因此,可以將部分發光元件電流ILED的電流值固定於最大值,從一種應用角度而言,可以限制發光元件電流ILED的最大電流值,或是從另一種應用角度而言,在相同的最大值之下,因為改變了發光元件電流ILED的波形,使積分值增加,因此可以提高發光元件電流ILED整體的電流值。鉗位電路1316不限於以多工器來達成,例如在第8C圖所示的實施例中,鉗位電路1316可以是一個緩衝電路,其接收的操作電壓上限是該預設位準,如此,當輸入端所接收的輸入電壓加權取樣訊號超過預設位準時,鉗位電路1316的輸出端只能輸出該預設位準,這也是鉗位電路1316的一種實施方式。 8A-8C illustrate an embodiment and operational mechanism of the clamp circuit 1316. In FIG. 8A, the clamp circuit 1316 includes, for example but not limited to, a multiplexer for selecting the lower of the input voltage weighted sampling signal and the preset level as the clamp input voltage weighted sampling signal. The signal waveform is as shown in Figure 8B. In this embodiment, the rectified input voltage Vin is a half-sine wave as shown in the figure, and the input voltage weighted sampling signal is, for example, a divided voltage of the rectified input voltage Vin, and thus is also a half-sine wave as shown in the figure, and the clamp input voltage is clamped. The weighted sampling signal is the same as the input voltage weighted sampling signal when the input voltage weighted sampling signal does not exceed the preset level. When the input voltage weighted sampling signal exceeds the preset level, the preset level is maintained as shown in the figure. Therefore, the current value of the partial light-emitting element current ILED can be fixed to the maximum value, and from one application point of view, the maximum current value of the light-emitting element current ILED can be limited, or from the other application point of view, at the same maximum value. In the meantime, since the waveform of the light-emitting element current ILED is changed to increase the integrated value, the current value of the entire light-emitting element current ILED can be increased. The clamp circuit 1316 is not limited to being implemented by a multiplexer. For example, in the embodiment shown in FIG. 8C, the clamp circuit 1316 may be a buffer circuit, and the upper limit of the operating voltage received is the preset level. When the input voltage weighted sampling signal received by the input terminal exceeds the preset level, the output terminal of the clamp circuit 1316 can only output the preset level, which is also an embodiment of the clamp circuit 1316.

第9A圖顯示本發明的另一個實施例;第9B圖顯示第9A圖實施例與前幾個實施例的對照。第9A圖實施例所示之發光元件驅動電路200與前幾個實施例(例如第2A圖實施例)不同之處在於,在本實施例中,發光元件驅動電路200不直接接收整流輸入電壓Vin。與第2A圖所示之發光元件驅動電路100相較,本實施例並未如第2A圖所示之發光元件驅動電路100,直接接收整流輸入電壓Vin,而是接收LED群組G1反向端的電壓。請接著參閱第9B圖,比較發光元件驅動 電路100與發光元件驅動電路200相關訊號波形,其中以ILED1表示第2A圖之發光元件電流ILED,而以ILED2表示第9A圖之發光元件電流ILED。如第9B圖所示,發光元件驅動電路100中的THD補償電路130接收整流輸入電壓Vin,是完整的半弦波,自週期的始點(時間點t0)開始,延續整個週期(至時間點t3),而發光元件驅動電路100所產生的發光元件電流ILED1,如圖所示會延遲一段時間,自時間點t1後才不為零電流,對應於整流輸入電壓Vin高於位準L1的時間點。這是因為整流輸入電壓Vin高於位準L1之後,LED電路20才會導通(參閱第2A-2B圖)。另一方面,第9A圖實施例中,發光元件驅動電路200中的THD補償電路130接收內部電壓Vint,是自時間點t1到時間點t2的半弦波,而發光元件驅動電路200所產生的發光元件電流ILED2,如圖所示亦具有相似的波形輪廓。第9A圖實施例中的電壓和電流波形輪廓更為相似,因此相較於前述其他實施例,第9A圖實施例具有更佳的THD改善。此外,相較於第一個實施例之發光元件驅動電路100,第9A圖實施例之發光元件驅動電路200可節省一接腳。 Fig. 9A shows another embodiment of the present invention; Fig. 9B shows a comparison of the embodiment of Fig. 9A with the previous several embodiments. The light-emitting element drive circuit 200 shown in the embodiment of FIG. 9A differs from the previous embodiments (for example, the embodiment of FIG. 2A) in that, in the present embodiment, the light-emitting element drive circuit 200 does not directly receive the rectified input voltage Vin. . Compared with the light-emitting element driving circuit 100 shown in FIG. 2A, the light-emitting element driving circuit 100 shown in FIG. 2A does not directly receive the rectified input voltage Vin, but receives the reverse end of the LED group G1. Voltage. Please refer to Figure 9B to compare the light-emitting device drive. The circuit 100 and the light-emitting element drive circuit 200 are associated with a signal waveform in which the light-emitting element current ILED of FIG. 2A is represented by ILED1, and the light-emitting element current ILED of FIG. 9A is represented by ILED2. As shown in FIG. 9B, the THD compensation circuit 130 in the light-emitting element drive circuit 100 receives the rectified input voltage Vin, which is a complete half-sine wave, starting from the start point of the cycle (time point t0), continuing the entire cycle (to the time point) T3), and the light-emitting element current ILED1 generated by the light-emitting element driving circuit 100 is delayed for a period of time as shown in the figure, and is not zero current since time point t1, corresponding to the time when the rectified input voltage Vin is higher than the level L1. point. This is because the LED circuit 20 is turned on after the rectified input voltage Vin is higher than the level L1 (see FIGS. 2A-2B). On the other hand, in the embodiment of FIG. 9A, the THD compensation circuit 130 in the light-emitting element drive circuit 200 receives the internal voltage Vint, which is a half-sine wave from the time point t1 to the time point t2, and is generated by the light-emitting element drive circuit 200. The illuminating element current ILED2 also has a similar waveform profile as shown. The voltage and current waveform profiles in the embodiment of Figure 9A are more similar, so the embodiment of Figure 9A has a better THD improvement than the other embodiments described above. Further, the light-emitting element drive circuit 200 of the embodiment of Fig. 9A can save a pin as compared with the light-emitting element drive circuit 100 of the first embodiment.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。在本發明之相同精神下,熟悉本技術者可以思及各種等效變化。例如,各實施例中圖示直接連接的兩電路或元件間,可插置不影響主要功能的其他電路或元件;又如,發光元件不限於各實施例所示之發光二極體(LED),亦可為其他形式之發光電路;又例如,實施例所示之PMOS可改換為NMOS元件、NMOS可改換為PMOS元件,僅需對應修改電路對訊號的處理方式。凡此種種,皆可根據本發明的教示類推而得,因此,本發明的範圍應涵蓋上述及其他所有等效變化。 The present invention has been described with reference to the preferred embodiments thereof, and the present invention is not intended to limit the scope of the present invention. In the same spirit of the invention, various equivalent changes can be conceived by those skilled in the art. For example, in the embodiments, the two circuits or components directly connected may be inserted with other circuits or components that do not affect the main function; for example, the light-emitting elements are not limited to the LEDs shown in the respective embodiments. For example, the PMOS can be changed to an NMOS device, and the NMOS can be changed to a PMOS device, and only the corresponding circuit must be modified to process the signal. All such modifications may be made in accordance with the teachings of the present invention, and the scope of the present invention should be construed to cover the above and other equivalents.

20‧‧‧LED電路 20‧‧‧LED circuit

30‧‧‧整流電路 30‧‧‧Rectifier circuit

100‧‧‧發光元件驅動電路 100‧‧‧Lighting element drive circuit

110‧‧‧開關模組 110‧‧‧Switch Module

112‧‧‧開關控制電路 112‧‧‧Switch control circuit

120‧‧‧電流源電路 120‧‧‧current source circuit

130‧‧‧THD補償電路 130‧‧‧THD compensation circuit

131‧‧‧適應性乘法器電路 131‧‧‧Adaptive multiplier circuit

133‧‧‧THD控制電路 133‧‧‧THD control circuit

135‧‧‧電流設定電路 135‧‧‧ Current setting circuit

G1-G4‧‧‧LED群組 G1-G4‧‧‧LED Group

S1-S4‧‧‧開關 S1-S4‧‧‧ switch

ILED‧‧‧發光元件電流 ILED‧‧‧Lighting element current

Vin‧‧‧整流輸入電壓 Vin‧‧‧ rectified input voltage

Claims (20)

一種發光元件驅動電路,用以驅動一發光元件電路,其中該發光元件電路具有複數個串聯之發光元件,以接收一整流輸入電壓,該發光元件驅動電路包含:一開關模組,包括複數開關與一開關控制電路,其中該複數開關分別與對應之該發光元件耦接,且該開關控制電路與該複數開關耦接,用以根據該整流輸入電壓,決定導通的發光元件;一電流源電路,與該開關模組耦接,用以根據一調整訊號,提供一發光元件電流予導通之發光元件,其中該發光元件電流最大在一週期中至少部分時間具有接近該整流輸入電壓之波形輪廓並與該整流輸入電壓具有實質相同之相位角,並且,該發光元件電流之電流峰值或極大值不因該整流輸入電壓之振幅不同而顯著變化;以及一總諧波失真(total harmonic distortion,THD)補償電路,包括:一適應性乘法器電路,用以直接或間接根據該整流輸入電壓,而產生一輸入電壓加權取樣訊號,該輸入電壓加權取樣訊號之值相關於該整流輸入電壓之峰值;以及一THD控制電路,與該適應性乘法器電路耦接,用以根據該輸入電壓加權取樣訊號,產生該調整訊號,以決定該發光元件電流。 A light-emitting element driving circuit for driving a light-emitting element circuit, wherein the light-emitting element circuit has a plurality of light-emitting elements connected in series to receive a rectified input voltage, the light-emitting element driving circuit comprising: a switch module, including a plurality of switches and a switch control circuit, wherein the plurality of switches are respectively coupled to the corresponding light-emitting elements, and the switch control circuit is coupled to the plurality of switches for determining a conductive element to be turned on according to the rectified input voltage; a current source circuit, And the switch module is coupled to provide a light-emitting element current to be turned on according to an adjustment signal, wherein the current of the light-emitting element has a waveform profile close to the rectified input voltage at least part of a period of time and The rectified input voltage has substantially the same phase angle, and the current peak or maximum value of the current of the illuminating element does not change significantly due to the difference in amplitude of the rectified input voltage; and a total harmonic distortion (THD) compensation a circuit comprising: an adaptive multiplier circuit for direct or indirect Generating an input voltage weighted sampling signal according to the rectified input voltage, wherein the value of the input voltage weighted sampling signal is related to a peak value of the rectified input voltage; and a THD control circuit coupled to the adaptive multiplier circuit for The sampling signal is weighted according to the input voltage, and the adjustment signal is generated to determine the current of the light emitting element. 如申請專利範圍第1項所述之發光元件驅動電路,其中當該整流輸入電壓之振幅不同時,該發光元件電流之電流峰值或極大值維持為固定值。 The light-emitting element driving circuit according to claim 1, wherein when the amplitude of the rectified input voltage is different, a current peak value or a maximum value of the current of the light-emitting element is maintained at a fixed value. 如申請專利範圍第1項所述之發光元件驅動電路,其中該THD補償電路更包括一電流設定電路,與該THD控制電路耦接,用以提供一電流設定訊號,且該THD控制電路也與該電流設定電路耦接,根據該輸入電壓加權取樣訊號和該電流設定訊號,產生該調整訊號。 The light-emitting device driving circuit of claim 1, wherein the THD compensation circuit further comprises a current setting circuit coupled to the THD control circuit for providing a current setting signal, and the THD control circuit is also The current setting circuit is coupled to perform the adjustment signal according to the input voltage weighting the sampling signal and the current setting signal. 如申請專利範圍第1項所述之發光元件驅動電路,其中該調整訊號與該整流輸入電壓具有實質相同之一相位角。 The illuminating element driving circuit of claim 1, wherein the adjustment signal has substantially the same phase angle as the rectified input voltage. 如申請專利範圍第1項所述之發光元件驅動電路,其中該適應性乘法器電路使該輸入電壓加權取樣訊號與該整流輸入電壓間具有正比的關係,且該正比之比例係數相關於該整流輸入電壓之峰值。 The illuminating device driving circuit of claim 1, wherein the adaptive multiplier circuit has a proportional relationship between the input voltage weighted sampling signal and the rectified input voltage, and the proportional proportional coefficient is related to the rectification The peak value of the input voltage. 如申請專利範圍第5項所述之發光元件驅動電路,其中當該整流輸入電壓之振幅相對較大時,該係數相對較低;當該整流輸入電壓之振幅相對較小時,該係數相對較高,藉此適應性地調整輸入電壓加權取樣訊號,使得在不同振幅之該整流輸入電壓下,均得到實質相同或接近的輸入電壓加權取樣訊號。 The illuminating element driving circuit of claim 5, wherein the coefficient is relatively low when the amplitude of the rectified input voltage is relatively large; and when the amplitude of the rectified input voltage is relatively small, the coefficient is relatively Preferably, the input voltage weighted sampling signal is adaptively adjusted such that substantially equal or close input voltage weighted sampling signals are obtained at the rectified input voltages of different amplitudes. 如申請專利範圍第1項所述之發光元件驅動電路,其中該適應性乘法器電路包括:一輸入電壓感測電路,用以感測該整流輸入電壓,而產生一輸入電壓分壓;一峰值感測電路,與該輸入電壓感測電路耦接,用以感測該輸入電壓分壓之峰值,產生一峰值感測訊號;一多工器電路,與該峰值感測電路耦接,用以根據該峰值感測訊號,產生一調整係數;以及一乘法器,與該多工器電路耦接,用以根據該輸入電壓分壓與該調整係數,產生該輸入電壓加權取樣訊號。 The illuminating device driving circuit of claim 1, wherein the adaptive multiplier circuit comprises: an input voltage sensing circuit for sensing the rectified input voltage to generate an input voltage divided; a peak a sensing circuit coupled to the input voltage sensing circuit for sensing a peak value of the input voltage divided to generate a peak sensing signal; a multiplexer circuit coupled to the peak sensing circuit for And generating, according to the peak sensing signal, an adjustment coefficient; and a multiplier coupled to the multiplexer circuit for generating the input voltage weighted sampling signal according to the input voltage division voltage and the adjustment coefficient. 如申請專利範圍第1項所述之發光元件驅動電路,其中該適應性乘法器電路包括:一輸入電壓感測電路,用以接收該整流輸入電壓,並根據一回授訊號,而產生該輸入電壓加權取樣訊號;一比較電路,與該輸入電壓感測電路耦接,用以比較該輸入電壓加權取樣訊號與一參考訊號,產生一比較結果訊號;以及 一計數電路,與該比較電路耦接,用以根據該比較結果訊號,產生該回授訊號。 The illuminating device driving circuit of claim 1, wherein the adaptive multiplier circuit comprises: an input voltage sensing circuit for receiving the rectified input voltage, and generating the input according to a feedback signal a voltage-weighted sampling signal; a comparison circuit coupled to the input voltage sensing circuit for comparing the input voltage-weighted sampling signal with a reference signal to generate a comparison result signal; A counting circuit is coupled to the comparison circuit for generating the feedback signal according to the comparison result signal. 如申請專利範圍第1項所述之發光元件驅動電路,其中該適應性乘法器電路更包括一鉗位電路,用以根據一預設位準,而限制該輸入電壓加權取樣訊號之一最大值。 The illuminating device driving circuit of claim 1, wherein the adaptive multiplier circuit further comprises a clamping circuit for limiting a maximum value of the input voltage weighted sampling signal according to a preset level. . 如申請專利範圍第1項所述之發光元件驅動電路,其中該適應性乘法器電路與一對應之發光元件之反向端連接而不與該整流輸入電壓直接連接,用以接收一內部電壓,以間接根據該整流輸入電壓,而產生該輸入電壓加權取樣訊號。 The illuminating device driving circuit of claim 1, wherein the adaptive multiplier circuit is connected to an opposite end of a corresponding illuminating element and is not directly connected to the rectified input voltage for receiving an internal voltage. The input voltage weighted sampling signal is generated indirectly based on the rectified input voltage. 一種發光元件電路之驅動方法,其中該發光元件電路具有複數個串聯之發光元件,該發光元件電路之驅動方法包含:提供一整流輸入電壓;根據該整流輸入電壓,以決定導通的發光元件;根據該整流輸入電壓,而產生一輸入電壓加權取樣訊號,該輸入電壓加權取樣訊號之值相關於該整流輸入電壓之峰值;根據該輸入電壓加權取樣訊號,產生一調整訊號;以及根據該調整訊號,提供一發光元件電流予導通之發光元件,在一週期中至少部分時間具有接近該整流輸入電壓之波形輪廓並與該整流輸入電壓具有實質相同之相位角,並且,該發光元件電流之電流峰值或極大值不因該整流輸入電壓之振幅不同而顯著變化。 A driving method of a light-emitting element circuit, wherein the light-emitting element circuit has a plurality of light-emitting elements connected in series, the driving method of the light-emitting element circuit includes: providing a rectified input voltage; determining a conductive element according to the rectified input voltage; The input voltage is rectified to generate an input voltage weighted sampling signal, and the value of the input voltage weighted sampling signal is related to a peak value of the rectified input voltage; the sampling signal is weighted according to the input voltage to generate an adjustment signal; and according to the adjustment signal, Providing a light-emitting element with a light-emitting element current to be turned on, having a waveform profile close to the rectified input voltage and having substantially the same phase angle with the rectified input voltage for at least part of a period, and a current peak of the current of the light-emitting element or The maximum value does not vary significantly due to the difference in amplitude of the rectified input voltage. 如申請專利範圍第11項所述之發光元件電路之驅動方法,其中當該整流輸入電壓之振幅不同時,該發光元件電流之電流峰值或極大值維持為固定值。 The method of driving a light-emitting element circuit according to claim 11, wherein when the amplitude of the rectified input voltage is different, a current peak value or a maximum value of the current of the light-emitting element is maintained at a fixed value. 如申請專利範圍第11項所述之發光元件電路之驅動方法,其中該根據該輸入電壓加權取樣訊號,產生一調整訊號的步驟更包含:根據該輸入電壓加權取樣訊號和一電流設定訊號,產生該調整訊號,其中 該電流設定訊號用以決定該調整訊號的下限或上限。 The method for driving a light-emitting element circuit according to claim 11, wherein the step of weighting the sampling signal according to the input voltage to generate an adjustment signal further comprises: weighting the sampling signal and a current setting signal according to the input voltage, generating The adjustment signal, wherein The current setting signal is used to determine the lower or upper limit of the adjustment signal. 如申請專利範圍第11項所述之發光元件電路之驅動方法,其中該調整訊號與該整流輸入電壓具有實質相同之一相位角。 The method for driving a light-emitting element circuit according to claim 11, wherein the adjustment signal has substantially the same phase angle as the rectified input voltage. 如申請專利範圍第11項所述之發光元件電路之驅動方法,其中該輸入電壓加權取樣訊號與該整流輸入電壓間具有正比的關係,且該正比之比例係數相關於該整流輸入電壓之峰值。 The method for driving a light-emitting element circuit according to claim 11, wherein the input voltage-weighted sampling signal has a proportional relationship with the rectified input voltage, and the proportional proportional coefficient is related to a peak value of the rectified input voltage. 如申請專利範圍第15項所述之發光元件電路之驅動方法,其中當該整流輸入電壓之振幅相對較大時,該係數相對較低;當該整流輸入電壓之振幅相對較小時,該係數相對較高,藉此適應性地調整輸入電壓加權取樣訊號,使得在不同振幅之該整流輸入電壓下,均得到實質相同或接近的輸入電壓加權取樣訊號。 The method for driving a light-emitting element circuit according to claim 15, wherein the coefficient is relatively low when the amplitude of the rectified input voltage is relatively large; and when the amplitude of the rectified input voltage is relatively small, the coefficient Relatively high, the input voltage weighted sampling signal is adaptively adjusted such that substantially equal or close input voltage weighted sampling signals are obtained at the rectified input voltages of different amplitudes. 如申請專利範圍第11項所述之發光元件電路之驅動方法,其中該根據該整流輸入電壓,而產生該輸入電壓加權取樣訊號之步驟包括:接收該整流輸入電壓,而產生一輸入電壓分壓;根據該輸入電壓分壓,產生一峰值感測訊號;根據該峰值感測訊號,產生一調整係數;以及根據該輸入電壓分壓與該調整係數,產生該輸入電壓加權取樣訊號。 The method for driving a light-emitting element circuit according to claim 11, wherein the step of generating the input voltage-weighted sampling signal according to the rectified input voltage comprises: receiving the rectified input voltage to generate an input voltage partial voltage And generating a peak sensing signal according to the input voltage dividing voltage; generating an adjustment coefficient according to the peak sensing signal; and generating the input voltage weighted sampling signal according to the input voltage dividing voltage and the adjusting coefficient. 如申請專利範圍第11項所述之發光元件電路之驅動方法,其中該根據該整流輸入電壓,而產生該輸入電壓加權取樣訊號之步驟包括:接收該整流輸入電壓,並根據一回授訊號,而產生該輸入電壓加權取樣訊號;比較該輸入電壓加權取樣訊號與一參考訊號,產生一比較結果訊號;以及根據該比較結果訊號,產生該回授訊號。 The method for driving a light-emitting element circuit according to claim 11, wherein the step of generating the input voltage-weighted sampling signal according to the rectified input voltage comprises: receiving the rectified input voltage, and according to a feedback signal, And generating the input voltage weighted sampling signal; comparing the input voltage weighted sampling signal with a reference signal to generate a comparison result signal; and generating the feedback signal according to the comparison result signal. 如申請專利範圍第11項所述之發光元件電路之驅動方法,其中該根據該整流輸入電壓,而產生該輸入電壓加權取樣訊號之步驟更包 括:根據一預設位準,而限制該輸入電壓加權取樣訊號之一最大值。 The method for driving a light-emitting element circuit according to claim 11, wherein the step of generating the input voltage-weighted sampling signal according to the rectified input voltage further comprises Include: limiting a maximum value of one of the input voltage weighted sampling signals according to a preset level. 如申請專利範圍第11項所述之發光元件電路之驅動方法,其中該根據該整流輸入電壓,而產生該輸入電壓加權取樣訊號之步驟包括:自一發光元件的反向端間接從該整流輸入電壓取得一內部電壓,該發光元件的順向端耦接於該整流輸入電壓;以及根據該內部電壓,而產生該輸入電壓加權取樣訊號。 The method for driving a light-emitting element circuit according to claim 11, wherein the step of generating the input voltage-weighted sampling signal according to the rectified input voltage comprises: indirectly inputting the rectified input from a reverse end of a light-emitting element The voltage obtains an internal voltage, and the forward end of the light emitting element is coupled to the rectified input voltage; and the input voltage weighted sampling signal is generated according to the internal voltage.
TW104101146A 2015-01-14 2015-01-14 Light emitting device driver circuit and driving method of light emitting device circuit TWI559811B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104101146A TWI559811B (en) 2015-01-14 2015-01-14 Light emitting device driver circuit and driving method of light emitting device circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104101146A TWI559811B (en) 2015-01-14 2015-01-14 Light emitting device driver circuit and driving method of light emitting device circuit

Publications (2)

Publication Number Publication Date
TW201626852A TW201626852A (en) 2016-07-16
TWI559811B true TWI559811B (en) 2016-11-21

Family

ID=56985223

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104101146A TWI559811B (en) 2015-01-14 2015-01-14 Light emitting device driver circuit and driving method of light emitting device circuit

Country Status (1)

Country Link
TW (1) TWI559811B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133579A1 (en) * 2012-03-09 2013-09-12 Lee Dong Won Dimmable led lighting device
TW201410070A (en) * 2012-07-04 2014-03-01 Zentr Mikroelekt Dresden Gmbh Arrangement and method for driving light-emitting diodes
TWI444092B (en) * 2010-10-05 2014-07-01 Control circuit module for light emitting diode lamps
CN103917020A (en) * 2014-03-14 2014-07-09 成都三零嘉微电子有限公司 LED drive circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI444092B (en) * 2010-10-05 2014-07-01 Control circuit module for light emitting diode lamps
WO2013133579A1 (en) * 2012-03-09 2013-09-12 Lee Dong Won Dimmable led lighting device
TW201410070A (en) * 2012-07-04 2014-03-01 Zentr Mikroelekt Dresden Gmbh Arrangement and method for driving light-emitting diodes
CN103917020A (en) * 2014-03-14 2014-07-09 成都三零嘉微电子有限公司 LED drive circuit

Also Published As

Publication number Publication date
TW201626852A (en) 2016-07-16

Similar Documents

Publication Publication Date Title
US9089026B2 (en) Dimming circuit and method for LEDS
KR101252073B1 (en) Led drive circuit and led illumination component using the same
TWI595735B (en) Current regulator circuit capable of reducing current ripple and method of reducing current ripple
TWI400990B (en) Led driving circuit and controller with temperature compensation
JP5785611B2 (en) Method and apparatus for detecting and correcting improper dimmer operation
US9681507B2 (en) Switched-mode converter control for lighting applications
US20110115391A1 (en) Led lamp and led lamp module
TWI510131B (en) Light emitting device driver circuit and control method thereof
US20150319818A1 (en) Circuit arrangement and led lamp comprising the same
US20110043129A1 (en) Dim range enhancement for led driver conected to phase-cut dimmer
WO2010074879A2 (en) Led driver with feedback calibration
KR20120111963A (en) A power supply for lighting
WO2009114279A2 (en) Led driver with dynamic power management
US20100308743A1 (en) Light Emitting Diode Driving Device
JP2014519197A (en) Light generator
US20120062136A1 (en) Direct current light emitting device control circuit with dimming function and method thereof
US10849201B2 (en) Driving circuit and driving method for driving light-emitting diode load
WO2012063141A1 (en) Led driver circuit and method
CA2759448A1 (en) Driver for an led lamp
US10708994B2 (en) System and method for shaping input current in light emitting diode (LED) system
US8471605B2 (en) Driving circuit having current balancing functionality
TWI559811B (en) Light emitting device driver circuit and driving method of light emitting device circuit
CN105873308B (en) The driving method of light emitting element driving circuit and light-emitting element circuit
KR101626360B1 (en) AC LED driving circuit
CN103491665B (en) The light source supply module that tool linearity light adjusting controls