TWI543383B - Buried electrode solar cells, production methods, and multi - face Solar module - Google Patents

Buried electrode solar cells, production methods, and multi - face Solar module Download PDF

Info

Publication number
TWI543383B
TWI543383B TW104103739A TW104103739A TWI543383B TW I543383 B TWI543383 B TW I543383B TW 104103739 A TW104103739 A TW 104103739A TW 104103739 A TW104103739 A TW 104103739A TW I543383 B TWI543383 B TW I543383B
Authority
TW
Taiwan
Prior art keywords
type
layer
electrode
solar cell
light absorbing
Prior art date
Application number
TW104103739A
Other languages
Chinese (zh)
Other versions
TW201630202A (en
Inventor
rui-hua Hong
Fan-Lei Wu
Yu Cheng Kao
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW104103739A priority Critical patent/TWI543383B/en
Application granted granted Critical
Publication of TWI543383B publication Critical patent/TWI543383B/en
Publication of TW201630202A publication Critical patent/TW201630202A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

掩埋式電極太陽能電池、製作方法,及多接面 太陽能電池模組 Buried electrode solar cell, manufacturing method, and multi-join Solar battery module

本發明是有關於一種太陽能電池、製作方法,及多接面太陽能電池模組,特別是指一種無電極遮光的掩埋式電極太陽能電池、製作方法,及含有該太陽能電池的多接面太陽能電池模組。 The present invention relates to a solar cell, a manufacturing method thereof, and a multi-junction solar cell module, in particular to a buried electrode solar cell without electrode shading, a manufacturing method thereof, and a multi-junction solar cell module containing the solar cell. group.

在能源短缺及環保意識抬頭下,尋求更具環境親和力及可再生性的替代能源,已經是能源發展的重要課題之一。而其中,太陽能電池因為是直接利用將太陽能轉換成電能,於產生能源的過程中也不會產生危害環境的副產物,且太陽能本身便是能量的形式,分佈廣闊、不受地理限制,容易取得,因此,更是一種極具發展價值的替代能源。 Under the energy shortage and environmental awareness, the search for alternative energy sources with more environmental affinity and renewable capacity is already one of the important topics of energy development. Among them, solar cells are directly used to convert solar energy into electrical energy, and in the process of generating energy, they do not produce environmentally harmful by-products, and solar energy itself is in the form of energy, which is widely distributed and not subject to geographical restrictions, and is easy to obtain. Therefore, it is a kind of alternative energy with great development value.

目前太陽能電池以材料分類大致可分成矽晶圓為主的矽晶太陽能電池、薄膜太陽能電池、有機太陽能電池及化合物半導體多接面太陽電池四大類。而目前市場上絕大多數的太陽能電池是以矽(Silicon)為吸光材料,主要是因為以矽為主體的半導體在生產技術與設備都已經相當成熟,且可具有最高的轉換效率。 At present, solar cells can be roughly classified into four types: silicon wafers, thin film solar cells, organic solar cells, and compound semiconductor multi-junction solar cells. At present, most of the solar cells on the market use Silicon as the light absorbing material, mainly because the semiconductors based on germanium are quite mature in production technology and equipment, and can have the highest conversion efficiency.

然而,傳統的太陽能電池結構,大都是在光吸 收單元的頂、底兩面分別形成用於收集光電流的電極,以便於將光吸收單元產生的電流對外輸出。而因為電極一般都是由不透光的材料構成,因此,形成於光吸收單元頂面(即光入射面)的電極,會減小該光吸收單元的光入射面積,而影響太陽能電池的效能。 However, the traditional solar cell structure is mostly in the light absorption Electrodes for collecting photocurrent are respectively formed on the top and bottom sides of the receiving unit to facilitate external output of the current generated by the light absorbing unit. Since the electrodes are generally made of an opaque material, the electrodes formed on the top surface of the light absorbing unit (ie, the light incident surface) reduce the light incident area of the light absorbing unit and affect the performance of the solar cell. .

此外,為了進一步提升太陽能電池的效率,目 前也有利用多接面結構,將具有不同能隙的p-n接面半導體膜層進行堆疊,利用不同能隙的半導體膜層吸收利用太陽光中不同波長的光能,以提升太陽能電池的效率。然而,以多接面太陽電池的結構而言,要在同一製程中精準的控制形成之半導體膜層的能隙差異並不容易,此外,因為不同能隙的半導體膜層其光電轉換效率不同,因此,照光後產生的光電流強度也不同,而該等不同能隙的p-n接面半導體膜層因為以堆疊方式形成,相當於各半導體膜層間是以串聯方式連接,因此,當各個p-n接面半導體膜層產生的光電流強度差異過大,電流匹配度(current matching accuracy)不佳時,也會影響該太陽能電池整體電流的輸出強度。 In addition, in order to further improve the efficiency of solar cells, In the past, a multi-junction structure is also used to stack p-n junction semiconductor film layers having different energy gaps, and semiconductor light layers with different energy gaps are utilized to absorb light energy of different wavelengths in sunlight to improve the efficiency of the solar cell. However, in terms of the structure of the multi-junction solar cell, it is not easy to accurately control the difference in the energy gap of the formed semiconductor film layer in the same process. In addition, since the semiconductor film layers of different energy gaps have different photoelectric conversion efficiencies, Therefore, the intensity of the photocurrent generated after the illumination is also different, and the pn junction semiconductor film layers of the different energy gaps are formed in a stacked manner, which is equivalent to connecting the semiconductor film layers in series, and therefore, when each pn junction When the difference in photocurrent intensity generated by the semiconductor film layer is too large, and the current matching accuracy is not good, the output intensity of the overall current of the solar cell is also affected.

因此,本發明之目的,即在提供一種不會有電極遮光的掩埋式電極太陽能電池。 Accordingly, it is an object of the present invention to provide a buried electrode solar cell which does not have light shielding from electrodes.

於是,本發明的掩埋式電極太陽能電池,包含一透光基板、一絕緣層、一光吸收層、一接觸單元,及一 電極單元。 Therefore, the buried electrode solar cell of the present invention comprises a transparent substrate, an insulating layer, a light absorbing layer, a contact unit, and a Electrode unit.

該絕緣層與該透光基板的其中一表面黏接,具 有一遠離該透光基板的基面。 The insulating layer is adhered to one surface of the transparent substrate, There is a base surface away from the transparent substrate.

該光吸收層自該絕緣層的基面向下嵌設於該絕 緣層中,具有一鄰近該透光基板的第二表面,及一遠離該透光基板的第一表面,且該第一表面不被該絕緣層遮覆。 The light absorbing layer is embedded in the bottom from the base surface of the insulating layer The edge layer has a second surface adjacent to the transparent substrate, and a first surface away from the transparent substrate, and the first surface is not covered by the insulating layer.

該接觸單元具有分別形成於該光吸收層的該第 一表面及該第二表面的一第一型接觸部,及一第二型接觸部,其中,該第一、二型接觸部是分別由第一型摻雜及第二型摻雜的半導體材料構成。 The contact unit has the first portion formed on the light absorbing layer a first type contact portion of the surface and the second surface, and a second type contact portion, wherein the first type and the second type contact portion are semiconductor materials doped by the first type doping and the second type respectively Composition.

該電極單元具有一第一電極及一第二電極,該 第一電極自該基面向下嵌設於該絕緣層中,與該光吸收層彼此間隔設置並具有一裸露於該基面的第一接觸面,且該第一型接觸部同時與該第一接觸面及該第一表面連接,該第二電極自該第二接觸部與該光吸收層不相接觸的朝向該絕緣層的基面延伸,具有一外露於該基面的第二接觸面。 The electrode unit has a first electrode and a second electrode, and the second electrode The first electrode is embedded in the insulating layer from the base surface, and the light absorbing layer is spaced apart from each other and has a first contact surface exposed on the base surface, and the first type contact portion simultaneously with the first The contact surface is connected to the first surface, and the second electrode extends from the base surface of the insulating layer that is not in contact with the light absorbing layer, and has a second contact surface exposed to the base surface.

此外,本發明的另一目的,在於提供一種掩埋 式電極太陽能電池的製作方法。 Furthermore, another object of the present invention is to provide a buried Method for manufacturing an electrode solar cell.

於是,該掩埋式電極太陽能電池的製作方法, 包含:一半導體磊晶步驟、一第一蝕刻步驟、一暫時結構形成步驟、一基板置換步驟,及一第二蝕刻步驟。 Thus, the method of fabricating the buried electrode solar cell, The method includes a semiconductor epitaxial step, a first etching step, a temporary structure forming step, a substrate replacement step, and a second etching step.

該半導體磊晶步驟是自一暫時基板表面依序向 上沉積形成一第一型半導體層、一光吸收層,及一第二型半導體層,且該光吸收層具有分別與該第一、二半導體層 連接的第一、二表面。 The semiconductor epitaxial step is sequential from a temporary substrate surface Depositing a first type semiconductor layer, a light absorbing layer, and a second type semiconductor layer, and the light absorbing layer has the first and second semiconductor layers respectively The first and second surfaces of the connection.

該第一蝕刻步驟是自該第二型半導體層向下蝕 刻至該第一型半導體層部份的表面露出,並將該第二型半導體層的部分蝕刻移除,令該光吸收層的第二表面露出且殘留於該第二表面的第二型半導體層形成一第二型接觸部。 The first etching step is to etch back from the second type semiconductor layer Excavating a surface of the portion of the first type semiconductor layer exposed, and etching a portion of the second type semiconductor layer to remove the second type semiconductor having the second surface of the light absorbing layer exposed and remaining on the second surface The layer forms a second type of contact.

該暫時結構形成步驟是於該第一型半導體層露 出之表面形成與該光吸收層彼此間隔的一第一電極,及一第二電極,並讓該第二電極與該第二型接觸部連接,形成一暫時結構。 The temporary structure forming step is performed on the first type semiconductor layer The surface is formed with a first electrode spaced apart from the light absorbing layer, and a second electrode, and the second electrode is connected to the second type contact portion to form a temporary structure.

該基板置換步驟是利用一透光的絕緣膠將該暫 時結構以遠離該暫時基板的頂面與一透光基板相黏接,接著,移除該暫時基板,令該第一型半導體層遠離該透光基板的表面露出。 The substrate replacement step is to use a light-transmissive insulating glue to temporarily The structure is adhered to a transparent substrate from a top surface away from the temporary substrate, and then the temporary substrate is removed to expose the first semiconductor layer away from the surface of the transparent substrate.

該第二蝕刻步驟是蝕刻移除部分的該第一型半 導導層,並讓殘留於該第一表面的第一型半導體層形成一第一型接觸部,且該第一型接觸部為同時接觸該光吸收層與該第一電極。 The second etching step is to etch the removed portion of the first half Conducting a conductive layer, and forming a first type of contact portion remaining on the first surface, and the first type of contact portion simultaneously contacts the light absorbing layer and the first electrode.

再者,本發明的又一目的,在於提供一種多接 面太陽能電池模組。 Furthermore, another object of the present invention is to provide a multi-connection Surface solar cell module.

於是,本發明該多接面太陽能電池模組是由多 個如前所述的掩埋式電極太陽能電池堆疊串聯而得,且任一個位於下方的掩埋式電極太陽能電池的光吸收單元的表面積會大於堆疊於其上方的掩埋式電極太陽能電池的透光 基板的表面積。 Therefore, the multi-junction solar cell module of the present invention is composed of The stacked electrode solar cell stacks are connected in series as described above, and the surface area of the light absorbing unit of any of the buried electrode solar cells located below is greater than the light transmittance of the buried electrode solar cell stacked above it. The surface area of the substrate.

本發明之功效在於:利用電極結構設計製得的 掩埋式電極太陽能電池,可避免太陽能電池的電極遮光問題,且經由堆疊串聯後即可得到一具有多能隙的多接面太陽能電池模組,製程簡便且容易控制。 The effect of the invention is: using the electrode structure design The buried electrode solar cell can avoid the problem of electrode shading of the solar cell, and a multi-junction solar cell module with multiple energy gaps can be obtained by stacking in series, and the process is simple and easy to control.

