TWI554847B - 檢測裝置及方法、具有度量衡目標之基板、微影系統及元件製造方法 - Google Patents

檢測裝置及方法、具有度量衡目標之基板、微影系統及元件製造方法 Download PDF

Info

Publication number
TWI554847B
TWI554847B TW103137484A TW103137484A TWI554847B TW I554847 B TWI554847 B TW I554847B TW 103137484 A TW103137484 A TW 103137484A TW 103137484 A TW103137484 A TW 103137484A TW I554847 B TWI554847 B TW I554847B
Authority
TW
Taiwan
Prior art keywords
targets
target
substrate
lithography
asymmetry
Prior art date
Application number
TW103137484A
Other languages
English (en)
Other versions
TW201520698A (zh
Inventor
賽門 吉司伯 喬瑟佛思 麥提森
史蒂芬 亨奇
可拉吉 馬可斯 傑拉度 馬堤司 瑪麗亞 凡
Original Assignee
Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml荷蘭公司 filed Critical Asml荷蘭公司
Publication of TW201520698A publication Critical patent/TW201520698A/zh
Application granted granted Critical
Publication of TWI554847B publication Critical patent/TWI554847B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/213Exposing with the same light pattern different positions of the same surface at the same time
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

檢測裝置及方法、具有度量衡目標之基板、微影系統及元件製造方法
本發明係關於用於可用於(例如)藉由微影技術來製造元件之方法及裝置,且係關於使用微影技術來製造元件之方法。
微影裝置為將所要圖案施加至基板上(通常施加至基板之目標部分上)之機器。微影裝置可用於(例如)積體電路(IC)製造中。在彼情況下,圖案化元件(其替代地被稱作光罩或比例光罩)可用以產生待形成於IC之個別層上之電路圖案。可將此圖案轉印至基板(例如,矽晶圓)上之目標部分(例如,包括晶粒之部分、一個晶粒或若干晶粒)上。通常經由成像至提供於基板上之輻射敏感材料(抗蝕劑)層上而進行圖案之轉印。一般而言,單一基板將含有經順次地圖案化之鄰近目標部分之網路。
在微影程序中,需要頻繁地進行所產生結構之量測(例如)以用於程序控制及驗證。用於進行此等量測之各種工具為吾人所知,包括常常用以量測臨界尺寸(CD)之掃描電子顯微鏡,及用以量測疊對(元件中兩個層之對準準確度)之專門工具。近來,已開發供微影領域中使用的各種形式之散射計。此等元件將輻射光束引導至目標上且量測散 射輻射之一或多個屬性-例如,作為波長之函數的在單一反射角下之強度;作為反射角之函數的在一或多個波長下之強度;或作為反射角之函數的偏振-以獲得可供判定目標之所關注屬性之「光譜(spectrum)」。可藉由各種技術來執行所關注屬性之判定:例如,藉由反覆途徑對目標結構之重新建構,反覆途徑係諸如嚴密耦合波分析或有限元素方法;程式庫搜尋;及主成份分析。
在已知度量衡技術中,藉由在某些條件下量測目標兩次,同時旋轉目標或改變照明模式或成像模式以分離地獲得-1繞射階強度及+1繞射階強度來獲得疊對量測結果。比較用於一給定光柵之此等強度會提供光柵中之不對稱性之量測,且疊對光柵中之不對稱性可用作疊對誤差之指示符。
當前,自相比於產品特徵具有顯著較大間距之目標推論疊對(在假定目標與產品特徵兩者之疊對相等的情況下)。子分段目標對(例如)透鏡像差敏感,透鏡像差造成依解析度子分段(at-resolution subsegmentation)與較大疊對目標光柵間距之間的移位。因此,疊對量測之有效準確度受到損害。
藉由程序中之不同步驟形成的單層中之群體之間的失配相似於諸層之間的疊對誤差。舉例而言,現今最精細產品特徵係藉由多重圖案化程序而形成。現有度量衡硬體之能力可延伸至雙重及多重圖案化程序中之失配之量測將有用。然而,再次,產品特徵之大小比度量衡硬體之解析度小許多倍。
需要提供一種用於在可能的情況下使用現有度量衡硬體時對剛才所提及之類型之不準確度較不敏感之疊對度量衡的技術。
需要分離地提供一種用於使用現有度量衡硬體之失配度量衡之技術。
在一第一態樣中,本發明提供一種用於量測一微影程序之一屬性之檢測裝置,該裝置包含:用於一基板之一支撐件,該基板攜載複數個度量衡目標,該複數個度量衡目標包含藉由該微影程序而形成之結構;一光學系統,其用於在預定照明條件下照明該複數個目標且用於偵測在該等照明條件下由該等目標繞射之輻射之預定部分;一處理器,其經配置以自繞射輻射之該等經偵測部分計算用於一特定目標之不對稱性之一量測;及一控制器,其用於使該光學系統及該處理器量測在該基板上之一層內之結構與較小子結構之間具有位置偏移之不同已知分量的該等目標中之至少兩者中之不對稱性,且自該等不對稱性量測之結果計算用於該較小大小之結構的該微影程序之一效能參數的一量測。
在一實施例中,該效能參數為用於該較小大小之結構的該微影程序之一疊對參數,且係藉由將該等不對稱性量測之結果與在該基板上之第一層與第二層之間具有位置偏移之不同已知分量的至少兩個疊對目標中之不對稱性之量測組合而計算。可在該第一層及該第二層中每一者中具有位置偏移之不同已知分量的輔助目標中量測不對稱性。
在可應用於多重圖案化程序中之另一實施例中,該控制器經配置以使該光學系統及該處理器量測在該目標內之子結構之交錯式群體之間具有位置偏移之不同已知分量的該等目標中之至少兩者中之不對稱性,且自該等不對稱性量測之結果計算用以形成該等子結構的該微影程序之一疊對參數之一量測。
在一第二態樣中,本發明之一實施例提供一種基板,該基板具備藉由一微影程序而形成之複數個度量衡目標,每一目標包含經配置以在至少一第一方向上以一空間週期重複之結構,其中該等度量衡目標包括:複數個疊對目標,每一疊對目標中之該等結構中之至少一些複製於該基板上之第一層及第二層中且疊置於彼此之上,且其中每一 疊對目標經形成為在該等層之間具有為已知分量及未知分量兩者之一組合的一位置偏移,該等已知分量針對不同目標係不同的;及複數個輔助目標,每一輔助目標包含一大小比該空間週期小若干倍的子結構,其中每一輔助目標形成於該等層中之一者中且經形成為在該等子結構與該等結構之間具有為已知分量及未知分量兩者之一組合的一位置偏移,該等已知分量針對不同目標係不同的。
在該第二態樣中,本發明之一實施例進一步提供一種供一微影程序中使用之圖案化元件(或一對圖案化元件),該圖案化元件界定在施加至一基板時將產生根據如上文所闡述的本發明之一實施例之該第二態樣之一基板的一圖案。
在一第三態樣中,本發明之一實施例提供一種基板,該基板具備藉由一微影程序而形成之複數個度量衡目標,每一目標包含經配置以在至少一第一方向上以一空間週期重複之結構,其中該等度量衡目標包括:複數個目標,該複數個目標中每一者包含一大小比該空間週期小若干倍的子結構,其中每一目標經形成為在子結構之兩個交錯式群體之間具有為已知分量及未知分量兩者之一組合的一位置偏移,該等已知分量針對不同目標係不同的。
在該第三態樣中,本發明之一實施例又進一步提供供一微影程序中使用之一對圖案化元件,該等圖案化元件界定在循序地施加至一基板時將產生根據如上文所闡述的本發明之一實施例之該第三態樣之一基板的一圖案。
在一另外態樣中,本發明之一實施例提供一種量測一微影程序之一效能參數之方法,該方法包含如下步驟:(a)執行該微影程序以在一基板上產生形成複數個度量衡目標之結構,該等目標中之至少兩者在結構與較小子結構之間具有為已知分量及未知分量兩者之一組合的一位置偏移,位置偏移之該等已知分量針對不同目標係不同的; (b)使用檢測裝置以量測在該基板上之一層內之結構與較小子結構之間具有位置偏移之不同已知分量的該等輔助目標中之至少兩者中之不對稱性;及(c)使用步驟(b)中進行之該等不對稱性量測之結果來計算用於該較小大小之結構的該微影程序之一量測疊對效能參數。
在一些實施例中,本發明之一實施例可使用諸如一散射計之現有度量衡裝置予以實施。本發明之一實施例可在使用經修改軟體之一自動裝置中予以實施。
在該第四態樣中,本發明之一實施例進一步提供一種包含機器可讀指令之電腦程式產品,該等機器可讀指令用於使一處理器執行如上文所闡述之一方法之該步驟(c)。該處理器可經進一步程式化以控制一光學系統及處理器以執行該方法之該步驟(b)。
本發明之一實施例又進一步提供一種微影系統,其包含:一微影裝置,其經配置成以一上覆方式將一圖案序列自圖案化元件轉印至一基板上;及
根據如上文所闡述的本發明之一實施例之該等態樣中任一者的一檢測裝置,其中該微影裝置經配置以在將該圖案序列施加至另外基板時使用來自該檢測裝置之該所計算效能參數。
本發明之一實施例又進一步提供一種製造元件之方法,其中使用一微影程序將一元件圖案序列施加至一系列基板,該方法包括使用如上文所闡述之一檢測方法而在該等基板中之至少一者上檢測作為該等元件圖案之部分或除了該等元件圖案以外的複數個度量衡目標,及根據該所計算效能參數而針對稍後基板來控制該微影程序。
下文參看隨附圖式來詳細地描述本發明之另外特徵及優點,以及本發明之各種實施例之結構及操作。應注意,本發明不限於本文所描述之特定實施例。本文僅出於說明性目的而呈現此等實施例。基於本文中所含有之教示,額外實施例對於熟習相關技術者而言將為顯而 易見的。
0‧‧‧零階射線/繞射射線
+1‧‧‧一階射線/繞射射線
+1(N)‧‧‧+1繞射射線
-1‧‧‧一階射線/繞射射線
-1(S)‧‧‧-1繞射射線
11‧‧‧源
12‧‧‧透鏡
13‧‧‧孔徑板
13E‧‧‧孔徑板
13N‧‧‧孔徑板
13NW‧‧‧孔徑板
13Q‧‧‧孔徑板/對稱分段照明輪廓
13S‧‧‧孔徑板
13SE‧‧‧孔徑板
13W‧‧‧孔徑板
14‧‧‧透鏡
15‧‧‧光束***器
16‧‧‧接物鏡/透鏡/物鏡
17‧‧‧第二光束***器
18‧‧‧光學系統
19‧‧‧第一感測器/光瞳平面影像感測器/偵測器
20‧‧‧光學系統
21‧‧‧孔徑光闌/場光闌/光瞳光闌
22‧‧‧光學系統
23‧‧‧影像感測器/偵測器
31‧‧‧量測光點/經照明光點/照明光點
32‧‧‧組件光柵
32'‧‧‧輔助組件光柵/X方向光柵/第一組件光柵
32"‧‧‧輔助組件光柵
33‧‧‧組件光柵
33'‧‧‧輔助組件光柵
33"‧‧‧輔助組件光柵
34‧‧‧組件光柵
34'‧‧‧輔助組件光柵/第二組件光柵
34"‧‧‧輔助組件光柵
35‧‧‧組件光柵
35'‧‧‧輔助組件光柵
35"‧‧‧輔助組件光柵
40‧‧‧交叉影線矩形
41‧‧‧圓形區域
42‧‧‧矩形區域/光柵影像
43‧‧‧矩形區域/影像
44‧‧‧矩形區域/影像
45‧‧‧矩形區域/影像
500‧‧‧線
520‧‧‧複合度量衡目標
522‧‧‧複合目標
524‧‧‧輔助目標
526‧‧‧輔助目標
600‧‧‧材料
602‧‧‧材料
603‧‧‧線區/標記區
604‧‧‧空間區
606‧‧‧線
608‧‧‧空間
610‧‧‧點
620‧‧‧空間
622‧‧‧空間
732‧‧‧目標光柵/組件疊對光柵/目標
800‧‧‧光柵結構/光柵
800'‧‧‧結構
820‧‧‧子分段度量衡目標
832‧‧‧組件光柵
834‧‧‧組件光柵
a‧‧‧象限
a0‧‧‧零階反射
a-1‧‧‧一階繞射信號
A‧‧‧不對稱性信號(圖7)/結構/子分段結構(圖14(a)、圖14(b)及圖15)
A(+)‧‧‧不對稱性信號
A(-)‧‧‧不對稱性信號
AD‧‧‧調整器
AS‧‧‧對準感測器
b‧‧‧象限
b0‧‧‧零階反射
b+1‧‧‧一階繞射信號
B‧‧‧輻射光束(圖1)/結構/群體/子分段結構(圖14(a)、圖14(b)及圖15)
BD‧‧‧光束遞送系統
BK‧‧‧烘烤板
C‧‧‧目標部分
CH‧‧‧冷卻板
CO‧‧‧聚光器
DE‧‧‧顯影器
I‧‧‧照明射線/入射射線
IF‧‧‧位置感測器
IL‧‧‧照明系統/照明器
IN‧‧‧積光器
I/O1‧‧‧輸入/輸出埠
I/O2‧‧‧輸入/輸出埠
L1‧‧‧產品層
L2‧‧‧產品層
LA‧‧‧微影裝置
LACU‧‧‧微影控制單元
LB‧‧‧裝載匣
LC‧‧‧微影製造單元
LS‧‧‧位階感測器
M1‧‧‧光罩對準標記
M2‧‧‧光罩對準標記
MA‧‧‧圖案化元件
MT‧‧‧圖案化元件支撐件或支撐結構/光罩台
O‧‧‧光軸
P1‧‧‧基板對準標記
P2‧‧‧基板對準標記
PM‧‧‧第一***
PS‧‧‧投影系統
PU‧‧‧影像處理器及控制器
PW‧‧‧第二***
RO‧‧‧基板處置器或機器人
ROI‧‧‧所關注區
S1‧‧‧步驟
S2‧‧‧步驟
S3‧‧‧步驟
S4‧‧‧步驟
S5‧‧‧步驟
S5'‧‧‧輔助量測
S5"‧‧‧輔助量測
S6‧‧‧步驟
S11‧‧‧步驟
S12‧‧‧步驟
S13‧‧‧步驟
S14‧‧‧步驟
S15‧‧‧步驟
S21‧‧‧步驟
S22‧‧‧步驟
S23‧‧‧步驟
S24‧‧‧步驟
S25‧‧‧步驟
S26‧‧‧步驟
SC‧‧‧旋塗器
SCS‧‧‧監督控制系統
SO‧‧‧輻射源
T‧‧‧光柵目標/目標光柵/度量衡目標
TCU‧‧‧塗佈顯影系統控制單元
W‧‧‧基板
WTa‧‧‧基板台
WTb‧‧‧基板台
X0‧‧‧中心點
XAR‧‧‧位置
現在將參看隨附圖式而僅作為實例來描述本發明之實施例,在該等圖式中:圖1描繪根據本發明之一實施例之微影裝置;圖2描繪根據本發明之一實施例之微影製造單元或叢集;圖3a至圖3d說明(a)用於根據本發明之實施例而使用第一對照明孔徑來量測目標之暗場散射計的示意圖、(b)用於給定照明方向之目標光柵之繞射光譜的細節、(c)在針對以繞射為基礎之疊對量測來使用該散射計時提供另外照明模式之第二對照明孔徑,及(d)組合第一對孔徑及第二對孔徑之第三對照明孔徑;圖4描繪基板上的已知形式之多重光柵目標及量測光點之輪廓;圖5描繪圖3之散射計中獲得的圖4之目標之影像;圖6為展示根據本發明之第一實施例的使用圖3之散射計及新穎度量衡目標之疊對量測方法之步驟的流程圖;圖7說明應用於本發明之實施例中之疊對量測的原理;圖8以(a)平面圖及(b)示意性橫截面說明可用於本發明之實施例中的具有偏置方案及輔助目標之新穎複合目標;圖9a及圖9b說明具有(a)呈理想形式及(b)具有藉由微影步驟中之像差造成的位移之依解析度特徵之光柵結構之部件;圖10更詳細地展示根據本發明之一實施例的用於疊對度量衡之新穎複合目標中的輔助組件光柵;圖11為圖6之流程圖的經擴展部分,其展示如何使用圖8之目標中之輔助組件光柵之量測以產生經校正疊對量測;圖12及圖13說明使用大目標及使用圖3之散射計中之光瞳影像感測器之本發明的一替代實施例; 圖14(a)及圖14(b)說明藉由多重圖案化程序而形成之結構之失配的現象;圖15說明根據本發明之一實施例的用於量測藉由多重圖案化程序而形成之結構中之失配之新穎複合目標中的組件光柵之形式;及圖16為使用圖15之目標來量測藉由多重圖案化程序而形成之結構中之失配之方法的流程圖。
本說明書揭示併入有本發明之特徵之一或多個實施例。所揭示實施例僅僅例示本發明。本發明之範疇不限於所揭示實施例。本發明係由此處隨附之申請專利範圍界定。
所描述實施例及本說明書中對「一實施例」、「一實例實施例」等等之參考指示所描述實施例可能包括一特定特徵、結構或特性,但每一實施例可能未必包括該特定特徵、結構或特性。此外,此等片語未必係指同一實施例。另外,當結合一實施例描述一特定特徵、結構或特性時,應理解,無論是否予以明確描述,結合其他實施例來實現此特徵、結構或特性皆係在熟習此項技術者之認識範圍內。
本發明之實施例可以硬體、韌體、軟體或其任何組合予以實施。本發明之實施例亦可被實施為儲存於機器可讀媒體上之指令,該等指令可由一或多個處理器讀取及執行。機器可讀媒體可包括用於儲存或傳輸呈可由機器(例如,計算元件)讀取之形式之資訊的任何機構。舉例而言,機器可讀媒體可包括唯讀記憶體(ROM);隨機存取記憶體(RAM);磁碟儲存媒體;光學儲存媒體;快閃記憶體元件;電、光學、聲學或其他形式之傳播信號,及其他者。另外,韌體、軟體、常式、指令可在本文中被描述為執行某些動作。然而,應瞭解,此等描述僅僅為方便起見,且此等動作事實上係由計算元件、處理器、控制器或執行韌體、軟體、常式、指令等等之其他元件引起。
然而,在更詳細地描述此等實施例之前,有指導性的是呈現可供實施本發明之實施例的實例環境。
圖1示意性地描繪微影裝置LA。該裝置包括:照明系統(照明器)IL,其經組態以調節輻射光束B(例如,UV輻射或DUV輻射);圖案化元件支撐件或支撐結構(例如,光罩台)MT,其經建構以支撐圖案化元件(例如,光罩)MA,且連接至經組態以根據某些參數而準確地定位該圖案化元件之第一***PM;基板台(例如,晶圓台)WT,其經建構以固持基板(例如,抗蝕劑塗佈晶圓)W,且連接至經組態以根據某些參數而準確地定位該基板之第二***PW;及投影系統(例如,折射投影透鏡系統)PS,其經組態以將由圖案化元件MA賦予至輻射光束B之圖案投影至基板W之目標部分C(例如,包括一或多個晶粒)上。
照明系統可包括用於引導、塑形或控制輻射的各種類型之光學組件,諸如,折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。
圖案化元件支撐件以取決於圖案化元件之定向、微影裝置之設計及其他條件(諸如,圖案化元件是否被固持於真空環境中)之方式來固持圖案化元件。圖案化元件支撐件可使用機械、真空、靜電或其他夾持技術以固持圖案化元件。圖案化元件支撐件可為(例如)框架或台,其可根據需要而固定或可移動。圖案化元件支撐件可確保圖案化元件(例如)相對於投影系統處於所要位置。可認為本文中對術語「比例光罩」或「光罩」之任何使用皆與更一般術語「圖案化元件」同義。
本文所使用之術語「圖案化元件」應被廣泛地解譯為係指可用以在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案的任何元件。應注意,舉例而言,若被賦予至輻射光束之 圖案包括相移特徵或所謂輔助特徵,則該圖案可不確切地對應於基板之目標部分中之所要圖案。通常,被賦予至輻射光束之圖案將對應於目標部分中所產生之元件(諸如,積體電路)中之特定功能層。
圖案化元件可為透射的或反射的。圖案化元件之實例包括光罩、可程式化鏡面陣列,及可程式化LCD面板。光罩在微影中為吾人所熟知,且包括諸如二元、交變相移及衰減相移之光罩類型,以及各種混合光罩類型。可程式化鏡面陣列之一實例使用小鏡面之矩陣配置,該等小鏡面中每一者可個別地傾斜,以便在不同方向上反射入射輻射光束。傾斜鏡面在由鏡面矩陣反射之輻射光束中賦予圖案。
本文所使用之術語「投影系統」應被廣泛地解譯為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統,或其任何組合。可認為本文對術語「投影透鏡」之任何使用皆與更一般術語「投影系統」同義。
如此處所描繪,裝置屬於透射類型(例如,使用透射光罩)。替代地,裝置可屬於反射類型(例如,使用如上文所提及之類型之可程式化鏡面陣列,或使用反射光罩)。
微影裝置可屬於具有兩個(雙載物台)或兩個以上基板台(及/或兩個或兩個以上光罩台)之類型。在此等「多載物台」機器中,可並行地使用額外台,或可在一或多個台上進行預備步驟,同時將一或多個其他台用於曝光。
微影裝置亦可屬於如下類型:其中基板之至少一部分可由具有相對高折射率之液體(例如,水)覆蓋,以便填充投影系統與基板之間的空間。亦可將浸潤液體施加於微影裝置中之其他空間,例如,光罩與投影系統之間的空間。浸潤技術在此項技術中被熟知用於增加投影系統之數值孔徑。本文所使用之術語「浸潤」不意謂諸如基板之結構 必須浸沒於液體中,而是僅意謂液體在曝光期間位於投影系統與基板之間。
參看圖1,照明器IL自輻射源SO接收輻射光束。舉例而言,當輻射源為準分子雷射時,輻射源及微影裝置可為分離實體。在此等狀況下,不認為輻射源形成微影裝置之部件,且輻射光束係憑藉包括(例如)合適引導鏡面及/或光束擴展器之光束遞送系統BD而自輻射源SO傳遞至照明器IL。在其他狀況下,舉例而言,當輻射源為水銀燈時,輻射源可為微影裝置之整體部件。輻射源SO及照明器IL連同光束遞送系統BD(在需要時)可被稱作輻射系統。
照明器IL可包括用於調整輻射光束之角強度分佈之調整器AD。 通常,可調整照明器之光瞳平面中之強度分佈的至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包括各種其他組件,諸如,積光器IN及聚光器CO。照明器可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。
輻射光束B入射於被固持於圖案化元件支撐件(例如,光罩台MT)上之圖案化元件(例如,光罩)MA上,且係由該圖案化元件而圖案化。在已橫穿圖案化元件(例如,光罩)MA之後,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。 憑藉第二***PW及位置感測器IF(例如,干涉量測元件、線性編碼器、2D編碼器或電容性感測器),可準確地移動基板台WT,例如,以便使不同目標部分C定位於輻射光束B之路徑中。相似地,第一***PM及另一位置感測器(其未在圖1中被明確地描繪)可用以(例如)在自光罩庫之機械擷取之後或在掃描期間相對於輻射光束B之路徑來準確地定位圖案化元件(例如,光罩)MA。一般而言,可憑藉形成第一***PM之部件之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現圖案化元件支撐件(例如,光罩台)MT之移動。相似地,可使用 形成第二***PW之部件之長衝程模組及短衝程模組來實現基板台WT之移動。在步進器(相對於掃描器)之狀況下,圖案化元件支撐件(例如,光罩台)MT可僅連接至短衝程致動器,或可固定。
可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準圖案化元件(例如,光罩)MA及基板W。儘管所說明之基板對準標記佔據專用目標部分,但該等標記可位於目標部分之間的空間中(此等標記被稱為切割道對準標記)。相似地,在一個以上晶粒提供於圖案化元件(例如,光罩)MA上之情形中,圖案化元件對準標記可位於該等晶粒之間。小對準標記亦可包括於元件特徵當中之晶粒內,在此狀況下,需要使標記儘可能地小且無需與鄰近特徵不同的任何成像或程序條件。
可在多種模式中使用所描繪裝置。在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描圖案化元件支撐件(例如,光罩台)MT及基板台WT(亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於圖案化元件支撐件(例如,光罩台)MT之速度及方向。在掃描模式中,曝光場之最大大小限制單次動態曝光中之目標部分之寬度(在非掃描方向上),而掃描運動之長度判定目標部分之高度(在掃描方向上)。如在此項技術中為吾人所熟知,其他類型之微影裝置及操作模式係可能的。舉例而言,步進模式為吾人所知。在所謂的「無光罩」微影中,可程式化圖案化元件經保持靜止,但具有改變之圖案,且移動或掃描基板台WT。
亦可使用對上文所描述之使用模式之組合及/或變化或完全不同之使用模式。
已知散射計之實例包括全文以引用方式併入本文中之US2006033921A1及US2010201963A1所描述的類型之角解析散射計。 由此等散射計使用之目標為相對大(例如,40微米乘40微米)光柵,且量測光束產生小於光柵之光點(亦即,光柵填充不足)。此情形簡化目標之數學重新建構,此係因為可將目標視為無限的。為了將目標之大小縮減(例如)至10微米乘10微米或更小,(例如)因此其可定位於產品特徵當中而非切割道中,已提議使光柵小於量測光點(亦即,光柵填充過度)之度量衡。通常使用暗場散射量測來量測此等目標,其中阻擋零繞射階(對應於鏡面反射),且僅處理高階。使用繞射階之暗場偵測的以繞射為基礎之疊對實現對較小目標之疊對量測。可在國際專利申請案WO 2009/078708及WO 2009/106279中找到暗場度量衡之實例,該等申請案之文件之全文據此以引用方式併入本文中。已在已公開專利公開案US20110027704A、US20110043791A、US20120044470A US20120123581A、US20130258310A、及US20130271740A中及在美國專利申請案61/652,552及61/803,673中描述了技術之進一步開發,該等案之文件之全文據此以引用方式併入本文中。此等目標可小於照明光點且可由晶圓上之產品結構環繞。可使用一複合光柵目標在一個影像中量測多個光柵。所有此等申請案之內容亦以引用方式併入本文中。
微影裝置LA屬於所謂雙載物台類型,其具有兩個基板台WTa、WTb以及兩個站(曝光站及量測站),在該兩個站之間可交換基板台。 在曝光站處曝光一個基板台上之一個基板的同時,可在量測站處將另一基板裝載至另一基板台上且進行各種預備步驟。該等預備步驟可包括使用位階感測器LS來映射基板之表面控制,及使用對準感測器AS來量測基板上之對準標記之位置。
如圖2所展示,微影裝置LA形成微影製造單元LC(有時亦被稱作叢集)之部件,微影製造單元LC亦包括用以對基板執行曝光前程序及曝光後程序之裝置。通常,此等裝置包括用以沈積抗蝕劑層之旋塗器 SC、用以顯影經曝光抗蝕劑之顯影器DE、冷卻板CH,及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板、在不同程序裝置之間移動基板,且接著將基板遞送至微影裝置之裝載匣LB。常常被集體地稱作塗佈顯影系統(track)之此等元件係在塗佈顯影系統控制單元TCU之控制下,塗佈顯影系統控制單元TCU自身受到監督控制系統SCS控制,監督控制系統SCS亦經由微影控制單元LACU而控制微影裝置。因此,不同裝置可經操作以最大化產出率及處理效率。
圖3(a)展示適合於供本發明之實施例使用之度量衡裝置(散射計)。圖3(b)更詳細地說明光柵目標T及繞射射線。上文所提及之US 2011027704及其他專利申請案提供該裝置及其形式及利用率之變化的更多細節。彼等申請案之全部內容以引用方式併入本文中。散射計可為單獨元件或併入於(例如)量測站處之微影裝置LA中或微影製造單元LC中。遍及裝置具有若干分支之光軸係由點線O表示。在此裝置中,由源11(例如,氙氣燈)發射之光係由包含透鏡12、14及接物鏡16之光學系統經由光束***器15而引導至基板W上。此等透鏡係以4F配置之雙重序列而配置。可使用不同透鏡配置,其限制條件為:其仍將基板影像提供於偵測器上,且同時地允許存取中間光瞳平面以用於空間頻率濾光。因此,可藉由定義在呈現基板平面之空間光譜之平面(此處被稱作(共軛)光瞳平面)中的空間強度分佈來選擇輻射入射於基板上之角程。詳言之,可藉由在為接物鏡光瞳平面之背向投影式影像之平面中在透鏡12與14之間***合適形式之孔徑板13來進行此選擇。在所說明實例中,孔徑板13具有不同形式(被標註為13N及13S),從而允許選擇不同照明模式。本實例中之孔徑板形成各種離軸照明模式。在第一照明模式中,孔徑板13N提供來自僅出於描述起見而被指明為「北」的方向之離軸照明。在第二照明模式中,孔徑板13S係用以提供相似 照明,但提供來自被標註為「南」之相反方向之照明。藉由使用不同孔徑,其他照明模式係可能的。其餘光瞳平面理想地暗,此係因為所要照明模式外部之任何不必要光將干涉所要量測信號。
如圖3(b)所展示,在基板W垂直於接物鏡16之光軸O的情況下置放目標光柵T。與軸線O成一角度而照射於目標T上之照明射線I引起一個零階射線(實線0)及兩個一階射線(點鏈線+1及雙點鏈點線-1)。應記住,在運用填充過度之小目標光柵的情況下,此等射線僅僅為覆蓋包括度量衡目標T及其他特徵之基板區域的許多平行射線中之一者。 在提供複合光柵目標的情況下,該目標內之每一個別光柵將引起其自有繞射光譜。因為板13中之孔徑具有有限寬度(為接納有用量之光所必要),所以入射射線I事實上將佔據一角度範圍,且繞射射線0及+1/-1將稍微散開。根據小目標之點散佈函數(point spread function),每一階+1及-1將遍及一角度範圍而進一步散佈,而非如所展示之單一理想射線。應注意,光柵間距及照明角可經設計或調整成使得進入接物鏡之一階射線與中心光軸緊密地對準。圖3(a)及圖3(b)所說明之射線被展示為稍微離軸,以純粹地使其能夠在圖解中被更容易地區分。
由基板W上之目標繞射之至少0階及+1階係由接物鏡16收集,且被返回引導通過光束***器15。返回至圖3(a),藉由指明被標註為北(N)及南(S)之完全相反孔徑來說明第一照明模式及第二照明模式兩者。當入射射線I係來自光軸之北側時,亦即,當使用孔徑板13N來應用第一照明模式時,被標註為+1(N)之+1繞射射線進入接物鏡16。與此對比,當使用孔徑板13S來應用第二照明模式時,-1繞射射線(被標註為-1(S))為進入透鏡16之繞射射線。
第二光束***器17將繞射光束劃分成兩個量測分支。在第一量測分支中,光學系統18使用零階繞射光束及一階繞射光束在第一感測器19(例如,CCD或CMOS感測器)上形成目標之繞射光譜(光瞳平面影 像)。每一繞射階射中感測器上之一不同點,使得影像處理可比較及對比若干階。由感測器19俘獲之光瞳平面影像可用於聚焦度量衡裝置及/或正規化一階光束之強度量測。光瞳平面影像亦可用於不對稱性量測以及用於諸如重新建構之許多量測目的,其並非本發明之主題。 待描述之第一實例將使用第二量測分支以量測不對稱性。
在第二量測分支中,光學系統20、22在感測器23(例如,CCD或CMOS感測器)上形成基板W上之目標之影像。在第二量測分支中,在與光瞳平面共軛之平面中提供孔徑光闌21。孔徑光闌21用以阻擋零階繞射光束,使得形成於感測器23上之目標之影像係僅由-1或+1一階光束形成。將由感測器19及23捕捉之影像輸出至影像處理器及控制器PU,該影像處理器及控制器PU之功能將取決於正被執行之量測之特定類型。應注意,此處在廣泛意義上使用術語「影像」。因而,若僅存在-1階及+1階中之一者,則光柵線之影像將未形成於感測器23上。
圖3所展示之孔徑板13及場光闌21之特定形式純粹為實例。在本發明之另一實施例中,使用目標之同軸照明,且使用具有離軸孔徑之孔徑光闌以將實質上僅一個一階繞射光傳遞至感測器。(在彼狀況下有效地調換13及21處所展示之孔徑)。在又其他實施例中,代替一階光束或除了一階光束以外,亦在量測中使用二階光束、三階光束及高階光束(圖3中未繪示)。
為了使照明可適應於此等不同類型之量測,孔徑板13可包含圍繞一圓盤而形成之數個孔徑圖案,該圓盤旋轉以使所要圖案處於適當位置。替代地或另外,可提供及調換板13之集合,以達成相同效應。亦可使用諸如可變形鏡面陣列或透射空間光調變器之可程式化照明元件。可使用移動鏡面或稜鏡作為用以調整照明模式之另一方式。
如剛才關於孔徑板13所解釋,替代地,藉由變更光瞳光闌21,或藉由取代具有不同圖案之光瞳光闌,或藉由運用可程式化空間光調 變器來替換固定場光闌,可達成用於成像之繞射階之選擇。在彼狀況下,量測光學系統之照明側可保持恆定,而成像側具有第一模式及第二模式。實務上,存在量測方法之許多可能的類型,每一類型具有其自有優點及缺點。在一方法中,改變照明模式以量測不同階。在另一方法中,改變成像模式。在第三方法中,照明模式及成像模式保持不變,但使目標旋轉達180度。在每一狀況下,所要效應相同,即,用以選擇在目標之繞射光譜中彼此對稱地相對的非零階繞射輻射之第一部分及第二部分。
雖然在本實例中用於成像之光學系統具有受到場光闌21限定之寬入口光瞳,但在其他實施例或應用中,成像系統自身之入口光瞳大小可足夠小以限定至所要階,且因此亦用作場光闌。圖3(c)及圖3(d)展示可使用之不同孔徑板,如下文進一步所描述。
通常,目標光柵將與其向南北或東西延行之光柵線對準。亦即,光柵將在基板W之X方向或Y方向上對準。應注意,孔徑板13N或13S可僅用以量測在一個方向(取決於設置而為X或Y)上定向之光柵。 為了量測正交光柵,可能實施達90°及270°之目標旋轉。然而,更方便地,在使用圖3(c)所展示之孔徑板13E或13W的情況下,在照明光學件中提供來自東或西之照明。可分離地形成及互換孔徑板13N至13W,或孔徑板13N至13W可為可旋轉90度、180度或270度之單一孔徑板。如已經提及,圖3(c)所說明之離軸孔徑可提供於場光闌21中,而非提供於照明孔徑板13中。在彼狀況下,照明將同軸。
圖3(d)展示可用以組合第一對及第二對之照明模式的第三對孔徑板。孔徑板13NW具有處於北及東之孔徑,而孔徑板13SE具有處於南及西之孔徑。倘若此等不同繞射信號之間的串擾不太大,則可執行X光柵及Y光柵兩者之量測,而不改變照明模式。圖12及圖13之實例將說明另外多種孔徑板13Q。
使用小目標之疊對量測一簡介
圖4描繪根據已知實務形成於基板W上之複合光柵目標。該複合目標包含四個個別光柵32至35,該等個別光柵32至35緊密地定位在一起使得其將皆在由度量衡裝置之照明光束形成之量測光點31內。因此,該四個目標皆被同時地照明且同時地成像於感測器19及23上。在專用於疊對量測之實例中,光柵32至35自身為由在形成於基板W上之半導體元件之不同層中圖案化之上覆光柵形成的複合光柵。光柵32至35可具有經不同偏置之疊對偏移,以便促進經形成有複合光柵之不同部分之層之間的疊對之量測。光柵32至35亦可在其定向方面不同(如所展示),以便使入射輻射在X方向及Y方向上繞射。在一實例中,光柵32及34為分別具有+d、-d之偏置之X方向光柵。此意謂光柵32使其上覆組件經配置成使得若其兩者確切地印刷於其標稱部位處,則該等組件中之一者將相對於另一者偏移達距離d。光柵34使其組件經配置成使得若其被極佳地印刷,則將存在為d但在與第一光柵等等相反方向上的偏移。光柵33及35為分別具有偏移+d及-d之Y方向光柵。雖然說明四個光柵,但另一實施例可能需要更大矩陣以獲得所要準確度。舉例而言,九個複合光柵之3×3陣列可具有偏置-4d、-3d、-2d、-d、0、+d、+2d、+3d、+4d。可在由感測器23捕捉之影像中識別此等光柵之分離影像。
圖5展示在使用來自圖3(d)之孔徑板13NW或13SE的情況下在圖3之裝置中使用圖4之目標而可形成於感測器23上且由感測器23偵測的影像之實例。雖然光瞳平面影像感測器19不能解析不同個別光柵32至35,但影像感測器23可解析不同個別光柵32至35。交叉影線矩形40表示感測器上之影像之場,在該場內,基板上之經照明光點31成像至對應圓形區域41中。理想地,該場係暗的。在此暗場影像內,矩形區域42至45表示個別光柵32至35之影像。若該等光柵位於產品區域中,則 在此影像場之周邊中亦可看見產品特徵。雖然圖5之暗場影像中僅展示一個單一複合光柵目標,但實務上半導體元件或藉由微影製造之其他產品可具有許多層,且希望在不同對之層之間進行疊對量測。對於一對層之間的每一疊對量測,需要一或多個複合光柵目標,且因此,在影像場內可存在其他複合光柵目標。影像處理器及控制器PU使用圖案辨識來處理此等影像以識別光柵32至35之分離影像42至45。
一旦已識別光柵之分離影像,隨即可(例如)藉由平均化或求和經識別區域內之選定像素強度值來量測彼等個別影像之強度。可將影像之強度及/或其他屬性彼此進行比較。可組合此等結果以量測微影程序之不同參數。疊對效能為此參數之一重要實例,且比較強度揭露可用作疊對之量測之不對稱性。在用於量測不對稱性且因此量測疊對之另一技術中,使用光瞳平面影像感測器19。將在稍後參看圖12及圖13描述使用此感測器之實例。
依解析度疊對之量測
在現代微影程序中,藉由微影裝置印刷之功能產品特徵可具有極小尺寸,小於可藉由習知度量衡裝置解析之尺寸。因此,度量衡目標之光柵32至35中之特徵係在較大尺度上形成。作為一實例,度量衡目標之間距可在500奈米或600奈米至1000奈米或甚至2000奈米之範圍內。換言之,個別特徵(光柵線)之寬度將為250奈米至1000奈米。在微影工具之解析度下形成之產品特徵可具有小於100奈米(例如,小於50奈米或甚至小於20奈米)之尺寸。藉由參考微影裝置中之圖案化系統之解析功率,此等較精細特徵通常被稱作「依解析度」特徵。為了使度量衡光柵中之處理步驟之效應並不極不同於產品特徵中之效應,使用依解析度特徵來形成度量衡光柵之粗略光柵特徵為吾人所知。然而,度量衡裝置未「看到」此等依解析度特徵。(相對於度量衡裝置,該等依解析度特徵為「子解析度」特徵)。
雖然度量衡裝置可量測粗略光柵之間的疊對誤差達幾奈米之準確度,但此粗略光柵不表示實際產品特徵。度量衡目標係藉由形成功能產品特徵之相同微影裝置及程序步驟而施加至基板,但依解析度特徵(例如)歸因於用以施加圖案之光學投影系統之像差而變得在其定位方面經受與較粗略疊對光柵特徵稍微不同的誤差。此情形在當前度量衡裝置中之效應在於:測定疊對(雖然準確地表示粗略光柵之位置之疊對誤差)並未準確地表示同一基板上之別處之較精細依解析度特徵中的疊對。因為依解析度特徵界定功能最終產品之效能,所以結果為疊對量測之準確度並不與吾人想要的疊對量測之準確度相關。
本發明人已認識到,藉由形成及量測具有依解析度特徵及不具有依解析度特徵之新穎度量衡目標兩者,度量衡裝置可用以獲得「依解析度疊對」量測,從而意謂更表示基板上之別處之依解析度產品特徵之間的疊對之疊對量測。在詳細描述新穎目標及方法之前,吾人將呈現新穎疊對量測程序之一個實例之綜述。
圖6說明使用新穎目標來量測依解析度疊對之方法。此實例中之方法係基於使用圖3及圖4之裝置之申請案US 2011027704中所描述的方法。原則上,含有組件光柵32至35之兩個層之間的疊對誤差係經由如藉由比較該等光柵在+1階與-1階暗場影像中之強度所揭露的該等光柵之不對稱性予以量測。在步驟S1處,經由圖2之微影製造單元來處理基板(例如,半導體晶圓)一或多次,以產生不僅包括疊對光柵32至35而且包括輔助目標之結構。輔助目標包含具有粗略結構而且具有較小尺度(依解析度)子結構之光柵,其中在依解析度子結構與粗略結構之間具有經程式化(已知)偏移。稍後將詳細描述此等輔助光柵之實例。疊對光柵32至35可僅包含散射計之解析功率內之粗略結構,或可包含依解析度特徵,但不具有不同經程式化偏移。
在S2處,在使用圖3之度量衡裝置的情況下,使用一階繞射光束 中之僅一者(比如-1)來獲得光柵32至35及輔助光柵之影像。接著,不管是藉由改變照明模式或改變成像模式抑或藉由在度量衡裝置之視場中旋轉基板W達180°,皆可使用另一一階繞射光束(+1)來獲得光柵之第二影像(步驟S3)。因此,在第二影像中捕捉+1繞射輻射。是否可在每一影像中捕捉所有光柵32至35及輔助光柵,抑或是否需要移動散射計及基板以便在一或多個分離影像中捕捉輔助光柵為設計選擇問題。 在任一狀況下,假定經由影像感測器23來捕捉所有組件光柵之第一及第二影像。
應注意,藉由在每一影像中包括一階繞射輻射之僅一半,此處所提及之「影像」不為習知暗場顯微法影像。每一光柵將僅僅由具有某一強度位準之區域表示。因為僅呈現+1及-1階繞射輻射中之一者,所以個別光柵線將未被解析。在步驟S4中,在每一組件光柵之影像內謹慎地識別所關注區(ROI),將自該ROI量測強度位準。之所以進行此識別係因為:特別是在個別光柵影像之邊緣周圍,強度值通常可高度取決於諸如抗蝕劑厚度、組合物、線形狀以及邊緣效應之程序變數。
在已識別用於每一個別光柵之ROI且已量測其強度的情況下,可接著判定光柵結構之不對稱性且因此判定疊對誤差。如申請案中所描述,此判定係由影像處理器及控制器PU在步驟S5中比較針對每一光柵32至35之+1階及-1階所獲得之強度值以識別其強度之任何差且(S6)自對光柵之疊對偏置之認識以判定目標T附近之疊對誤差而進行。
圖7說明在使用圖6之方法的情況下自不同繞射階之強度之不對稱性來計算疊對量測之原理。水平軸線表示疊對OVL,而垂直軸線表示不對稱性信號A,其係作為給定目標光柵之不同繞射階之間的強度之差而獲得。線500說明不對稱性信號與疊對光柵中之一組特徵(光柵線)相對於另一組特徵之位移之間的(大約)線性關係。軸線之尺度係任意的,且線500之斜率無需以絕對項為吾人所知。在疊對為零的情況 下,不對稱性信號變成零為吾人所知。在使用經偏置光柵且認識偏置的情況下,可計算未知位移。
在該實例中,使用具有(經程式化)偏移-d及+d之經偏置光柵。偏移相等且相反之事實係僅出於簡單起見。(一般而言,可設想任意偏移d1及d2)。在目標經極佳地印刷之理想狀況下,不存在位移之其他來源,且光柵之不對稱性將相等且相反,如由開口圓所展示。然而,在實際目標中,亦將存在未知位移△d,其使信號移位至由實線圓所展示之位置。自經偏置光柵獲得之不對稱性信號被標註為A(-)及A(+)。 在知曉偏移-d及+d且知曉當疊對為零時不對稱性應為零之狀況下,可自不對稱性信號計算未知位移△d以獲得疊對誤差之量測。
在上文所提及之申請案中,揭示用於使用上文所提及之基本方法來改良疊對量測之品質之各種技術。該等申請案中解釋了此等技術,且此處將不對其進行進一步詳細地解釋。其可結合本申請案中新近所揭示之技術而使用,現在將對該等技術進行描述。
返回至圖6,在本新穎方法中,亦量測輔助光柵中之不對稱性,以便量測基板上之粗略光柵特徵與基板上之依解析度特徵之間的位置之差。以此方式,步驟S6中所獲得之疊對量測經校正為更表示基板上之產品特徵中之依解析度疊對。現在將描述此校正之原理及實施。
圖8展示供圖6之方法中使用之新穎複合度量衡目標520。該圖之上部部分(a)以平面圖展示目標,而下部部分(b)以橫截面展示目標。 橫截面示意性地展示基板W及產品層L1及L2。實際產品實務上將具有許多層。此實例中之複合目標在其中心處包含一複合目標522,該複合目標522相同於用於已知方法中之組件疊對光柵32至35集合。如在橫截面中所見,此等目標在層L1及L2兩者中具有光柵特徵(且該等光柵特徵可包括依解析度特徵)。目標522之任一側為兩個輔助目標524及526。此等輔助目標包含具有粗略特徵及依解析度特徵但僅在一個 層中形成之光柵。因此,目標524包含形成於層L1中之四個輔助組件光柵32'至35',而目標526包含形成於層L2中之四個輔助組件光柵32"至35"。
現在參看圖9,吾人看見具有「依解析度」特徵之光柵之部分,該等依解析度特徵之尺寸相似於基板上之功能產品特徵之尺寸,但其尺寸太小而不能個別地由散射計解析。圖9(a)以橫截面展示繞射光柵(疊對目標)之一小部分,諸如,圖9(a)中之X方向光柵32'。具體言之,吾人約略看見包含線-空間圖案之一個重複單元,該線-空間圖案以已知週期性重複以形成整個光柵。該光柵係以具有不同折射率的以週期性圖案配置之材料600、602形成,該等材料600、602之重複單元包含「線」區603及「空間」區604。詳言之,可藉由使用圖1之微影裝置或相似裝置而蝕刻施加至基板之圖案而形成線-空間圖案。此圖案中之名稱「線」及「空間」相當任意。事實上,應注意,線之每一「空間」區604經形成為使得材料600並非均一地不存在,而是實情為以包含較小線606及空間608之精細-間距光柵圖案而存在。視情況,每一「標記」區603可經形成為使得材料600並非均一地存在,而是以相似精細間距光柵圖案存在。此精細間距圖案可在Y方向上(亦即,至頁面中)具有週期性,且因此,在圖9所展示之橫截面中不可見此精細間距圖案。此等較精細線及空間在本文中被稱作「依解析度」特徵,其處於或接近於將使用其之微影裝置中之投影系統之解析度極限。就圖3所展示之度量衡裝置(散射計)而言,其亦可被稱作「子解析度」特徵。
理想地,由線606形成之精細光柵將以與粗略光柵相同的點610為中心。遍及光柵中之所有線而平均化之此點610可界定整個目標之中心參考位置。然而,在供形成目標之程序中,子分段目標對透鏡像差敏感。此等像差造成依解析度特徵與粗略光柵間距之間的移位。
圖9(b)展示此子分段光柵之形式,其相似於理想形式(a),但展現粗略光柵間距與依解析度特徵之間的移位或失配。此光柵已歸因於較大光柵間距與依解析度結構之間的移位而變得不對稱。子分段空間部分之區604之一末端處之空間620已變得稍微窄於另一末端處之空間622。因此,依解析度光柵在不與粗略疊對光柵之中心點X0確切地重合之位置XAR處具有中心點。失配或移位△ds表示X0與XAR之間的差,且可(例如)以奈米為單位來量測該失配或移位△ds。
返回至圖8,可看出,當疊對光柵32至35具有經程式化至其中之疊對偏移-d及+d時,輔助光柵32'至35'及32"至35"在依解析度特徵相對於粗略光柵結構之定位時具有經程式化偏移。此等偏移在X及Y方向光柵中被標註為-ds及+ds。本發明人已認識到,可以與可量測主疊對之方式相同的方式經由不對稱性信號來量測依解析度特徵與粗略光柵之間的偏移。藉由將疊對量測與在每一層中進行之輔助量測組合,可在圖6之方法之步驟S6中計算經校正疊對量測。
圖10詳細地說明輔助目標中之一者(例如,目標524)內之兩個輔助組件之經程式化偏移的施加。該圖式之頂部處展示第一組件光柵32'之示意性橫截面,而底部處展示第二組件光柵34'之橫截面。在該等橫截面中,與圖9一樣,展示總圖案之重複單元中之僅一者,其以空間區為中心。僅展示三個依解析度線,且為了清楚起見誇示移位。實際光柵將在較大圖案之每一空間區中具有大約五至二十個依解析度線及空間。在每一片段中,存在在目標之形成期間藉由像差或其類似者造成的未知失配△ds及經程式化(已知)偏移-ds或+ds兩者。對於兩個光柵,未知失配相等(或被假定相等)。再次,為簡單起見,此等偏移之值經選擇為相等且相反,但經程式化偏移之數目及值為一選擇問題。實務上,吾人將把偏移選擇為具有相等量值之正值及負值。然而,待描述之方法在具有不等量值的情況下且其中偏移兩者係在同一 方向上的情況下工作。相似地,偏移無需比未知失配大或小。圖10所說明之實例具有處於相反方向但具有小於(未知)失配△d之量值的偏移。因此,片段兩者之總偏移係在同一方向上。
雖然此實例中之依解析度特徵包含緻密線,但依解析度特徵可採取其他形式,尤其在別處的為使用者實際所關注之產品特徵具有其他形式之狀況下。因此,依解析度特徵可為單線而非光柵。其可為區塊而非線陣列,或單區塊。
圖11展示步驟S5及S6之更多細節,其得到針對粗略特徵與複合目標520之附近之依解析度特徵之間的失配而校正之疊對量測。亦參看圖7,經程式化偏移-ds/+ds及未知失配△ds將在運用圖3之散射計予以量測時得到某些不對稱性信號A。以與層間疊對確切相同的方式,可自測定不對稱性信號及已知偏移計算△d,因此可自輔助目標524、526之量測計算每一層L1、L2中之粗略光柵與依解析度特徵之間的失配△ds。因此,步驟S5包括對輔助目標524之輔助量測S5'及對輔助目標526之輔助量測S5"。在步驟S6中將此等輔助量測與對目標522之疊對量測組合以獲得更具代表性之經校正疊對量測△d(AR)。可使用各種演算法以計算經校正量測。舉例而言,吾人可明確地計算針對每一組件目標之△d值及△ds值,之後將其組合。替代地,吾人可首先組合不對稱性信號,且接著計算經校正疊對。吾人可視需要應用更複雜分析,(例如)以帶來該程序及/或使用不同技術來量測之校準資料之知識。
針對Y方向疊對重複相同量測,且視需要對橫越基板之許多目標亦執行該等量測。可變化複合目標中之輔助光柵及疊對光柵之配置,例如,將疊對光柵與輔助光柵混合,而非將其在分離複合目標522至526中分組。當然,亦可變化每一複合目標中之組件光柵之數目,且輔助目標中之組件光柵之數目無需與疊對光柵中之組件光柵之數目相 同。原則上,輔助光柵可提供於該等層中之僅一者中(在無需另一層中之位移之校正的情況下)。
參看圖12及圖13,新穎方法可不僅應用於小目標與暗場散射量測,而且應用於大目標及使用光瞳平面影像感測器19之角解析散射量測。對於此實例,使用13Q處所說明之對稱分段照明輪廓。被標註為a及b之兩個完全相反象限被帶入於此孔徑圖案中(透明),而另外兩個象限係暗的(不透明)。此類型之孔徑係自已公開專利申請案US 20100201963在散射量測裝置中為吾人所知。如圖12之中心處所見,使用由照明光點31填充不足之目標光柵732。該圖式中未繪示的是,此光柵732為形成複合目標之組件光柵之較大光柵集合的部分。藉由類似於圖8之實例,可存在組件疊對光柵732至735及輔助組件光柵732'至735'及732"至735"。
在圖4至圖6之實例中,偵測器23係用於對應於基板W之平面之影像平面中,但圖12及圖13之方法使用經定位於與物鏡16之光瞳平面共軛之平面中之偵測器19。偵測器19可為影像感測器,例如,CCD攝影機感測器。替代地,可部署個別點偵測器來代替影像感測器。雖然由孔徑板13Q提供之照明圖案在圖12之左側處具有被標註為a及b之亮象限,但由感測器19看到之繞射圖案係在右側處被表示。在此圖案中,除了被標註為a0及b0之零階反射以外,亦可見一階繞射信號,其被標註為a-1、a+1、b-1及b+1。因為照明孔徑之其他象限係暗的且更通常因為照明圖案具有180°旋轉對稱性,所以繞射階a-1及b+1係「自由的」,從而意謂其不與來自照明孔徑之其他部分之零階或高階信號重疊。可利用分段照明圖案之此屬性以自繞射光柵(疊對目標)獲得清晰一階信號,該繞射光柵之間距為可在使用習知圓形對稱之照明孔徑的情況下成像之最小間距的一半。已知申請案US 20100201963描述此繞射圖案及其可被利用以用於散射量測之方式。
圖13為使用來自目標732等等之圖12之繞射光譜以獲得針對依解析度失配而校正之疊對量測的方法的流程圖。步驟S11至S15緊密地對應於圖6之方法之步驟S1至S6,且將不對其進行詳細描述。主要差異係如下。應記得,圖6之方法(例如)藉由比較如運用感測器23捕捉之第一影像及第二影像中所看到的光柵影像42之強度來獲得用於光柵32之不對稱性信號。相反,圖13之方法(例如)藉由比較自光瞳影像感測器19上之相同繞射光譜內提取的+1繞射階及-1繞射階之強度來獲得用於光柵732之不對稱性信號。
經多重圖案化目標中之疊對之量測
上文所描述之技術可應用以使用已知散射計以量測在其他情形下以及在層間疊對中之依解析度特徵之間的失配。一特定應用為所謂雙重圖案化程序(通常為多重圖案化),其中使用順次微影圖案化步驟以在單一產品層內產生極小結構之圖案,其甚至小於圖案化元件之解析度。此類別中之技術包括(例如)藉由後段製程(back end-of the line,BEOL)層中之微影-蝕刻-微影-蝕刻(LELE)及自對準雙波紋之間距加倍。具有度量衡技術以允許在實際元件圖案解析度下在兩個各別程序步驟之間的實際疊對移位之蝕刻後檢測及偵測將極有用。
圖14(a)示意性地展示藉由雙重圖案化而形成之光柵結構800。相似於圖9(a)之光柵,此光柵包含粗略線-空間圖案,其中空間區填充有處於較精細間距之子結構。在多重圖案化程序實例中,子結構形成於產品之一個層中,但並非在一個圖案化操作中形成,而是在兩個或兩個以上步驟中形成。因此,在此實例中,被標註為A之結構之第一群體係與結構B之第二群體交錯,且群體A及B係在不同步驟中形成。雖然圖14(a)中之群體A及B之置放極佳地對稱,但圖14(b)所展示之結構800'展現某一位置偏移或「失配」。具體言之,群體B結構相對於其理想位置移位被標註為△dp之失配量。本發明人已認識到,可以與在形 成及量測具有經程式化偏移之目標時可量測疊對之方式相同的方式經由不對稱性信號來量測依解析度特徵與粗略光柵之間的失配。
圖15示意性地展示子分段度量衡目標820,其中子分段結構A及B之兩個交錯式群組係在間距加倍或其他雙重圖案化程序中形成。形成兩個組件光柵832及834,其各自具有光柵800之大體形式。僅展示六條依解析度線(三條針對A且三條針對B),且為了清楚起見而誇示移位。實際光柵將在較大圖案之每一空間區中具有大約五至二十個或更多的依解析度線及空間。在每一光柵832、834中,存在在結構之形成期間藉由像差或處理效應其類似者造成的未知位置偏移(失配)△dp及經程式化(已知)位置偏移-dp(光柵832中)或+dp(光柵834中)兩者。對於該兩個光柵,未知失配相等(或被假定相等)。
再次,為簡單起見,此等偏移之值經選擇為相等且相反,但經程式化偏移之數目及值為一選擇問題。實務上,吾人將把偏移選擇為具有相等量值之正值及負值。然而,待描述之方法在具有不等量值的情況下且其中偏移兩者係在同一方向上的情況下工作。相似地,偏移無需大於或小於未知失配。
圖16為使用圖15之新穎目標以在多重圖案化程序中量測失配之方法的流程圖。步驟S21至S26緊密地對應於圖6之方法中之步驟S1至S6。相似考慮因素適用,惟不存在待量測之層間疊對,僅存在組件光柵832及834之不對稱性之量測除外。該方法可適於使用光瞳影像感測器19或視需要使用另一散射計。使用測定不對稱性信號及已知失配值(偏移)來計算未知失配之原理係與上文參看圖7所說明並描述之原理相同。
模擬指示可使用具有合適目標之已知散射計硬體來偵測兩個群體之間的甚至小疊對移位。在經修改疊對目標之狀況下,組件光柵及經程式化失配之數目可變化。除了量測一層內之群體之間的失配以 外,當然亦可量測諸層之間的疊對。可在適當時量測在X及Y方向上之失配。
本文所揭示之技術使小或大度量衡目標之設計及使用能夠達成疊對量測及/或多重圖案化程序中之失配之量測的大準確度及可重複性。特定益處在於:現有高產出率度量衡硬體可用以量測大小遠低於度量衡裝置光學系統之解析度的依解析度特徵之參數。縮減了對更耗時或昂貴度量衡技術(例如,SEM)之需要。實現大量製造中之品質控制。
除了已經在上文所提及之變化及修改以外,眾多變化及修改亦係可能的。在圖8之實例中,具有每一偏置值之X光柵及Y光柵係並排的,但此並非必需的。X方向光柵及Y方向光柵係以交替圖案而彼此穿插,使得不同X光柵對角地間隔,並非彼此並排,且Y光柵對角地間隔,並非彼此並排。此配置可幫助縮減不同經偏置光柵之繞射信號之間的串擾。因此,整個配置允許具有良好效能之緊密目標設計。在上文所描述之實例中,所有光柵係正方形,且以正方形柵格之形式而配置。在另一實施例中,此等光柵可被置放為稍微偏離正方形柵格,或其形狀可為矩形以便破壞目標之對稱性。此情形可進一步改良用以得知影像中之目標之圖案辨識演算法的準確度及穩固性。舉例而言,上文所提及之已公開專利申請案US20120044470描述具有伸長光柵之複合光柵結構。
雖然上文所描述之目標結構為出於量測之目的而特定地設計及形成之度量衡目標,但在其他實施例中,可量測關於為形成於基板上之元件之功能部件的目標之屬性。許多元件具有規則的類光柵結構。 如本文所使用之術語「目標光柵」及「目標結構」並不要求已特定地針對正被執行之量測來提供該結構。術語「結構」及「子結構」係用以表示粗略(大尺度)及精細(較小尺度)結構特徵,而不意欲使此等特 徵彼此完全相異。實際上,正如實例中清楚地所解釋,諸如光柵之線及空間之粗略結構特徵可藉由較精細子結構之集合形成。
與如在基板及圖案化元件上實現的目標之實體光柵結構相關聯地,一實施例可包括含有機器可讀指令之一或多個序列的電腦程式,該等機器可讀指令描述在基板上產生目標、在基板上量測目標及/或分析量測以獲得關於微影程序之資訊的方法。此電腦程式可執行於(例如)圖3之裝置中之單元PU及/或圖2之控制單元LACU內。亦可提供經儲存有此電腦程式之資料儲存媒體(例如,半導體記憶體,磁碟或光碟)。在屬於(例如)圖3所展示之類型之現有度量衡裝置已經在生產中及/或在使用中的情況下,可藉由供應經更新電腦程式產品來實施本發明,該等經更新電腦程式產品用於使處理器執行經修改步驟S4至S6且因此計算經校正之疊對誤差。該程式可視情況經配置以控制光學系統、基板支撐件及其類似者以自動執行步驟S2至S5、S12至S15、S22至S25等等以量測關於複數個合適目標結構之不對稱性。
下文中在編號條項中提供根據本發明之另外實施例:
1.一種用於量測一微影程序之一屬性之檢測裝置,該裝置包含:用於一基板之一支撐件,該基板攜載複數個度量衡目標,該複數個度量衡目標包含藉由該微影程序而形成之結構;一光學系統,其用於在預定照明條件下照明該複數個目標且用於偵測在該等照明條件下由該等目標繞射之輻射之預定部分;一處理器,其經配置以自繞射輻射之該等經偵測部分計算用於一特定目標之不對稱性之一量測;及一控制器,其用於使該光學系統及該處理器量測在該基板上之一層內之結構與較小子結構之間具有位置偏移之不同已知分量的該等目標中之至少兩者中之不對稱性,且自該等不對稱性量測之結果計算 用於該較小大小之結構的該微影程序之一效能參數的一量測。
2.如條項1之裝置,其中該效能參數為用於該較小大小之結構的該微影程序之一疊對參數,且係藉由將該等不對稱性量測之結果與在該基板上之第一層與第二層之間具有位置偏移之不同已知分量的至少兩個疊對目標中之不對稱性之量測組合而計算。
3.如條項2之裝置,其中該控制器經配置以使該光學系統及該處理器量測在該第一層及該第二層中每一者中具有位置偏移之不同已知分量的至少兩個輔助目標中之不對稱性。
4.如條項1之裝置,其中該控制器經配置以使該光學系統及該處理器量測在該目標內之子結構之交錯式群體之間具有位置偏移之不同已知分量的該等目標中之至少兩者中之不對稱性,且自該等不對稱性量測之結果計算用以形成該等子結構的該微影程序之一疊對參數之一量測。
5.如前述條項中任一項之裝置,其中該光學系統經配置以形成及偵測使用由該等度量衡目標中之至少兩者同時繞射之輻射的影像,不同影像使用該繞射輻射之不同部分,且該處理器經配置以:識別該等經偵測影像中之所關注區,每一所關注區對應於該等目標中之一特定目標;及處理該等所關注區內之像素值以獲得用於每一目標之不對稱性之該量測。
6.一種基板,其具備藉由一微影程序而形成之複數個度量衡目標,每一目標包含經配置以在至少一第一方向上以一空間週期重複之結構,其中該等度量衡目標包括:複數個疊對目標,每一疊對目標中之該等結構中之至少一些複製於該基板上之第一層及第二層中且疊置於彼此之上,且其中每一疊對目標經形成為在該等層之間具有為已知分量及未知分量兩者之一組合的一位置偏移,該等已知分量針對不同目標係不同的;及 複數個輔助目標,每一輔助目標包含一大小比該空間週期小若干倍的子結構,其中每一輔助目標形成於該等層中之一者中且經形成為在該等子結構與該等結構之間具有為已知分量及未知分量兩者之一組合的一位置偏移,該等已知分量針對不同目標係不同的。
7.如條項6之基板,其中在層之間具有不同已知偏移之兩個或兩個以上疊對目標經形成為與在該等子結構與該等結構之間具有不同位置偏移之兩個或兩個以上輔助目標緊鄰,以便形成一複合目標,而其他此等複合目標係橫越該基板而分佈。
8.如條項6或7之基板,其中該等輔助目標包括具有不同已知位置偏移且形成於該第一層中之至少一第一對目標,及具有不同位置偏移且形成於該第二層中之至少一第二對目標。
9.一種供一微影程序中使用之圖案化元件,該圖案化元件界定在施加至一基板時將產生一如條項6、7或8之基板的一圖案。
10.一種量測一微影程序之一效能參數之方法,該方法包含如下步驟:(a)執行該微影程序以在一基板上產生形成複數個度量衡目標之結構,該等目標中之至少兩者在結構與較小子結構之間具有為已知分量及未知分量兩者之一組合的一位置偏移,位置偏移之該等已知分量針對不同目標係不同的;(b)使用檢測裝置以量測在該基板上之一層內之結構與較小子結構之間具有位置偏移之不同已知分量的該等輔助目標中之至少兩者中之不對稱性;及(c)使用步驟(b)中進行之該等不對稱性量測之結果來計算用於該較小大小之結構的該微影程序之一量測疊對效能參數。
11.如條項10之方法,其中步驟(a)中所形成之該等目標為用於至少兩個疊對目標之輔助目標,該等疊對目標在該基板上之第一層與 第二層中之結構之間具有位置偏移之不同已知分量,且其中將步驟(b)中進行之該等不對稱性量測之結果與該至少兩個疊對目標中之不對稱性之量測組合,以在該疊對目標中獲得該位置偏移之一未知分量之一量測,以獲得用於該較小大小之結構的該微影程序之該疊對參數之一表示。
12.如條項11之方法,其中在步驟(b)中,在該第一層及該第二層中每一者中量測具有位置偏移之不同已知分量之至少兩個輔助目標。
13.如條項10之方法,其中該等目標中之該至少兩者係在步驟(a)中形成為在該基板上之一層內之子結構之交錯式群體之間具有位置偏移之不同已知分量,且其中在步驟(c)中,自步驟(b)中進行之該等不對稱性量測之該等結果計算用以形成子結構的該等交錯式群體的該微影程序之一疊對參數之一量測。
14.如條項10、11、12或13之方法,其中在步驟(b)之該執行中,該光學系統係用以形成及偵測使用由該等度量衡目標中之至少兩者同時繞射之輻射的影像,不同影像使用該繞射輻射之不同部分,且藉由如下方式來量測不對稱性:識別該等經偵測影像中之所關注區,每一所關注區對應於該等目標中之一特定目標;及處理來自該等所關注區內之像素值以獲得用於每一目標之不對稱性之該量測。
15.一種基板,其具備藉由一微影程序而形成之複數個度量衡目標,每一目標包含經配置以在至少一第一方向上以一空間週期重複之結構,其中該等度量衡目標包括複數個目標,該複數個目標中每一者包含一大小比該空間週期小若干倍的子結構,其中每一目標經形成為在子結構之兩個交錯式群體之間具有為已知分量及未知分量兩者之一組合的一位置偏移,該等已知分量針對不同目標係不同的。
16.如條項15之基板,其中在子結構之群體之間具有不同已知 偏移之兩個或兩個以上目標經形成為彼此緊鄰,以便形成一複合目標,而其他此等複合目標係橫越該基板而分佈。
17.一種供一微影程序中使用之一對圖案化元件,該等圖案化元件界定在循序地施加至一基板時將產生一如條項15或16之基板之圖案。
18.一種包含機器可讀指令之電腦程式產品,該等機器可讀指令用於使一處理器執行一如條項10至14中任一項之方法之該步驟(c)。
19.如條項18之電腦程式產品,其進一步包含用於使一處理器控制一光學系統及處理器以執行如條項10至14中任一項之方法的該步驟(b)之機器可讀指令。
20.一種微影系統,其包含:一微影裝置,其經配置成以一上覆方式將一圖案序列自圖案化元件轉印至一基板上;及一如條項1至5中任一項之檢測裝置,其中該微影裝置經配置以在將該圖案序列施加至另外基板時使用來自該檢測裝置之該所計算效能參數。
21.一種製造元件之方法,其中使用一微影程序將一元件圖案序列施加至一系列基板,該方法包括使用一如條項10至14中任一項之檢測方法而在該等基板中之至少一者上檢測作為該等元件圖案之部分或除了該等元件圖案以外的複數個度量衡目標,及根據該所計算效能參數而針對稍後基板來控制該微影程序。
儘管上文可特定地參考在光學微影之內容背景中對本發明之實施例之使用,但應瞭解,本發明可用於其他應用(例如,壓印微影)中,且在內容背景允許時不限於光學微影。在壓印微影中,圖案化元件中之構形(topography)界定產生於基板上之圖案。可將圖案化元件 之構形壓入被供應至基板之抗蝕劑層中,在基板上,抗蝕劑係藉由施加電磁輻射、熱、壓力或其組合而固化。在抗蝕劑固化之後,將圖案化元件移出抗蝕劑,從而在其中留下圖案。
本文所使用之術語「輻射」及「光束」涵蓋所有類型之電磁輻射,包括紫外線(UV)輻射(例如,具有為或為約365奈米、355奈米、248奈米、193奈米、157奈米或126奈米之波長)及極紫外線(EUV)輻射(例如,具有在5奈米至20奈米之範圍內之波長),以及粒子束(諸如,離子束或電子束)。
術語「透鏡」在內容背景允許時可指各種類型之光學組件中任一者或其組合,包括折射、反射、磁性、電磁及靜電光學組件。
對特定實施例之前述描述將因此充分地揭露本發明之一般性質:在不脫離本發明之一般概念的情況下,其他人可藉由應用熟習此項技術者所瞭解之知識針對各種應用而容易地修改及/或調適此等特定實施例,而無需不當實驗。因此,基於本文所呈現之教示及指導,此等調適及修改意欲在所揭示實施例之等效者的涵義及範圍內。應理解,本文中之措辭或術語係出於(例如)描述而非限制之目的,使得本說明書之術語或措辭待由熟習此項技術者按照該等教示及該指導進行解譯。
本發明之範圍及範疇不應受到上述例示性實施例中任一者限制,而應僅根據以下申請專利範圍及其等效者進行界定。
應瞭解,【實施方式】章節而非【發明內容】及【中文發明摘要】章節意欲用以解譯申請專利範圍。【發明內容】及【中文發明摘要】章節可闡述如由本發明之發明人所預期的本發明之一或多個而非所有例示性實施例,且因此,不意欲以任何方式來限制本發明及隨附申請專利範圍。
上文已憑藉說明特定功能及該等功能之關係之實施之功能建置 區塊來描述本發明。為了便於描述,本文已任意地界定此等功能建置區塊之邊界。只要適當地執行指定功能及其關係,便可界定替代邊界。
對特定實施例之前述描述將因此充分地揭露本發明之一般性質:在不脫離本發明之一般概念的情況下,其他人可藉由應用熟習此項技術者所瞭解之知識針對各種應用而容易地修改及/或調適此等特定實施例,而無需不當實驗。因此,基於本文所呈現之教示及指導,此等調適及修改意欲在所揭示實施例之等效者的涵義及範圍內。應理解,本文中之措辭或術語係出於(例如)描述而非限制之目的,使得本說明書之術語或措辭待由熟習此項技術者按照該等教示及該指導進行解譯。
本發明之範圍及範疇不應受到上述例示性實施例中任一者限制,而應僅根據以下申請專利範圍及其等效者進行界定。
32'‧‧‧輔助組件光柵/X方向光柵/第一組件光柵
34'‧‧‧輔助組件光柵/第二組件光柵
524‧‧‧輔助目標

Claims (15)

  1. 一種用於量測一微影程序之一屬性之檢測裝置,該裝置包含:用於一基板之一支撐件,該基板攜載複數個度量衡目標,該複數個度量衡目標包含藉由該微影程序而形成之結構;一光學系統,其用於在預定照明條件下照明該複數個目標且用於偵測在該等照明條件下由該等目標繞射之輻射之預定部分;一處理器,其經配置以自繞射輻射之該等經偵測部分計算用於一特定目標之不對稱性之一量測;及一控制器,其用於使該光學系統及該處理器量測在該基板上之一層內之結構與較小子結構之間具有位置偏移之不同已知分量的該等目標中之至少兩者中之不對稱性,且自該等不對稱性量測之結果計算用於該較小大小之結構的該微影程序之一效能參數的一量測。
  2. 如請求項1之裝置,其中該效能參數為用於該較小大小之結構的該微影程序之一疊對參數,且係藉由將該等不對稱性量測之結果與在該基板上之第一層與第二層之間具有位置偏移之不同已知分量的至少兩個疊對目標中之不對稱性之量測組合而計算。
  3. 如請求項1之裝置,其中該控制器經配置以使該光學系統及該處理器量測在該目標內之子結構之交錯式群體之間具有位置偏移之不同已知分量的該等目標中之至少兩者中之不對稱性,且自該等不對稱性量測之結果計算用以形成該等子結構的該微影程序之一疊對參數之一量測。
  4. 如請求項1至3中任一項之裝置,其中該光學系統經配置以形成及偵測使用由該等度量衡目標中之至少兩者同時繞射之輻射的 影像,不同影像使用該繞射輻射之不同部分,且該處理器經配置以:識別該等經偵測影像中之所關注區,每一所關注區對應於該等目標中之一特定目標;及處理該等所關注區內之像素值以獲得用於每一目標之不對稱性之該量測。
  5. 一種基板,其具備藉由一微影程序而形成之複數個度量衡目標,每一目標包含經配置以在至少一第一方向上以一空間週期重複之結構,其中該等度量衡目標包括:複數個疊對目標,每一疊對目標中之該等結構中之至少一些複製於該基板上之第一層及第二層中且疊置於彼此之上,且其中每一疊對目標經形成為在該等層之間具有為已知分量及未知分量兩者之一組合的一位置偏移,該等已知分量針對不同目標係不同的;及複數個輔助目標,每一輔助目標包含一大小比該空間週期小若干倍的子結構,其中每一輔助目標形成於該等層中之一者中且經形成為在該等子結構與該等結構之間具有為已知分量及未知分量兩者之一組合的一位置偏移,該等已知分量針對不同目標係不同的。
  6. 一種供一微影程序中使用之圖案化元件,該圖案化元件界定在施加至一基板時將產生一如請求項5之基板之一圖案。
  7. 一種量測一微影程序之一效能參數之方法,該方法包含如下步驟:(a)執行該微影程序以在一基板上產生形成複數個度量衡目標之結構,該等目標中之至少兩者在結構與較小子結構之間具有為已知分量及未知分量兩者之一組合的一位置偏移,位置偏移之該等已知分量針對不同目標係不同的;(b)使用檢測裝置以量測在該基板上之一層內之結構與較小子 結構之間具有位置偏移之不同已知分量的該等輔助目標中之至少兩者中之不對稱性;及(c)使用步驟(b)中進行之該等不對稱性量測之結果來計算用於該較小大小之結構的該微影程序之一量測疊對效能參數。
  8. 如請求項7之方法,其中步驟(a)中所形成之該等目標為用於至少兩個疊對目標之輔助目標,該等疊對目標在該基板上之第一層與第二層中之結構之間具有位置偏移之不同已知分量,且其中將步驟(b)中進行之該等不對稱性量測之結果與該至少兩個疊對目標中之不對稱性之量測組合,以在該疊對目標中獲得該位置偏移之一未知分量之一量測,以獲得用於該較小大小之結構的該微影程序之該疊對參數之一表示。
  9. 如請求項7之方法,其中該等目標中之該至少兩者係在步驟(a)中形成為在該基板上之一層內之子結構之交錯式群體之間具有位置偏移之不同已知分量,且其中在步驟(c)中,自步驟(b)中進行之該等不對稱性量測之該等結果計算用以形成子結構的該等交錯式群體的該微影程序之一疊對參數之一量測。
  10. 如請求項7、8或9之方法,其中在步驟(b)之該執行中,該光學系統係用以形成及偵測使用由該等度量衡目標中之至少兩者同時繞射之輻射的影像,不同影像使用該繞射輻射之不同部分,且藉由如下方式來量測不對稱性:識別該等經偵測影像中之所關注區,每一所關注區對應於該等目標中之一特定目標;及處理來自該等所關注區內之像素值以獲得用於每一目標之不對稱性之該量測。
  11. 一種基板,其具備藉由一微影程序而形成之複數個度量衡目標,每一目標包含經配置以在至少一第一方向上以一空間週期重複之結構,其中該等度量衡目標包括複數個目標,該複數個 目標中每一者包含一大小比該空間週期小若干倍的子結構,其中每一目標經形成為在子結構之兩個交錯式群體之間具有為已知分量及未知分量兩者之一組合的一位置偏移,該等已知分量針對不同目標係不同的。
  12. 供一微影程序中使用之一對圖案化元件,該等圖案化元件界定在循序地施加至一基板時將產生一如請求項11之基板之圖案。
  13. 一種包含機器可讀指令之電腦程式產品,該等機器可讀指令用於使一處理器執行一如請求項7至10中任一項之方法之該步驟(c)。
  14. 一種微影系統,其包含:一微影裝置,其經配置成以一上覆方式將一圖案序列自圖案化元件轉印至一基板上;及一如請求項1至4中任一項之檢測裝置,其中該微影裝置經配置以在將該圖案序列施加至另外基板時使用來自該檢測裝置之該所計算效能參數。
  15. 一種製造元件之方法,其中使用一微影程序將一元件圖案序列施加至一系列基板,該方法包括使用一如請求項7至10中任一項之檢測方法而在該等基板中之至少一者上檢測作為該等元件圖案之部分或除了該等元件圖案以外的複數個度量衡目標,及根據該所計算效能參數而針對稍後基板來控制該微影程序。
TW103137484A 2013-10-30 2014-10-29 檢測裝置及方法、具有度量衡目標之基板、微影系統及元件製造方法 TWI554847B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361897562P 2013-10-30 2013-10-30

Publications (2)

Publication Number Publication Date
TW201520698A TW201520698A (zh) 2015-06-01
TWI554847B true TWI554847B (zh) 2016-10-21

Family

ID=51691058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103137484A TWI554847B (zh) 2013-10-30 2014-10-29 檢測裝置及方法、具有度量衡目標之基板、微影系統及元件製造方法

Country Status (7)

Country Link
US (3) US9958791B2 (zh)
KR (1) KR101855220B1 (zh)
CN (1) CN105814491B (zh)
IL (1) IL245318B (zh)
NL (1) NL2013625A (zh)
TW (1) TWI554847B (zh)
WO (1) WO2015062854A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541201B2 (en) * 2000-08-30 2009-06-02 Kla-Tencor Technologies Corporation Apparatus and methods for determining overlay of structures having rotational or mirror symmetry
US9958791B2 (en) 2013-10-30 2018-05-01 Asml Netherlands B.V. Inspection apparatus and methods, substrates having metrology targets, lithographic system and device manufacturing method
TWI648515B (zh) * 2013-11-15 2019-01-21 美商克萊譚克公司 計量目標及其計量量測、目標設計檔案、計量方法及以電腦為基礎之設備
JP6412163B2 (ja) * 2014-05-13 2018-10-24 エーエスエムエル ネザーランズ ビー.ブイ. メトロロジーに用いられる基板及びパターニングデバイス、メトロロジー方法、及びデバイス製造方法
NL2017300A (en) 2015-08-27 2017-03-01 Asml Netherlands Bv Method and apparatus for measuring a parameter of a lithographic process, substrate and patterning devices for use in the method
KR102104843B1 (ko) * 2015-10-02 2020-04-28 에이에스엠엘 네델란즈 비.브이. 계측 방법 및 장치, 컴퓨터 프로그램 및 리소그래피 시스템
KR102128523B1 (ko) * 2015-12-03 2020-07-01 에이에스엠엘 네델란즈 비.브이. 위치 측정 방법, 리소그래피 장치, 리소 셀 및 디바이스 제조 방법
WO2017108395A1 (en) 2015-12-21 2017-06-29 Asml Netherlands B.V. Methods and patterning devices and apparatuses for measuring focus performance of a lithographic apparatus, device manufacturing method
WO2017114672A1 (en) 2015-12-31 2017-07-06 Asml Netherlands B.V. Metrology by reconstruction
US10942460B2 (en) 2016-04-12 2021-03-09 Asml Netherlands B.V. Mark position determination method
US10451412B2 (en) 2016-04-22 2019-10-22 Kla-Tencor Corporation Apparatus and methods for detecting overlay errors using scatterometry
CN109844647B (zh) 2016-10-14 2022-06-10 科磊股份有限公司 基于衍射的聚焦度量
CN106773526B (zh) * 2016-12-30 2020-09-01 武汉华星光电技术有限公司 一种掩膜版,彩膜基板及其制作方法
JP7179742B2 (ja) * 2017-02-10 2022-11-29 ケーエルエー コーポレイション 散乱計測オーバーレイターゲット及び方法
JP2020519928A (ja) * 2017-05-08 2020-07-02 エーエスエムエル ネザーランズ ビー.ブイ. 構造を測定する方法、検査装置、リソグラフィシステム、及びデバイス製造方法
EP3422102A1 (en) * 2017-06-26 2019-01-02 ASML Netherlands B.V. Methods and patterning devices and apparatuses for measuring focus performance of a lithographic apparatus, device manufacturing method
WO2019086221A1 (en) * 2017-10-31 2019-05-09 Asml Netherlands B.V. Metrology apparatus, method of measuring a structure, device manufacturing method
KR102408786B1 (ko) * 2017-11-07 2022-06-13 에이에스엠엘 네델란즈 비.브이. 관심 특성을 결정하는 계측 장치 및 방법
EP3629086A1 (en) * 2018-09-25 2020-04-01 ASML Netherlands B.V. Method and apparatus for determining a radiation beam intensity profile
US10996570B2 (en) 2018-10-08 2021-05-04 Asml Netherlands B.V. Metrology method, patterning device, apparatus and computer program
EP3640735A1 (en) * 2018-10-18 2020-04-22 ASML Netherlands B.V. Methods and apparatus for inspection of a structure and associated apparatuses
CN113661447A (zh) * 2019-04-04 2021-11-16 Asml荷兰有限公司 用于预测衬底图像的方法和设备
CN111504210B (zh) * 2020-04-01 2021-07-20 武汉大学 一种用于节距移动的测量基底及其制备方法、测量方法
US11556062B2 (en) * 2021-03-18 2023-01-17 Kla Corporation Sub-resolution imaging target
WO2023113850A1 (en) * 2021-12-17 2023-06-22 Kla Corporation Overlay target design for improved target placement accuracy
WO2023198444A1 (en) * 2022-04-15 2023-10-19 Asml Netherlands B.V. Metrology apparatus with configurable printed optical routing for parallel optical detection
TWI835363B (zh) * 2022-10-24 2024-03-11 華邦電子股份有限公司 半導體晶圓、疊對偏移的處理裝置及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040223157A1 (en) * 1999-03-24 2004-11-11 Nikon Corporation Position measuring device, position measurement method, exposure apparatus, exposure method, and superposition measuring device and superposition measurement method
US7666559B2 (en) * 2007-09-29 2010-02-23 GlobalFoundries, Inc. Structure and method for determining an overlay accuracy

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317531B2 (en) * 2002-12-05 2008-01-08 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
US7068833B1 (en) * 2000-08-30 2006-06-27 Kla-Tencor Corporation Overlay marks, methods of overlay mark design and methods of overlay measurements
US7440105B2 (en) * 2002-12-05 2008-10-21 Kla-Tencor Technologies Corporation Continuously varying offset mark and methods of determining overlay
US20050244729A1 (en) * 2004-04-29 2005-11-03 United Microelectronics Corp. Method of measuring the overlay accuracy of a multi-exposure process
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7528941B2 (en) * 2006-06-01 2009-05-05 Kla-Tencor Technolgies Corporation Order selected overlay metrology
NL1036245A1 (nl) * 2007-12-17 2009-06-18 Asml Netherlands Bv Diffraction based overlay metrology tool and method of diffraction based overlay metrology.
NL1036597A1 (nl) 2008-02-29 2009-09-01 Asml Netherlands Bv Metrology method and apparatus, lithographic apparatus, and device manufacturing method.
CN101299132B (zh) 2008-05-27 2010-06-02 上海微电子装备有限公司 一种用于光刻设备对准***的对准标记及其使用方法
NL2004094A (en) 2009-02-11 2010-08-12 Asml Netherlands Bv Inspection apparatus, lithographic apparatus, lithographic processing cell and inspection method.
WO2011011511A1 (en) 2009-07-22 2011-01-27 Kla-Tencor Corporation Angle-resolved antisymmetric scatterometry
CN102498441B (zh) 2009-07-31 2015-09-16 Asml荷兰有限公司 量测方法和设备、光刻***以及光刻处理单元
EP2470960A1 (en) 2009-08-24 2012-07-04 ASML Netherlands BV Metrology method and apparatus, lithographic apparatus, lithographic processing cell and substrate comprising metrology targets
NL2005459A (en) * 2009-12-08 2011-06-09 Asml Netherlands Bv Inspection method and apparatus, and corresponding lithographic apparatus.
NL2007176A (en) 2010-08-18 2012-02-21 Asml Netherlands Bv Substrate for use in metrology, metrology method and device manufacturing method.
NL2007425A (en) * 2010-11-12 2012-05-15 Asml Netherlands Bv Metrology method and apparatus, and device manufacturing method.
US9140998B2 (en) 2010-11-12 2015-09-22 Asml Netherlands B.V. Metrology method and inspection apparatus, lithographic system and device manufacturing method
US8455162B2 (en) 2011-06-28 2013-06-04 International Business Machines Corporation Alignment marks for multi-exposure lithography
US8745546B2 (en) * 2011-12-29 2014-06-03 Nanya Technology Corporation Mask overlay method, mask, and semiconductor device using the same
NL2010401A (en) 2012-03-27 2013-09-30 Asml Netherlands Bv Metrology method and apparatus, lithographic system and device manufacturing method.
NL2010458A (en) 2012-04-16 2013-10-17 Asml Netherlands Bv Lithographic apparatus, substrate and device manufacturing method background.
US8817273B2 (en) * 2012-04-24 2014-08-26 Nanometrics Incorporated Dark field diffraction based overlay
NL2010734A (en) 2012-05-29 2013-12-02 Asml Netherlands Bv Metrology method and apparatus, substrate, lithographic system and device manufacturing method.
US8913237B2 (en) * 2012-06-26 2014-12-16 Kla-Tencor Corporation Device-like scatterometry overlay targets
KR101740430B1 (ko) 2013-03-20 2017-05-26 에이에스엠엘 네델란즈 비.브이. 마이크로구조체의 비대칭을 측정하는 방법 및 장치, 위치 측정 방법, 위치 측정 장치, 리소그래피 장치 및 디바이스 제조 방법
US9958791B2 (en) 2013-10-30 2018-05-01 Asml Netherlands B.V. Inspection apparatus and methods, substrates having metrology targets, lithographic system and device manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040223157A1 (en) * 1999-03-24 2004-11-11 Nikon Corporation Position measuring device, position measurement method, exposure apparatus, exposure method, and superposition measuring device and superposition measurement method
US7666559B2 (en) * 2007-09-29 2010-02-23 GlobalFoundries, Inc. Structure and method for determining an overlay accuracy

Also Published As

Publication number Publication date
IL245318A0 (en) 2016-06-30
US20160274472A1 (en) 2016-09-22
KR20160078479A (ko) 2016-07-04
US20200348605A1 (en) 2020-11-05
KR101855220B1 (ko) 2018-05-08
US10761432B2 (en) 2020-09-01
WO2015062854A1 (en) 2015-05-07
NL2013625A (en) 2015-05-04
CN105814491A (zh) 2016-07-27
US11022900B2 (en) 2021-06-01
CN105814491B (zh) 2017-12-05
US20180239263A1 (en) 2018-08-23
US9958791B2 (en) 2018-05-01
TW201520698A (zh) 2015-06-01
IL245318B (en) 2020-08-31

Similar Documents

Publication Publication Date Title
US11022900B2 (en) Inspection apparatus and methods, substrates having metrology targets, lithographic system and device manufacturing method
KR101759608B1 (ko) 메트롤로지 방법 및 장치, 기판, 리소그래피 시스템 및 디바이스 제조 방법
TWI558998B (zh) 用於設計度量目標之方法、具有度量目標之基板、用於度量疊對之方法、用於微影程序中之一對圖案化器件、量測微影程序之一效能參數之方法、電腦程式產品及器件製造方法
TWI537688B (zh) 判定劑量與聚焦之方法、檢驗裝置、圖案化元件、基板及元件製造方法
TWI632432B (zh) 目標配置最佳化及相關聯的目標
TWI599853B (zh) 判定聚焦的方法、檢驗裝置、及元件製造方法
JP6251386B2 (ja) クリティカルディメンション関連特性を決定する方法、検査装置およびデバイス製造方法
TWI569108B (zh) 檢測方法、具有度量衡目標之基板、微影系統及器件製造方法
TWI597580B (zh) 判定劑量之方法、檢測裝置、圖案化器件、基板及器件製造方法
KR102170147B1 (ko) 모듈레이션 기술을 이용한 메트롤로지를 위한 대체 타겟 디자인
TWI796535B (zh) 測量圖案化製程之參數的方法、度量衡裝置與目標
TW201910923A (zh) 量測所關注參數之方法、器件製造方法、度量衡設備及微影系統
EP3671346A1 (en) Method of measuring a parameter of a patterning process, metrology apparatus, target