TWI528095B - Electrochromic device and method of manufacturing the same - Google Patents

Electrochromic device and method of manufacturing the same Download PDF

Info

Publication number
TWI528095B
TWI528095B TW103111132A TW103111132A TWI528095B TW I528095 B TWI528095 B TW I528095B TW 103111132 A TW103111132 A TW 103111132A TW 103111132 A TW103111132 A TW 103111132A TW I528095 B TWI528095 B TW I528095B
Authority
TW
Taiwan
Prior art keywords
layer
transparent conductive
conductive layer
electrochromic
thickness
Prior art date
Application number
TW103111132A
Other languages
Chinese (zh)
Other versions
TW201537274A (en
Inventor
朱建勳
吳宏偉
黃肇瑞
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW103111132A priority Critical patent/TWI528095B/en
Publication of TW201537274A publication Critical patent/TW201537274A/en
Application granted granted Critical
Publication of TWI528095B publication Critical patent/TWI528095B/en

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

電致變色元件及其製造方法 Electrochromic element and method of manufacturing same

本發明係關於一種電致變色元件及其製造方法,更精確的說,係關於一種利用藉由奈米結構之透明電極提升電致變色元件去色及著色反應速率的電致變色元件,以及該電致變色元件的製造方法。 The present invention relates to an electrochromic element and a method of manufacturing the same, and more particularly to an electrochromic element that utilizes a transparent electrode of a nanostructure to enhance the coloration and color reaction rate of an electrochromic element, and the electrical A method of producing a color-changing element.

有鑑於目前環保與綠能科技意識抬頭,除了發展新興能源之外,節約能源也是重要的課題之一。節能玻璃所運用之電致變色是相當重要的元件之一。電致變色玻璃之變色原理,是當外加電壓於變色玻璃兩端時,電控變色玻璃內的氧化鎢產生化學變化,而改變原有電控變色玻璃顏色。 In view of the current awareness of environmental protection and green energy technology, in addition to the development of new energy sources, energy conservation is also an important issue. Electrochromism used in energy-saving glass is one of the most important components. The principle of color change of electrochromic glass is that when a voltage is applied to both ends of the color changing glass, the tungsten oxide in the electrochromic glass changes chemically, and the color of the original electronically controlled color changing glass is changed.

電致變色元件具有較高的控制性,只需要給予微小的電壓便能使其產生顏色上的改變,同時具有有長時間之記憶效應,所以能源消耗量低,能達到有效節約能源的目的。 The electrochromic element has high controllability, and only needs to give a small voltage to make a color change, and has a long-term memory effect, so the energy consumption is low, and the energy saving effect can be achieved.

電致變色元件之著色及去色反應速率與電極之導電特性息息相關,目前多以氧化銦錫(Indium Tin Oxide,ITO)來製作透明電極,以符合電致變色元件需要高透光率的需求。然而,ITO之導電特性隨透光率提高而下降,因此亟需一種具有高透光率及高導電性的透 明電極,來提高電致變色元件之著色及去色反應速率。 The coloring and color-removing reaction rate of electrochromic elements are closely related to the conductive properties of the electrodes. Currently, indium tin oxide (ITO) is used to make transparent electrodes to meet the requirement of high light transmittance of electrochromic elements. However, the conductive properties of ITO decrease with the increase of light transmittance, so there is a need for a high transmittance and high conductivity. A bright electrode to increase the coloration and decolorization reaction rate of the electrochromic element.

有鑒於上述問題,本發明提供一種電致變色元件,具有奈米等級之複數個島狀結構之透明電極,以提升電致變色元件去色及著色反應速率。 In view of the above problems, the present invention provides an electrochromic element having a plurality of island-shaped transparent electrodes of a nanometer grade to enhance the coloration and color reaction rate of the electrochromic element.

根據本發明之一態樣,提供一種電致變色元件,其包含基板、第一透明電極層,係設置在基板上,且包含設置在基板上之第一透明導電層、設置在第一透明導電層上且具有複數個第一島狀結構之第一金屬層、及設置在第一金屬層上之第二透明導電層。電致變色元件還包含設置在第一透明電極層上之電致變色層、設置在電致變色層上且提供離子給予電致變色層之電解質層、以及設置在電解質層上之第二透明電極層;其中,電致變色層接受電解質層提供之離子後變色。 According to an aspect of the present invention, an electrochromic element is provided, comprising a substrate, a first transparent electrode layer disposed on the substrate, and comprising a first transparent conductive layer disposed on the substrate, disposed at the first transparent conductive a first metal layer having a plurality of first island-like structures on the layer and a second transparent conductive layer disposed on the first metal layer. The electrochromic element further includes an electrochromic layer disposed on the first transparent electrode layer, an electrolyte layer disposed on the electrochromic layer and providing ions to the electrochromic layer, and a second transparent electrode disposed on the electrolyte layer a layer; wherein the electrochromic layer receives the ions provided by the electrolyte layer and then discolors.

較佳地,電致變色層可包含選自由鎢的氧化物、鉬的氧化物、鉻的氧化物、釩的氧化物、鈦的氧化物、及鎳的氧化物所組成之群組之過渡金屬氧化物,以及電解質層可包含鉭的氧化物。 Preferably, the electrochromic layer may comprise a transition metal selected from the group consisting of oxides of tungsten, oxides of molybdenum, oxides of chromium, oxides of vanadium, oxides of titanium, and oxides of nickel. The oxide, and the electrolyte layer may comprise an oxide of cerium.

較佳地,第二透明電極層可包含設置在電解質層上第三透明導電層,設置在第三透明導電層上且具有複數個第二島狀結構之第二金屬層,以及設置在第二金屬層上之第四透明導電層。 Preferably, the second transparent electrode layer may include a third transparent conductive layer disposed on the electrolyte layer, a second metal layer disposed on the third transparent conductive layer and having a plurality of second island structures, and being disposed in the second A fourth transparent conductive layer on the metal layer.

較佳地,第一透明導電層、第二透明導電層、第三透明導電層、及第四透明導電層可以氧化鋅摻雜鋁(Aluminum-doped zinc oxide:AZO)製成,以及第一金屬層及第二金屬層可以銀製成。 Preferably, the first transparent conductive layer, the second transparent conductive layer, the third transparent conductive layer, and the fourth transparent conductive layer are made of aluminum-doped zinc oxide (AZO), and the first metal The layer and the second metal layer may be made of silver.

較佳地,第一透明導電層、第二透明導電層、第三透明導電層、及第四透明導電層可具有在20~40nm之範圍內之厚度,以及第一金屬層及第二金屬層可具有在5~15nm之範圍內之厚度。 Preferably, the first transparent conductive layer, the second transparent conductive layer, the third transparent conductive layer, and the fourth transparent conductive layer may have a thickness in a range of 20 to 40 nm, and the first metal layer and the second metal layer It may have a thickness in the range of 5 to 15 nm.

根據本發明之另一態樣,提供一種電致變色元件之製造方法,其包含提供基板,在基板上形成第一透明電極層,其中包含在基板上形成第一透明導電層、在第一透明導電層上形成具有複數個第一島狀結構之第一金屬層、及在第一金屬層上形成第二透明導電層。電致變色元件之製造方法還包含在第一透明電極層上形成電致變色層,在電致變色層上形成可提供離子給予電致變色層之電解質層,以及在電解質層上形成第二透明電極層,其中,電致變色層可接受電解質層提供之離子後變色。 According to another aspect of the present invention, a method of fabricating an electrochromic element, comprising providing a substrate, forming a first transparent electrode layer on the substrate, wherein the first transparent conductive layer is formed on the substrate, in the first transparent A first metal layer having a plurality of first island structures is formed on the conductive layer, and a second transparent conductive layer is formed on the first metal layer. The method of manufacturing an electrochromic element further comprises forming an electrochromic layer on the first transparent electrode layer, forming an electrolyte layer on the electrochromic layer that can provide ions to the electrochromic layer, and forming a second transparent layer on the electrolyte layer An electrode layer, wherein the electrochromic layer can accept discoloration after ion provided by the electrolyte layer.