2‧‧‧透光基板 2‧‧‧Transparent substrate

3‧‧‧絕緣層 3‧‧‧Insulation

31‧‧‧基面 31‧‧‧ base

32、33‧‧‧絕緣膠 32, 33‧‧‧Insulation adhesive

4‧‧‧光吸收層 4‧‧‧Light absorbing layer

41‧‧‧第一表面 41‧‧‧ first surface

42‧‧‧第二表面 42‧‧‧ second surface

5‧‧‧接觸單元 5‧‧‧Contact unit

51‧‧‧第一型接觸部 51‧‧‧Type 1 contact

52‧‧‧第二型接觸部 52‧‧‧Second type contact

6‧‧‧電極單元 6‧‧‧Electrode unit

61‧‧‧第一電極 61‧‧‧First electrode

611‧‧‧第一接觸面 611‧‧‧ first contact surface

62‧‧‧第二電極 62‧‧‧second electrode

621‧‧‧第二接觸面 621‧‧‧second contact surface

7‧‧‧抗反射層 7‧‧‧Anti-reflective layer

81‧‧‧半導體磊晶步驟 81‧‧‧Semiconductor epitaxial steps

82‧‧‧第一蝕刻步驟 82‧‧‧First etching step

83‧‧‧暫時結構形成步驟 83‧‧‧ Temporary structure formation steps

84‧‧‧基板置換步驟 84‧‧‧Substrate replacement step

85‧‧‧第二蝕刻步驟 85‧‧‧Second etching step

100‧‧‧暫時基板 100‧‧‧ Temporary substrate

101‧‧‧基材 101‧‧‧Substrate

102‧‧‧蝕刻移除層 102‧‧‧ etching removal layer

501‧‧‧第一型半導體層 501‧‧‧First type semiconductor layer

502‧‧‧第二型半導體層 502‧‧‧Second type semiconductor layer

200‧‧‧多接面太陽能電池 模組 200‧‧‧Multiple junction solar cells Module

201~203‧‧‧掩埋式電極太陽能 電池 201~203‧‧‧ buried electrode solar energy battery

300‧‧‧光學膠 300‧‧‧Optical adhesive

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一示意圖,說明本發明掩埋式電極太陽能電池的實施例;圖2是一文字流程圖,說明本發明該實施例的製作方法;圖3是一流程示意圖,輔助說明圖2;及圖4是一示意圖,說明由本發明該實施例疊置而得的多接面太陽能電池模組。 Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: FIG. 1 is a schematic diagram illustrating an embodiment of a buried electrode solar cell of the present invention; FIG. 2 is a textual flow diagram illustrating The manufacturing method of the embodiment of the present invention; FIG. 3 is a schematic flow chart for assisting the description of FIG. 2; and FIG. 4 is a schematic view showing the multi-junction solar cell module stacked by the embodiment of the present invention.

參閱圖1,本發明掩埋式電極太陽能電池的一實施例,包含:一透光基板2、一絕緣層3、一光吸收層4、一接觸單元5、一電極單元6,及一抗反射層7。 Referring to FIG. 1, an embodiment of a buried electrode solar cell of the present invention comprises: a transparent substrate 2, an insulating layer 3, a light absorbing layer 4, a contact unit 5, an electrode unit 6, and an anti-reflection layer. 7.

該透光基板2選自矽基化合物、玻璃、高分子等絕緣且透光的材料構成。 The light-transmitting substrate 2 is made of a material selected from the group consisting of a ruthenium-based compound, glass, and a polymer which are insulating and transparent.

該絕緣層3與該透光基板2黏接,具有一遠離該透光基板2的基面31,且是選自例如,環氧樹脂、PI、 金屬氧化物等透光性佳且不吸光的絕緣材料構成。 The insulating layer 3 is adhered to the transparent substrate 2, has a base surface 31 away from the transparent substrate 2, and is selected from, for example, epoxy resin, PI, An insulating material such as a metal oxide that has good light transmittance and does not absorb light.

該光吸收層4由具有預定吸收能隙的p-n接面 半導體膜層,如:p-n InGaAs、p-n GaAs、p-n GaInP等構成,自該絕緣層3的基面31向下嵌設於該絕緣層3中,具有一鄰近該透光基板2的第二表面42,及一遠離該透光基板2的第一表面41,且該第一表面41不被該絕緣層3遮覆。 The light absorbing layer 4 is composed of a p-n junction having a predetermined absorption gap A semiconductor film layer, such as pn InGaAs, pn GaAs, pn GaInP, or the like, is embedded in the insulating layer 3 from the base surface 31 of the insulating layer 3, and has a second surface 42 adjacent to the transparent substrate 2. And a first surface 41 away from the transparent substrate 2, and the first surface 41 is not covered by the insulating layer 3.

該接觸單元5,具有分別形成於該第一表面41 及該第二表面42的一第一型接觸部51,及一第二型接觸部52,該第一、二型接觸部是分別由第一型摻雜及第二型摻雜的半導體材料構成。其中,該第一型摻雜及第二型摻雜是指電性彼此相反的摻雜型態,即,當該第一型接觸部51為n型摻雜的半導體材料,該第二型接觸部52則為選自p型摻雜的半導體材料,反之則反。由於該光吸收層4及該接觸部5的相關材料選擇為本技術領域所周知,且非為本發明之重點因此不再多加贅述,於本實施例中,該第一型摻雜為n型摻雜,該第二型摻雜為p型摻雜,該第一、二型接觸部51、52分別為n型摻雜及p型摻雜的氮化鎵。 The contact unit 5 has a first surface 41 formed on the first surface 41 And a first type contact portion 51 of the second surface 42 and a second type contact portion 52, wherein the first and second type contact portions are respectively formed of a first type doped and a second type doped semiconductor material. . The first type doping and the second type doping refer to a doping type in which the electrical properties are opposite to each other, that is, when the first type contact portion 51 is an n-type doped semiconductor material, the second type contact Portion 52 is selected from a p-type doped semiconductor material, and vice versa. Since the material selection of the light absorbing layer 4 and the contact portion 5 is well known in the art and is not the focus of the present invention, it will not be further described. In the present embodiment, the first type doping is n-type. Doping, the second type doping is p-type doping, and the first and second type contact portions 51, 52 are respectively n-type doped and p-type doped gallium nitride.

該電極單元6具有一第一電極61及一第二電極 62。其中,該第一電極61自該基面31向下嵌設於該絕緣層3中,與該光吸收層4彼此間隔設置,具有一外露於該基面31的第一接觸面611,且該第一型接觸部51分別連接該第一接觸面611與該光吸收層3的第一表面41;該第二電極62自該第二接觸部52與該光吸收層4不相接觸的朝 向該絕緣層3的基面31延伸,並具有一外露於該基面31的第二接觸面621。要說明的是,該第一、二電極61、62可視需求及設計,由單一導電材料或是多種導電材料所構成的合金金屬或多層結構,且該第一、二電極61、62的構成材料及膜層結構可為相同或不同;例如,該第一電極61可以分別是由具有一層與該半導體層有較佳歐姆接觸的金,及一層用於與透明導電材料電連接的金/鈹合金構成,而該第二電極62則可以是由金及金/鍺合金構成的雙層結構,於本發明中並不加以限制。 The electrode unit 6 has a first electrode 61 and a second electrode 62. The first electrode 61 is embedded in the insulating layer 3 from the base surface 31, and is spaced apart from the light absorbing layer 4, and has a first contact surface 611 exposed on the base surface 31. The first type contact portion 51 is respectively connected to the first contact surface 611 and the first surface 41 of the light absorbing layer 3; the second electrode 62 is not in contact with the light absorbing layer 4 from the second contact portion 52. The base surface 31 of the insulating layer 3 extends and has a second contact surface 621 exposed to the base surface 31. It should be noted that the first and second electrodes 61 and 62 may have an alloy metal or a multi-layer structure composed of a single conductive material or a plurality of conductive materials, and the constituent materials of the first and second electrodes 61 and 62, depending on the requirements and design. And the film structure may be the same or different; for example, the first electrode 61 may be made of gold having a layer of ohmic contact with the semiconductor layer, and a layer of gold/germanium alloy for electrical connection with the transparent conductive material. The second electrode 62 may be a two-layer structure composed of gold and a gold/niobium alloy, which is not limited in the present invention.

該抗反射層7分別形成於該光吸收層4,未被該 第一、二接觸部51、52覆蓋之該第一、二表面41、42,用於減低對入射光之反射。要說明的是,本發明該實施例是以該光吸收層4的該第一、二表面41、42均同時形成該抗反射層7為例做說明,此可有效減少太陽光自雙面入射時的反射問題,然而,該抗反射層7也可視實際需求及設計,僅形成於其中一表面或是均不形成。 The anti-reflection layer 7 is formed on the light absorbing layer 4, respectively. The first and second surfaces 41, 42 covered by the first and second contact portions 51, 52 serve to reduce reflection of incident light. It should be noted that, in this embodiment of the present invention, the first and second surfaces 41 and 42 of the light absorbing layer 4 are simultaneously formed by the anti-reflection layer 7 as an example, which can effectively reduce the incidence of sunlight from both sides. The reflection problem of the time, however, the anti-reflection layer 7 can also be formed on only one of the surfaces or not formed according to actual needs and designs.

本發明藉由將第一電極61(即頂電極)形成於該 光吸收層4的外側,因此,不會有習知電極因形成於光吸收單元的頂面(即光入射面),而遮蔽太陽光的問題;此外,本發明該掩埋式電極太陽能電池的透光基板2為可透光,因此可雙面吸光,而不受限於入射光方向,且可用於堆疊而製備太陽能電模組。 The present invention forms the first electrode 61 (ie, the top electrode) The outer side of the light absorbing layer 4, therefore, there is no problem that the conventional electrode is shielded from sunlight by being formed on the top surface (ie, the light incident surface) of the light absorbing unit; moreover, the buried electrode solar cell of the present invention is transparent. The light substrate 2 is permeable to light, so it can absorb light on both sides without being limited by the incident light direction, and can be used for stacking to prepare a solar power module.

茲將前述該掩埋式電極太陽能電池的實施例的 製作方法說明如下。 The foregoing embodiment of the buried electrode solar cell The production method is explained below.

配合參閱圖2、3,該掩埋式電極太陽能電池的 製作方法包含:一半導體磊晶步驟81、一第一蝕刻步驟82、一暫時結構形成步驟83、一基板置換步驟84,及一第二蝕刻步驟85。 Referring to Figures 2 and 3, the buried electrode solar cell The fabrication method includes a semiconductor epitaxial step 81, a first etching step 82, a temporary structure forming step 83, a substrate replacement step 84, and a second etching step 85.

該半導體磊晶步驟81是於一暫時基板100上形成一個可以光伏效應產生電流的光吸收單元。 The semiconductor epitaxial step 81 is to form a light absorbing unit on the temporary substrate 100 that can generate a current by a photovoltaic effect.

具體的說,該暫時基板100包括一砷化鎵(GaAs)基材101及一形成於該砷化鎵基材101表面的蝕刻移除層102(例如GaInP),因此,後續可利用濕式蝕刻方式,移除該蝕刻移除層102,而將該砷化鎵(GaAs)基材100移除。該步驟81是自該蝕刻移除層102表面,以氣相沉積方式依序向上形成具有一n型摻雜的第一型半導體層501、光吸收層4,及一p型摻雜的第二型半導體層502的該光吸收單元。 Specifically, the temporary substrate 100 includes a gallium arsenide (GaAs) substrate 101 and an etch removal layer 102 (eg, GaInP) formed on the surface of the gallium arsenide substrate 101. Therefore, wet etching can be subsequently used. In the manner, the etch-removed layer 102 is removed and the gallium arsenide (GaAs) substrate 100 is removed. Step 81 is to remove the surface of the layer 102 from the etch, sequentially forming a first type semiconductor layer 501 having an n-type doping, a light absorbing layer 4, and a second p-type doping in a vapor deposition manner. The light absorbing unit of the semiconductor layer 502.

該第一蝕刻步驟82是自部分的該第二型半導體層502的部份表面向下蝕刻至該第一型半導體層501露出,並將該第二型半導體層502蝕刻移除,令該光吸收層4的第二表面42露出,並讓該第二型半導體層502殘留部分於該第二表面42,且殘留於該第二表面42的第二型半導體層502會形成一第二型接觸部52,接著於該光吸收層4裸露出的第二表面42形成該抗反射層7。較佳地,為了便於後續該第二型接觸部52與其它元件的連接,該第二接觸部52是位於該第二表面42的周緣位置。 The first etching step 82 is performed by partially etching a portion of the surface of the second semiconductor layer 502 to the first semiconductor layer 501, and etching and removing the second semiconductor layer 502. The second surface 42 of the absorbing layer 4 is exposed, and the second semiconductor layer 502 remains on the second surface 42, and the second type semiconductor layer 502 remaining on the second surface 42 forms a second type of contact. The portion 52 is then formed on the second surface 42 exposed by the light absorbing layer 4 to form the anti-reflection layer 7. Preferably, in order to facilitate subsequent connection of the second type contact portion 52 with other components, the second contact portion 52 is located at a peripheral position of the second surface 42.

該暫時結構形成步驟83是於該第一型半導體層 501露出之表面,形成該第一電極61,及第二電極62,得到一暫時結構。 The temporary structure forming step 83 is performed on the first type semiconductor layer The exposed surface of 501 forms the first electrode 61 and the second electrode 62 to obtain a temporary structure.

具體的說,該步驟83是先自該第一型半導體層 501露出之表面形成與該光吸收層4相間隔,且彼此不相連接的該第一電極61;並於該光吸收層4鄰近該第二型接觸部52的側周面形成一層透光且高度不低於該吸收層4的絕緣膠32後,再自該第一型半導體層501露出之表面沿著該絕緣膠32形成與該第二型接觸部52連接的該第二電極62,而形成該暫時結構。較佳地,為了讓該第二電極62與該第二型接觸部52間可具有最大的接觸面積,該第二電極62會延伸至該第二接觸部52的頂面;而若考量用於雙面吸光太陽能電池時,為了避免該第二電極62的遮光,該第二電極62也僅可形成至該第二型接觸部52的側面,而不延伸至該第二型接觸部52的頂面。 Specifically, the step 83 is performed from the first type semiconductor layer. The exposed surface of the 501 is formed with the first electrode 61 spaced apart from the light absorbing layer 4 and not connected to each other; and a light transmissive layer is formed on the side peripheral surface of the light absorbing layer 4 adjacent to the second type contact portion 52. After the insulating paste 32 of the absorbing layer 4 is not lower than the insulating paste 32 of the absorbing layer 4, the second electrode 62 connected to the second type contact portion 52 is formed along the insulating adhesive 32 on the surface exposed from the first type semiconductor layer 501. This temporary structure is formed. Preferably, in order to have the largest contact area between the second electrode 62 and the second type contact portion 52, the second electrode 62 extends to the top surface of the second contact portion 52; In the case of the double-sided light-absorbing solar cell, in order to avoid the light shielding of the second electrode 62, the second electrode 62 can also be formed only to the side of the second-type contact portion 52 without extending to the top of the second-type contact portion 52. surface.

該基板置換步驟84是於該暫時結構遠離該暫時 基板100的頂面形成該透光基板2,並移除該暫時基板100。 The substrate replacement step 84 is to move the temporary structure away from the temporary The top surface of the substrate 100 forms the light transmissive substrate 2, and the temporary substrate 100 is removed.

詳細的說,該步驟84是於該暫時結構上塗佈一 層透光的絕緣膠33,再將該透光基板2與該暫時結構遠離該暫時基板100的頂面相黏接,接著,利用蝕刻液移除該蝕刻移除層102,將該砷化鎵基材101自該暫時結構移除,而令該第一型半導體層501遠離該透光基板2的表面露出。 In detail, the step 84 is to apply a coating on the temporary structure. a layer of transparent insulating adhesive 33, and then bonding the transparent substrate 2 to the top surface of the temporary substrate 100, and then removing the etching removal layer 102 by using an etching solution, the gallium arsenide group is removed. The material 101 is removed from the temporary structure, and the first type semiconductor layer 501 is exposed away from the surface of the transparent substrate 2.

第二蝕刻步驟85是蝕刻移除部分的該第一型半 導導層501,令該光吸收層4的第一表面41露出,並讓殘留於該第一表面41的第一型半導體層501形成該第一型接觸部51,且該第一型接觸部51僅同時接觸該第一表面41與該第一電極61;最後,再於該光吸收層4露出之該第一表面41形成該抗反射層7,即可完成如圖1所示之該掩埋式電極太陽能電池。 The second etching step 85 is to etch the removed portion of the first half The first layer 41 of the light absorbing layer 4 is exposed, and the first type semiconductor layer 501 remaining on the first surface 41 is formed into the first type contact portion 51, and the first type contact portion is formed. 51 only contacts the first surface 41 and the first electrode 61 at the same time; finally, the first surface 41 exposed by the light absorbing layer 4 forms the anti-reflection layer 7, thereby completing the burying as shown in FIG. Electrode solar cell.

本發明該掩埋式電極太陽能電池因為光線可穿 透該透光基板2,所以,可用來加以上、下疊置,而形成如圖4所示的多接面太陽能電池模組。 The buried electrode solar cell of the invention can wear light Through the transparent substrate 2, it can be used to stack up and down to form a multi-junction solar cell module as shown in FIG.

詳細的說,本發明多接面太陽能電池模組200 是由多個如圖1所示的掩埋式電極太陽能電池,上、下疊置後串聯而得。於圖4中是以3個如圖1所示的掩埋式電極太陽能電池堆疊為例做說明,且為了說明方便,圖4是將3個掩埋式電極太陽能電池由下至上分別以201、202、203表示。 In detail, the multi-junction solar cell module 200 of the present invention It is composed of a plurality of buried electrode solar cells as shown in FIG. 1 , which are obtained by connecting the upper and lower layers in series. In FIG. 4, three buried electrode solar cell stacks as shown in FIG. 1 are taken as an example for description, and for convenience of explanation, FIG. 4 is that the three buried electrode solar cells are respectively 201 to 202 from bottom to top. 203 indicates.

配合參閱圖1、4,當利用多個如圖1所示的掩 埋式電極太陽能電池進行疊置時,可先以前述之製作方法,選擇具有不同吸收能隙之半導體材料,並依據所欲形成之該光吸收層4的能隙大小,控制光吸收層4的面積大小,讓該光吸收層4的面積與其能隙大小成反比;即具有最大能隙之光吸收層4的掩埋式電極太陽能電池,其光吸收層4會具有最小的面積,而分別製得多個如圖1所示的掩埋式電極太陽能電池201、202、203。接著,再將具有不同能隙的掩埋式電極太陽能電池201、202、203以能隙自低 至高,由下向上堆疊黏接,即可得到如圖4所示的太陽能電池模組。也就是說,圖4中該掩埋式電極太陽能電池201具有最低吸光能隙,所以光吸收層4的面積最大;而該掩埋式電極太陽能電池203具有最高吸光能隙,所以,位在最上層,並具有最小面積的光吸收層4。 Refer to Figures 1, 4, when using multiple masks as shown in Figure 1. When the buried electrode solar cells are stacked, the semiconductor material having different absorption energy gaps may be selected by the foregoing manufacturing method, and the light absorbing layer 4 is controlled according to the size of the energy gap of the light absorbing layer 4 to be formed. The size of the light absorbing layer 4 is inversely proportional to the size of the energy gap; that is, the buried electrode solar cell having the light absorbing layer 4 having the largest energy gap, the light absorbing layer 4 has the smallest area, and is separately obtained. A plurality of buried electrode solar cells 201, 202, 203 as shown in FIG. Then, the buried electrode solar cells 201, 202, and 203 having different energy gaps are further low in energy gap. At the highest level, the solar cell module shown in FIG. 4 can be obtained by stacking and bonding from bottom to top. That is, in FIG. 4, the buried electrode solar cell 201 has the lowest light absorption energy gap, so the area of the light absorbing layer 4 is the largest; and the buried electrode solar cell 203 has the highest light absorption energy gap, so it is located at the uppermost layer. And having the smallest area of the light absorbing layer 4.

該等掩埋式電極太陽能電池201、202、203的 連接方式,則是利用絕緣的光學膠300將位於上方的掩埋式電極太陽能電池203、202的透光基板2與下方的掩埋式電極太陽能電池202、201的抗反射層7的頂面黏接,並令下方的該掩埋式電極太陽能電池202、201的第一、二電極61、62裸露於外,不被遮蓋。也就是說,當兩個掩埋式電極太陽能電池相堆疊時,光學膠300僅會蓋覆下方之該抗反射層7,而會讓該第一、二電極61、62裸露於外,因此,該等掩埋式電極太陽能電池201、202、203經由光學膠300黏接後,即可利用該第一、二電極61、62裸露於外之該第一、二接觸面611、621彼此串聯電連接,而得到如圖4所示的多接面太陽能電池模組。 The buried electrode solar cells 201, 202, 203 In the connection method, the transparent substrate 2 of the buried electrode solar cells 203 and 202 located above is bonded to the top surface of the anti-reflection layer 7 of the buried electrode solar cells 202 and 201 by the insulating optical adhesive 300. The first and second electrodes 61 and 62 of the buried electrode solar cells 202 and 201 below are exposed to the outside and are not covered. That is, when two buried electrode solar cells are stacked, the optical adhesive 300 only covers the anti-reflection layer 7 underneath, and the first and second electrodes 61, 62 are exposed to the outside. After the buried electrode solar cells 201, 202, and 203 are bonded via the optical adhesive 300, the first and second contact surfaces 611 and 621 exposed by the first and second electrodes 61 and 62 can be electrically connected to each other in series. A multi-junction solar cell module as shown in FIG. 4 is obtained.

要說明的是,為了讓該等掩埋式電極太陽能電 池之間電連接的佈線更簡潔易操作,用於相互疊置的掩埋式電極太陽能電池於堆疊時,可控制令上、下位置的該掩埋式電極太陽能電池201、202、203的第一、二電極61、62的方向為彼此交錯,而可更便於對外電連接。此外,要再說明的是,當要將多個多接面太陽能模組並用時,也只要將該等多接面太陽能模組經由裸露於外的該等電極單元 6並聯或串聯即可,由於串聯或並聯的電連接方式為業界所知悉,因此,不再多加說明。 It should be noted that in order to make these buried electrodes solar power The wiring of the electrical connection between the pools is simpler and easier to operate, and the buried electrode solar cells stacked on top of each other can control the first and second of the buried electrode solar cells 201, 202, 203 in the upper and lower positions. The directions of the electrodes 61, 62 are staggered with each other, and the external electrical connection can be more facilitated. In addition, it is to be noted that when multiple multi-junction solar modules are to be used together, the multi-junction solar modules are also exposed through the exposed electrode units. 6 parallel or series connection, because the electrical connection in series or parallel is known to the industry, therefore, no more explanation.

綜上所述,本發明利用電極結構設計,將第一 電極61(即頂電極)形成於該光吸收層4的外側,因此,不會有習知形成於光吸收單元頂面的電極遮蔽太陽光的問題;此外,本發明該掩埋式電極太陽能電池的透光基板2為可透光,因此可雙面吸光,而不受限於入射光方向,且可用於堆疊而製備多接面太陽能電池模組,因為利用堆疊方式形成多接面太陽能電池模組,不須在單一太陽能電池中成長具有多種吸收能隙的半導體膜層,因此,製程簡便容易控制;且藉由讓具有較低能隙的掩埋式電極太陽能電池位於下方且具有較大的吸光面積,因此,可利用吸光面積的調整,控制每一個掩埋式電極太陽能電池產生的電流,讓該等掩埋式電極太陽能電池於堆疊後照光產生的電流可實質相同,增加該等掩埋式電極太陽能電池的電流匹配度,而可有效的利用該等掩埋式電極太陽能電池產生的電流,故確實能達成本發明之目的。 In summary, the present invention utilizes electrode structure design and will be the first The electrode 61 (ie, the top electrode) is formed on the outer side of the light absorbing layer 4, and therefore, there is no known problem that the electrode formed on the top surface of the light absorbing unit shields sunlight; further, the buried electrode solar cell of the present invention The light-transmitting substrate 2 is permeable to light, so it can absorb light on both sides without being limited by the incident light direction, and can be used for stacking to prepare a multi-junction solar cell module, because the multi-junction solar cell module is formed by stacking. It is not necessary to grow a semiconductor film layer having a plurality of absorption gaps in a single solar cell, so that the process is simple and easy to control; and by having a buried electrode solar cell with a lower energy gap located below and having a larger light absorption area Therefore, the current generated by each buried electrode solar cell can be controlled by adjusting the light absorption area, so that the current generated by the buried electrode solar cells after stacking can be substantially the same, and the buried electrode solar cells are increased. The current matching degree can effectively utilize the current generated by the buried electrode solar cells, so the invention can be achieved Purpose.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.

2‧‧‧透光基板 2‧‧‧Transparent substrate

3‧‧‧絕緣層 3‧‧‧Insulation

31‧‧‧基面 31‧‧‧ base

4‧‧‧光吸收層 4‧‧‧Light absorbing layer

41‧‧‧第一表面 41‧‧‧ first surface

42‧‧‧第二表面 42‧‧‧ second surface

5‧‧‧接觸單元 5‧‧‧Contact unit

51‧‧‧第一型接觸部 51‧‧‧Type 1 contact

52‧‧‧第二型接觸部 52‧‧‧Second type contact

6‧‧‧電極單元 6‧‧‧Electrode unit

61‧‧‧第一電極 61‧‧‧First electrode

611‧‧‧第一接觸面 611‧‧‧ first contact surface

62‧‧‧第二電極 62‧‧‧second electrode

621‧‧‧第二接觸面 621‧‧‧second contact surface

7‧‧‧抗反射層 7‧‧‧Anti-reflective layer

Claims (10)

一種掩埋式電極太陽能電池,包含:一透光基板;一絕緣層,與該透光基板的其中一表面黏接,具有一遠離該透光基板的基面;一光吸收層,自該絕緣層的基面向下嵌設於該絕緣層中,具有一鄰近該透光基板的第二表面,及一遠離該透光基板的第一表面,且該第一表面不被該絕緣層遮覆;一接觸單元,具有分別形成於該第一表面及該第二表面的一第一型接觸部,及一第二型接觸部,其中,該第一、二型接觸部是分別由第一型摻雜及第二型摻雜的半導體材料構成;及一電極單元,具有一第一電極及一第二電極,該第一電極自該基面向下嵌設於該絕緣層中,與該光吸收層彼此間隔設置並具有一裸露於該基面的第一接觸面,且該第一型接觸部同時與該第一接觸面及該第一表面連接,該第二電極自該第二接觸部與該光吸收層不相接觸的朝向該絕緣層的基面延伸,具有一外露於該基面的第二接觸面。 A buried electrode solar cell comprises: a transparent substrate; an insulating layer bonded to one surface of the transparent substrate, having a base surface away from the transparent substrate; and a light absorbing layer from the insulating layer The base surface is embedded in the insulating layer, has a second surface adjacent to the transparent substrate, and a first surface away from the transparent substrate, and the first surface is not covered by the insulating layer; The contact unit has a first type contact portion formed on the first surface and the second surface, and a second type contact portion, wherein the first type and the second type contact portion are respectively doped by the first type And a second type of doped semiconductor material; and an electrode unit having a first electrode and a second electrode, the first electrode is embedded in the insulating layer from the base surface, and the light absorbing layer is mutually Intersectably having a first contact surface exposed to the base surface, and the first type contact portion is simultaneously connected to the first contact surface and the first surface, the second electrode from the second contact portion and the light a base surface facing the insulating layer that is not in contact with the absorbing layer Extension, having a second contact surface exposed from the base surface. 如請求項1所述的掩埋式電極太陽能電池,還包括形成於該第一、二表面的至少其中之一表面的一抗反射層。 The buried electrode solar cell of claim 1, further comprising an anti-reflection layer formed on at least one of the surfaces of the first and second surfaces. 如請求項1所述的掩埋式電極太陽能電池,其中,該第 一型摻雜為n型摻雜,該第二型摻雜為p型摻雜。 The buried electrode solar cell according to claim 1, wherein the first One type of doping is an n-type doping, and the second type of doping is a p-type doping. 一種掩埋式電極太陽能電池的製作方法,包含:一半導體磊晶步驟,自一暫時基板表面依序向上沉積形成一第一型半導體層、一光吸收層,及一第二型半導體層,且該光吸收層具有分別與該第一、二半導體層連接的第一、二表面;一第一蝕刻步驟,自該第二型半導體層的部份表面向下蝕刻至該第一型半導體層露出,再將該第二型半導體層的部分蝕刻移除,令該光吸收層的第二表面露出,且殘留於該第二表面的第二型半導體層形成一第二型接觸部;一暫時結構形成步驟,於該第一型半導體層露出之表面形成與該光吸收層彼此間隔的一第一電極,及一第二電極,並讓該第二電極與該第二型接觸部連接,形成一暫時結構;一基板置換步驟,利用一透光的絕緣膠將該暫時結構以遠離該暫時基板的頂面與一透光基板相黏接,接著,移除該暫時基板,令該第一型半導體層遠離該透光基板的表面露出;及一第二蝕刻步驟,蝕刻移除部分的該第一型半導導層,並讓殘留於該第一表面的第一型半導體層形成一第一型接觸部,且該第一型接觸部為同時接觸該光吸收層與該第一電極。 A method for fabricating a buried electrode solar cell, comprising: a semiconductor epitaxial step of sequentially depositing a first type semiconductor layer, a light absorbing layer, and a second type semiconductor layer from a surface of a temporary substrate; The light absorbing layer has first and second surfaces respectively connected to the first and second semiconductor layers; a first etching step is performed to etch away from a portion of the surface of the second semiconductor layer to expose the first semiconductor layer, And partially removing the second semiconductor layer to expose the second surface of the light absorbing layer, and the second type semiconductor layer remaining on the second surface forms a second type contact portion; a temporary structure is formed a step of forming a first electrode spaced apart from the light absorbing layer and a second electrode on the exposed surface of the first type semiconductor layer, and connecting the second electrode to the second type contact portion to form a temporary a substrate replacement step of bonding the temporary structure to a transparent substrate away from the top surface of the temporary substrate by using a transparent insulating adhesive, and then removing the temporary substrate to make the first The semiconductor layer is exposed away from the surface of the transparent substrate; and a second etching step is performed to etch away the portion of the first type semi-conductive layer and to form a first type of semiconductor layer remaining on the first surface a contact portion, and the first type contact portion contacts the light absorbing layer and the first electrode at the same time. 如請求項4所述的掩埋式電極太陽能電池的製作方法, 其中,該暫時結構形成步驟還進一步於該第二表面形成一抗反射層。 A method of fabricating a buried electrode solar cell according to claim 4, The temporary structure forming step further forms an anti-reflection layer on the second surface. 如請求項4所述的掩埋式電極太陽能電池的製作方法,其中,該暫時結構形成步驟是先於該光吸收層鄰近該第二型接觸部的側周面形成一絕緣層,該第二電極是自該第一型半導體層露出之表面沿著該絕緣層而與該第二型接觸部連接。 The method of fabricating a buried electrode solar cell according to claim 4, wherein the temporary structure forming step is to form an insulating layer adjacent to a side peripheral surface of the light absorbing layer adjacent to the second type contact portion, the second electrode A surface exposed from the first type semiconductor layer is connected to the second type contact portion along the insulating layer. 如請求項4所述的掩埋式電極太陽能電池的製作方法,其中,該第一型半導體層為n型摻雜的半導體材料構成,該第二型半導體層為p型摻雜的半導體材料構成。 The method of fabricating a buried electrode solar cell according to claim 4, wherein the first type semiconductor layer is made of an n-type doped semiconductor material, and the second type semiconductor layer is made of a p-type doped semiconductor material. 如請求項4所述的掩埋式電極太陽能電池的製作方法,還包含一實施於該第二蝕刻步驟之後的抗反射層形成步驟,於該第一表面形成一抗反射層。 The method for fabricating a buried electrode solar cell according to claim 4, further comprising an antireflection layer forming step performed after the second etching step, forming an antireflection layer on the first surface. 一種多接面太陽能電池模組,是由多個如請求項1所述的掩埋式電極太陽能電池,堆疊串聯而得,且任一個位於下方的掩埋式電極太陽能電池的光吸收層的表面積會大於堆疊於其上方的掩埋式電極太陽能電池的透光基板的表面積。 A multi-junction solar cell module is obtained by stacking a plurality of buried electrode solar cells according to claim 1 in series, and the surface area of the light absorbing layer of any of the buried electrode solar cells located below is greater than The surface area of the light transmissive substrate of the buried electrode solar cell stacked above it. 如請求項9所述的多接面太陽能電池模組,其中,該等掩埋式電極太陽能電池的光吸收層具有至少兩種不同能隙。 The multi-junction solar cell module of claim 9, wherein the light absorbing layers of the buried electrode solar cells have at least two different energy gaps.
TW104103739A 2015-02-04 2015-02-04 Buried electrode solar cells, production methods, and multi - face Solar module TWI543383B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104103739A TWI543383B (en) 2015-02-04 2015-02-04 Buried electrode solar cells, production methods, and multi - face Solar module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104103739A TWI543383B (en) 2015-02-04 2015-02-04 Buried electrode solar cells, production methods, and multi - face Solar module

Publications (2)

Publication Number Publication Date
TWI543383B true TWI543383B (en) 2016-07-21
TW201630202A TW201630202A (en) 2016-08-16

Family

ID=56997228

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104103739A TWI543383B (en) 2015-02-04 2015-02-04 Buried electrode solar cells, production methods, and multi - face Solar module

Country Status (1)

Country Link
TW (1) TWI543383B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808860B (en) * 2022-08-05 2023-07-11 位速科技股份有限公司 Thin film photovoltaic structure and method of making the same

Also Published As

Publication number Publication date
TW201630202A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
US11152527B2 (en) Hybrid tandem solar cell
JP6087146B2 (en) Solar cell and manufacturing method thereof
US20100059111A1 (en) Solar Cell Module having Multiple Module Layers and Manufacturing Method Thereof
WO2017217219A1 (en) Solar cell and production method therefor, and solar cell module
US10651327B2 (en) Thin film photovoltaic cell with back contacts
TW201725746A (en) Tandem solar cell and method for manufacturing thereof, and solar panel
US20130125964A1 (en) Solar cell and manufacturing method thereof
US20140209151A1 (en) Solar cell module
KR20140071940A (en) Multi-junction multi-tab photovoltaic devices
US20120060890A1 (en) Solar cell module and method for manufacturing the same
US20140083486A1 (en) Solar cell and method for manufacturing same
KR20110080663A (en) Solar cell apparatus
TWI543383B (en) Buried electrode solar cells, production methods, and multi - face Solar module
JP4568531B2 (en) Integrated solar cell and method of manufacturing integrated solar cell
KR101502208B1 (en) Solar cell array and thin-film solar module and production method therefor
KR20120119807A (en) Solar cell
KR101643871B1 (en) Solar cell and manufacturing method thereof
TW201442260A (en) Solar cell and manufacturing method thereof
TWI606597B (en) Double-sided light-absorbing solar cells, manufacturing methods, and multiple junctions too Yangon battery module
KR101349847B1 (en) Solar Cell Package including By-Pass Diode
KR20110128616A (en) Tandem solar cell and method for fabricating the same
JP2630657B2 (en) Manufacturing method of integrated multilayer amorphous solar cell
JP6013198B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
US20240038911A1 (en) Flip-chip solar cell
KR102396820B1 (en) Solar cell module and method of fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees