TWI556203B - Display device and converter control method - Google Patents

Display device and converter control method Download PDF

Info

Publication number
TWI556203B
TWI556203B TW104103246A TW104103246A TWI556203B TW I556203 B TWI556203 B TW I556203B TW 104103246 A TW104103246 A TW 104103246A TW 104103246 A TW104103246 A TW 104103246A TW I556203 B TWI556203 B TW I556203B
Authority
TW
Taiwan
Prior art keywords
unit
signal
current
converter
output
Prior art date
Application number
TW104103246A
Other languages
Chinese (zh)
Other versions
TW201627966A (en
Inventor
詹欣哲
林勇旭
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW104103246A priority Critical patent/TWI556203B/en
Priority to CN201510133212.1A priority patent/CN104682703B/en
Publication of TW201627966A publication Critical patent/TW201627966A/en
Application granted granted Critical
Publication of TWI556203B publication Critical patent/TWI556203B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)

Description

顯示器與控制轉換器的方法 Display and control converter method

本案係關於一種顯示器,特別是關於顯示器中的轉換器。 This case relates to a display, and more particularly to a converter in a display.

現今顯示器技術中,一般會使用轉換器提供參考電壓給顯示面板,然而,顯示面板在不同的操作狀態下所需的功率不同,轉換器必須調整輸出電流以滿足負載需求。 In today's display technology, a converter is generally used to provide a reference voltage to the display panel. However, the power required by the display panel under different operating conditions is different, and the converter must adjust the output current to meet the load demand.

由於傳統的轉換器無法針對不同輸出電流調整相應的轉換模式,導致在極輕載或極重載的負載情形下,轉換器具有較高的耗損、降低轉換效率,進而降低了顯示器的續航力。因此,如何使轉換器於不同的負載需求下皆能具有高轉換效率,提升顯示器續航力,為本技術領域之重要課題。 Since the conventional converter cannot adjust the corresponding conversion mode for different output currents, the converter has high loss and low conversion efficiency under extremely light load or extremely heavy load, thereby reducing the endurance of the display. Therefore, how to make the converter have high conversion efficiency under different load requirements and improve the endurance of the display is an important issue in the technical field.

本案的一實施例為一種顯示器。顯示器包含顯示模組以及轉換器,轉換器電性連接於顯示模組,用以將輸入電壓轉換為輸出電壓予顯示模組,其中轉換器包含開關單元、電流運算單元以及處理單元。電流運算單元電性連接於開關單 元,用以對開關單元中產生之操作電流訊號進行運算處理,以取得對應於轉換器輸出電流之輸出電流訊號。處理單元電性連接於電流運算單元與驅動單元,用以比較輸出電流訊號與門檻值,並相應地輸出頻率調整訊號和阻抗調整訊號以控制驅動單元依據頻率調整訊號和阻抗調整訊號驅動開關單元。 An embodiment of the present invention is a display. The display comprises a display module and a converter. The converter is electrically connected to the display module for converting the input voltage into an output voltage to the display module, wherein the converter comprises a switch unit, a current operation unit and a processing unit. The current computing unit is electrically connected to the switch The element is used to perform an operation process on the operation current signal generated in the switch unit to obtain an output current signal corresponding to the output current of the converter. The processing unit is electrically connected to the current computing unit and the driving unit for comparing the output current signal and the threshold value, and correspondingly outputting the frequency adjusting signal and the impedance adjusting signal to control the driving unit to drive the switching unit according to the frequency adjusting signal and the impedance adjusting signal.

本案的另一實施例為一種顯示器。顯示器包含顯示模組以及轉換器。轉換器電性連接於顯示模組,用以將輸入電壓轉換為輸出電壓予顯示模組。轉換器包含開關單元、驅動單元以及控制器。驅動單元電性連接於開關單元,用以根據複數個相異之頻率調整訊號中之一者以及複數個相異之阻抗調整訊號中之一者驅動開關單元,使得開關單元具有相應的切換頻率及導通阻抗。控制器電性連接於驅動單元,用以根據轉換器的輸出電流訊號相對應地輸出該些頻率調整訊號中之一者以及該些阻抗調整訊號中之一者。當輸出電流訊號小於第一門檻值時,開關單元操作在第一切換頻率而具有第一導通阻抗,當輸出電流訊號大於第一門檻值且小於第二門檻值時,開關單元操作在第二切換頻率而具有第二導通阻抗,當輸出電流訊號大於第二門檻值時,開關單元操作在第三切換頻率而具有第三導通阻抗。 Another embodiment of the present invention is a display. The display includes a display module and a converter. The converter is electrically connected to the display module for converting the input voltage into an output voltage to the display module. The converter includes a switching unit, a drive unit, and a controller. The driving unit is electrically connected to the switch unit, and is configured to drive the switch unit according to one of the plurality of different frequency adjustment signals and one of the plurality of different impedance adjustment signals, so that the switch unit has a corresponding switching frequency and On impedance. The controller is electrically connected to the driving unit, and is configured to output one of the frequency adjustment signals and one of the impedance adjustment signals according to the output current signal of the converter. When the output current signal is less than the first threshold, the switch unit operates at the first switching frequency to have a first on-resistance, and when the output current signal is greater than the first threshold and less than the second threshold, the switching unit operates in the second switching The frequency has a second on-resistance. When the output current signal is greater than the second threshold, the switching unit operates at the third switching frequency to have a third on-resistance.

本案的另一實施例為一種控制轉換器的方法,其中轉換器用以將輸入電壓轉換為輸出電壓,並包含開關單元。控制轉換器的方法包含:對開關單元中產生之操作電流訊號進行運算處理,以取得輸出電流訊號;根據輸出電流訊號相應地輸出複數個相異之頻率調整訊號中之一者以及複數個相異之 阻抗調整訊號中之一者;以及根據頻率調整訊號及阻抗調整訊號控制開關單元的切換頻率及導通阻抗。 Another embodiment of the present invention is a method of controlling a converter, wherein the converter is operative to convert an input voltage to an output voltage and includes a switching unit. The method for controlling the converter comprises: performing an operation process on the operation current signal generated in the switch unit to obtain an output current signal; and outputting one of the plurality of different frequency adjustment signals according to the output current signal and the plurality of different signals It One of the impedance adjustment signals; and the switching frequency and the on-resistance of the switching unit are controlled according to the frequency adjustment signal and the impedance adjustment signal.

綜上所述,本案透過根據輸出電流訊號相應地輸出頻率調整訊號和阻抗調整訊號調整開關單元的切換頻率與導通阻抗,以改善不同輸出電流下轉換器的轉換效率。本案之技術方案與現有技術相比具有明顯的優點和有益效果。藉由上述技術方案,可達到相當的技術進步,並具有產業上的廣泛利用價值。 In summary, the case adjusts the switching frequency and the on-resistance of the switching unit according to the output current signal correspondingly outputting the frequency adjustment signal and the impedance adjustment signal to improve the conversion efficiency of the converter under different output currents. The technical solution of the present invention has obvious advantages and beneficial effects compared with the prior art. With the above technical solutions, considerable technological progress can be achieved, and the industrial use value is widely used.

100‧‧‧顯示器 100‧‧‧ display

110‧‧‧顯示模組 110‧‧‧ display module

120‧‧‧開關單元 120‧‧‧Switch unit

130‧‧‧轉換器 130‧‧‧ converter

140‧‧‧控制器 140‧‧‧ Controller

142‧‧‧電流運算單元 142‧‧‧current computing unit

144‧‧‧抽載單元 144‧‧‧Sampling unit

150‧‧‧處理單元 150‧‧‧Processing unit

152‧‧‧邏輯電路 152‧‧‧Logical Circuit

154‧‧‧暫存電路 154‧‧‧ temporary storage circuit

160‧‧‧驅動單元 160‧‧‧ drive unit

170‧‧‧參考電壓產生單元 170‧‧‧reference voltage generating unit

180‧‧‧儲存單元 180‧‧‧ storage unit

190‧‧‧PWM訊號產生單元 190‧‧‧PWM signal generating unit

192‧‧‧振盪電路 192‧‧‧Oscillation circuit

194‧‧‧斜坡產生器 194‧‧‧Slope generator

196‧‧‧補償電路 196‧‧‧Compensation circuit

198‧‧‧誤差放大器 198‧‧‧Error amplifier

300‧‧‧方法 300‧‧‧ method

520、540‧‧‧電流平均電路 520, 540‧‧‧ current averaging circuit

620、640‧‧‧比例調節電路 620, 640‧‧‧Proportional adjustment circuit

820‧‧‧輸入電流偵測電路 820‧‧‧Input current detection circuit

S310~S340‧‧‧步驟 S310~S340‧‧‧Steps

S710~S750‧‧‧步驟 S710~S750‧‧‧Steps

C1、C2‧‧‧電容 C1, C2‧‧‧ capacitor

OP1~OP6‧‧‧比較器 OP1~OP6‧‧‧ Comparator

Q1~Q5‧‧‧開關 Q1~Q5‧‧‧ switch

R1~R5、Rx‧‧‧電阻 R1~R5, Rx‧‧‧ resistance

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

Iin‧‧‧輸入電流 Iin‧‧‧ input current

Vout‧‧‧輸出電壓 Vout‧‧‧ output voltage

Iout‧‧‧輸出電流 Iout‧‧‧Output current

SIG_Iin‧‧‧輸入電流訊號 SIG_Iin‧‧‧ input current signal

SIG_Iout‧‧‧輸出電流訊號 SIG_Iout‧‧‧ output current signal

Vfb‧‧‧回授電壓訊號 Vfb‧‧‧Responding to voltage signals

SetR‧‧‧阻抗調整訊號 SetR‧‧‧ impedance adjustment signal

SetF‧‧‧頻率調整訊號 SetF‧‧‧ frequency adjustment signal

PWM‧‧‧脈衝寬度調變訊號 PWM‧‧‧ pulse width modulation signal

TH1、TH2‧‧‧門檻值 TH1, TH2‧‧‧ threshold

STAGE1~STAGE3‧‧‧狀態 STAGE1~STAGE3‧‧‧ Status

FSW1~FSW3‧‧‧切換頻率 FSW1~FSW3‧‧‧Switching frequency

RON1~RON3‧‧‧導通阻抗 RON1~RON3‧‧‧ conduction impedance

I1、I2‧‧‧電流 I1, I2‧‧‧ current

Comp1、Comp2‧‧‧比較訊號 Comp1, Comp2‧‧‧ comparison signal

Vref‧‧‧參考電壓訊號 Vref‧‧‧reference voltage signal

Vpump‧‧‧抽載電壓 Vpump‧‧‧Sampling voltage

Ipump‧‧‧抽載電流 Ipump‧‧‧Sampling current

Spa1、Spa2‧‧‧訊號 Spa1, Spa2‧‧‧ signal

DT‧‧‧責任週期 DT‧‧‧Responsibility cycle

η‧‧‧轉換效率 Η‧‧‧ conversion efficiency

第1圖為根據本案一實施例所繪示的顯示器示意圖;第2A圖為根據本案一實施例所繪示的輸出電流訊號與切換頻率關係圖;第2B圖為根據本案一實施例所繪示的輸出電流訊號與導通阻抗關係圖;第3圖為根據本案一實施例所繪示的轉換器控制方法流程圖;第4圖為根據本案一實施例所繪示的顯示器示意圖;第5A、5B圖為根據本案一實施例所繪示的電流運算單元示意圖;第6A圖為根據本案一實施例所繪示的邏輯電路示意圖;第6B圖為根據本案另一實施例所繪示的電流運算單元和邏輯電路示意圖; 第7圖為根據本案一實施例所繪示的設定控制參數流程圖;第8圖為根據本案一實施例所繪示的電流運算單元示意圖。 1 is a schematic diagram of a display according to an embodiment of the present invention; FIG. 2A is a diagram showing relationship between an output current signal and a switching frequency according to an embodiment of the present invention; FIG. 2B is a diagram according to an embodiment of the present invention; FIG. 3 is a flow chart of a converter control method according to an embodiment of the present invention; FIG. 4 is a schematic diagram of a display according to an embodiment of the present invention; 5A, 5B The figure is a schematic diagram of a current operation unit according to an embodiment of the present invention; FIG. 6A is a schematic diagram of a logic circuit according to an embodiment of the present invention; FIG. 6B is a current operation unit according to another embodiment of the present invention; And logic circuit diagram; FIG. 7 is a flow chart of setting control parameters according to an embodiment of the present invention; FIG. 8 is a schematic diagram of a current operation unit according to an embodiment of the present invention.

下文係舉實施例配合所附圖式作詳細說明,以更好地理解本案的態樣,但所提供之實施例並非用以限制本揭露所涵蓋的範圍,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭露所涵蓋的範圍。此外,根據業界的標準及慣常做法,圖式僅以輔助說明為目的,並未依照原尺寸作圖,實際上各種特徵的尺寸可任意地增加或減少以便於說明。下述說明中相同元件將以相同之符號標示來進行說明以便於理解。 The embodiments are described in detail below to better understand the aspects of the present invention, but the embodiments are not intended to limit the scope of the disclosure, and the description of the structural operation is not limited. The order in which they are performed, any device that is recombined by components, produces equal devices, and is covered by this disclosure. In addition, according to industry standards and practices, the drawings are only for the purpose of assisting the description, and are not drawn according to the original size. In fact, the dimensions of the various features may be arbitrarily increased or decreased for convenience of explanation. In the following description, the same elements will be denoted by the same reference numerals for explanation.

在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供本領域技術人員在有關本揭露之描述上額外的引導。 The terms used in the entire specification and the scope of the patent application, unless otherwise specified, generally have the ordinary meaning of each term used in the field, the content disclosed herein, and the particular content. Certain terms used to describe the disclosure are discussed below or elsewhere in this specification to provide additional guidance to those skilled in the art in the description of the disclosure.

此外,在本文中所使用的用詞『包含』、『包括』、『具有』、『含有』等等,均為開放性的用語,即意指『包含但不限於』。此外,本文中所使用之『及/或』,包含相關列舉項目中一或多個項目的任意一個以及其所有組合。 In addition, the terms "including", "including", "having", "containing", and the like, as used herein, are all open terms, meaning "including but not limited to". Further, "and/or" as used herein includes any one or combination of one or more of the associated listed items.

於本文中,當一元件被稱為『連接』或『耦接』 時,可指『電性連接』或『電性耦接』。『連接』或『耦接』亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用『第一』、『第二』、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本發明。 In this article, when a component is called "connected" or "coupled" When it is referred to as "electrical connection" or "electrical coupling". "Connected" or "coupled" can also be used to indicate that two or more components operate or interact with each other. In addition, although the terms "first", "second", and the like are used herein to describe different elements, the terms are used only to distinguish the elements or operations described in the same technical terms. The use of the term is not intended to be a limitation or a

請參考第1圖。第1圖為根據本案一實施例所繪示的顯示器100的示意圖。顯示器100包含顯示模組110以及轉換器130。在本實施例中,轉換器130電性連接於顯示模組110,用以將輸入電壓Vin轉換為輸出電壓Vout予顯示模組110使用。如第1圖所示,轉換器130可以是升壓型切換式功率轉換器(Boost Converter),但本案並不以此為限。任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,採用降壓型轉換器(Buck Converter)、升降兩用型轉換器(Buck-Boost Converter)、反馳式轉換器(Flyback Converter)等轉換器亦為本案可能的實施方式。 Please refer to Figure 1. FIG. 1 is a schematic diagram of a display 100 according to an embodiment of the present disclosure. The display 100 includes a display module 110 and a converter 130. In this embodiment, the converter 130 is electrically connected to the display module 110 for converting the input voltage Vin into the output voltage Vout for use by the display module 110. As shown in FIG. 1, the converter 130 may be a boost type switching power converter (Boost Converter), but the present invention is not limited thereto. Anyone skilled in the art will be able to use a Buck Converter, a Buck-Boost Converter, and a Flyback Converter without departing from the spirit and scope of the present disclosure. Converters are also possible implementations of this case.

實作上,轉換器130可以配置於顯示模組110內,或是配置於顯示模組110外的控制電路(未繪示)中。本領域具通常知識者可依據實際需求進行設計,本案並不以第1圖所示為限。 In practice, the converter 130 can be disposed in the display module 110 or in a control circuit (not shown) disposed outside the display module 110. Those with ordinary knowledge in the field can design according to actual needs, and this case is not limited to the one shown in Figure 1.

以結構而言,轉換器130包含開關單元120、控制器140、驅動單元160以及儲存單元180,其中控制器140包含電流運算單元142、處理單元150以及PWM訊號產生單元190。電流運算單元142電性連接於開關單元120,處理單元150 電性連接於電流運算單元142。PWM訊號產生單元190電性連接於處理單元150。驅動單元160電性連接於開關單元120以及PWM訊號產生單元190。儲存單元180電性連接於處理單元150。 In terms of structure, the converter 130 includes a switch unit 120, a controller 140, a driving unit 160, and a storage unit 180. The controller 140 includes a current operation unit 142, a processing unit 150, and a PWM signal generating unit 190. The current operation unit 142 is electrically connected to the switch unit 120, and the processing unit 150 It is electrically connected to the current operation unit 142. The PWM signal generating unit 190 is electrically connected to the processing unit 150. The driving unit 160 is electrically connected to the switching unit 120 and the PWM signal generating unit 190. The storage unit 180 is electrically connected to the processing unit 150.

在本實施例中,控制器140根據轉換器130的輸出電流訊號SIG_Iout產生相對應地產生頻率調整訊號SetF以及阻抗調整訊號SetR,並根據頻率調整訊號SetF輸出脈衝寬度調變訊號PWM。驅動單元160根據控制器140所輸出的脈衝寬度調變訊號PWM以及阻抗調整訊號SetR驅動開關單元120,使得開關單元120具有相應的切換頻率及導通阻抗。驅動單元160驅動開關單元120,使開關單元120具有相應的切換頻率及導通阻抗的具體方法將在以下段落中詳細說明。 In this embodiment, the controller 140 generates a corresponding frequency adjustment signal SetF and an impedance adjustment signal SetR according to the output current signal SIG_Iout of the converter 130, and outputs a pulse width modulation signal PWM according to the frequency adjustment signal SetF. The driving unit 160 drives the switching unit 120 according to the pulse width modulation signal PWM and the impedance adjustment signal SetR outputted by the controller 140, so that the switching unit 120 has a corresponding switching frequency and on-resistance. The specific method in which the driving unit 160 drives the switching unit 120 to have the switching unit 120 have a corresponding switching frequency and on-resistance will be described in detail in the following paragraphs.

如第1圖所示,開關單元120包含開關Q1以及開關Q2,其中開關Q1電性連接於轉換器130的輸入端132和接地端GND,開關Q2電性連接於轉換器130的輸入端132和轉換器130的輸出端134。驅動電路160以交錯進行的方式切換開關Q1及開關Q2。當開關Q1開啟、開關Q2關閉時,轉換器130的輸入端132與接地端GND導通,電流I1流經開關Q1。相對地,當開關Q2開啟、開關Q1關閉時,轉換器130的輸入端132與輸出端134導通,電流I2流經開關Q2,經由轉換器130的輸出端134輸出。透過控制開關Q1和開關Q2的交錯切換,轉換器130將輸入電壓Vin轉換為輸出電壓Vout,為一升壓型切換式功率轉換器的電路結構。 As shown in FIG. 1 , the switch unit 120 includes a switch Q1 and a switch Q2 , wherein the switch Q1 is electrically connected to the input end 132 of the converter 130 and the ground GND, and the switch Q2 is electrically connected to the input end 132 of the converter 130 and Output 134 of converter 130. The drive circuit 160 switches the switch Q1 and the switch Q2 in an interleaved manner. When the switch Q1 is turned on and the switch Q2 is turned off, the input terminal 132 of the converter 130 is turned on with the ground GND, and the current I1 flows through the switch Q1. In contrast, when the switch Q2 is turned on and the switch Q1 is turned off, the input terminal 132 of the converter 130 is turned on and the output terminal 134 is turned on, and the current I2 flows through the switch Q2 and is output through the output terminal 134 of the converter 130. By controlling the interleaving switching of the switch Q1 and the switch Q2, the converter 130 converts the input voltage Vin into an output voltage Vout, which is a circuit configuration of a step-up switching type power converter.

雖然於第1圖中僅繪示一組成對開關Q1以及開關 Q2,實作上,開關Q1以及開關Q2分別為多組開關彼此並聯而形成的等效開關。換言之,開關Q1乃是由開關Q11、Q12、Q13...(未繪示於圖中)並聯而成,開關Q2乃是由開關Q21、Q22、Q23...(未繪示於圖中)並聯而成,其中開關Q11與開關Q21為一組協同操作的開關,開關Q21與開關Q22為另一組協同操作的開關,以此類推。各組開關可分別操作,使得轉換器130將輸入電壓Vin轉換為輸出電壓Vout。 Although only one pair of switches Q1 and switches are shown in FIG. Q2, in practice, the switch Q1 and the switch Q2 are respectively equivalent switches formed by connecting a plurality of sets of switches in parallel. In other words, the switch Q1 is formed by the parallel connection of the switches Q11, Q12, Q13... (not shown), and the switch Q2 is by the switches Q21, Q22, Q23... (not shown) Parallel, wherein switch Q11 and switch Q21 are a set of cooperatively operated switches, switch Q21 and switch Q22 are another set of cooperatively operated switches, and so on. Each set of switches can be operated separately such that converter 130 converts input voltage Vin to output voltage Vout.

驅動單元160可選擇性地驅動開關單元120中的開關組數,藉此調整開關單元120的導通阻抗。由於多組開關之間彼此並聯,開關單元120的導通阻抗相當於被驅動的開關組數各自的導通阻抗並聯之值。換言之,驅動單元160驅動的開關組數越多(如:驅動單元160驅動三組開關Q11與Q21、Q11與Q21以及Q11與Q21)時,相當於並聯越多導通阻抗,使得開關單元120整體的導通阻抗降低。相對地,當驅動單元160驅動的開關組數越少(如:驅動單元160僅驅動一組開關Q11與Q21)時,開關單元120具有越高的導通阻抗。 The driving unit 160 can selectively drive the number of switches in the switching unit 120, thereby adjusting the on-resistance of the switching unit 120. Since the plurality of sets of switches are connected in parallel with each other, the on-resistance of the switching unit 120 corresponds to a value in which the respective on-resistances of the number of driven switches are connected in parallel. In other words, the more the number of switch groups driven by the driving unit 160 (for example, when the driving unit 160 drives the three sets of switches Q11 and Q21, Q11 and Q21, and Q11 and Q21), the more parallel the on-resistance is, so that the switching unit 120 as a whole The on-resistance is reduced. In contrast, when the number of switch groups driven by the drive unit 160 is smaller (eg, the drive unit 160 drives only one set of switches Q11 and Q21), the switch unit 120 has a higher on-resistance.

此外,驅動單元160透過脈衝寬度調變(Pulse Width Modulation,PWM)訊號PWM的切換頻率和責任週期(duty cycle)驅動開關單元120開啟或關閉,以調整開關單元120的切換頻率並使得轉換器130輸出適當的輸出電壓Vout。 In addition, the driving unit 160 drives the switching unit 120 to be turned on or off through a switching frequency and a duty cycle of a pulse width modulation (PWM) signal PWM to adjust the switching frequency of the switching unit 120 and make the converter 130 The appropriate output voltage Vout is output.

在不同的負載條件下,轉換器130的轉換效率取決於導通損耗的大小以及切換損耗的大小。換言之,轉換器130的損耗除了受輸出電流Iout的影響之外,也受到開關單元120的切換頻率及導通阻抗的影響。開關單元120根據不同的負載 條件(如:不同的輸出電流Iout),操作在適當的切換頻率及導通阻抗時,便能有效降低轉換器130的損耗並提升轉換效率。 Under different load conditions, the conversion efficiency of converter 130 depends on the amount of conduction loss and the amount of switching loss. In other words, the loss of the converter 130 is affected by the switching frequency and the on-resistance of the switching unit 120 in addition to the influence of the output current Iout. Switch unit 120 according to different loads Conditions (eg, different output currents Iout), when operating at the appropriate switching frequency and on-resistance, can effectively reduce the losses of the converter 130 and improve the conversion efficiency.

具體而言,當驅動單元160驅動的開關組數較多時,開關單元120的切換損耗會隨著開關單元120中被驅動的開關組數增多而增大,但由於開關單元120的導通阻抗降低,因此具有較小的導通損耗。相對地,當驅動單元160驅動的開關組數較少時,開關單元120的切換損耗較小,但由於開關單元120的導通阻抗較大,因此具有較大的導通損耗。 Specifically, when the number of switch groups driven by the drive unit 160 is large, the switching loss of the switch unit 120 increases as the number of switch groups driven in the switch unit 120 increases, but the on-resistance of the switch unit 120 decreases. Therefore, it has a small conduction loss. In contrast, when the number of switches driven by the driving unit 160 is small, the switching loss of the switching unit 120 is small, but since the on-resistance of the switching unit 120 is large, it has a large conduction loss.

當轉換器130操作在輕載的情況時,由於輸出電流Iout較小,增加導通阻抗對導通損耗的影響較小,但減少驅動開關組數(如:僅驅動一組開關Q11與Q21)可以有效降低切換損耗,因此當驅動單元160驅動較少開關時,轉換器130的總系統損耗下降進而提升轉換效率。 When the converter 130 operates in a light load condition, since the output current Iout is small, increasing the on-resistance has little effect on the conduction loss, but reducing the number of driving switch groups (for example, driving only one set of switches Q11 and Q21) can be effective. The switching loss is reduced, so when the drive unit 160 drives fewer switches, the total system losses of the converter 130 are reduced to increase the conversion efficiency.

相對地,當轉換器130操作在重載的情況時,由於輸出電流Iout較大,導通損耗所占的損耗比重提高,增加驅動開關組數(如:同步驅動驅動三組開關Q11與Q21、Q11與Q21以及Q11與Q21)可以有效降低導通損耗,因此當驅動單元160驅動較多開關,使得開關單元120具有較小的導通阻抗時,轉換器130的總系統損耗下降,進而提升轉換效率。 In contrast, when the converter 130 operates in the case of heavy load, since the output current Iout is large, the specific loss of the conduction loss is increased, and the number of the driving switch group is increased (for example, the synchronous driving drive three sets of switches Q11 and Q21, Q11) And Q21 and Q11 and Q21) can effectively reduce the conduction loss, so when the driving unit 160 drives more switches, so that the switching unit 120 has a smaller on-resistance, the total system loss of the converter 130 decreases, thereby improving the conversion efficiency.

在本實施例中,控制器140於轉換器130具有不同輸出電流Iout時,透過相對應的頻率調整訊號SetF以及阻抗調整訊號SetR調整開關單元120的切換頻率及導通阻抗。如此一來,轉換器130便可根據輸出電流Iout的大小進行調整,以操作在適當的切換頻率及導通阻抗,降低轉換器130的損耗並提 升轉換器130的轉換效率。 In this embodiment, when the converter 130 has different output currents Iout, the controller 140 adjusts the switching frequency and the on-resistance of the switching unit 120 through the corresponding frequency adjustment signal SetF and the impedance adjustment signal SetR. In this way, the converter 130 can be adjusted according to the magnitude of the output current Iout to operate at an appropriate switching frequency and on-resistance, reducing the loss of the converter 130 and The conversion efficiency of the converter 130 is increased.

具體而言,控制器140中的電流運算單元142可對開關單元120中產生之操作電流訊號進行運算處理,以取得對應於轉換器130輸出電流Iout之輸出電流訊號SIG_Iout。處理單元150用以比較輸出電流訊號SIG_Iout與門檻值TH1、TH2,並相應地輸出頻率調整訊號SetF和阻抗調整訊號SetR,使得驅動單元160依據頻率調整訊號SetF調整脈衝寬度調變訊號PWM,並依據阻抗調整訊號SetR調整開關單元120內所驅動的開關組數。如此一來,驅動單元160便能驅動開關單元120,使得開關單元120具有相應的切換頻率及導通阻抗。在本實施例中,控制器140與其中的電流運算單元142、處理單元150以及PWM訊號產生單元190等單元,皆可由微控制器(Microcontroller Unit)、複雜型可編程邏輯元件(Complex Programmable Logic Device,CPLD)、現場可程式化閘陣列(Field-programmable gate array,FPGA)等不同方式實作。 Specifically, the current operation unit 142 in the controller 140 can perform an operation process on the operation current signal generated in the switch unit 120 to obtain an output current signal SIG_Iout corresponding to the output current Iout of the converter 130. The processing unit 150 is configured to compare the output current signal SIG_Iout with the threshold values TH1 and TH2, and correspondingly output the frequency adjustment signal SetF and the impedance adjustment signal SetR, so that the driving unit 160 adjusts the pulse width modulation signal PWM according to the frequency adjustment signal SetF, and according to The impedance adjustment signal SetR adjusts the number of switch groups driven in the switch unit 120. In this way, the driving unit 160 can drive the switching unit 120 such that the switching unit 120 has a corresponding switching frequency and on-resistance. In this embodiment, the controller 140 and the units such as the current calculation unit 142, the processing unit 150, and the PWM signal generation unit 190 can be implemented by a microcontroller (Microcontroller Unit) or a complex programmable logic element (Complex Programmable Logic Device). , CPLD), field-programmable gate array (FPGA) and other methods.

儲存單元180可用以儲存門檻值TH1、TH2以及其他轉換器130所需的資訊,並傳送門檻值TH1、TH2至處理單元150以供運算處理。實作上,儲存單元180可由電子抹除式可複寫唯讀記憶體(Electrically-Erasable Programmable Read-Only Memory,EEPROM)的方式實作。 The storage unit 180 can be used to store the threshold values TH1, TH2 and other information required by the converter 130, and to pass the threshold values TH1, TH2 to the processing unit 150 for arithmetic processing. In practice, the storage unit 180 can be implemented by means of an Electrically-Erasable Programmable Read-Only Memory (EEPROM).

為了方便說明起見,處理單元150比較輸出電流訊號SIG_Iout與門檻值TH1、TH2,並相應地輸出頻率調整訊號SetF和阻抗調整訊號SetR的具體作法,將配合第2A圖與第 2B圖進行說明,但本案並不以此為限。 For convenience of description, the processing unit 150 compares the output current signal SIG_Iout with the threshold values TH1, TH2, and correspondingly outputs the frequency adjustment signal SetF and the impedance adjustment signal SetR, which will cooperate with the second embodiment and the second 2B is for illustration, but this case is not limited to this.

第2A圖為根據本案一實施例所繪示的輸出電流訊號與切換頻率關係圖。第2B圖為根據本案一實施例所繪示的輸出電流訊號與導通阻抗關係圖。在第2A圖與第2B圖所示的實施例中,處理單元150依據輸出電流訊號SIG_Iout與門檻值TH1、TH2的比較結果判斷協同操作之負載大小,決定轉換器130處於何種狀態。具體來說,當處理單元150判斷輸出電流訊號SIG_Iout小於門檻值TH1(如:負載為輕載)時,轉換器130被設置於第一狀態STAGE1。此時處理單元150相應地輸出頻率調整訊號SetF和阻抗調整訊號SetR,控制驅動單元160驅動開關單元120操作在切換頻率FSW1而具有導通阻抗RON1。 FIG. 2A is a diagram showing relationship between an output current signal and a switching frequency according to an embodiment of the present invention. FIG. 2B is a diagram showing relationship between output current signal and on-resistance according to an embodiment of the present invention. In the embodiments shown in FIGS. 2A and 2B, the processing unit 150 determines the magnitude of the load of the cooperative operation based on the comparison result of the output current signal SIG_Iout and the threshold values TH1 and TH2, and determines the state of the converter 130. Specifically, when the processing unit 150 determines that the output current signal SIG_Iout is less than the threshold TH1 (eg, the load is lightly loaded), the converter 130 is set to the first state STAGE1. At this time, the processing unit 150 outputs the frequency adjustment signal SetF and the impedance adjustment signal SetR correspondingly, and the control driving unit 160 drives the switching unit 120 to operate at the switching frequency FSW1 to have the on-resistance RON1.

當輸出電流訊號SIG_Iout大於門檻值TH1且小於門檻值TH2(如:負載為中載)時,轉換器130被設置於第二狀態STAGE2。此時處理單元150相應地輸出頻率調整訊號SetF和阻抗調整訊號SetR,控制驅動單元160驅動開關單元120操作在切換頻率FSW2而具有導通阻抗RON2。相似地,當輸出電流訊號SIG_Iout大於門檻值TH2(如:負載為重載)時,轉換器130位於第三狀態STAGE3。處理單元150相應地輸出頻率調整訊號SetF和阻抗調整訊號SetR,控制驅動單元160驅動開關單元120操作在切換頻率FSW3而具有導通阻抗RON3。 When the output current signal SIG_Iout is greater than the threshold TH1 and less than the threshold TH2 (eg, the load is medium), the converter 130 is set to the second state STAGE2. At this time, the processing unit 150 outputs the frequency adjustment signal SetF and the impedance adjustment signal SetR correspondingly, and the control driving unit 160 drives the switching unit 120 to operate at the switching frequency FSW2 to have the on-resistance RON2. Similarly, when the output current signal SIG_Iout is greater than the threshold TH2 (eg, the load is a heavy load), the converter 130 is in the third state STAGE3. The processing unit 150 outputs the frequency adjustment signal SetF and the impedance adjustment signal SetR correspondingly, and the control driving unit 160 drives the switching unit 120 to operate at the switching frequency FSW3 to have the on-resistance RON3.

換言之,處理單元150比較輸出電流訊號SIG_Iout與門檻值TH1、TH2後,便能判斷轉換器130此時與何種負載協同操作的情形,並輸出相應的頻率調整訊號SetF。 In other words, after comparing the output current signal SIG_Iout with the threshold values TH1 and TH2, the processing unit 150 can determine the situation in which the converter 130 operates in cooperation with the load at this time, and output the corresponding frequency adjustment signal SetF.

PWM訊號產生單元190可以根據頻率調整訊號SetF輸出相應的脈衝寬度調變訊號PWM,使得驅動單元160驅動開關單元120具有相應的切換頻率FSW1~FSW3。如此一來,處理單元150便可藉由頻率調整訊號SetF間接控制開關單元120的切換頻率FSW1~FSW3。 The PWM signal generating unit 190 can output a corresponding pulse width modulation signal PWM according to the frequency adjustment signal SetF, so that the driving unit 160 drives the switching unit 120 to have corresponding switching frequencies FSW1~FSW3. In this way, the processing unit 150 can indirectly control the switching frequencies FSW1~FSW3 of the switching unit 120 by the frequency adjustment signal SetF.

此外,處理單元150亦根據轉換器130此時的負載情形,輸出阻抗調整訊號SetR,使得驅動單元160驅動開關單元120具有相應的導通阻抗RON1~RON3。 In addition, the processing unit 150 also outputs the impedance adjustment signal SetR according to the load condition of the converter 130 at this time, so that the driving unit 160 drives the switching unit 120 to have the corresponding on-resistances RON1 RON RON3.

在本實施例中,切換頻率FSW1小於切換頻率FSW2,切換頻率FSW2小於切換頻率FSW3。導通阻抗RON1大於導通阻抗RON2,導通阻抗RON2大於導通阻抗RON3。如此一來,如先前段落中所述,轉換器130在輕載時提高開關單元120的導通阻抗(即:驅動較少並聯開關),在重載時降低開關單元120的導通阻抗(即:驅動較多並聯開關),便能降低切換損耗以及導通損耗的總和,提升轉換器130的轉換效率。 In the present embodiment, the switching frequency FSW1 is smaller than the switching frequency FSW2, and the switching frequency FSW2 is smaller than the switching frequency FSW3. The on-resistance RON1 is greater than the on-resistance RON2, and the on-resistance RON2 is greater than the on-resistance RON3. As such, as described in the previous paragraph, the converter 130 increases the on-resistance of the switching unit 120 at light loads (ie, drives fewer parallel switches), and reduces the on-resistance of the switching unit 120 during heavy loading (ie, driving) More parallel switches) can reduce the sum of switching loss and conduction loss and improve the conversion efficiency of the converter 130.

相似地,轉換器130在輕載時使開關單元120操作在較低的切換頻率,在中、重載時使開關單元120操作在相對較高的切換頻率,能有效降低輕載時的切換損耗,提升轉換器130的轉換效率。 Similarly, the converter 130 operates the switching unit 120 at a lower switching frequency at light load, and operates the switching unit 120 at a relatively high switching frequency during medium and heavy loads, thereby effectively reducing switching loss at light loads. The conversion efficiency of the converter 130 is improved.

值得注意的是,在部份實施例中,處理單元150亦可依實際需求設置一或多個門檻值,上述實施例中的門檻值TH1、TH2僅為示例,本案並不以此為限。 It is to be noted that, in some embodiments, the processing unit 150 may also set one or more threshold values according to actual requirements. The threshold values TH1 and TH2 in the foregoing embodiments are merely examples, and the present invention is not limited thereto.

轉換器130的控制方法請一併參考第3圖。第3圖為根據本案一實施例所繪示的控制轉換器的方法300的流程 圖。控制轉換器的方法300包含步驟S310~S340,具體說明如下所述。為方便及清楚說明起見,下述控制轉換器的方法300是配合第1圖以及第2圖所示實施例進行說明,但不以其為限,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可對作各種更動與潤飾。 Please refer to Figure 3 for the control method of converter 130. FIG. 3 is a flowchart of a method 300 for controlling a converter according to an embodiment of the present disclosure. Figure. The method 300 of controlling the converter includes steps S310 to S340, which are described in detail below. For the sake of convenience and clarity of description, the method 300 for controlling the converter described below is described with reference to the embodiments shown in FIGS. 1 and 2, but is not limited thereto, and any person skilled in the art without departing from the disclosure Within the spirit and scope of the content, when it is possible to make a variety of changes and retouching.

首先,在步驟S310中,處理單元150設定門檻值TH1、TH2、導通阻抗RON1~RON3以及切換頻率FSW1~FSW3等控制參數。 First, in step S310, the processing unit 150 sets control values such as threshold values TH1, TH2, on-impedances RON1 to RON3, and switching frequencies FSW1 to FSW3.

接著,在步驟S320中,電流運算單元142對開關單元120中產生之操作電流訊號進行運算處理,以取得輸出電流訊號SIG_Iout。 Next, in step S320, the current operation unit 142 performs an arithmetic processing on the operation current signal generated in the switch unit 120 to obtain the output current signal SIG_Iout.

接著,在步驟S330中,處理單元150將輸出電流訊號SIG_Iout與門檻值TH1和TH2進行比較。最後,在步驟S340中,根據比較結果相應地輸出頻率調整訊號SetF以及阻抗調整訊號SetR。驅動單元160根據相應於頻率調整訊號SetF的脈衝寬度調變訊號PWM及阻抗調整訊號SetR調整開關單元120的切換頻率及導通阻抗。 Next, in step S330, the processing unit 150 compares the output current signal SIG_Iout with the threshold values TH1 and TH2. Finally, in step S340, the frequency adjustment signal SetF and the impedance adjustment signal SetR are correspondingly output according to the comparison result. The driving unit 160 adjusts the switching frequency and the on-resistance of the switching unit 120 according to the pulse width modulation signal PWM and the impedance adjustment signal SetR corresponding to the frequency adjustment signal SetF.

所屬技術領域具有通常知識者可直接瞭解此方法如何基於上述實施例中的顯示器100以及轉換器130以執行該等操作及功能,故不再此贅述。 Those skilled in the art can directly understand how this method is based on the display 100 and the converter 130 in the above embodiments to perform such operations and functions, and thus will not be described again.

在上述實施例中,電流運算單元142、處理單元150以及PWM訊號產生單元190可由多種不同方式實作。為了較明瞭的闡述,以下段落將分別配合圖式舉例說明電流運算單元142、處理單元150以及PWM訊號產生單元190具體的電路 結構。 In the above embodiment, the current operation unit 142, the processing unit 150, and the PWM signal generation unit 190 can be implemented in a variety of different manners. For the sake of clarity, the following paragraphs will respectively illustrate the specific circuits of the current operation unit 142, the processing unit 150, and the PWM signal generation unit 190 in conjunction with the drawings. structure.

請參考第4圖。第4圖為根據本案一實施例所繪示的顯示器100的示意圖。在第4圖所示的實施例中,控制器130更包含參考電壓產生單元170。處理單元150包含邏輯電路152、暫存電路154。 Please refer to Figure 4. FIG. 4 is a schematic diagram of a display 100 according to an embodiment of the present disclosure. In the embodiment shown in FIG. 4, the controller 130 further includes a reference voltage generating unit 170. The processing unit 150 includes a logic circuit 152 and a temporary storage circuit 154.

邏輯電路152用以根據輸出電流訊號SIG_Iout輸出比較訊號Comp1、Comp2給暫存電路154,暫存電路154根據比較訊號Comp1、Comp2輸出相應的阻抗調整訊號SetR給驅動單元160,並輸出相應的頻率調整訊號SetF給PWM訊號產生單元190。 The logic circuit 152 is configured to output the comparison signals Comp1 and Comp2 to the temporary storage circuit 154 according to the output current signal SIG_Iout. The temporary storage circuit 154 outputs the corresponding impedance adjustment signal SetR to the driving unit 160 according to the comparison signals Comp1 and Comp2, and outputs corresponding frequency adjustments. The signal SetF is given to the PWM signal generating unit 190.

PWM訊號產生單元190根據頻率調整訊號SetF、回授電壓訊號Vfb以及參考電壓訊號Vref輸出脈衝寬度調變訊號PWM給驅動單元160。 The PWM signal generating unit 190 outputs the pulse width modulation signal PWM to the driving unit 160 according to the frequency adjustment signal SetF, the feedback voltage signal Vfb, and the reference voltage signal Vref.

具體來說,PWM訊號產生單元190包含振盪電路192、斜坡產生器194、補償電路196、以及誤差放大器198。其中振盪電路192用以接收頻率調整訊號SetF並產生相應頻率的振盪訊號,誤差放大器198用以產生回授電壓訊號Vfb以及參考電壓訊號Vref之間的誤差訊號。在本實施例中,回授電壓訊號Vfb可由輸出電壓Vout經過串聯電阻分壓產生,參考電壓訊號Vref可由參考電壓產生單元170根據輸入電壓Vin產生。 Specifically, the PWM signal generating unit 190 includes an oscillation circuit 192, a ramp generator 194, a compensation circuit 196, and an error amplifier 198. The oscillating circuit 192 is configured to receive the frequency adjustment signal SetF and generate an oscillating signal of the corresponding frequency, and the error amplifier 198 is configured to generate an error signal between the feedback voltage signal Vfb and the reference voltage signal Vref. In this embodiment, the feedback voltage signal Vfb can be generated by the series voltage divider of the output voltage Vout, and the reference voltage signal Vref can be generated by the reference voltage generating unit 170 according to the input voltage Vin.

透過上述電路單元的協同運作,便可使所輸出脈衝寬度調變訊號PWM具有目標的切換頻率和責任週期(Duty Cycle)DT,以將輸入電壓Vin轉換為輸出電壓Vout。如此一 來,控制器140便能根據輸出電流訊號SIG_Iout輸出相應於頻率調整訊號SetF的脈衝寬度調變訊號PWM和阻抗調整訊號SetR給驅動單元160。 Through the cooperative operation of the above circuit units, the output pulse width modulation signal PWM has a target switching frequency and a duty cycle DT to convert the input voltage Vin into an output voltage Vout. Such a The controller 140 can output the pulse width modulation signal PWM and the impedance adjustment signal SetR corresponding to the frequency adjustment signal SetF to the driving unit 160 according to the output current signal SIG_Iout.

請同時參考第4圖以及第5A圖。第5A圖為根據本案一實施例所繪示的電流運算單元142示意圖。如第4圖所示,在本實施例中,轉換器130為一升壓型切換式功率轉換器。開關單元120包含開關Q1和開關Q2,其中開關Q1電性連接於轉換器130的輸入端132和接地端GND,開關Q2電性連接於轉換器130的輸入端132和轉換器130的輸出端134。驅動電路160以交錯進行的方式切換開關Q1及開關Q2。當開關Q1開啟、開關Q2關閉時,轉換器130的輸入端132與接地端GND導通,電流I1流經開關Q1。相對地,當開關Q2開啟、開關Q1關閉時,轉換器130的輸入端132與輸出端134導通,電流I2流經開關Q2,經由轉換器130的輸出端134輸出。換言之,輸出電流Iout即為流經開關Q2的電流I2的平均值。 Please refer to Figure 4 and Figure 5A at the same time. FIG. 5A is a schematic diagram of the current operation unit 142 according to an embodiment of the present invention. As shown in Fig. 4, in the present embodiment, the converter 130 is a step-up switching type power converter. The switch unit 120 includes a switch Q1 and a switch Q2. The switch Q1 is electrically connected to the input end 132 of the converter 130 and the ground GND. The switch Q2 is electrically connected to the input end 132 of the converter 130 and the output end 134 of the converter 130. . The drive circuit 160 switches the switch Q1 and the switch Q2 in an interleaved manner. When the switch Q1 is turned on and the switch Q2 is turned off, the input terminal 132 of the converter 130 is turned on with the ground GND, and the current I1 flows through the switch Q1. In contrast, when the switch Q2 is turned on and the switch Q1 is turned off, the input terminal 132 of the converter 130 is turned on and the output terminal 134 is turned on, and the current I2 flows through the switch Q2 and is output through the output terminal 134 of the converter 130. In other words, the output current Iout is the average value of the current I2 flowing through the switch Q2.

在第5A圖所示的實施例中,電流運算單元142包含電流平均電路520。電流平均電路520電性連接於開關Q2,用以計算流經開關Q2的操作電流(即:電流I2)訊號的平均值。如此一來,電流運算單元142便能根據流經開關Q2的操作電流(即:電流I2)訊號的平均值相對應地輸出輸出電流訊號SIG_Iout。 In the embodiment shown in FIG. 5A, the current operation unit 142 includes a current averaging circuit 520. The current averaging circuit 520 is electrically connected to the switch Q2 for calculating an average value of the operating current (ie, current I2) signal flowing through the switch Q2. In this way, the current operation unit 142 can output the output current signal SIG_Iout according to the average value of the operation current (ie, current I2) flowing through the switch Q2.

如第5A圖所示,電流平均電路520包含電阻電容電路(RC circuit)以計算電流I2的平均值並相對應地產生輸出電流訊號SIG_Iout。電阻電容電路的輸入端用以接收流經開 關Q2的操作電流訊號(即:電流I2),電阻電容電路的輸出端用以輸出輸出電流訊號SIG_Iout,電阻R1電性連接於電流平均電路520的輸入端及輸出端之間,電容C1電性連接於電流平均電路520的輸出端及接地端之間。 As shown in FIG. 5A, the current averaging circuit 520 includes a RC circuit to calculate an average value of the current I2 and correspondingly generate an output current signal SIG_Iout. The input end of the resistor-capacitor circuit is used to receive the flow through The operation current signal of Q2 is turned off (ie, current I2), the output end of the resistor-capacitor circuit is used to output an output current signal SIG_Iout, and the resistor R1 is electrically connected between the input end and the output end of the current averaging circuit 520, and the capacitor C1 is electrically connected. Connected between the output of the current averaging circuit 520 and the ground.

須注意的是,電流平均電路可由多種不同電路實作,第5A圖所示之實施例並非用以限制本案。舉例來說,在第5B圖所示實施例中,電流平均電路540包含電阻R2~R5、電容C1以及比較器OP1。在結構上,電阻R2電性連接於電流平均電路540的輸入端與比較器OP1的第一輸入端之間,電容C2電性連接於比較器OP1的第一輸入端與接地端之間,電阻R3電性連接於比較器OP1的第一輸入端與輸出端之間,電阻R4電性連接於比較器OP1的第二輸入端與輸出端之間,電阻R5電性連接於比較器OP1的第二輸入端與接地端之間。比較器OP1的輸出端電性連接於電流平均電路540的輸出端。 It should be noted that the current averaging circuit can be implemented by a variety of different circuits, and the embodiment shown in FIG. 5A is not intended to limit the present case. For example, in the embodiment shown in FIG. 5B, the current averaging circuit 540 includes resistors R2 R R5, a capacitor C1, and a comparator OP1. Structurally, the resistor R2 is electrically connected between the input end of the current averaging circuit 540 and the first input end of the comparator OP1, and the capacitor C2 is electrically connected between the first input end of the comparator OP1 and the ground. R3 is electrically connected between the first input end and the output end of the comparator OP1, the resistor R4 is electrically connected between the second input end and the output end of the comparator OP1, and the resistor R5 is electrically connected to the first part of the comparator OP1. Between the two inputs and the ground. The output of comparator OP1 is electrically coupled to the output of current averaging circuit 540.

如此一來,電阻R2~R5、電容C2以及比較器OP1便組成了積分器電路(integrator circuit),可對流經開關Q2的操作電流訊號(即:電流I2)進行積分以計算電流I2的平均值並相對應地產生輸出電流訊號SIG_Iout。 In this way, the resistors R2~R5, the capacitor C2 and the comparator OP1 form an integrator circuit, which can integrate the operating current signal (ie, current I2) flowing through the switch Q2 to calculate the average value of the current I2. And correspondingly generate an output current signal SIG_Iout.

邏輯電路152的具體電路結構請參考第6A圖。第6A圖為根據本案一實施例所繪示的邏輯電路152的示意圖。在本實施例中,邏輯電路152包含比較器OP2和OP3,其中比較器OP2和OP3各自的第一輸入端(如:正輸入端)分別用以接收門檻值TH1和TH2,比較器OP2和OP3各自的第二輸入端(如:負輸入端)用以接收輸出電流訊號SIG_Iout。比較器OP2用以 比較輸出電流訊號SIG_Iout與門檻值TH1,並根據比較結果相應地輸出比較訊號Comp1。比較器OP3用以比較輸出電流訊號SIG_Iout與門檻值TH2,並根據比較結果相應地輸出比較訊號Comp2。如此一來,暫存電路154便能根據邏輯電路152輸出的比較訊號Comp1和Comp2判斷轉換器130此時的負載(即:輸出電流Iout的大小),並相應地輸出頻率調整訊號SetF和阻抗調整訊號SetR。 Please refer to FIG. 6A for the specific circuit structure of the logic circuit 152. FIG. 6A is a schematic diagram of a logic circuit 152 according to an embodiment of the present disclosure. In this embodiment, the logic circuit 152 includes comparators OP2 and OP3, wherein respective first inputs (eg, positive inputs) of the comparators OP2 and OP3 are used to receive threshold values TH1 and TH2, respectively, comparators OP2 and OP3. A respective second input (eg, a negative input) is used to receive the output current signal SIG_Iout. Comparator OP2 is used The output current signal SIG_Iout is compared with the threshold TH1, and the comparison signal Comp1 is output correspondingly according to the comparison result. The comparator OP3 is configured to compare the output current signal SIG_Iout with the threshold TH2, and output the comparison signal Comp2 according to the comparison result. In this way, the temporary storage circuit 154 can determine the load of the converter 130 at this time according to the comparison signals Comp1 and Comp2 outputted by the logic circuit 152 (ie, the magnitude of the output current Iout), and output the frequency adjustment signal SetF and the impedance adjustment accordingly. Signal SetR.

在另一實施例中,電流運算單元142亦可根據流經開關Q1的操作電流(即:電流I1)訊號的平均值相對應地輸出輸出電流訊號SIG_Iout。請同時參考第4圖和第6B圖。第6B圖為根據本案另一實施例所繪示的電流運算單元142和邏輯電路152的示意圖。在部份實施例中,如第6B圖中所示,電流運算單元142中可包含比例調節電路620,邏輯電路152可包含比例調節電路640,以相互配合簡化電路設計。 In another embodiment, the current operation unit 142 may also output the output current signal SIG_Iout according to the average value of the operation current flowing through the switch Q1 (ie, the current I1). Please also refer to Figures 4 and 6B. FIG. 6B is a schematic diagram of the current operation unit 142 and the logic circuit 152 according to another embodiment of the present disclosure. In some embodiments, as shown in FIG. 6B, the current operation unit 142 may include a proportional adjustment circuit 620, and the logic circuit 152 may include a proportional adjustment circuit 640 to cooperate with each other to simplify the circuit design.

在第6B圖所示的實施例中,轉換器130為一升壓型切換式功率轉換器,因此輸出電流Iout與電流I1的關係可表示為:Iout=[(1-DT)/DT]‧I1或者,I1=[DT/(1-DT)]‧Iout其中DT代表開關Q1的責任週期。 In the embodiment shown in FIG. 6B, the converter 130 is a step-up switching power converter, so the relationship between the output current Iout and the current I1 can be expressed as: Iout=[(1-DT)/DT]‧ I1 or, I1 = [DT / (1-DT)] ‧ Iout where DT represents the duty cycle of switch Q1.

在本實施例中,僅有在脈衝寬度調變訊號PWM 為低準位(即:訊號位於非責任週期時),比例調節電路620中的開關導通將流經開關Q1的操作電流(即:電流I1)訊號輸出至比例調節電路620的輸出端。換言之,比例調節電路620所輸出的輸出電流訊號SIG_Iout,是將流經開關Q1的操作電流(即:電流I1)訊號的平均值乘上根據開關Q1之責任週期所決定的比例(1-DT)後的訊號,即:SIG_Iout=Iout‧DT。 In this embodiment, only the pulse width modulation signal PWM When the low level (ie, when the signal is in the non-responsibility cycle), the switch in the proportional adjustment circuit 620 turns on the output current (ie, current I1) signal flowing through the switch Q1 to the output of the proportional adjustment circuit 620. In other words, the output current signal SIG_Iout output by the proportional adjustment circuit 620 multiplies the average value of the operation current (ie, current I1) flowing through the switch Q1 by the ratio (1-DT) determined according to the duty cycle of the switch Q1. After the signal, namely: SIG_Iout = Iout‧ DT.

相似地,在本實施例中,比例調節電路640根據開關Q1的責任週期DT對儲存在儲存單元180中的門檻值TH1和TH2進行處理,並分別輸出門檻值TH1與責任週期DT的乘積(即:TH1‧DT)和門檻值TH2與責任週期DT的乘積(即:TH2‧DT)作為實際和輸出電流訊號SIG_Iout比較的門檻值。 Similarly, in the present embodiment, the scaling circuit 640 processes the threshold values TH1 and TH2 stored in the storage unit 180 according to the duty cycle DT of the switch Q1, and outputs the product of the threshold TH1 and the duty cycle DT, respectively (ie, :TH1‧DT) The product of the threshold value TH2 and the duty cycle DT (ie: TH2‧DT) is used as the threshold value for comparison with the actual output current signal SIG_Iout.

具體來說,比例調節電路640可透過串聯的可變電阻來實現。如第6B圖中所示,訊號Spa1、Spa2分別用以調整可變電阻的阻值,使得門檻值TH1和TH2分別經過分壓後輸出門檻值TH1與責任週期DT的乘積(即:TH1‧DT)和門檻值TH2與責任週期DT的乘積(即:TH2‧DT)。如此一來,新的門檻值(TH1‧DT)以及(TH2‧DT)便可分別由比較器OP1和OP2各自的第一輸入端(如:正輸入端)接收。 In particular, the scaling circuit 640 can be implemented by a series connected variable resistor. As shown in Fig. 6B, the signals Spa1 and Spa2 are respectively used to adjust the resistance of the variable resistor so that the threshold values TH1 and TH2 are respectively divided by the output threshold value TH1 and the duty cycle DT (ie: TH1‧DT And the product of the threshold value TH2 and the duty cycle DT (ie: TH2‧DT). In this way, the new threshold values (TH1‧DT) and (TH2‧DT) can be received by the respective first inputs (eg, positive inputs) of the comparators OP1 and OP2, respectively.

此外,比較器OP4和OP5各自的第二輸入端(如:負輸入端)用以接收輸出電流訊號SIG_Iout(即:Iout‧DT)。由於在本實施例中門檻值TH1、TH2以及輸出電流Iout皆乘上 了責任週期DT,因此當比較器OP4比較門檻值(TH1‧DT)與輸出電流訊號SIG_Iout(即:Iout‧DT)的大小時,相當於比較門檻值TH1與輸出電流Iout的大小。比較器OP5比較門檻值(TH2‧DT)與輸出電流訊號SIG_Iout(即:Iout‧DT)的大小時,相當於比較門檻值TH2與輸出電流Iout的大小。 In addition, the second input terminals (eg, the negative input terminals) of the comparators OP4 and OP5 are used to receive the output current signal SIG_Iout (ie: Iout‧DT). Since the threshold values TH1, TH2 and the output current Iout are multiplied in this embodiment The duty cycle DT is used, so when the comparator OP4 compares the threshold value (TH1‧DT) with the output current signal SIG_Iout (ie, Iout‧DT), it is equivalent to comparing the threshold TH1 with the output current Iout. When the comparator OP5 compares the threshold value (TH2‧DT) with the output current signal SIG_Iout (ie, Iout‧DT), it corresponds to the comparison threshold TH2 and the output current Iout.

與上述實施例相似,比較器OP4和OP5分別根據所接收到的訊號相應地輸出比較訊號Comp1和Comp2。如此一來,暫存電路154便能根據邏輯電路152輸出的比較訊號Comp1和Comp2判斷轉換器130此時的負載(即:輸出電流Iout的大小),並相應地輸出頻率調整訊號SetF和阻抗調整訊號SetR。其操作與上述之說明相同,故不再重複贅述。 Similar to the above embodiment, the comparators OP4 and OP5 respectively output the comparison signals Comp1 and Comp2 based on the received signals. In this way, the temporary storage circuit 154 can determine the load of the converter 130 at this time according to the comparison signals Comp1 and Comp2 outputted by the logic circuit 152 (ie, the magnitude of the output current Iout), and output the frequency adjustment signal SetF and the impedance adjustment accordingly. Signal SetR. The operation is the same as the above description, and thus the description thereof will not be repeated.

綜上所述,透過設定適當的門檻值TH1、TH2,轉換器130便可根據輸出電流Iout的大小進行相應調整,以操作在適當的切換頻率及導通阻抗,提升轉換器130的轉換效率。 In summary, by setting appropriate threshold values TH1, TH2, the converter 130 can be adjusted according to the magnitude of the output current Iout to operate at an appropriate switching frequency and on-resistance to improve the conversion efficiency of the converter 130.

值得注意的是,門檻值TH1、TH2可為儲存於儲存單元180中的預設值,亦可由使用者依據實際需求測試並計算後手動進行設定。然而,為增進設定門檻值TH1、TH2的準確度並節省設定門檻值TH1、TH2的時間。在本案一實施例中轉換器130可以根據預先設定的切換頻率FSW1~FSW3及導通阻抗RON1~RON3自動設定門檻值TH1、TH2,達到簡化門檻值TH1、TH2的設定流程的功能。 It should be noted that the threshold values TH1 and TH2 may be preset values stored in the storage unit 180, and may be manually set by the user after being tested and calculated according to actual needs. However, in order to improve the accuracy of setting the threshold values TH1, TH2 and saving the time for setting the threshold values TH1, TH2. In an embodiment of the present invention, the converter 130 can automatically set the threshold values TH1 and TH2 according to the preset switching frequencies FSW1 to FSW3 and the on-resistances RON1 to RON3 to achieve the function of simplifying the setting process of the threshold values TH1 and TH2.

如先前段落中所述,當開關單元120具有不同切換頻率FSW1~FSW3及不同導通阻抗RON1~RON3時,由於轉換器130的總損耗不同,因此轉換器130的轉換效率也不 同。轉換器130的轉換效率可表示為:η=(Vout‧Iout)/(Vin‧Iin)其中η為轉換器130的轉換效率,Vout為轉換器130的輸出電壓,Iout為轉換器130的輸出電流,Vin為轉換器130的輸入電壓‧Iin為轉換器130的輸入電流。 As described in the previous paragraph, when the switching unit 120 has different switching frequencies FSW1 to FSW3 and different on-resistances RON1 to RON3, since the total loss of the converter 130 is different, the conversion efficiency of the converter 130 is not with. The conversion efficiency of the converter 130 can be expressed as: η = (Vout‧ Iout) / (Vin‧Iin) where η is the conversion efficiency of the converter 130, Vout is the output voltage of the converter 130, and Iout is the output current of the converter 130. Vin is the input voltage ‧Iin of the converter 130 as the input current of the converter 130.

由於轉換器130的輸出電壓Vout和輸入電壓Vin的比值是根據顯示模組110的需求而設定的定值,因此在相同的輸出電流Iout條件之下,當轉換器130的輸入電流越小,轉換器130的損耗就越小,轉換器130的轉換效率η就越高。換言之,轉換器130可透過偵測不同切換頻率FSW1~FSW3及不同導通阻抗RON1~RON3下輸入電流的變化,自動設定門檻值TH1、TH2,提高轉換器130的轉換效率。 Since the ratio of the output voltage Vout of the converter 130 and the input voltage Vin is a constant value set according to the demand of the display module 110, under the same output current Iout condition, when the input current of the converter 130 is smaller, the conversion is performed. The smaller the loss of the device 130, the higher the conversion efficiency η of the converter 130. In other words, the converter 130 can automatically set the threshold values TH1 and TH2 by detecting changes in the input currents of the different switching frequencies FSW1 to FSW3 and different on-resistances RON1 to RON3, thereby improving the conversion efficiency of the converter 130.

轉換器130設定門檻值TH1、TH2的方法請一併參考第7圖。第7圖為根據本案一實施例所繪示的控制轉換器的方法300中,步驟S310的詳細流程圖。為方便及清楚說明起見,下述步驟S310的詳細流程是配合第4圖所示實施例進行說明,但不以其為限,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可對作各種更動與潤飾。 For the method of setting the threshold values TH1 and TH2 by the converter 130, please refer to FIG. 7 together. FIG. 7 is a detailed flowchart of step S310 in the method 300 for controlling a converter according to an embodiment of the present disclosure. For the sake of convenience and clarity, the detailed process of the following step S310 is described in conjunction with the embodiment shown in FIG. 4, but is not limited thereto, and any person skilled in the art without departing from the spirit and scope of the present disclosure. Inside, when you can make a variety of changes and retouching.

如第4圖所示,在本實施例中,控制器140更包含抽載單元144。抽載單元144電性連接於處理單元150中的邏輯電路152以及轉換器130的輸出端134,用以根據抽載電壓Vpump調整轉換器130的輸出電流Iout。 As shown in FIG. 4, in the present embodiment, the controller 140 further includes a pumping unit 144. The pumping unit 144 is electrically connected to the logic circuit 152 in the processing unit 150 and the output terminal 134 of the converter 130 for adjusting the output current Iout of the converter 130 according to the pumping voltage Vpump.

此外,在本實施例中電流運算單元142更用以對開關單元120中產生之操作電流訊號進行運算處理,以偵測轉換器130的輸入電流Iin並相對應地輸出輸入電流訊號SIG_Iin。處理單元150更用以比較開關單元120具有不同切換頻率FSW1~FSW3及不同導通阻抗RON1~RON3時的輸入電流訊號SIG_Iin,並根據比較結果設定門檻值TH1、TH2。 In addition, in the present embodiment, the current operation unit 142 is further configured to perform an operation process on the operation current signal generated in the switch unit 120 to detect the input current Iin of the converter 130 and correspondingly output the input current signal SIG_Iin. The processing unit 150 is further configured to compare the input current signals SIG_Iin when the switch unit 120 has different switching frequencies FSW1 to FSW3 and different on-resistances RON1 to RON3, and set the threshold values TH1 and TH2 according to the comparison result.

為了方便說明起見,以下段落將針對轉換器130設定門檻值TH1、TH2的具體操作進行說明,電流運算單元142以及抽載單元144的具體電路實現方式將於之後段落加以詳細說明。 For convenience of explanation, the following paragraphs will explain the specific operation of setting the threshold values TH1, TH2 for the converter 130. The specific circuit implementation of the current operation unit 142 and the load-carrying unit 144 will be described in detail later.

首先,在步驟S710中,處理單元150自儲存單元180中讀取預設門檻值TH1、TH2以及預設切換頻率FSW1~FSW3、預設導通阻抗RON1~RON3。 First, in step S710, the processing unit 150 reads the preset threshold values TH1 and TH2 and the preset switching frequencies FSW1 to FSW3 and the preset on-resistances RON1 to RON3 from the storage unit 180.

接著,在步驟S720中,處理單元150根據使用者指令判斷是否進行門檻值自動校正。 Next, in step S720, the processing unit 150 determines whether to perform the threshold value automatic correction according to the user's instruction.

若處理單元150判斷進行門檻值自動校正,則進入門檻值自動校正步驟S730。具體來說,門檻值自動校正步驟S730包含步驟S731~S737,詳細說明如下。 If the processing unit 150 determines that the threshold value automatic correction is performed, the threshold value automatic correction step S730 is entered. Specifically, the threshold value automatic correction step S730 includes steps S731 to S737, which are described in detail below.

首先,在步驟S731中,抽載單元144根據抽載電壓Vpump設定輸出電流Iout的下限值。舉例來說,輸出電流Iout的下限值可設為約1毫安培(mA)或是約5毫安培(mA)。 First, in step S731, the pumping unit 144 sets the lower limit value of the output current Iout based on the pumping voltage Vpump. For example, the lower limit of the output current Iout can be set to about 1 milliamperes (mA) or about 5 milliamps (mA).

接著,在步驟S732中,處理單元150分別切換頻率調整訊號SetF和阻抗調整訊號SetR,控制驅動單元160驅動開關單元120操作在相應的切換頻率FSW1~FSW3且具有相 應的導通阻抗RON1~RON3。 Next, in step S732, the processing unit 150 switches the frequency adjustment signal SetF and the impedance adjustment signal SetR, respectively, and controls the driving unit 160 to drive the switching unit 120 to operate at the corresponding switching frequencies FSW1~FSW3 and has phases. The on-resistance should be RON1~RON3.

接著,在步驟S733中,電流運算單元142分別偵測開關單元120具有不同切換頻率FSW1~FSW3及不同導通阻抗RON1~RON3時的輸入電流Iin並相對應地輸出輸入電流訊號SIG_Iin予處理單元150。為易於說明,以下段落中以輸入電流訊號SIG_Iin1代表對應於切換頻率FSW1及導通阻抗RON1的輸入電流訊號,輸入電流訊號SIG_Iin2代表對應於切換頻率FSW2及導通阻抗RON2的輸入電流訊號,輸入電流訊號SIG_Iin3代表對應於切換頻率FSW3及導通阻抗RON3的輸入電流訊號。 Next, in step S733, the current computing unit 142 detects the input current Iin when the switching unit 120 has different switching frequencies FSW1 to FSW3 and different on-resistances RON1 to RON3, and correspondingly outputs the input current signal SIG_Iin to the processing unit 150. For ease of explanation, in the following paragraphs, the input current signal SIG_Iin1 represents an input current signal corresponding to the switching frequency FSW1 and the on-resistance RON1, and the input current signal SIG_Iin2 represents an input current signal corresponding to the switching frequency FSW2 and the on-impedance RON2, and the input current signal SIG_Iin3 Represents an input current signal corresponding to the switching frequency FSW3 and the on-resistance RON3.

在步驟S734中,處理單元150判斷輸入電流訊號SIG_Iin1~SIG_Iin3中最小之一者是否改變。若輸入電流訊號SIG_Iin1~SIG_Iin3中最小之一者沒有改變,便直接進入步驟S736。 In step S734, the processing unit 150 determines whether the smallest one of the input current signals SIG_Iin1 to SIG_Iin3 has changed. If the smallest one of the input current signals SIG_Iin1 to SIG_Iin3 has not changed, the process proceeds directly to step S736.

若當前輸出電流Iout下,輸入電流訊號SIG_Iin1~SIG_Iin3中最小之一者(如:SIG_Iin2)與原本最小的輸入電流訊號(如:SIG_Iin1)不同,則進入步驟S735。 If the current output current Iout, the smallest one of the input current signals SIG_Iin1~SIG_Iin3 (eg, SIG_Iin2) is different from the original minimum input current signal (eg, SIG_Iin1), then the process proceeds to step S735.

在步驟S735中,處理單元150以輸入電流訊號SIG_Iin1~SIG_Iin3中最小之一者(如:SIG_Iin2)所對應的頻率調整訊號SetF及阻抗調整訊號SetR作為當前輸出電流訊號SIG_Iout下控制開關單元120的頻率調整訊號SetF及阻抗調整訊號SetR,並設定此時輸出電流訊號SIG_Iout之值為一門檻值(如:TH1),並將上述設定寫入儲存單元180中。 In step S735, the processing unit 150 controls the frequency of the switch unit 120 under the current output current signal SIG_Iout by using the frequency adjustment signal SetF and the impedance adjustment signal SetR corresponding to the smallest one of the input current signals SIG_Iin1~SIG_Iin3 (eg, SIG_Iin2). The set signal SetF and the impedance adjustment signal SetR are adjusted, and the value of the output current signal SIG_Iout is set to a threshold value (for example, TH1), and the above setting is written into the storage unit 180.

換句話說,當輸入電流訊號SIG_Iin2為最小的輸 入電流訊號時,處理單元150便根據所對應的頻率調整訊號SetF及阻抗調整訊號SetR控制開關單元120的切換頻率(即:切換頻率FSW2)及導通阻抗(即:導通阻抗RON2)。 In other words, when the input current signal SIG_Iin2 is the smallest input When the current signal is input, the processing unit 150 controls the switching frequency (ie, the switching frequency FSW2) and the on-resistance (ie, the on-impedance RON2) of the switching unit 120 according to the corresponding frequency adjustment signal SetF and the impedance adjustment signal SetR.

接著,在步驟S736中,處理單元150判斷輸出電流Iout是否已達上限值。若輸出電流Iout尚未達到上限,進入步驟S727,抽載單元144透過調整抽載電壓Vpump,逐步加載轉換器130的輸出電流Iout。舉例來說,抽載單元144可根據約1毫安培、約5毫安培、或是約10毫安培的級距增大輸出電流Iout。 Next, in step S736, the processing unit 150 determines whether the output current Iout has reached the upper limit value. If the output current Iout has not reached the upper limit, the process proceeds to step S727, and the pumping unit 144 gradually loads the output current Iout of the converter 130 by adjusting the pumping voltage Vpump. For example, the pumping unit 144 can increase the output current Iout according to a step size of about 1 milliamperes, about 5 milliamps, or about 10 milliamps.

控制器140不斷重複上述步驟S732~S737,直到處理單元150判斷輸出電流Iout已加載至額定上限值。 The controller 140 continuously repeats the above steps S732 to S737 until the processing unit 150 determines that the output current Iout has been loaded to the rated upper limit value.

透過上述操作,隨著輸出電流Iout和相應的輸出電流訊號SIG_Iout逐漸增大,當另一頻率調整訊號SetF及另一阻抗調整訊號SetR所對應的輸入電流訊號(如:SIG_Iin2)小於當前頻率調整訊號SetF及當前阻抗調整訊號SetR所對應的輸入電流訊號(如:SIG_Iin1)時,處理單元150便設定此時輸出電流訊號SIG_Iout之值為門檻值TH1並更新輸出電流訊號SIG_Iout下控制開關單元120的頻率調整訊號SetF及阻抗調整訊號SetR。 Through the above operation, as the output current Iout and the corresponding output current signal SIG_Iout gradually increase, the input current signal (eg, SIG_Iin2) corresponding to the other frequency adjustment signal SetF and the other impedance adjustment signal SetR is smaller than the current frequency adjustment signal. When SetF and the input current signal corresponding to the current impedance adjustment signal SetR (for example, SIG_Iin1), the processing unit 150 sets the value of the output current signal SIG_Iout to the threshold TH1 and updates the frequency of the control switch unit 120 under the output current signal SIG_Iout. Adjust the signal SetF and the impedance adjustment signal SetR.

相似地,當另一頻率調整訊號SetF及另一阻抗調整訊號SetR所對應的輸入電流訊號SIG_Iin3小於當前頻率調整訊號SetF及當前阻抗調整訊號SetR所對應的輸入電流訊號SIG_Iin2時,處理單元150便設定此時輸出電流訊號SIG_Iout之值為門檻值TH2並更新輸出電流訊號SIG_Iout下控制開關 單元120的頻率調整訊號SetF及阻抗調整訊號SetR。 Similarly, when the input current signal SIG_Iin3 corresponding to the other frequency adjustment signal SetF and the other impedance adjustment signal SetR is smaller than the current frequency adjustment signal SetF and the input current signal SIG_Iin2 corresponding to the current impedance adjustment signal SetR, the processing unit 150 sets At this time, the output current signal SIG_Iout is the threshold value TH2 and the output current signal SIG_Iout is controlled. The frequency adjustment signal SetF of the unit 120 and the impedance adjustment signal SetR.

如此一來,處理單元150便能設定門檻值TH1、TH2,並比較輸出電流訊號SIG_Iout與門檻值TH1、TH2,自動切換至適當的頻率調整訊號SetF及阻抗調整訊號SetR,使得在不同的輸出電流Iout下,轉換器130都能操作在適當的切換頻率FSW1~FSW3和導通阻抗RON1~RON3以較小的輸入電流Iin將輸入電壓Vin轉換為輸出電壓Vout,使得轉換器130具有較佳的轉換效率η。 In this way, the processing unit 150 can set the threshold values TH1, TH2, and compare the output current signal SIG_Iout with the threshold values TH1, TH2, and automatically switch to the appropriate frequency adjustment signal SetF and the impedance adjustment signal SetR, so that the different output currents Under Iout, the converter 130 can operate at the appropriate switching frequencies FSW1~FSW3 and the on-resistances RON1~RON3 to convert the input voltage Vin into the output voltage Vout with a small input current Iin, so that the converter 130 has better conversion efficiency. η.

接著,在步驟S740中,當處理單元150判斷不需進行門檻值自動校正,或是門檻值自動校正完成後,處理單元可以進一步判斷是否要進入步驟S750,由使用者手動調整門檻值TH1、TH2。 Next, in step S740, when the processing unit 150 determines that the threshold value automatic correction is not required, or the threshold value automatic correction is completed, the processing unit may further determine whether to proceed to step S750, and manually adjust the threshold values TH1, TH2 by the user. .

在步驟S750中,使用者可以透過一使用者介面,將自訂的門檻值TH1、TH2寫入儲存單元180中,或是對門檻值自動校正步驟S730產生的門檻值TH1、TH2根據實際需求進行細部調整。 In step S750, the user can write the customized threshold values TH1 and TH2 into the storage unit 180 through a user interface, or the threshold values TH1 and TH2 generated in the threshold value automatic correction step S730 according to actual needs. Detail adjustment.

本案透過以上步驟,便能將適當的門檻值及設定參數寫入儲存單元180中。增進設定門檻值TH1、TH2的準確度並節省設定門檻值TH1、TH2的時間。 Through the above steps, the appropriate threshold value and setting parameters can be written into the storage unit 180. The accuracy of setting the threshold values TH1, TH2 is improved and the time for setting the threshold values TH1, TH2 is saved.

於上述之內容中,包含示例性的步驟。然而此些步驟並不必需依序執行。在本實施方式中所提及的步驟,除特別敘明其順序者外,均可依實際需要調整其前後順序,甚至可同時或部分同時執行。 In the above, exemplary steps are included. However, these steps are not necessarily performed in order. The steps mentioned in the present embodiment can be adjusted according to actual needs, and can be performed simultaneously or partially simultaneously, unless otherwise specified.

此外,為簡化說明,上述實施例設定兩個門檻值 TH1、TH2以及三組狀態STAGE1~STAGE3及相對應的頻率調整訊號和阻抗調整訊號,然而狀態個數、頻率調整訊號、阻抗調整訊號以及門檻值的數量皆可根據實際需求調整,本案並不以此為限。 In addition, the above embodiment sets two threshold values for simplicity of explanation. TH1, TH2 and three sets of status STAGE1~STAGE3 and corresponding frequency adjustment signal and impedance adjustment signal, however, the number of status, frequency adjustment signal, impedance adjustment signal and threshold value can be adjusted according to actual needs. This is limited.

值得注意的是,在部份實施例中,步驟724中處理單元150判斷最小的輸入電流訊號是否改變以決定是否設定新的門檻值時,為避免訊號的飄移誤差導致門檻值設定錯誤,處理單元150亦可連續判斷複數次最小的輸入電流訊號是否改變,並在判斷結果穩定之後設定相對應的切換頻率、導通阻抗以及門檻值。此外,在部份實施例中,步驟724中處理單元150判斷最小的輸入電流訊號是否改變以決定是否設定新的門檻值時,亦可以進一步根據輸出電壓Vout、輸入電壓Vin、輸出電流Iout以及輸入電流Iin,計算實際的轉換效率η,並根據最大的轉換效率η所對應的導通阻抗與切換頻率是否改變以決定新的門檻值。 It should be noted that, in some embodiments, in step 724, the processing unit 150 determines whether the minimum input current signal changes to determine whether to set a new threshold value, in order to avoid the drift error of the signal, causing the threshold value to be set incorrectly, the processing unit 150 can also continuously judge whether the minimum input current signal is changed, and set the corresponding switching frequency, on-resistance and threshold value after the determination result is stable. In addition, in some embodiments, when the processing unit 150 determines in step 724 whether the minimum input current signal changes to determine whether to set a new threshold value, the processing unit 150 may further determine the output voltage Vout, the input voltage Vin, the output current Iout, and the input. The current Iin calculates the actual conversion efficiency η, and determines whether the on-resistance and the switching frequency are changed according to the maximum conversion efficiency η to determine a new threshold value.

具體來說,抽載單元144可透過回授電路實現。請再次參考第4圖。在第4圖所示實施例中,抽載單元144包含比較器OP6和開關Q3。比較器OP6的第一輸入端(如:正輸入端)電性連接於邏輯電路152,用以接收邏輯電路152輸出的抽載電壓Vpump。比較器OP6的第二輸入端(如:負輸入端)透過電阻電性連接於接地端GND。開關Q3的第一端電性連接於轉換器130的輸出端134,第二端電性連接於比較器OP6的第二輸入端(如:負輸入端),控制端電性連接於比較器OP6的輸出端。 Specifically, the pumping unit 144 can be implemented through a feedback circuit. Please refer to Figure 4 again. In the embodiment shown in Fig. 4, the pumping unit 144 includes a comparator OP6 and a switch Q3. The first input terminal (eg, the positive input terminal) of the comparator OP6 is electrically connected to the logic circuit 152 for receiving the pumping voltage Vpump output by the logic circuit 152. The second input terminal (eg, the negative input terminal) of the comparator OP6 is electrically connected to the ground GND through a resistor. The first end of the switch Q3 is electrically connected to the output end 134 of the converter 130, the second end is electrically connected to the second input end of the comparator OP6 (eg, the negative input end), and the control end is electrically connected to the comparator OP6. The output.

在本實施例中,透過回授控制交替切換開關Q3的開啟和關閉,可使比較器OP6的第一輸入端和第二輸入端的電壓準位趨向一致,換言之,在電阻Rx阻值固定的條件下,抽載電流Ipump的大小可由抽載電壓Vpump決定。因此,在轉換器130尚未對顯示模組110供電時,邏輯電路152可以透過切換抽載電壓Vpump的大小,控制抽載單元144調整抽載電流Ipump(即:轉換器130的輸出電流)。 In this embodiment, by turning on and off the alternate switching switch Q3, the voltage levels of the first input terminal and the second input terminal of the comparator OP6 tend to be uniform, in other words, the resistance Rx is fixed. Next, the magnitude of the pumping current Ipump can be determined by the pumping voltage Vpump. Therefore, when the converter 130 has not supplied power to the display module 110, the logic circuit 152 can control the pumping unit 144 to adjust the pumping current Ipump (ie, the output current of the converter 130) by switching the magnitude of the pumping voltage Vpump.

電流運算單元142的實作方式請參考第4圖以及第8圖。第8圖為根據本案一實施例所繪示的電流運算單元142示意圖。在第8圖所示的實施例中,電流運算單元142包含電流平均電路520和輸入電流偵測電路820。電流平均電路520用以計算流經開關Q2的操作電流(即:電流I2)訊號的平均值,相對應地輸出輸出電流訊號SIG_Iout,其詳細操作原理已於先前實施例中具體揭露,於此不再贅述。 For the implementation of the current calculation unit 142, please refer to FIG. 4 and FIG. FIG. 8 is a schematic diagram of a current operation unit 142 according to an embodiment of the present disclosure. In the embodiment shown in FIG. 8, the current operation unit 142 includes a current averaging circuit 520 and an input current detecting circuit 820. The current averaging circuit 520 is configured to calculate an average value of the operating current (ie, current I2) signal flowing through the switch Q2, and correspondingly output the output current signal SIG_Iout. The detailed operation principle has been specifically disclosed in the previous embodiment. Let me repeat.

如第8圖所示,輸入電流偵測電路820根據脈衝寬度調變訊號PWM選擇性地切換開關Q4和Q5,以導通流經開關Q1的操作電流(即:電流I1)訊號和流經開關Q2的操作電流(即:電流I2)訊號。 As shown in FIG. 8, the input current detecting circuit 820 selectively switches the switches Q4 and Q5 according to the pulse width modulation signal PWM to turn on the operating current (ie, current I1) signal flowing through the switch Q1 and flow through the switch Q2. Operating current (ie: current I2) signal.

由於轉換器130的輸入電流Iin於脈衝寬度調變訊號PWM處於高準位(即:位於責任週期DT)時流經開關Q1,於脈衝寬度調變訊號PWM處於低準位(即:位於非責任週期[1-DT])時流經開關Q2,因此輸入電流偵測電路820透過開關Q4和Q5的切換便能將電流I1及I2相加以計算轉換器130的輸入電流Iin並相對應地輸出輸入電流訊號SIG_Iin。如此一來, 電流運算單元142便能根據經開關Q1的操作電流(即:電流I1)訊號和流經開關Q2的操作電流(即:電流I2)訊號,相應地輸出輸入電流訊號SIG_Iin以及輸出電流訊號SIG_Iout。 Since the input current Iin of the converter 130 flows through the switch Q1 when the pulse width modulation signal PWM is at a high level (ie, at the duty cycle DT), the pulse width modulation signal PWM is at a low level (ie, in a non-responsibility cycle). [1-DT]) flows through the switch Q2, so the input current detecting circuit 820 can add the currents I1 and I2 to calculate the input current Iin of the converter 130 and correspondingly output the input current signal through the switching of the switches Q4 and Q5. SIG_Iin. As a result, The current operation unit 142 can output the input current signal SIG_Iin and the output current signal SIG_Iout according to the operation current (ie, current I1) signal through the switch Q1 and the operation current (ie, current I2) signal flowing through the switch Q2.

綜上所述,本案透過應用上述實施例,根據輸出電流訊號相應地輸出頻率調整訊號和阻抗調整訊號調整開關單元的切換頻率與導通阻抗,以改善不同輸出電流下轉換器的轉換效率。 In summary, in the present application, by applying the above embodiment, the switching frequency and the on-resistance of the switching unit are adjusted according to the output current signal correspondingly outputting the frequency adjustment signal and the impedance adjustment signal to improve the conversion efficiency of the converter under different output currents.

雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above embodiments, and is not intended to limit the disclosure, and the present disclosure may be variously modified and retouched without departing from the spirit and scope of the present disclosure. The scope of protection of the content is subject to the definition of the scope of the patent application.

100‧‧‧顯示器 100‧‧‧ display

110‧‧‧顯示模組 110‧‧‧ display module

120‧‧‧開關單元 120‧‧‧Switch unit

130‧‧‧轉換器 130‧‧‧ converter

140‧‧‧控制器 140‧‧‧ Controller

142‧‧‧電流運算單元 142‧‧‧current computing unit

150‧‧‧處理單元 150‧‧‧Processing unit

160‧‧‧驅動單元 160‧‧‧ drive unit

180‧‧‧儲存單元 180‧‧‧ storage unit

190‧‧‧PWM訊號產生單元 190‧‧‧PWM signal generating unit

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

Iin‧‧‧輸入電流 Iin‧‧‧ input current

Vout‧‧‧輸出電壓 Vout‧‧‧ output voltage

Iout‧‧‧輸出電流 Iout‧‧‧Output current

SIG_Iout‧‧‧輸出電流訊號 SIG_Iout‧‧‧ output current signal

Vfb‧‧‧回授電壓訊號 Vfb‧‧‧Responding to voltage signals

SetR‧‧‧阻抗調整訊號 SetR‧‧‧ impedance adjustment signal

SetF‧‧‧頻率調整訊號 SetF‧‧‧ frequency adjustment signal

PWM‧‧‧脈衝寬度調變訊號 PWM‧‧‧ pulse width modulation signal

TH1、TH2‧‧‧門檻值 TH1, TH2‧‧‧ threshold

I1、I2‧‧‧電流 I1, I2‧‧‧ current

Q1、Q2‧‧‧開關 Q1, Q2‧‧‧ switch

Claims (10)

一種顯示器,包含:一顯示模組;以及一轉換器,電性連接於該顯示模組,用以將一輸入電壓轉換為一輸出電壓予該顯示模組,其中該轉換器包含:一開關單元;一電流運算單元,電性連接於該開關單元,用以對該開關單元中產生之操作電流訊號進行運算處理,以取得對應於該轉換器輸出電流之一輸出電流訊號;以及一處理單元,電性連接於該電流運算單元與一驅動單元,用以比較該輸出電流訊號與至少一門檻值,並相應地輸出一頻率調整訊號和一阻抗調整訊號,使得該驅動單元依據該頻率調整訊號和該阻抗調整訊號驅動該開關單元。 A display includes: a display module; and a converter electrically connected to the display module for converting an input voltage into an output voltage to the display module, wherein the converter comprises: a switch unit a current computing unit electrically connected to the switching unit for performing an arithmetic processing on the operating current signal generated in the switching unit to obtain an output current signal corresponding to one of the converter output currents; and a processing unit Electrically connected to the current computing unit and a driving unit for comparing the output current signal and the at least one threshold, and correspondingly outputting a frequency adjustment signal and an impedance adjustment signal, so that the driving unit adjusts the signal according to the frequency The impedance adjustment signal drives the switching unit. 如請求項1所述的顯示器,其中該電流運算單元包含:一電流平均電路,該電流平均電路電性連接於該開關單元,用以計算該開關單元中產生之操作電流訊號的平均值並相對應地輸出該輸出電流訊號。 The display unit of claim 1, wherein the current operation unit comprises: a current averaging circuit electrically connected to the switch unit for calculating an average value of the operation current signals generated in the switch unit The output current signal is output correspondingly. 如請求項1所述的顯示器,其中該電流運算單元包含:一電流平均電路,該電流平均電路電性連接於該開關單元,用以計算該開關單元中產生之操作電流訊號的平均值; 以及一比例調節電路,該比例調節電路電性連接於該電流平均電路,並根據該開關單元的責任週期和該開關單元中產生之操作電流訊號的平均值相對應地輸出該輸出電流訊號。 The display unit of claim 1, wherein the current operation unit comprises: a current averaging circuit electrically connected to the switch unit for calculating an average value of the operation current signals generated in the switch unit; And a proportional adjustment circuit electrically connected to the current averaging circuit, and outputting the output current signal according to an average period of the duty cycle of the switch unit and an operation current signal generated in the switch unit. 如請求項2或3所述的顯示器,其中該轉換器更包含:一抽載單元,電性連接於該處理單元,用以根據一抽載電壓調整該轉換器的輸出電流;其中該電流運算單元更用以對該開關單元中產生之操作電流訊號進行運算處理,以偵測該轉換器的輸入電流並相對應地輸出一輸入電流訊號;該處理單元更用以比較該開關單元具有不同切換頻率及不同導通阻抗時的該輸入電流訊號,並根據比較結果設定該至少一門檻值。 The display device of claim 2 or 3, wherein the converter further comprises: a pumping unit electrically connected to the processing unit for adjusting an output current of the converter according to a pumping voltage; wherein the current operation The unit is further configured to perform an operation process on the operation current signal generated in the switch unit to detect an input current of the converter and correspondingly output an input current signal; the processing unit is further configured to compare the switch unit to have different switching The input current signal at a frequency and a different on-resistance, and setting the at least one threshold according to the comparison result. 一種顯示器,包含:一顯示模組;以及一轉換器,電性連接於該顯示模組,用以將一輸入電壓轉換為一輸出電壓予該顯示模組,其中該轉換器包含:一開關單元;一驅動單元,電性連接於該開關單元,用以根據一頻率調整訊號以及一阻抗調整訊號驅動該開關單元,使得該開關單元具有相應的切換頻率及導通阻抗;以及一控制器,電性連接於該驅動單元,用以根據該轉 換器的一輸出電流訊號相對應地輸出該頻率調整訊號以及該阻抗調整訊號;其中當該輸出電流訊號小於一第一門檻值時,該開關單元操作在一第一切換頻率而具有一第一導通阻抗,當該輸出電流訊號大於該第一門檻值且小於一第二門檻值時,開關單元操作在一第二切換頻率而具有一第二導通阻抗,當該輸出電流訊號大於該第二門檻值時,該開關單元操作在一第三切換頻率而具有一第三導通阻抗。 A display includes: a display module; and a converter electrically connected to the display module for converting an input voltage into an output voltage to the display module, wherein the converter comprises: a switch unit a driving unit electrically connected to the switching unit for driving the switching unit according to a frequency adjustment signal and an impedance adjustment signal, so that the switching unit has a corresponding switching frequency and conduction impedance; and a controller, electrical Connected to the drive unit for being based on the turn The output current signal of the converter correspondingly outputs the frequency adjustment signal and the impedance adjustment signal; wherein when the output current signal is less than a first threshold, the switch unit operates at a first switching frequency and has a first Turning on the impedance, when the output current signal is greater than the first threshold and less than a second threshold, the switch unit operates at a second switching frequency and has a second on-resistance, when the output current signal is greater than the second threshold In the case of a value, the switching unit operates at a third switching frequency and has a third on-resistance. 如請求項5所述的顯示器,其中該控制器包含:一電流運算單元,電性連接於該開關單元,用以對該開關單元中產生之操作電流訊號進行運算處理,以產生該輸出電流訊號;以及一處理單元,電性連接於該電流運算單元與該驅動單元,用以比較該輸出電流訊號與該第一門檻值以及該第二門檻值,並相應地輸出該頻率調整訊號以及該阻抗調整訊號,以控制該驅動單元依據該頻率調整訊號和該阻抗調整訊號驅動該開關單元。 The display device of claim 5, wherein the controller comprises: a current operation unit electrically connected to the switch unit for performing an operation process on the operation current signal generated in the switch unit to generate the output current signal And a processing unit electrically connected to the current computing unit and the driving unit for comparing the output current signal with the first threshold and the second threshold, and correspondingly outputting the frequency adjustment signal and the impedance Adjusting the signal to control the driving unit to drive the switch unit according to the frequency adjustment signal and the impedance adjustment signal. 如請求項6所述的顯示器,其中該控制器更包含:一抽載單元,電性連接於該處理單元,用以根據一抽載電壓調整該轉換器的輸出電流;其中該電流運算單元更用以對該開關單元中產生之操作 電流訊號進行運算處理,以偵測該轉換器的輸入電流並相對應地輸出一輸入電流訊號;該處理單元更用以比較該開關單元具有不同切換頻率及不同導通阻抗時的該輸入電流訊號,並根據比較結果設定該第一門檻值以及該第二門檻值。 The display device of claim 6, wherein the controller further comprises: a pumping unit electrically connected to the processing unit for adjusting an output current of the converter according to a pumping voltage; wherein the current computing unit is further Used to operate the switch unit The current signal is processed to detect an input current of the converter and correspondingly output an input current signal; the processing unit is further configured to compare the input current signal when the switch unit has different switching frequencies and different on-resistances, And setting the first threshold value and the second threshold value according to the comparison result. 一種控制轉換器的方法,其中該轉換器用以將一輸入電壓轉換為一輸出電壓,並包含一開關單元,該方法包含:對該開關單元中產生之操作電流訊號進行運算處理,以取得一輸出電流訊號;根據該輸出電流訊號相應地輸出一頻率調整訊號以及一阻抗調整訊號;以及根據該頻率調整訊號及該阻抗調整訊號控制該開關單元的切換頻率及導通阻抗。 A method for controlling a converter, wherein the converter is configured to convert an input voltage into an output voltage and includes a switching unit, the method comprising: performing an operation process on the operating current signal generated in the switching unit to obtain an output a current signal; correspondingly outputting a frequency adjustment signal and an impedance adjustment signal according to the output current signal; and controlling a switching frequency and an on-resistance of the switching unit according to the frequency adjustment signal and the impedance adjustment signal. 如請求項8所述的方法,更包含:偵測該開關單元根據該頻率調整訊號以及該阻抗調整訊號操作在不同切換頻率及不同導通阻抗時該轉換器的輸入電流,並分別產生複數個輸入電流訊號以設定至少一門檻值;其中根據該輸出電流訊號相應地輸出該頻率調整訊號和該阻抗調整訊號的步驟包含:比較該輸出電流訊號與該至少一門檻值以決定該頻率調整訊號和該阻抗調整訊號。 The method of claim 8, further comprising: detecting, by the switch unit, the input current of the converter according to the frequency adjustment signal and the impedance adjustment signal operating at different switching frequencies and different on-resistances, and generating a plurality of inputs respectively The current signal is configured to set at least one threshold value; wherein the step of outputting the frequency adjustment signal and the impedance adjustment signal according to the output current signal comprises: comparing the output current signal with the at least one threshold to determine the frequency adjustment signal and the Impedance adjustment signal. 如請求項9所述的方法,其中設定該至少一門檻值的步驟包含:根據該些輸入電流訊號中最小之一者所對應的該頻率調整訊號及該阻抗調整訊號作為該輸出電流訊號下控制該開關單元的該頻率調整訊號及該阻抗調整訊號;逐步加載該轉換器的輸出電流並反覆偵測該些輸入電流訊號;以及當另一頻率調整訊號及另一阻抗調整訊號所對應的該輸入電流訊號小於當前頻率調整訊號及當前阻抗調整訊號所對應的該輸入電流訊號時,設定此時該輸出電流訊號之值為該至少一門檻值並更新該輸出電流訊號下控制該開關單元的該頻率調整訊號及該阻抗調整訊號。 The method of claim 9, wherein the step of setting the at least one threshold value comprises: controlling the frequency adjustment signal corresponding to the smallest one of the input current signals and the impedance adjustment signal as the output current signal control The frequency adjustment signal of the switch unit and the impedance adjustment signal; gradually loading the output current of the converter and repeatedly detecting the input current signals; and the input corresponding to another frequency adjustment signal and another impedance adjustment signal When the current signal is smaller than the current frequency adjustment signal and the input current signal corresponding to the current impedance adjustment signal, setting the output current signal value to the at least one threshold value and updating the output current signal to control the frequency of the switching unit Adjust the signal and the impedance adjustment signal.
TW104103246A 2015-01-30 2015-01-30 Display device and converter control method TWI556203B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104103246A TWI556203B (en) 2015-01-30 2015-01-30 Display device and converter control method
CN201510133212.1A CN104682703B (en) 2015-01-30 2015-03-25 display and method for controlling converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104103246A TWI556203B (en) 2015-01-30 2015-01-30 Display device and converter control method

Publications (2)

Publication Number Publication Date
TW201627966A TW201627966A (en) 2016-08-01
TWI556203B true TWI556203B (en) 2016-11-01

Family

ID=53317403

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104103246A TWI556203B (en) 2015-01-30 2015-01-30 Display device and converter control method

Country Status (2)

Country Link
CN (1) CN104682703B (en)
TW (1) TWI556203B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI627622B (en) * 2017-08-30 2018-06-21 友達光電股份有限公司 Voltage compensation circuit and voltage compensation method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW413746B (en) * 1998-03-31 2000-12-01 Fujitsu Ltd Power supply apparatus and method of controlling power supply circuit
TW456159B (en) * 1999-04-08 2001-09-21 Murata Manufacturing Co Piezoelectric inverter
TW463530B (en) * 1999-04-16 2001-11-11 Murata Manufacturing Co Piezoelectric transformer inverter
TW200518635A (en) * 2003-11-28 2005-06-01 Mitsubishi Electric Corp Ballast device of discharge lamp
TW200616495A (en) * 2004-11-01 2006-05-16 Masakazu Ushijima Inverter circuit for discharge lamp and power controlling method
TW200707157A (en) * 2005-04-19 2007-02-16 Ricoh Co Ltd Constant-voltage power supply circuit with fold-back-type overcurrent protection circuit
TW200719110A (en) * 2005-11-04 2007-05-16 Au Optronics Corp Active current regulator circuit and related light structure
TW200727742A (en) * 2006-01-09 2007-07-16 Au Optronics Corp Piezoelectric transformer driving circuit
TW201008376A (en) * 2008-08-07 2010-02-16 Orise Technology Co Ltd LED driver and power control circuit spread spectrum frequency modulation function and display panel using the same
US20120169314A1 (en) * 2010-12-29 2012-07-05 Hon Hai Precision Industry Co., Ltd. Buck converter
US20140312917A1 (en) * 2011-02-16 2014-10-23 Bender Gmbh & Co. Kg Method and Device for Determining a Maximum Leakage Current

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383560A (en) * 2007-09-05 2009-03-11 财团法人工业技术研究院 DC voltage converter
CN101753052B (en) * 2008-12-02 2013-01-16 联想(北京)有限公司 Pulse width modulating switch power source and power supply control method thereof
US8174315B1 (en) * 2009-04-27 2012-05-08 Triquint Semiconductor, Inc. Method and circuit for transforming the impedance of a load
CN102097924B (en) * 2011-02-11 2014-01-01 华为技术有限公司 Drive control circuit for shunt-wound synchronous rectification tubes and switching power supply
CN103138576A (en) * 2011-12-02 2013-06-05 联芯科技有限公司 Direct current to direct current converter (DCDC) power tube implementation circuit and implementation method thereof
CN103166457B (en) * 2011-12-14 2016-03-30 联芯科技有限公司 Power conversion method and mobile terminal
CN102420526A (en) * 2011-12-15 2012-04-18 无锡中星微电子有限公司 Power converter
CN103197121B (en) * 2013-04-03 2015-06-17 矽力杰半导体技术(杭州)有限公司 Current detection circuit and switch-type regulator provided with same
CN104218778A (en) * 2013-05-30 2014-12-17 华硕电脑股份有限公司 A power switch and a drive IC thereof on an electronic device
CN104283422A (en) * 2013-07-12 2015-01-14 华硕电脑股份有限公司 Boosting converting circuit and drive control module thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW413746B (en) * 1998-03-31 2000-12-01 Fujitsu Ltd Power supply apparatus and method of controlling power supply circuit
TW456159B (en) * 1999-04-08 2001-09-21 Murata Manufacturing Co Piezoelectric inverter
TW463530B (en) * 1999-04-16 2001-11-11 Murata Manufacturing Co Piezoelectric transformer inverter
TW200518635A (en) * 2003-11-28 2005-06-01 Mitsubishi Electric Corp Ballast device of discharge lamp
TW200616495A (en) * 2004-11-01 2006-05-16 Masakazu Ushijima Inverter circuit for discharge lamp and power controlling method
TW200707157A (en) * 2005-04-19 2007-02-16 Ricoh Co Ltd Constant-voltage power supply circuit with fold-back-type overcurrent protection circuit
TW200719110A (en) * 2005-11-04 2007-05-16 Au Optronics Corp Active current regulator circuit and related light structure
TW200727742A (en) * 2006-01-09 2007-07-16 Au Optronics Corp Piezoelectric transformer driving circuit
TW201008376A (en) * 2008-08-07 2010-02-16 Orise Technology Co Ltd LED driver and power control circuit spread spectrum frequency modulation function and display panel using the same
US20120169314A1 (en) * 2010-12-29 2012-07-05 Hon Hai Precision Industry Co., Ltd. Buck converter
US20140312917A1 (en) * 2011-02-16 2014-10-23 Bender Gmbh & Co. Kg Method and Device for Determining a Maximum Leakage Current

Also Published As

Publication number Publication date
CN104682703B (en) 2017-06-13
TW201627966A (en) 2016-08-01
CN104682703A (en) 2015-06-03

Similar Documents

Publication Publication Date Title
CN105450024B (en) Multi-stage amplifier
KR101840412B1 (en) Buck switch-mode power converter large signal transient response optimizer
US9504102B1 (en) Light emitting device driver circuit and control circuit and control method thereof
CN102386769B (en) Switching regulator
US7456677B1 (en) Fractional gain circuit with switched capacitors and smoothed gain transitions for buck voltage regulation
TWI426689B (en) Switching regulator and control circuit and control method thereof
TWI394356B (en) Control device for dc-dc converter and related dc-dc converter
US7986134B2 (en) Power supplies, power supply controllers, and power supply controlling methods
WO2014127190A1 (en) Buck-boost converter with buck-boost transition switching control
KR101637650B1 (en) Dc-dc converter
CN106208755B (en) Controlled in Current Mode and Based adjuster with loading resistor emulation
CN104518667A (en) Semiconductor device and control method thereof
TW201826679A (en) Constant on-time converter having fast transient response
KR20150131116A (en) Systems and methods for 100 percent duty cycle in switching regulators
US20120098514A1 (en) Current mode switching regulator and control circuit and control method thereof
US20130250631A1 (en) Power supply circuit with pfc function, and automatic gain control circuit therefor and control method thereof
JP2016101085A (en) Controllers for dc/dc converter
CN104917375B (en) DC/DC converter
CN104852568B (en) Current source based on Cuk
JP2011024305A (en) Parallel drive power supply
TW201419721A (en) Charge pump module and method for generating voltage thereof
TWI556203B (en) Display device and converter control method
US9647546B2 (en) Dual-mode voltage doubling buck converter with smooth mode transition
CN113133332B (en) Controller for DC/DC converter
US11962249B2 (en) Multi-level power converter architecture