較佳地,電致變色層可包含包含選自由鎢的氧化物、鉬的氧化物、鉻的氧化物、釩的氧化物、鈦的氧化物、及鎳的氧化物所組成之群組之過渡金屬氧化物,以及電解質層可包含鉭的氧化物。 Preferably, the electrochromic layer may comprise a transition comprising a group selected from the group consisting of oxides of tungsten, oxides of molybdenum, oxides of chromium, oxides of vanadium, oxides of titanium, and oxides of nickel. The metal oxide, as well as the electrolyte layer, may comprise an oxide of cerium.

較佳地,在形成第二透明電極層之步驟中可包含在電解質上形成第三透明導電層、在第三透明導電層上形成具有複數個第二島狀結構之第二金屬層、以及在第二金屬層上形成第四透明導電層。 Preferably, the step of forming the second transparent electrode layer may include forming a third transparent conductive layer on the electrolyte, forming a second metal layer having a plurality of second island structures on the third transparent conductive layer, and A fourth transparent conductive layer is formed on the second metal layer.

較佳地,第一透明導電層、第二透明導電層、第三透明導電層、及第四透明導電層可以氧化鋅鋁(AZO)製成,且第一金屬層及第二金屬層可以銀製成。 Preferably, the first transparent conductive layer, the second transparent conductive layer, the third transparent conductive layer, and the fourth transparent conductive layer may be made of zinc aluminide (AZO), and the first metal layer and the second metal layer may be made of silver. to make.

較佳地,第一透明導電層、第二透明導電層、第三透明導電層、及第四透明導電層可具有在20~40nm之範圍內之厚度,以及第一金屬層及第二金屬層可具有在5~15nm之範圍內之厚度。 Preferably, the first transparent conductive layer, the second transparent conductive layer, the third transparent conductive layer, and the fourth transparent conductive layer may have a thickness in a range of 20 to 40 nm, and the first metal layer and the second metal layer It may have a thickness in the range of 5 to 15 nm.

承上所述,本發明所揭露之電致變色元件及其製造方法可具有一或多個下述優點: As described above, the electrochromic element and method of manufacturing the same disclosed herein can have one or more of the following advantages:

(1)此電致變色元件及其製造方法,使用奈米等級之複數個島狀結構之金屬層,相較於先前技術所使用以ITO作為電極之電致變色 元件之技術,提供了高導電性及高透光度之透明電極。 (1) The electrochromic element and the method of manufacturing the same, using a metal layer of a plurality of island-like structures of a nanometer grade, electrochromic using ITO as an electrode compared to the prior art The technology of the component provides a transparent electrode with high conductivity and high transparency.

(2)本發明實施例之電致變色元件,可藉由高導電性及高透光度之透明電極,進一步提高了電致變色元件之著色及去色反應速率。 (2) The electrochromic element of the embodiment of the present invention can further improve the coloring and decoloring reaction rate of the electrochromic element by the transparent electrode having high conductivity and high transmittance.

100‧‧‧電致變色元件 100‧‧‧Electrochromic components

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧第一透明電極層 120‧‧‧First transparent electrode layer

121‧‧‧第一透明導電層 121‧‧‧First transparent conductive layer

122‧‧‧第一金屬層 122‧‧‧First metal layer

123‧‧‧第二透明導電層 123‧‧‧Second transparent conductive layer

130‧‧‧電致變色層 130‧‧‧Electrochromic layer

140‧‧‧電解質層 140‧‧‧ electrolyte layer

150‧‧‧第二透明電極層 150‧‧‧Second transparent electrode layer

151‧‧‧第三透明導電層 151‧‧‧ Third transparent conductive layer

152‧‧‧第二金屬層 152‧‧‧Second metal layer

153‧‧‧第四透明導電層 153‧‧‧4th transparent conductive layer

第1圖係為本發明之一種電致變色元件100之結構示意圖。 1 is a schematic view showing the structure of an electrochromic element 100 of the present invention.

第2圖係為根據本發明實施例的電致變色元件之第一透明電極層之局部剖視圖。 2 is a partial cross-sectional view showing a first transparent electrode layer of an electrochromic element according to an embodiment of the present invention.

第3(a)圖至第3(e)圖係為第一透明電極層在Ag製成之第一金屬層分別為5、8、10、12、及15nm時,其原子力顯微鏡(Atomic Force Microscopic,AFM)測量圖。 3(a) to 3(e) are the Atomic Force Microscopic of the first transparent electrode layer when the first metal layers made of Ag are 5, 8, 10, 12, and 15 nm, respectively. , AFM) measurement chart.

第4(a)圖至4(e)係為根據本發明實施例之以Ag製成之第一金屬層122之厚度在5、8、10、12、15nm時,其場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope,FE-SEM)之平面俯視圖。 4(a) to 4(e) are field emission scanning electron microscopes in which the thickness of the first metal layer 122 made of Ag is 5, 8, 10, 12, 15 nm according to an embodiment of the present invention. (Field Emission Scanning Electron Microscope, FE-SEM) planar top view.

第5圖係為示出根據本發明實施例之第一透明電極層在Ag製成之第一金屬層為0~15nm時,電阻率、遷移率及載子濃度的關係圖。 Fig. 5 is a graph showing the relationship between resistivity, mobility, and carrier concentration of the first transparent electrode layer in the case where the first metal layer made of Ag is 0 to 15 nm according to an embodiment of the present invention.

第6圖係為示出根據本發明實施例之第一透明電極層在Ag製成之第一金屬層厚度與穿透率的變化情形。 Fig. 6 is a view showing a change in thickness and transmittance of a first metal layer made of Ag in a first transparent electrode layer according to an embodiment of the present invention.

第7圖係為根據本發明之另一實施例之第二透明電極層之局部剖視圖。 Figure 7 is a partial cross-sectional view showing a second transparent electrode layer in accordance with another embodiment of the present invention.

第8圖係為根據本發明之再一實施例之電致變色元件之製造方法的流程圖。 Figure 8 is a flow chart showing a method of manufacturing an electrochromic element according to still another embodiment of the present invention.

為利 貴審查員瞭解本發明之技術特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。 The technical features, contents, and advantages of the present invention, as well as the advantages thereof, can be understood by the present inventors, and the present invention will be described in detail with reference to the accompanying drawings. The subject matter is only for the purpose of illustration and description. It is not intended to be a true proportion and precise configuration after the implementation of the present invention. Therefore, the scope and configuration relationship of the attached drawings should not be interpreted or limited. First described.

現請參考第1圖,其顯示為本發明之一種電致變色元件100之結構示意圖。電致變色裝置100主要包含:基板110、第一透明電極層120、電致變色層130、電解質層140、以及第二透明電極層150。其中,第一透明電極層120被覆於基板110之表面,電致變色層130被覆於第一透明電極層120之表面,電解質層140被覆於電致變色層130之表面,第二透明電極層150被覆於電解質層140之表面。 Referring now to Figure 1, there is shown a schematic structural view of an electrochromic element 100 of the present invention. The electrochromic device 100 mainly includes a substrate 110, a first transparent electrode layer 120, an electrochromic layer 130, an electrolyte layer 140, and a second transparent electrode layer 150. The first transparent electrode layer 120 is coated on the surface of the substrate 110, the electrochromic layer 130 is coated on the surface of the first transparent electrode layer 120, the electrolyte layer 140 is coated on the surface of the electrochromic layer 130, and the second transparent electrode layer 150 is coated. The surface of the electrolyte layer 140 is coated.

基板110可使用如玻璃、塑膠基板之透明材料,但不限於,或可使用反射材料製造而成,共同之特徵在於能提供電致變色元件強度,且保護元件不受外在的物理性破壞。而使用透明或反射材料的差別在於,使用透明材料製成的電致變色元件,可應用在調節室內陽光入射量之智慧型窗戶、可用在建築物、車子內的頂窗、圖案顯示器、數字顯示器、透明筆記型電腦螢幕等;使用反射材料製成的電致變色元件則可應用在後視鏡,可以通過電子感應系統,根據外來光的強度調節反射光的強度,達到防眩目的作用,使駕駛更加安全。 The substrate 110 may use a transparent material such as a glass or a plastic substrate, but is not limited thereto, or may be fabricated using a reflective material, and is common in that it can provide strength of the electrochromic element and protect the element from external physical damage. The difference between using transparent or reflective materials is that electrochromic elements made of transparent materials can be applied to smart windows that adjust the amount of sunlight incident in the room, roof windows that can be used in buildings, cars, pattern displays, digital displays. , transparent notebook computer screen, etc.; electrochromic components made of reflective materials can be applied to the rearview mirror, and the intensity of the reflected light can be adjusted according to the intensity of the external light through the electronic induction system to achieve the anti-glare effect. Driving is safer.

根據本發明的實施例,電致變色層130係為設置以提供顏色變化的主要材料,其使用WO3製成,但不限於,也可以使用選自MoO3、Cr2O3、V2O5、TiO2、及NiOx所組成群組之過渡金屬氧化物。 值得一提的是,上述材料又可歸類成下列三種著色方式,(1)還原態著色材料(Cathodic coloration material):代表性材料如WO3、MoO3、及TiO2;(2)氧化態著色材料(Anodic coloration material):代表性材料如NiOx;(3)還原態/氧化態均著色材料(Cathodic/Anodic coloration material):代表性材料如V2O5。在本發明的實施例中,使用還原態著色材料WO3之電致變色材料。當電致變色層130具有在350~450nm之範圍內之厚度,電致變色元件100具有較佳之性能表現,當電致變色層130具有400nm之厚度時,電致變色元件100具有更佳之性能表現。 According to an embodiment of the present invention, the electrochromic layer 130 is a main material provided to provide a color change, which is made using WO 3 , but is not limited thereto, and may be selected from MoO 3 , Cr 2 O 3 , V 2 O. 5. Transition metal oxides of the group consisting of TiO 2 and NiO x . It is worth mentioning that the above materials can be classified into the following three coloring methods: (1) Cathodic coloring material: representative materials such as WO 3 , MoO 3 , and TiO 2 ; (2) oxidation state Anodic coloration material: representative material such as NiOx; (3) Cathodic/Anodic coloration material: representative material such as V 2 O 5 . In an embodiment of the present invention, a reduced state of the coloring material 3 is electrically WO electrochromic material. When the electrochromic layer 130 has a thickness in the range of 350 to 450 nm, the electrochromic element 100 has better performance. When the electrochromic layer 130 has a thickness of 400 nm, the electrochromic element 100 has better performance. .

電解質層140主要提供離子給予電致變色層130。電解層140可為液態、膠態或固態電解質(Solid electrolyte),其中固態電解質又分為無機材料和有機材料兩種選擇。而良好的電解質需要提供元件快速的響應時間、適度的穩定性及可逆性。故電解質須具備高離子導電性、陽離子在電解質中須有高的擴散係數、使用溫度範圍寬、對變色層之化學穩定性高、分解電位高等特性。由於氧化金屬介電層對環境的耐候性(如溫度、溼度、光裂解等)較佳。根據本發明的實施例,使用氧化鉭(Ta2O5)作為電解質層,但不限於,也可使用其他材料。本發明使用氧化鉭(Ta2O5),其具有離子導電性佳及高穿透度等特性,並且可解決傳統使用液態電解質的電致變色元件有漏液、裂解、及封裝等問題,進而提升元件之壽命。當電解質層140具有在250~350nm之範圍內之厚度,電致變色元件100具有較佳之性能表現,當電解質層140具有300nm之厚度時,電致變色元件100具有更佳之性能表現。 The electrolyte layer 140 primarily provides ions to the electrochromic layer 130. The electrolytic layer 140 may be a liquid, colloidal or solid electrolyte, wherein the solid electrolyte is further divided into an inorganic material and an organic material. Good electrolytes need to provide fast response times, moderate stability and reversibility. Therefore, the electrolyte must have high ionic conductivity, a high diffusion coefficient of the cation in the electrolyte, a wide temperature range, high chemical stability to the color changing layer, and high decomposition potential. The weather resistance of the oxidized metal dielectric layer to the environment (such as temperature, humidity, photolysis, etc.) is preferred. According to an embodiment of the present invention, tantalum oxide (Ta 2 O 5 ) is used as the electrolyte layer, but not limited to, other materials may also be used. The invention uses cerium oxide (Ta 2 O 5 ), which has the characteristics of good ionic conductivity and high transparency, and can solve the problems of leakage, cracking, and encapsulation of the electrochromic element using the liquid electrolyte. Improve the life of the component. When the electrolyte layer 140 has a thickness in the range of 250 to 350 nm, the electrochromic element 100 has a better performance, and when the electrolyte layer 140 has a thickness of 300 nm, the electrochromic element 100 has better performance.

現將參考附圖詳細說明本發明實施例的電致變色元件的第一透明電極層120之構造。請參閱第2圖,係為根據本發明實施例的電致變色元件100之第一透明電極層120之局部剖視圖。如圖所示, 第一透明電極層120可包含第一透明導電層121、第一金屬層122、第二透明導電層123。為了製作出在可見光有極高穿透度及有極低電阻率的透明導電膜,並且進一步提升電致變色元件100之著色及去色反應速率,故使用此夾層結構。以下將進一步說明第一透明電極層120之構成細節。 The configuration of the first transparent electrode layer 120 of the electrochromic element of the embodiment of the present invention will now be described in detail with reference to the accompanying drawings. Referring to FIG. 2, a partial cross-sectional view of a first transparent electrode layer 120 of an electrochromic element 100 in accordance with an embodiment of the present invention. as the picture shows, The first transparent electrode layer 120 may include a first transparent conductive layer 121, a first metal layer 122, and a second transparent conductive layer 123. In order to produce a transparent conductive film having extremely high transmittance in visible light and having extremely low resistivity, and further improving the coloring and decoloring reaction rate of the electrochromic element 100, this sandwich structure is used. The details of the configuration of the first transparent electrode layer 120 will be further explained below.

如第2圖所示,第一透明電極層120係為一夾層結構,其提供電極的接觸與電流進出。其中,第一透明導電層121係設置在基板110之上,第一金屬層122係設置在第一透明導電層121之上,且第二透明導電層123係設置在第一金屬層122之上。其中,第一透明導電層121及第二透明導電層123可使用氧化鋅鋁(AZO)製造而成,並在夾層結構中作為抗反射層。第一金屬層122係由銀製成,但不限於,也可以其他具有高導電性之金屬製成。在第一金屬層122之表面上具有奈米等級之半連續島狀結構(未繪示於第2圖中,但會參考第3圖在以下詳細說明),從而提升第一金屬層122之光的穿透率,而不犧牲過多的導電率。當金屬層之膜厚小於10~15nm時,會形成島狀的非連續島狀,而當金屬層之膜厚約大於等於15nm時,會形成連續層狀結構;而此處之用語「半連續島狀結構」係指金屬層由「非連續島狀」過渡到「連續層狀」的臨界狀態。 As shown in Fig. 2, the first transparent electrode layer 120 is a sandwich structure which provides contact of electrodes and current in and out. The first transparent conductive layer 121 is disposed on the substrate 110, the first metal layer 122 is disposed on the first transparent conductive layer 121, and the second transparent conductive layer 123 is disposed on the first metal layer 122. . The first transparent conductive layer 121 and the second transparent conductive layer 123 can be made of aluminum zinc oxide (AZO) and serve as an anti-reflection layer in the sandwich structure. The first metal layer 122 is made of silver, but is not limited thereto, and may be made of other metals having high conductivity. A semi-continuous island-like structure having a nanometer grade on the surface of the first metal layer 122 (not shown in FIG. 2, but will be described in detail below with reference to FIG. 3), thereby lifting the light of the first metal layer 122 The penetration rate without sacrificing excessive conductivity. When the film thickness of the metal layer is less than 10-15 nm, an island-like discontinuous island shape is formed, and when the film thickness of the metal layer is about 15 nm or more, a continuous layered structure is formed; and the term "semi-continuously" “Island structure” refers to the critical state in which the metal layer transitions from “non-continuous island shape” to “continuous layer shape”.

請參考第3(a)圖至第3(e)圖,係為第一透明電極層120在Ag製成之第一金屬層122分別為5、8、10、12、及15nm時,其原子力顯微鏡(Atomic Force Microscopic,AFM)測量圖。AFM測量可觀察薄膜的表面粗糙度。如圖所示,可清楚的看到表面粗糙度會隨著Ag層厚度的增加而使表面粗糙度更平滑,這是歸咎於從Ag層為5、8nm是非連續的「島狀」結構,所以薄膜表面較為粗糙,接著過渡至Ag層為10、12nm的「半連續」結構,再轉變成15nm的「連續」結構, 使得多層薄膜整體的表面粗糙度更緻密與平滑。 Referring to FIGS. 3(a) to 3(e), the atomic force of the first transparent electrode layer 120 when the first metal layer 122 made of Ag is 5, 8, 10, 12, and 15 nm, respectively. Atomic Force Microscopic (AFM) measurement chart. The AFM measurement can observe the surface roughness of the film. As shown in the figure, it can be clearly seen that the surface roughness is smoother with the increase of the thickness of the Ag layer, which is attributed to the discontinuous "island" structure of 5, 8 nm from the Ag layer. The surface of the film is rough, and then transitions to a "semi-continuous" structure of 10, 12 nm in the Ag layer, which is then converted into a "continuous" structure of 15 nm. The surface roughness of the entire multilayer film is made denser and smoother.

請參閱第4(a)圖至4(e),係為根據本發明實施例之以Ag製成之第一金屬層122之厚度在5、8、10、12、15nm時,其場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope,FE-SEM)之平面俯視圖。如圖所示,當第一金屬層122之厚度在5~15nm之範圍內,會形成如圖中所示的奈米等級之島狀結構。 Please refer to FIGS. 4(a) to 4(e) for the field emission scanning of the first metal layer 122 made of Ag at 5, 8, 10, 12, and 15 nm according to an embodiment of the present invention. A plan view of a field Emission Scanning Electron Microscope (FE-SEM). As shown, when the thickness of the first metal layer 122 is in the range of 5 to 15 nm, an island-like structure of a nanometer scale as shown in the drawing is formed.

第5圖係為示出根據本發明實施例之第一透明電極層120在Ag製成之第一金屬層122為0~15nm時,電阻率、載子遷移率及載子濃度的關係圖。當Ag的厚度從5nm增加至15nm時,電阻率從7.06×10-4Ω-cm下降至3.8×10-5Ω-cm,這是由於Ag層會電子注入到AZO層,從Ag層為5nm非連續的「島狀」結構至Ag層為15nm的連續面所導致的,降低整體AZO/Ag/AZO多層結構的電阻率。在中間金屬Ag層為於8~10nm時,可以清楚觀察到電阻率明顯的下降。這是由於島狀的金屬彼此間無直接接觸,無法有效提供電子的傳輸路徑,必須在形成「半連續」的結構之後,才能使電阻率明顯的降低。電阻率的下降可以觀察到載子濃度和遷移率的變化。載子濃度會隨著中間Ag層厚度的增加而增加。一般AZO的載子濃度約為1021cm-3,而AZO/Ag/AZO之多層薄膜在Ag層厚度為15nm時,載子濃度增加至2.701×1022cm-3,大約增加了10級數。當AZO/Ag/AZO多層薄膜在Ag層厚度為15nm時,有最大的遷移率約為14.741cm2/V-s左右。 Fig. 5 is a graph showing the relationship between resistivity, carrier mobility, and carrier concentration of the first transparent electrode layer 120 according to an embodiment of the present invention when the first metal layer 122 made of Ag is 0 to 15 nm. When the thickness of Ag is increased from 5 nm to 15 nm, the resistivity decreases from 7.06 × 10 -4 Ω-cm to 3.8 × 10 -5 Ω-cm, because the Ag layer is electron-injected into the AZO layer, and the Ag layer is 5 nm. The discontinuous "island" structure to the Ag layer is a continuous surface of 15 nm, which reduces the resistivity of the overall AZO/Ag/AZO multilayer structure. When the intermediate metal Ag layer is 8 to 10 nm, a significant decrease in resistivity can be clearly observed. This is because the island-shaped metals do not have direct contact with each other, and the electron transport path cannot be effectively provided. It is necessary to form a "semi-continuous" structure to significantly reduce the resistivity. A decrease in resistivity can be observed as a change in carrier concentration and mobility. The carrier concentration increases as the thickness of the intermediate Ag layer increases. Generally, the concentration of AZO is about 10 21 cm -3 , and the thickness of the AZO/Ag/AZO multilayer film increases to 2.701 × 10 22 cm -3 when the thickness of the Ag layer is 15 nm, which is about 10 steps. . When the thickness of the Ag layer is 15 nm, the AZO/Ag/AZO multilayer film has a maximum mobility of about 14.741 cm 2 /Vs.

第6圖係示出根據本發明實施例之第一透明電極層120在Ag製成之第一金屬層122之厚度與穿透率的變化情形,首先當Ag層厚度為10nm時,在可見光(300nm~800nm)的透光度比Ag層厚 度為8nm以下金屬層厚度的透光度明顯較佳,這是由於極薄的金屬鍍膜所產生的非連續島狀結構,可以視為許多奈米級的顆粒,因此會因表面電漿子的量子化效應吸收特定範圍的能量,而隨著金屬奈米顆粒大小、形狀的變化,吸收的能量也會隨之增減或寬化。因此在可見光譜中所觀察到的穿透度下降,最主要是由於金屬銀顆粒的表面電漿子共振吸收所造成,而在金屬厚度到達10nm之後吸收效應隨之消失,推測金屬鍍膜已不再是島狀結構。值得一提的是,金屬鍍膜在由島狀結構過渡到連續層狀時,會有所謂「半連續」的過渡現象產生,在這個膜厚的區間雖然吸收仍隨膜厚逐漸增加,但由於島狀結構開始互相接續,使表面散射大量減少,因此穿透度反而會略微上升,因此當膜厚在10nm時,金屬鍍膜處於半連續的過渡型態。 6 is a view showing a change in thickness and transmittance of the first transparent electrode layer 120 in the first metal layer 122 made of Ag according to an embodiment of the present invention, first when the thickness of the Ag layer is 10 nm, in visible light ( 300nm~800nm) transmittance is thicker than Ag layer The transmittance of the metal layer thickness of 8 nm or less is obviously better, which is due to the discontinuous island-like structure produced by the extremely thin metal plating film, which can be regarded as many nano-sized particles, and thus is due to the surface plasmonics. The quantization effect absorbs a specific range of energy, and as the size and shape of the metal nanoparticles change, the absorbed energy also increases or decreases or broadens. Therefore, the decrease in the permeability observed in the visible spectrum is mainly caused by the resonance of the surface plasmon resonance of the metallic silver particles, and the absorption effect disappears after the thickness of the metal reaches 10 nm. It is speculated that the metal coating is no longer It is an island structure. It is worth mentioning that when the metal coating transitions from the island structure to the continuous layer, there is a so-called "semi-continuous" transition phenomenon. In this film thickness interval, although the absorption still increases with the film thickness, due to the island The structures begin to contiguous with each other, causing a large reduction in surface scattering, so the penetration will increase slightly, so when the film thickness is 10 nm, the metal coating is in a semi-continuous transition state.

綜上所述,當第一透明導電層121及第二透明導電層123具有在20~40nm之範圍內之厚度,且第一金屬層122具有在5~15nm之範圍內之厚度,第一透明電極層120具有較佳的導電性及透光度;當第一透明導電層121及第二透明導電層123具有30nm之厚度,且第一金屬層122具有10nm之厚度,第一透明電極層120具有更佳的導電性及透光度,但不限於,第一透明導電層121、第一金屬層122、第二透明導電層123之厚度可因需求不同而改變其厚度之配置。 In summary, when the first transparent conductive layer 121 and the second transparent conductive layer 123 have a thickness in the range of 20 to 40 nm, and the first metal layer 122 has a thickness in the range of 5 to 15 nm, the first transparent The electrode layer 120 has better conductivity and transmittance; when the first transparent conductive layer 121 and the second transparent conductive layer 123 have a thickness of 30 nm, and the first metal layer 122 has a thickness of 10 nm, the first transparent electrode layer 120 It has better conductivity and transmittance, but is not limited to, the thickness of the first transparent conductive layer 121, the first metal layer 122, and the second transparent conductive layer 123 may be changed depending on the requirements.

請復參考第1圖,第二透明電極層150係設置在電解質層140之上,可由氧化銦錫(ITO)之透明導電層形成,但不限於,也可使用其他透明導電材料製造而成。第二透明電極層150係在此作為電致變色元件100之頂部電極,提供變色過程電極的接觸與電流進出。 Referring to FIG. 1 , the second transparent electrode layer 150 is disposed on the electrolyte layer 140 and may be formed of a transparent conductive layer of indium tin oxide (ITO). However, it is not limited thereto, and may be made of other transparent conductive materials. The second transparent electrode layer 150 is here used as the top electrode of the electrochromic element 100 to provide contact and current in and out of the color changing process electrode.

現將參閱附圖說明根據本發明另一實施例之電致變色元件之範例。請參閱第1圖、第2圖、及第7圖所示,本發明的另一實施 例的電致變色元件具有與前一實施例相同之配置,故相同處不在此贅述。不同處在於,第二透明電極層150係使用與第2圖中之第一透明電極層120類似之配置,將在以下詳細說明。 An example of an electrochromic element according to another embodiment of the present invention will now be described with reference to the accompanying drawings. Please refer to FIG. 1 , FIG. 2 , and FIG. 7 for another implementation of the present invention. The electrochromic element of the example has the same configuration as the previous embodiment, so the same place is not described herein. The difference is that the second transparent electrode layer 150 is similar in configuration to the first transparent electrode layer 120 in FIG. 2 and will be described in detail below.

第7圖係為根據本發明之另一實施例之第二透明電極層150之局部剖視圖。如第7圖所示,本發明另一實施例的第二透明電極層150係包含第三透明導電層151、第二金屬層152、及第四透明導電層153。使用此夾層結構可更進一步提升本發明另一實施例之電致變色元件100之著色及去色反應速率。其中,第三透明導電層151係設置在電解質層140之上,第二金屬層152係設置在第三透明導電層151之上,且第四透明導電層153係設置在第二金屬層152之上。如前一實施例,第二金屬層152係由銀製成,但不限於,也可以其他具有高導電性之金屬製成。在第二金屬層152之表面上具有如第3圖所示奈米等級之半連續島狀結構,如上所述,其作用亦在提升第二透明電極層150之導電性及透光度。 Figure 7 is a partial cross-sectional view of a second transparent electrode layer 150 in accordance with another embodiment of the present invention. As shown in FIG. 7, the second transparent electrode layer 150 according to another embodiment of the present invention includes a third transparent conductive layer 151, a second metal layer 152, and a fourth transparent conductive layer 153. The coloring and decoloring reaction rate of the electrochromic element 100 of another embodiment of the present invention can be further improved by using this sandwich structure. The third transparent conductive layer 151 is disposed on the electrolyte layer 140, the second metal layer 152 is disposed on the third transparent conductive layer 151, and the fourth transparent conductive layer 153 is disposed on the second metal layer 152. on. As in the previous embodiment, the second metal layer 152 is made of silver, but is not limited thereto, and may be made of other metals having high conductivity. On the surface of the second metal layer 152, there is a semi-continuous island structure as shown in Fig. 3, and as described above, the effect is also to enhance the conductivity and transmittance of the second transparent electrode layer 150.

當第三透明導電層151及第四透明導電層153具有在20~40nm之範圍內之厚度,且第二金屬層152具有在5~15nm之範圍內之厚度,第二透明電極層150具有較佳的導電性及透光度;當第三透明導電層151及第四透明導電層153具有30nm之厚度,且第二金屬層152具有8nm之厚度,第一透明電極層120具有更佳的導電性及透光度,但不限於,第三透明導電層151、第二金屬層152、第四透明導電層153之厚度可因需求不同而改變其厚度之配置。 When the third transparent conductive layer 151 and the fourth transparent conductive layer 153 have a thickness in a range of 20 to 40 nm, and the second metal layer 152 has a thickness in a range of 5 to 15 nm, the second transparent electrode layer 150 has a thickness. Good conductivity and transmittance; when the third transparent conductive layer 151 and the fourth transparent conductive layer 153 have a thickness of 30 nm, and the second metal layer 152 has a thickness of 8 nm, the first transparent electrode layer 120 has better conductivity. The thickness and the transmittance are not limited, and the thicknesses of the third transparent conductive layer 151, the second metal layer 152, and the fourth transparent conductive layer 153 may be changed depending on the requirements.

請參閱第1圖、第2圖、第7圖、及第8圖,第8圖係為根據本發明之再一實施例之電致變色元件之製造方法的流程圖。如圖所示,首先提供一基板110(S51),於基板110之一面(亦即第1圖所示 基板110之頂面)以物理氣相沉積方式沉積成型一第一透明電極層120(S52),其中包含在基板110上以物理氣相沉積法沉積AZO之第一透明導電層121、在第一透明導電層121上以物理氣相沉積法沉積銀製成之第一金屬層122、及在第一金屬層122上以物理氣相沉積法沉積以AZO製成之第二透明導電層123。其中,第一金屬層122具有如第3圖所示之奈米等級之複數個島狀結構,其作用如上所述,故在此省略其詳細說明。其中,更精確的說明第一透明導電層121及第二透明導電層123之製作過程,係在選擇射頻功率250W、工作壓力40mTorr、基板溫度為70℃下以射頻磁控濺鍍機來濺鍍單層厚度為30nm的AZO薄膜,並選用Ag為中間金屬層的結構,而Ag金屬膜的鍍膜條件為固定工作電壓6kV、工作電流20mA、工作壓力3mTorr、基板溫度為100℃下,利用電子束蒸鍍機來蒸鍍第一金屬層122。上述各層使用之材料僅是用於說明本發明之實施例,而非在限定所使用之材料。 Please refer to FIG. 1, FIG. 2, FIG. 7, and FIG. 8. FIG. 8 is a flow chart showing a method of manufacturing an electrochromic element according to still another embodiment of the present invention. As shown in the figure, a substrate 110 (S51) is first provided on one side of the substrate 110 (that is, as shown in FIG. 1). a top surface of the substrate 110 is deposited by physical vapor deposition to form a first transparent electrode layer 120 (S52), wherein the first transparent conductive layer 121 of AZO is deposited on the substrate 110 by physical vapor deposition. A first metal layer 122 made of silver is deposited on the transparent conductive layer 121 by physical vapor deposition, and a second transparent conductive layer 123 made of AZO is deposited on the first metal layer 122 by physical vapor deposition. Here, the first metal layer 122 has a plurality of island-like structures of a nanometer scale as shown in FIG. 3, and its function is as described above, and thus detailed description thereof will be omitted. The process of fabricating the first transparent conductive layer 121 and the second transparent conductive layer 123 is more precisely described. The RF power is sputtered by selecting a radio frequency power of 250 W, a working pressure of 40 mTorr, and a substrate temperature of 70 ° C. A single layer of AZO thin film with a thickness of 30 nm, and Ag is an intermediate metal layer structure, and the coating condition of the Ag metal film is a fixed working voltage of 6 kV, an operating current of 20 mA, a working pressure of 3 mTorr, and a substrate temperature of 100 ° C, using an electron beam. The vapor deposition machine vaporizes the first metal layer 122. The materials used in the above layers are merely illustrative of the embodiments of the invention and are not intended to limit the materials used.

接著,在第一透明電極層120上以物理氣相沉積法沉積氧化鎢(WO3)製成之電致變色層130(S53),隨後在電致變色層130上以物理氣相沉積法沉積氧化鉭(Ta2O5)所製成之電解質層150(S54)。其中,當電致變色層130具有在350~450nm之範圍內之厚度,且電解質層140具有在250~350nm之範圍內之厚度時,電致變色元件100具有較佳之性能表現,當電致變色層130具有400nm之厚度,且當電解質層140具有300nm之厚度時,電致變色元件100具有更佳之性能表現。 Next, an electrochromic layer 130 (S53) made of tungsten oxide (WO 3 ) is deposited on the first transparent electrode layer 120 by physical vapor deposition, followed by deposition by physical vapor deposition on the electrochromic layer 130. An electrolyte layer 150 made of tantalum oxide (Ta 2 O 5 ) (S54). Wherein, when the electrochromic layer 130 has a thickness in the range of 350 to 450 nm, and the electrolyte layer 140 has a thickness in the range of 250 to 350 nm, the electrochromic element 100 has better performance when electrochromic The layer 130 has a thickness of 400 nm, and when the electrolyte layer 140 has a thickness of 300 nm, the electrochromic element 100 has better performance.

其次,如第8圖所示,在形成電解質層140之後,以物理氣相沉積方式沉積成型一第二透明電極層150(S55),其中包含在電解質層140上以物理氣相沉積法沉積AZO製成之第三透明導電層151、在第三透明導電層151上以物理氣相沉積法沉積銀製成之第二金屬層 152、及在第二金屬層152上以物理氣相沉積法沉積以AZO製成之第二透明導電層153。其中,第二金屬層122具有如第5(a)圖至第5(e)圖所示之奈米等級之複數個島狀結構,其作用如上所述,故在此省略其詳細說明。 Next, as shown in FIG. 8, after the electrolyte layer 140 is formed, a second transparent electrode layer 150 (S55) is deposited by physical vapor deposition, wherein the AZO is deposited on the electrolyte layer 140 by physical vapor deposition. a third transparent conductive layer 151 is formed, and a second metal layer made of silver is deposited on the third transparent conductive layer 151 by physical vapor deposition. 152. And depositing a second transparent conductive layer 153 made of AZO on the second metal layer 152 by physical vapor deposition. Here, the second metal layer 122 has a plurality of island-like structures of nanometer grades as shown in FIGS. 5(a) to 5(e), and its function is as described above, and thus detailed description thereof will be omitted.

在此更進一步說明第三透明導電層151及第四透明導電層153之製作過程。在選擇射頻功率250W、工作壓力40mTorr、基板溫度為70℃下以射頻磁控濺鍍機來濺鍍單層厚度為30nm的AZO薄膜,並選用Ag為中間金屬層的結構,而Ag金屬膜的鍍膜條件為固定工作電壓6kV、工作電流20mA、工作壓力3mTorr、基板溫度為100℃下,利用電子束蒸鍍機來蒸鍍第二金屬層152。所製作完成的電致變色元件100具有根據本發明實施例之高透光度及高導電率之第一透明電極120及第二透明電極150,故可進一步提升電致變色元件的著色及去色反應速率。 The fabrication process of the third transparent conductive layer 151 and the fourth transparent conductive layer 153 will be further described herein. A single-layer AZO thin film with a thickness of 30 nm was sputtered by a radio frequency magnetron sputtering machine with a RF power of 250 W, a working voltage of 40 mTorr, and a substrate temperature of 70 ° C, and Ag was used as the intermediate metal layer structure, while Ag metal film was used. The plating conditions were a fixed operating voltage of 6 kV, an operating current of 20 mA, a working pressure of 3 mTorr, and a substrate temperature of 100 ° C, and the second metal layer 152 was vapor-deposited by an electron beam vapor deposition machine. The fabricated electrochromic element 100 has the first transparent electrode 120 and the second transparent electrode 150 having high transmittance and high conductivity according to the embodiment of the present invention, so that the coloring and discoloration of the electrochromic element can be further improved. reaction speed.

綜上所述,本發明提出了一種電致變色元件及其製造方法,使用奈米等級之複數個島狀結構之金屬夾層,相較於先前技術所使用以ITO作為電極之電致變色元件之技術,提供了高導電性及高透光度之透明電極。此外,根據本發明實施例之電致變色元件,其可藉由高導電性及高透光度之透明電極,進一步提高了電致變色元件之著色及去色反應速率。顯而易見地,本發明在突破先前之技術下,確實已達到所欲增進之功效,且也非熟悉該項技藝者所易於思及,再者,本發明申請前未曾公開,且其所具之進步性、實用性,顯已符合專利之申請要件,爰依法提出專利申請。 In summary, the present invention proposes an electrochromic element and a method of manufacturing the same, using a metal interlayer of a plurality of island-like structures of nanometer grade, compared to the electrochromic element using ITO as an electrode in the prior art. The technology provides transparent electrodes with high conductivity and high transparency. In addition, according to the electrochromic element of the embodiment of the invention, the coloring and decoloring reaction rate of the electrochromic element can be further improved by the transparent electrode having high conductivity and high transmittance. Obviously, the present invention has achieved the desired effect under the prior art, and is not familiar to those skilled in the art. Moreover, the present invention has not been disclosed before the application, and its progress has been made. Sexuality and practicability have been met with the patent application requirements, and patent applications have been filed according to law.

當本發明的實施例參考其例示性實施例被特別顯示及描述時,其可為所屬技術領域具有通常知識者理解的是,在不脫離由以下 申請專利範圍及其等效物所定義之本發明的精神及範疇內,可對其進行形式及細節上的各種變更。 When an embodiment of the invention is particularly shown and described with respect to the exemplary embodiments thereof, it will be understood by those of ordinary skill in the art Various changes in form and detail may be made in the spirit and scope of the invention as defined by the scope of the invention.

100‧‧‧電致變色元件 100‧‧‧Electrochromic components

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧第一透明電極層 120‧‧‧First transparent electrode layer

130‧‧‧電致變色層 130‧‧‧Electrochromic layer

140‧‧‧電解質層 140‧‧‧ electrolyte layer

150‧‧‧第二透明電極層 150‧‧‧Second transparent electrode layer

Claims (10)

一種電致變色元件,其包含:一基板;一第一透明電極層,係設置在該基板上,係包含:一第一透明導電層,係設置在該基板上,且係透過工作壓力40mTorr下之射頻磁控濺鍍機所濺鍍單層厚度為20~40nm之薄膜;一第一金屬層,係設置在該第一透明導電層上,係在固定工作電壓6kV、工作電流20mA、工作壓力3mTorr、基板溫度為100℃之條件下,利用電子束蒸鍍機沈積5~15nm之薄膜層,且該第一金屬層表面上具有奈米等級之半連續島狀結構;及一第二透明導電層,係設置在該第一金屬層上,且係透過工作壓力40mTorr下之射頻磁控濺鍍機所濺鍍單層厚度為20~40nm之薄膜;一電致變色層,係設置在該第一透明電極層上;一電解質層,係設置在該電致變色層上,且提供離子給予該電致變色層,其中,該電致變色層接受該電解質層提供之離子後變色;以及一第二透明電極層,用以提供變色過程電極的接觸與電流進出,係設置在該電解質層上,且係包含:一第三透明導電層,係設置在該電解質層上,且係透過工作壓力40mTorr下之射頻磁控濺鍍機所濺 鍍單層厚度為20~40nm之薄膜;一第二金屬層,係設置在該第三透明導電層上,係在固定工作電壓6kV、工作電流20mA、工作壓力3mTorr、基板溫度為100℃之條件下,利用電子束蒸鍍機沈積5~15nm之薄膜層,且該第二金屬層表面上具有奈米等級之半連續島狀結構;以及一第四透明導電層,係設置在該第二金屬層上,且係透過工作壓力40mTorr下之射頻磁控濺鍍機所濺鍍單層厚度為20~40nm之薄膜。 An electrochromic element comprising: a substrate; a first transparent electrode layer disposed on the substrate, comprising: a first transparent conductive layer disposed on the substrate and operating at a working pressure of 40 mTorr The RF magnetron sputtering machine is sputtered with a single layer of film having a thickness of 20 to 40 nm; a first metal layer is disposed on the first transparent conductive layer at a fixed working voltage of 6 kV, an operating current of 20 mA, and a working pressure. a film layer of 5 to 15 nm is deposited by an electron beam evaporation machine under the condition of a substrate temperature of 100 ° C, and a semi-continuous island structure having a nanometer grade on the surface of the first metal layer; and a second transparent conductive layer a layer disposed on the first metal layer and sputtered with a single layer of a film having a thickness of 20 to 40 nm through a radio frequency magnetron sputtering machine at a working pressure of 40 mTorr; an electrochromic layer is disposed in the layer a transparent electrode layer; an electrolyte layer disposed on the electrochromic layer and providing ions to the electrochromic layer, wherein the electrochromic layer receives ions after the electrolyte layer provides discoloration; Two transparent electrode layers The contact and current in and out of the electrode for providing the color changing process are disposed on the electrolyte layer, and comprise: a third transparent conductive layer disposed on the electrolyte layer and transmitting RF magnetic control under a working pressure of 40 mTorr Splashing machine a single layer of a film having a thickness of 20 to 40 nm; a second metal layer disposed on the third transparent conductive layer at a fixed operating voltage of 6 kV, an operating current of 20 mA, a working pressure of 3 mTorr, and a substrate temperature of 100 ° C. a thin film layer of 5 to 15 nm is deposited by an electron beam evaporation machine, and the surface of the second metal layer has a semi-continuous island structure of a nanometer grade; and a fourth transparent conductive layer is disposed on the second metal On the layer, a single layer of a film having a thickness of 20 to 40 nm is sputtered through a radio frequency magnetron sputtering machine at a working pressure of 40 mTorr. 如申請專利範圍第1項所述之電致變色元件,其中該電致變色層具有在350~450nm之範圍內之厚度,且該電解質層具有在250~350nm之範圍內之厚度。 The electrochromic element according to claim 1, wherein the electrochromic layer has a thickness in the range of 350 to 450 nm, and the electrolyte layer has a thickness in the range of 250 to 350 nm. 如申請專利範圍第1項所述之電致變色元件,其中該第一透明導電層、該第二透明導電層、該第三透明導電層與該第四透明導電層使用之射頻磁控濺鍍機係在選擇射頻功率250W與基板溫度為70℃。 The electrochromic element according to claim 1, wherein the first transparent conductive layer, the second transparent conductive layer, the third transparent conductive layer and the fourth transparent conductive layer are used for radio frequency magnetron sputtering The machine is selected to have an RF power of 250W and a substrate temperature of 70 °C. 如申請專利範圍第1項所述之電致變色元件,其中該第一透明導電層、該第二透明導電層、該第三透明導電層及該第四透明導電層係以氧化鋅鋁(AZO)製成,以及該第一金屬層及該第二金屬層係以銀製成。 The electrochromic element according to claim 1, wherein the first transparent conductive layer, the second transparent conductive layer, the third transparent conductive layer and the fourth transparent conductive layer are zinc aluminum oxide (AZO) Made, and the first metal layer and the second metal layer are made of silver. 如申請專利範圍第1項所述之電致變色元件,其中該第一透明電極層之電阻率介於3.8×10-5Ω-cm至7.06×10-4Ω-cm之間、載子濃度介於1021cm-3至2.701×1022cm-3之間、遷移率介於1cm2/V-s至 14.741cm2/V-s之間。 The electrochromic element according to claim 1, wherein the first transparent electrode layer has a resistivity of between 3.8×10 -5 Ω-cm and 7.06×10 -4 Ω-cm, and the carrier concentration between 10 21 cm -3 to 2.701 × 10 22 cm -3, the mobility is between 1cm 2 / Vs to between 14.741cm 2 / Vs. 一種電致變色元件之製造方法,其包含:提供一基板;在該基板上形成一第一透明電極層,其中包含:在該基板上形成一第一透明導電層,且係透過工作壓力40mTorr下之射頻磁控濺鍍機所濺鍍單層厚度為20~40nm之薄膜;在該第一透明導電層上形成一第一金屬層,該第一金屬層係在固定工作電壓6kV、工作電流20mA、工作壓力3mTorr、基板溫度為100℃之條件下,利用電子束蒸鍍機沈積5~15nm之薄膜層,且該第一金屬層表面上具有奈米等級之半連續島狀結構;及在該第一金屬層上形成一第二透明導電層,且係透過工作壓力40mTorr下之射頻磁控濺鍍機所濺鍍單層厚度為20~40nm之薄膜;在該第一透明電極層上形成一電致變色層;在該電致變色層上形成一電解質層,係提供離子給予該電致變色層,其中,該電致變色層接受該電解質層提供之離子後變色;以及在該電解質層上形成一第二透明電極層,用以提供變色過程電極的接觸與電流進出,其中包含:在該電解質層上形成一第三透明導電層,且係透過 工作壓力40mTorr下之射頻磁控濺鍍機所濺鍍單層厚度為20~40nm之薄膜;在該第三透明導電層上形成一第二金屬層,該第二金屬層係在固定工作電壓6kV、工作電流20mA、工作壓力3mTorr、基板溫度為100℃之條件下,利用電子束蒸鍍機沈積5~15nm之薄膜層,且該第一金屬層表面上具有奈米等級之半連續島狀結構;及在該第二金屬層上形成一第四透明導電層,且係透過工作壓力40mTorr下之射頻磁控濺鍍機所濺鍍單層厚度為20~40nm之薄膜。 A method for manufacturing an electrochromic element, comprising: providing a substrate; forming a first transparent electrode layer on the substrate, comprising: forming a first transparent conductive layer on the substrate, and transmitting through a working pressure of 40 mTorr The RF magnetron sputtering machine is sputtered with a single layer of a film having a thickness of 20 to 40 nm; a first metal layer is formed on the first transparent conductive layer, and the first metal layer is at a fixed working voltage of 6 kV and an operating current of 20 mA. a working layer pressure of 3 mTorr and a substrate temperature of 100 ° C, a thin film layer of 5 to 15 nm is deposited by an electron beam evaporation machine, and the surface of the first metal layer has a semi-continuous island structure of a nanometer level; Forming a second transparent conductive layer on the first metal layer, and sputtering a single film having a thickness of 20 to 40 nm through a radio frequency magnetron sputtering machine at a working pressure of 40 mTorr; forming a film on the first transparent electrode layer An electrochromic layer; forming an electrolyte layer on the electrochromic layer, providing ions to the electrochromic layer, wherein the electrochromic layer receives ions after the electrolyte layer is discolored; and the electrolyte layer Forming a second transparent electrode layer, to provide a color change in contact with the electrodes during the current and out, which comprises: forming a third transparent conductive layer on the electrolyte layer, and through the line A radio frequency magnetron sputtering machine with a working pressure of 40 mTorr is sputtered with a single layer of a film having a thickness of 20 to 40 nm; a second metal layer is formed on the third transparent conductive layer, and the second metal layer is fixed at a working voltage of 6 kV. a working layer of 20 mA, a working pressure of 3 mTorr, and a substrate temperature of 100 ° C, a thin film layer of 5 to 15 nm is deposited by an electron beam evaporation machine, and the surface of the first metal layer has a semi-continuous island structure of a nanometer grade. And forming a fourth transparent conductive layer on the second metal layer, and sputtering a single film having a thickness of 20 to 40 nm through a radio frequency magnetron sputtering machine at a working pressure of 40 mTorr. 如申請專利範圍第6項所述之製造方法,其中該電致變色層具有在350~450nm之範圍內之厚度,且該電解質層具有在250~350nm之範圍內之厚度。 The manufacturing method according to claim 6, wherein the electrochromic layer has a thickness in a range of 350 to 450 nm, and the electrolyte layer has a thickness in a range of 250 to 350 nm. 如申請專利範圍第6項所述之製造方法,其中該第一透明導電層、該第二透明導電層、該第三透明導電層與該第四透明導電層使用之射頻磁控濺鍍機係在選擇射頻功率250W與基板溫度為70℃。 The manufacturing method of claim 6, wherein the first transparent conductive layer, the second transparent conductive layer, the third transparent conductive layer, and the fourth transparent conductive layer are used in a radio frequency magnetron sputtering system. The RF power was chosen to be 250W and the substrate temperature was 70 °C. 如申請專利範圍第6項所述之製造方法,其中該第一透明導電層、該第二透明導電層、該第三透明導電層及該第四透明導電層係以氧化鋅鋁(AZO)製成,且該第一金屬層及該第二金屬層係以銀製成。 The manufacturing method of claim 6, wherein the first transparent conductive layer, the second transparent conductive layer, the third transparent conductive layer, and the fourth transparent conductive layer are made of aluminum zinc oxide (AZO). And the first metal layer and the second metal layer are made of silver. 如申請專利範圍第6項所述之製造方法,其中該第一透明電極層之電阻率介於3.8×10-5Ω-cm至7.06× 10-4Ω-cm之間、載子濃度介於1021cm-3至2.701×1022cm-3之間、遷移率介於1cm2/V-s至14.741cm2/V-s之間。 The manufacturing method according to claim 6, wherein the first transparent electrode layer has a resistivity of between 3.8×10 -5 Ω-cm and 7.06×10 -4 Ω-cm, and the carrier concentration is between , between 10 21 cm -3 to 2.701 × 10 22 cm -3 mobility between 1cm 2 / Vs to between 14.741cm 2 / Vs.
TW103111132A 2014-03-25 2014-03-25 Electrochromic device and method of manufacturing the same TWI528095B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103111132A TWI528095B (en) 2014-03-25 2014-03-25 Electrochromic device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103111132A TWI528095B (en) 2014-03-25 2014-03-25 Electrochromic device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201537274A TW201537274A (en) 2015-10-01
TWI528095B true TWI528095B (en) 2016-04-01

Family

ID=54850876

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103111132A TWI528095B (en) 2014-03-25 2014-03-25 Electrochromic device and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI528095B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802228A (en) * 2017-11-16 2019-05-24 吴宏伟 The light transmitted radiation element communicated for very high frequency(VHF) to superfrequency

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344208B2 (en) 2014-06-09 2019-07-09 iGlass Technology, Inc. Electrochromic device and method for manufacturing electrochromic device
US10294415B2 (en) 2014-06-09 2019-05-21 iGlass Technology, Inc. Electrochromic composition and electrochromic device using same
TWI686994B (en) * 2017-11-22 2020-03-01 吳宏偉 Light-transmissive radiation element
TWI686993B (en) * 2017-11-22 2020-03-01 吳宏偉 Light-transmissive radiation element for vhf to uhf communications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802228A (en) * 2017-11-16 2019-05-24 吴宏伟 The light transmitted radiation element communicated for very high frequency(VHF) to superfrequency

Also Published As

Publication number Publication date
TW201537274A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
Park et al. A review on fabrication processes for electrochromic devices
Zhao et al. Preparation of WO3 films with controllable crystallinity for improved near-infrared electrochromic performances
TWI528095B (en) Electrochromic device and method of manufacturing the same
TWI529748B (en) Conductive structure body and method for preparing the same
EP2747093B1 (en) Conductive structure and method for manufacturing same
TWI545595B (en) Conductive structure body and method for manufacturing the same
Lansåker et al. TiO2/Au/TiO2 multilayer thin films: Novel metal-based transparent conductors for electrochromic devices
TW201426767A (en) Conductive structure body and method for manufacturing the same
WO2017054265A1 (en) Low-resistance transparent conductive thin film and preparation method therefor
JP5617276B2 (en) Transparent conductive laminate and method for producing the same
CN104749830A (en) Electrode structure and touch panel device with electrode structure
Kermani et al. Design and fabrication of nanometric ZnS/Ag/MoO3 transparent conductive electrode and investigating the effect of annealing process on its characteristics
CN108803183A (en) A kind of bilayer full-inorganic electrochromic device and preparation method thereof
Lin et al. Effects of the structural properties of metal oxide/Ag/metal oxide multilayer transparent electrodes on their optoelectronic performances
Kermani et al. Design and construction of an improved nanometric ZnS/Ag/ZnS/Ag/ZnS transparent conductive electrode and investigating the effect of annealing on its characteristics
Shin et al. Silver nanowires network encapsulated by low temperature sol–gel ZnO for transparent flexible electrodes with ambient stability
Bou et al. Numerical and experimental investigation of transparent and conductive TiOx/Ag/TiOx electrode
TWI605154B (en) Electrochromic device and manufacturing method thereof
JP2007007982A (en) Ag or ag alloy reflector electrode film with incremental reflection film and its production method
EP2973728B1 (en) Transparent electrode and substrate for optoelectronic or plasmonic applications comprising silver
Lin et al. The electro-optical characteristics of AZO/Mo/AZO transparent conductive film
Wang et al. Metal oxides in energy-saving smart windows
KR20200029976A (en) Transparent electrode
JP2016024253A (en) Dimming element and method of producing dimming element
Zhao et al. Low-resistant and high transmittance films based on one dimensional metal-dielectric photonic band gap material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees