TWI528048B - And a method for manufacturing the same - Google Patents

And a method for manufacturing the same Download PDF

Info

Publication number
TWI528048B
TWI528048B TW102133106A TW102133106A TWI528048B TW I528048 B TWI528048 B TW I528048B TW 102133106 A TW102133106 A TW 102133106A TW 102133106 A TW102133106 A TW 102133106A TW I528048 B TWI528048 B TW I528048B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
resistant
light
oxide
crystal film
Prior art date
Application number
TW102133106A
Other languages
Chinese (zh)
Other versions
TW201510560A (en
Inventor
shi-wei Shen
Original Assignee
Zhang su ling
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang su ling filed Critical Zhang su ling
Priority to TW102133106A priority Critical patent/TWI528048B/en
Publication of TW201510560A publication Critical patent/TW201510560A/en
Application granted granted Critical
Publication of TWI528048B publication Critical patent/TWI528048B/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Description

可抗光害的液晶薄膜及其製造方法 Light-resistant liquid crystal film and manufacturing method thereof

本發明係關於一種可抗光害的液晶薄膜及其製造方法,尤指維持薄膜尺寸安定性及抗有害光波,和提升電學效應的液晶薄膜及其製造方法。 The present invention relates to a liquid crystal film which is resistant to light and a method for producing the same, and more particularly to a liquid crystal film which maintains film size stability and resistance to harmful light waves, and which enhances electrical effects and a method for manufacturing the same.

為了隔絕陽光直接照射,人們會在建物透明帷幕、或汽車擋風玻璃、門窗玻璃上粘貼隔熱紙。只是,隔熱紙的隔熱作用同時也阻隔照明光束或遮蔽視線等問題瑕疵。尤其在安全考量上,隔熱紙為了滿足隔熱效果,卻常常會把視野需求光線也隔絕,導致車輛駕駛視線不佳或室內自然採光過低。 In order to isolate direct sunlight, people will paste insulation paper on the transparent curtain of the building or on the windshield and door and window glass of the car. However, the thermal insulation of the insulation paper also blocks the illumination beam or obscures the line of sight. Especially in terms of safety considerations, in order to meet the heat insulation effect, the insulation paper often isolates the light required by the visual field, resulting in poor driving visibility or low indoor natural lighting.

為改善此問題,調光玻璃(Polyvision Privacy Glass)可藉由改變電流以調整玻璃透光率,實現隨意變換玻璃透明度之效果,避免車輛駕駛視線不佳或室內自然採光過低等問題。然而,上述調光玻璃,雖然可藉電流來隨意變換玻璃透明度,但同樣無法有效對抗有害光束,以及視野可見度之保留。 In order to improve this problem, Polyvision Privacy Glass can adjust the transparency of the glass by changing the current to achieve the effect of changing the transparency of the glass at will, avoiding the problem of poor driving visibility or low natural lighting in the room. However, the above-mentioned dimming glass, although it is possible to change the transparency of the glass by current, is equally ineffective in resisting harmful light beams and the retention of visibility of the field of view.

又該調光薄膜主要就是要遮蔽光線,因而將會長期曝露在紅外線、紫外線或光線熱能,而導致調光薄膜被破壞(尤其是PET透明基材),如經久使用而黃化。 The dimming film is mainly used to shield light, and thus will be exposed to infrared rays, ultraviolet rays or light heat for a long period of time, resulting in destruction of the light-adjusting film (especially PET transparent substrate), such as yellowing after long-term use.

此外,在該調光薄膜中,若實施在玻璃層之中,如汽車或具曲率的帷幕玻璃,其折射率要求均等,使整幅面在光學穿過效率中,不會有區塊狀光斑異樣。 In addition, in the light-adjusting film, if it is implemented in a glass layer, such as an automobile or a curtain glass having curvature, the refractive index is required to be equal, so that the entire surface is in optical transmission efficiency, and there is no block-like spot unevenness. .

本發明之主要目的在提供一種可抗光害的液晶薄膜及其製造方法,主要利用除了可通入電流改變液晶膠體的方向,而提供遮光或不遮光的效果 以外,更可含金屬粒子的薄膜層能輔助濾過紅外線、紫外線或輻射熱能,並維持視野需求的透視度。 The main object of the present invention is to provide a liquid crystal film which is resistant to light and a manufacturing method thereof, and mainly provides the effect of shielding or not shielding the direction of the liquid crystal colloid in addition to the current. In addition, thin film layers containing metal particles can assist in filtering infrared, ultraviolet or radiant heat and maintain the visibility of the field of view.

本發明之次要目的在提供一種可抗光害的液晶薄膜及其製造方法,主要利用具有可撓性的透明基材作為液晶膠體的容置材料,而讓液晶薄膜成為軟式,並在液晶膠體中混入聚苯乙烯(polystyrene)或陶瓷間隔微結構,而讓軟式液晶薄膜基於所具有的粘著層,而順著物件的表面幾何形狀(例如表面彎曲或波浪狀)被黏附時,但卻不會如習知薄膜受彎曲時因液晶被擠走而變成透明,進而達到維持薄膜尺寸安定性,均勻的成膜性,以及低折射率等特性。 A secondary object of the present invention is to provide a liquid crystal film which is resistant to light and a manufacturing method thereof, and mainly uses a transparent substrate having flexibility as a material for accommodating a liquid crystal colloid, and the liquid crystal film is made soft and in a liquid crystal colloid. Polystyrene or ceramic spacer microstructure is mixed in, and the soft liquid crystal film is adhered to the surface geometry of the object (for example, the surface is curved or wavy) based on the adhesive layer, but not As is known, when the film is bent, the liquid crystal is squeezed away to become transparent, thereby achieving characteristics such as maintaining film size stability, uniform film formation, and low refractive index.

基於上述目的,在本發明可抗光害的液晶薄膜及其製造方法中,該薄膜主要包含一對透明基材、該對透明基材上所形成的含金屬粒子的薄膜層、透明電極、以及被導入表面帶有該透明電極的該對透明基材之間的液晶膠體。 Based on the above object, in the light-resistant liquid crystal film of the present invention and the method of manufacturing the same, the film mainly comprises a pair of transparent substrates, a metal particle-containing film layer formed on the pair of transparent substrates, a transparent electrode, and A liquid crystal colloid between the pair of transparent substrates having the transparent electrode introduced into the surface.

若維持薄膜尺寸安定性,則需將聚苯乙烯(polystyrene)或陶瓷間隔微結構混入液晶膠體,而形成最終液晶膠體,並導入表面帶有該透明電極的該對透明基材之間,以及所充置的間隔微結構的粒徑決定了電極互對距離。 If the film size stability is maintained, polystyrene or ceramic spacer microstructures are mixed into the liquid crystal colloid to form a final liquid crystal colloid, and introduced between the pair of transparent substrates having the transparent electrode on the surface, and The particle size of the filled spacer microstructure determines the mutual distance of the electrodes.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

10‧‧‧UV固化環氧樹脂 10‧‧‧UV curing epoxy resin

12‧‧‧硬化劑 12‧‧‧ hardener

14‧‧‧液晶材料 14‧‧‧Liquid crystal materials

15‧‧‧間隔微結構 15‧‧‧Interval microstructure

16‧‧‧液晶膠體 16‧‧‧Liquid colloid

18‧‧‧最終液晶膠體 18‧‧‧Final liquid crystal colloid

20‧‧‧透明基材 20‧‧‧Transparent substrate

22‧‧‧透明導電層 22‧‧‧Transparent conductive layer

24‧‧‧粘著層 24‧‧‧Adhesive layer

26‧‧‧薄膜層 26‧‧‧film layer

第一A~一B圖為本發明可抗光害的液晶薄膜的製造方法之示意圖。 The first A to B diagrams are schematic views of the manufacturing method of the liquid crystal film resistant to light damage of the present invention.

第二圖為本發明可抗光害的液晶薄膜的製造方法之另一示意圖。 The second figure is another schematic view of a method for producing a liquid crystal film resistant to light damage of the present invention.

第一A~一B圖為本發明可抗光害的液晶薄膜的製造方法之示意圖。如第一A圖所示,本發明可抗光害的液晶薄膜的製造方法中,首先在一對透明基材20中至少其中之一的表面上形成可抗光害,含金屬粒子的薄膜層26。 The first A to B diagrams are schematic views of the manufacturing method of the liquid crystal film resistant to light damage of the present invention. As shown in FIG. 1A, in the method for producing a liquid crystal film resistant to light damage of the present invention, first, a film layer resistant to light and containing metal particles is formed on the surface of at least one of the pair of transparent substrates 20. 26.

換言之,可在該對透明基材20均形成有薄膜層26或在其中之一的透明基 材20上形成薄膜層26。在可抗光害的含金屬粒子的薄膜層26中,奈米金屬粒子需要可吸收或反射紫外光、紅外線或光線熱能,但卻可讓系統視野需求可見光穿透,而不會有內反射鏡面效果。利用奈米金屬粒子的特性,又能夠有效阻塞分子間隙,讓氣體難以滲透,從而提高了透明基材20的阻隔性,可有效保護內部的液晶材料。 In other words, a thin film layer 26 or a transparent base in one of the pair of transparent substrates 20 may be formed. A film layer 26 is formed on the material 20. In the light-resistant metal particle-containing film layer 26, the nano metal particles need to absorb or reflect ultraviolet light, infrared light or light heat energy, but the system view requires visible light to penetrate without an internal reflection mirror surface. effect. By utilizing the characteristics of the nano metal particles, the molecular gap can be effectively blocked, and the gas is difficult to penetrate, thereby improving the barrier property of the transparent substrate 20 and effectively protecting the internal liquid crystal material.

上述薄膜層26與透明基材20結合後,更因薄膜層26的結構輔助,可使透明基材20增加幅面張力的強度。 After the film layer 26 is bonded to the transparent substrate 20, the transparent substrate 20 can be increased in strength of the web tension by the structure of the film layer 26.

上述金屬粒子可為氮化鈦(TiN)、氮化鋁(AlN)、氧化鐵(FeO)、氧化銫(CeO)、氧化釩(VO)、二氧化鈦(TiO2)、氧化鋅(ZnO)、氧化銦(In2 O3)、氧化鈰(CeO2)、氧化錫(SnO2)、氧化銻(Sb2 O3)、硫化鋅(ZnS)、銻錫氧化物(ATO)或其他類似性質金屬氧化物。 The metal particles may be titanium nitride (TiN), aluminum nitride (AlN), iron oxide (FeO), cerium oxide (CeO), vanadium oxide (VO), titanium dioxide (TiO2), zinc oxide (ZnO), indium oxide. (In2 O3), cerium oxide (CeO2), tin oxide (SnO2), strontium oxide (Sb2O3), zinc sulfide (ZnS), antimony tin oxide (ATO) or other similar metal oxides.

這其中,經過特殊工藝製程處理奈米氮化鈦(TiN),其其具有純度高、粒徑小、分佈均勻、表面活性高、耐高溫、抗氧化、硬度高,又具有優異阻隔紅外線(可阻隔95%以上)、以及紫外線(可阻隔99%以上),同時本身又具有良好的導電性,不會阻斷或干擾e-Tag或GPS訊號,十分適用於車用擋風玻璃。氮化鈦(TiN)可讓透明基材20保有原有的透明外觀,但卻能提高8倍以上的阻隔性。如果氮化鈦(TiN)中的含氮量高時,氮化鈦(TiN)將帶有淡藍色,而無須額外使用顏色調料,就能讓薄膜帶有顏色。 Among them, nano titanium nitride (TiN) is processed by a special process, which has high purity, small particle size, uniform distribution, high surface activity, high temperature resistance, high oxidation resistance, high hardness, and excellent infrared shielding. It is more than 95% blocked, and UV (can block more than 99%). It also has good conductivity and does not block or interfere with e-Tag or GPS signals. It is very suitable for vehicle windshield. Titanium nitride (TiN) allows the transparent substrate 20 to retain its original transparent appearance, but it can increase the barrier properties by more than 8 times. If the nitrogen content in titanium nitride (TiN) is high, titanium nitride (TiN) will have a light blue color, and the film may be colored without additional coloring.

在透明基材20上形成薄膜層26的手段大致分為塗佈、噴塗、蒸鍍等三種。 The means for forming the thin film layer 26 on the transparent substrate 20 is roughly classified into three types: coating, spraying, and vapor deposition.

採用塗佈手段時,上述金屬粒子須以適當的高分子聚合物混合。其中高分子聚合物可為聚乙烯(PE)及聚丙烯(PP)之聚烯烴系樹脂、聚對苯二甲酸乙二醇酯(PET)及聚萘二甲酸乙二醇酯(PEN)之聚酯系樹脂、聚苯乙烯(PS)及聚乙烯醇(PVA)之乙烯結合系、聚碳酸酯(PC)系樹脂、環烯烴系樹脂、氯乙烯系樹脂。接著,將金屬粒子與高分子聚合物之混合物塗佈或以印製方式施佈在透明基材20上,然後利用加熱或紫外光之固化手段,而在透明基材20上形成薄膜層26。 When the coating means is employed, the above metal particles must be mixed with a suitable high molecular polymer. The high molecular polymer may be a polyolefin resin of polyethylene (PE) and polypropylene (PP), a polyethylene terephthalate (PET) and a polyethylene naphthalate (PEN). An ester resin, an ethylene bond system of polystyrene (PS) and polyvinyl alcohol (PVA), a polycarbonate (PC) resin, a cycloolefin resin, or a vinyl chloride resin. Next, a mixture of the metal particles and the high molecular polymer is applied or printed on the transparent substrate 20, and then the film layer 26 is formed on the transparent substrate 20 by means of curing by heating or ultraviolet light.

採用噴塗手段時,上述金屬粒子與有機溶劑混合後被噴塗在透明基材20上,再利用加熱或紫外光之固化手段,讓金屬粒子與有機溶劑混合形成 含金屬粒子的薄膜層26鍵結在透明基材20表面。 When the spraying method is adopted, the metal particles are mixed with the organic solvent and sprayed on the transparent substrate 20, and then the metal particles are mixed with the organic solvent by heating or ultraviolet curing means. The metal particle-containing film layer 26 is bonded to the surface of the transparent substrate 20.

採用蒸鍍手段時,金屬粒子直接被蒸鍍在透明基材20上,而形成該含金屬粒子的薄膜層26。 When the vapor deposition means is used, the metal particles are directly vapor-deposited on the transparent substrate 20 to form the metal particle-containing thin film layer 26.

如第一B圖所示,在透明基材20上形成薄膜層26後,在具有或不具有該含金屬粒子的薄膜層26之透明基材20上形成透明電極22。另外,透明電極22的材質,除了以銦錫氧化物(ITO),也可採用奈米金屬如銀奈米。 As shown in FIG. B, after the thin film layer 26 is formed on the transparent substrate 20, the transparent electrode 22 is formed on the transparent substrate 20 with or without the metal particle-containing thin film layer 26. Further, as the material of the transparent electrode 22, in addition to indium tin oxide (ITO), a nano metal such as silver nano can be used.

上述的薄膜層26為細微結合在其一或二透明基材20相互對的表面,再於附著薄膜層26表面,形成膜狀透明電極22,二者結合後,除了該層面的機械性張力強化,更利用薄膜層26的導電輔助,降低透明電極22的電阻,使能低電力工作而達節能效益。 The film layer 26 is finely bonded to the surface of the one or two transparent substrates 20 opposite to each other, and then the surface of the film layer 26 is adhered to form a film-like transparent electrode 22, and the combination of the two is combined with the mechanical tension strengthening of the layer. Moreover, the conductive auxiliary of the thin film layer 26 is utilized to reduce the electric resistance of the transparent electrode 22, so that low power operation can be achieved to achieve energy saving benefits.

依據本發明實施與昔有薄膜測試比較:各取成品1m2進行電致光學反應,在達成相同的視穿率(或遮光率)之條件下所耗能源狀態之比較: According to the implementation of the present invention, compared with the conventional film test: each of the finished products 1 m 2 is subjected to an electro-optical reaction, and the energy consumption states are compared under the conditions of achieving the same visual transmittance (or shading rate):

(昔用薄膜用電需求) (Electric demand for film used in the past)

Von=65V Real I=0.12 Von=65V Real I=0.12

P=0.12X65=7.8(W) P=0.12X65=7.8(W)

(本發明實施薄膜用電需求) (Electrical demand for the implementation of the film of the present invention)

Von=24V Real I=0.03 Von=24V Real I=0.03

P=0.03X24=0.72(W) P=0.03X24=0.72(W)

則如上示結果,本發明有過於10倍節能效果,該節能效應來自薄膜層26,結合了透明電極22,二者觸通結合的關係,使薄膜層26可輔助電流通路,降低電阻值,進而節省功率消耗。又在相同電壓的條件下,其一的電流效應,相同可改變不同功率,如此以降低電阻的方式,可明顯達到節能目的。 As a result of the above, the present invention has an energy saving effect of about 10 times. The energy saving effect comes from the thin film layer 26, and the transparent electrode 22 is combined. The relationship between the two contacts is such that the thin film layer 26 can assist the current path and reduce the resistance value. Save power consumption. Under the same voltage condition, the current effect of one can change different powers in the same way, so that the way of reducing the resistance can obviously achieve the purpose of energy saving.

請參閱第二圖,第二圖為本發明可抗光害的液晶薄膜的製造方法之另一示意圖。如第二圖所示,在透明基材20上形成透明電極22後,首先將具有雙官能基的UV固化環氧樹脂10、硬化劑12、液晶材料14混合,再利用硬化劑12改變具有雙官能基的UV固化環氧樹脂10的黏性,但不會大幅改變UV固化環氧樹脂10的特性,並可在室溫下即可形成液晶膠體16。由於UV固化環 氧樹脂10、硬化劑12可在攝氏5度以上產生交鏈反應,液晶膠體16的黏度即有200cps以上,使得黏度與溫度關聯性較低。這其中,具有雙官能基的UV固化環氧樹脂16的主要成分為環己烷二甲醇縮水甘油醚(diglycidyl ether of Cyclohexane dimethanol),而硬化劑10的主成分為多硫醇(polymercaptan)。 Please refer to the second figure. The second figure is another schematic diagram of the manufacturing method of the liquid crystal film resistant to light damage of the present invention. As shown in the second figure, after the transparent electrode 22 is formed on the transparent substrate 20, the UV-curable epoxy resin 10 having a difunctional group, the hardener 12, and the liquid crystal material 14 are first mixed, and then the hardener 12 is used to change the double. The viscosity of the functionally-cured UV-curable epoxy resin 10 does not significantly change the characteristics of the UV-curable epoxy resin 10, and the liquid crystal colloid 16 can be formed at room temperature. Due to the UV curing ring The oxygen resin 10 and the hardener 12 can cause a cross-linking reaction at 5 degrees Celsius or higher, and the viscosity of the liquid crystal colloid 16 is 200 cps or more, so that the viscosity is less correlated with temperature. Among them, the main component of the UV-curable epoxy resin 16 having a bifunctional group is diglycidyl ether of Cyclohexane dimethanol, and the main component of the hardener 10 is a polymer captan.

然後,再將聚苯乙烯(polystyrene)或陶瓷間隔微結構15混入液晶膠體16,而形成最終液晶膠體18。在最終液晶膠體中聚苯乙烯(polystyrene)或陶瓷間隔微結構15在重量上佔了0.5~5%的比例,而聚苯乙烯或陶瓷間隔微結構為直徑10~30μm的球狀體。如此,間隔微結構15與混入液晶膠體16彼此可共同形成立體網狀結構,利用其立體高度的支撐,提供在外力影響下仍可維持液晶薄膜的厚度。 Polystyrene or ceramic spacer microstructure 15 is then mixed into liquid crystal colloid 16 to form final liquid crystal colloid 18. The polystyrene or ceramic spacer microstructure 15 accounts for 0.5 to 5% by weight in the final liquid crystal colloid, and the polystyrene or ceramic spacer microstructure is a spheroid having a diameter of 10 to 30 μm. In this way, the spacer microstructure 15 and the mixed liquid crystal colloid 16 can form a three-dimensional network structure together, and the support of the three-dimensional height can provide the thickness of the liquid crystal film under the influence of an external force.

接著,利用塗佈機將最終液晶膠體18塗佈在帶有透明導電層22的透明基材20上,並再將同樣帶有透明導電層22的透明基材20貼合,而只需靜置等帶成熟後形成液晶薄膜,而無須加熱的因子介入。其中,透明基材20具有可撓性,例如聚對苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)。 Next, the final liquid crystal colloid 18 is coated on the transparent substrate 20 with the transparent conductive layer 22 by a coater, and the transparent substrate 20 also having the transparent conductive layer 22 is attached, and only needs to be left to stand. The liquid crystal film is formed after the ribbon is matured, and the factor without heating is involved. Among them, the transparent substrate 20 has flexibility, such as polyethylene terephthalate (PET).

最後,系統在該對透明基材20的外表其中之一的表面上形成有粘著層24提供可貼著在依附物表面,如玻璃板的表面。 Finally, the system is formed with an adhesive layer 24 on the surface of one of the exteriors of the pair of transparent substrates 20 to provide a surface that can be applied to the surface of the attachment, such as a glass sheet.

如此一來,本發明軟式液晶薄膜除了利用透明基材20的可撓特性,可順著物件的表面幾何形狀(例如表面彎曲或波浪狀)一整片黏附上去,而不再需要如習知技術需要先困難地裁切成數小片調光薄膜後,再較費事地分別貼附於表面彎曲或波浪狀的玻璃上。同時,利用在液晶膠體16中混入間隔微結構15,而避免在受彎曲時因液晶被擠走而變成透明,進而達到維持薄膜尺寸安定性,均勻的成膜性,以及低折射率等特性。相對地,習知技術之所以無法適用於表面彎曲或波浪狀的玻璃的貼附,正是因為其缺乏可維持薄膜尺寸安定性,均勻的成膜性,以及低折射率等特性的間隔微結構15。 In this way, in addition to utilizing the flexible properties of the transparent substrate 20, the flexible liquid crystal film of the present invention can adhere to a whole piece along the surface geometry of the object (for example, a curved or wavy surface) without the need for conventional techniques. It is necessary to cut into a small number of dimming films with difficulty before, and then attach them to the curved or wavy glass on the surface. At the same time, the spacer microstructure 15 is mixed in the liquid crystal colloid 16 to avoid transparency due to the liquid crystal being squeezed away during bending, thereby achieving characteristics such as maintaining film size stability, uniform film formation, and low refractive index. In contrast, conventional techniques cannot be applied to the adhesion of surface-bending or wavy glass because of the lack of a spacer microstructure that maintains film dimensional stability, uniform film formation, and low refractive index. 15.

在本發明間隔微結構15可用聚苯乙烯(polystyrene)或陶瓷微粒子來實作。在實際應用上,聚苯乙烯的透光性較佳,但其持薄膜尺寸安定性較差,而陶瓷的透光性較差,但其持薄膜尺寸安定性較佳。因此,在實際使用上,主要是依據表面彎曲或波浪狀的玻璃的程度大小來選用含有聚苯乙烯 (polystyrene)或陶瓷微粒子的軟式液晶薄膜。 In the spacer microstructures 15 of the present invention, polystyrene or ceramic microparticles can be used. In practical applications, polystyrene has better light transmittance, but its film size is poor in stability, while ceramics have poor light transmittance, but it has better film size stability. Therefore, in practical use, it is mainly based on the degree of surface curvature or wavy glass. A soft liquid crystal film of (polystyrene) or ceramic fine particles.

此外,在液晶膠體16中具有雙官能基的UV固化環氧樹脂10、硬化劑12、液晶材料14的混合比例為1:1:1,以便在液晶材料14形成微滴(LC droplets)均勻分散在UV固化環氧樹脂10與硬化劑12混合體的過程中,產生足以支持液晶材料14的微結構。同時,這也可以確保液晶材料14均勻分散在UV固化環氧樹脂10與硬化劑12混合體中,而獲得均勻的折射性與期望的光通量,避免液晶材料14過度集中在一起,影響液晶薄膜的品質。再者,利用硬化劑12改變具有雙官能基的UV固化環氧樹脂10的黏性,而無須再添加抗UV的材料,而確保液晶膠體16的穩定性,同時其環境抗受性也較強。 Further, the mixing ratio of the UV-curable epoxy resin 10, the hardener 12, and the liquid crystal material 14 having a difunctional group in the liquid crystal colloid 16 is 1:1:1, so that droplets (LC droplets) are uniformly dispersed in the liquid crystal material 14. During the mixing of the UV-curable epoxy 10 and the hardener 12, a microstructure sufficient to support the liquid crystal material 14 is produced. At the same time, this also ensures that the liquid crystal material 14 is uniformly dispersed in the mixture of the UV curable epoxy resin 10 and the hardener 12, thereby obtaining uniform refractive power and desired luminous flux, avoiding excessive concentration of the liquid crystal material 14 and affecting the liquid crystal film. quality. Further, the curing agent 12 is used to change the viscosity of the UV-curable epoxy resin 10 having a bifunctional group, and it is not necessary to add a material resistant to UV, and the stability of the liquid crystal colloid 16 is ensured, and the environmental resistance is also strong. .

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。 The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.

20‧‧‧透明基材 20‧‧‧Transparent substrate

22‧‧‧透明導電層 22‧‧‧Transparent conductive layer

26‧‧‧薄膜層 26‧‧‧film layer

Claims (13)

一種可抗光害的液晶薄膜的製造方法,包含:在一對透明基材中至少其中之一的表面上形成可抗光害的一含金屬粒子的薄膜層;在具有或不具有該含金屬粒子的薄膜層之該透明基材上,分別形成一透明電極;將具有雙官能基的UV固化環氧樹脂、硬化劑、液晶材料混合後,利用硬化劑改變具有雙官能基的UV固化環氧樹脂的黏性,而在室溫下形成液晶膠體,液晶膠體混合直徑10~30μm的粒狀間隔微結構形成最終液晶膠體,將之導入表面帶有該透明電極的該對透明基材之間,利用該間隔微結構間隔使液晶薄膜被彎曲時,可藉其粒狀本體張撐二透明基材對面距離,進而使液晶分佈厚度均勻,維持均等折射率。 A method for producing a liquid crystal film resistant to light damage, comprising: forming a metal particle-containing film layer resistant to light damage on a surface of at least one of a pair of transparent substrates; with or without the metal containing layer Forming a transparent electrode on the transparent substrate of the film layer of the particles; mixing the UV-curable epoxy resin having a difunctional group, a hardener, and a liquid crystal material, and changing the UV-curable epoxy having a bifunctional group by using a hardener The viscosity of the resin is formed, and a liquid crystal colloid is formed at room temperature, and the liquid crystal colloid is mixed with a granular spacer microstructure having a diameter of 10 to 30 μm to form a final liquid crystal colloid, which is introduced between the pair of transparent substrates having the transparent electrode on the surface. When the liquid crystal film is bent by the interval microstructure interval, the distance between the two transparent substrates can be stretched by the granular body, and the liquid crystal distribution thickness can be made uniform to maintain the uniform refractive index. 如申請專利範圍第1項所述之可抗光害的液晶薄膜的製造方法,其中該間隔微結構為聚苯乙烯(polystyrene)或陶瓷之粒狀體。 The method for producing a light-resistant liquid crystal film according to claim 1, wherein the spacer microstructure is a polystyrene or a ceramic granular body. 如申請專利範圍第2項所述之可抗光害的液晶薄膜的製造方法,其中在最終液晶膠體中,聚苯乙烯(polystyrene)或陶瓷間隔微結構在重量上佔了0.5~5%的比例。 The method for producing a liquid crystal film resistant to light damage according to claim 2, wherein in the final liquid crystal colloid, polystyrene or ceramic spacer microstructure accounts for 0.5 to 5% by weight. . 如申請專利範圍第1項所述之可抗光害的液晶薄膜的製造方法,其中液晶膠體中具有雙官能基的UV固化環氧樹脂、硬化劑、液晶材料的混合比例為1:1:1。 The method for producing a liquid crystal film resistant to light damage according to claim 1, wherein the mixing ratio of the UV-curable epoxy resin, the hardener, and the liquid crystal material having a difunctional group in the liquid crystal colloid is 1:1:1. . 如申請專利範圍第1項所述之可抗光害的液晶薄膜的製造方法,其中在可抗光害的該含金屬粒子的薄膜層中,金屬粒子可為氮化鈦(TiN)、氮化鋁(AlN)、氧化鐵(FeO)、氧化銫(CeO)、氧化釩(VO)、二氧化鈦(TiO2)、氧化鋅(ZnO)、氧化銦(In2O3)、氧化鈰(CeO2)、氧化錫(SnO2)、氧化銻(Sb2O3)、硫化鋅(ZnS)、銻錫氧化物(ATO)選擇其中之一。 The method for producing a liquid crystal film resistant to light damage according to claim 1, wherein in the metal particle-containing film layer which is resistant to light, the metal particles may be titanium nitride (TiN) or nitrided. Aluminum (AlN), iron oxide (FeO), cerium oxide (CeO), vanadium oxide (VO), titanium dioxide (TiO2), zinc oxide (ZnO), indium oxide (In2O3), cerium oxide (CeO2), tin oxide (SnO2) ), strontium oxide (Sb2O3), zinc sulfide (ZnS), antimony tin oxide (ATO) is one of them. 如申請專利範圍第5項所述之可抗光害的液晶薄膜的製造方法,其中該方法進一步包含:金屬粒子與高分子聚合物混合後被塗佈或印在該透明基材上;以及利用 加熱或紫外光之固化手段,讓金屬粒子與高分子聚合物混合形成該含金屬粒子的薄膜層。 The method for producing a liquid crystal film resistant to light damage according to claim 5, wherein the method further comprises: mixing or printing the metal particles with the high molecular polymer on the transparent substrate; and utilizing The heating or ultraviolet curing means mixes the metal particles with the high molecular polymer to form the metal particle-containing film layer. 如申請專利範圍第6項所述之可抗光害的液晶薄膜的製造方法,其中高分子聚合物可為聚乙烯(PE)及聚丙烯(PP)之聚烯烴系樹脂、聚對苯二甲酸乙二醇酯(PET)及聚萘二甲酸乙二醇酯(PEN)之聚酯系樹脂、聚苯乙烯(PS)及聚乙烯醇(PVA)之乙烯結合系、聚碳酸酯(PC)系樹脂、環烯烴系樹脂、氯乙烯系樹脂選擇其中之一。 The method for producing a liquid crystal film resistant to light damage according to claim 6, wherein the high molecular polymer is a polyolefin resin of polyethylene (PE) and polypropylene (PP), and polyterephthalic acid. Polyester resin of ethylene glycol ester (PET) and polyethylene naphthalate (PEN), ethylene bonded system of polystyrene (PS) and polyvinyl alcohol (PVA), polycarbonate (PC) system One of the resin, the cycloolefin resin, and the vinyl chloride resin is selected. 如申請專利範圍第5項所述之可抗光害的液晶薄膜的製造方法,其中該方法進一步包含:金屬粒子與有機溶劑混合後被噴塗在該透明基材上;以及利用加熱或紫外光之固化手段,讓金屬粒子與有機溶劑混合形成該含金屬粒子的薄膜層。 The method for producing a light-resistant liquid crystal film according to claim 5, wherein the method further comprises: spraying the metal particles on the transparent substrate after mixing with the organic solvent; and using heat or ultraviolet light. The curing means mixes the metal particles with the organic solvent to form the metal particle-containing film layer. 如申請專利範圍第5項所述之可抗光害的液晶薄膜的製造方法,其中該方法進一步包含:金屬粒子被蒸鍍在該透明基材上,而形成該含金屬粒子的薄膜層。 The method for producing a light-resistant liquid crystal film according to claim 5, wherein the method further comprises: depositing metal particles on the transparent substrate to form the metal particle-containing film layer. 一種可抗光害的液晶薄膜,包含:一對透明基材;一含金屬粒子的薄膜層,被形成在至少該對透明基材其中之一的表面上;一對透明電極,分別被形成在具有或不具有該含金屬粒子的薄膜層之該透明基材上;一最終液晶膠體,被導入表面帶有該透明電極的該對透明基材之間,其中最終液晶膠體是由具有雙官能基的UV固化環氧樹脂、硬化劑、液晶材料在室溫下混合後,加入粒徑為10~30μm的間隔微結構所形成。 A liquid crystal film resistant to light damage, comprising: a pair of transparent substrates; a film layer containing metal particles formed on at least one of the pair of transparent substrates; a pair of transparent electrodes respectively formed on On the transparent substrate with or without the metal particle-containing film layer; a final liquid crystal colloid introduced between the pair of transparent substrates having the transparent electrode on the surface, wherein the final liquid crystal colloid is composed of a bifunctional group The UV-curable epoxy resin, the hardener, and the liquid crystal material are mixed at room temperature, and then formed by a spacer microstructure having a particle diameter of 10 to 30 μm. 如申請專利範圍第10項所述之可抗光害的液晶薄膜,其中該間隔微結構為聚苯乙烯(polystyrene)或陶瓷之粒狀體。 The light-resistant liquid crystal film according to claim 10, wherein the spacer microstructure is a polystyrene or a ceramic granular body. 如申請專利範圍第11項所述之可抗光害的的液晶薄膜,其中在最終液晶膠體中,聚苯乙烯(polystyrene)或陶瓷間隔微結構,在重量上佔了0.5~5%的比例。 The liquid crystal film which is resistant to light damage as described in claim 11, wherein in the final liquid crystal colloid, polystyrene or ceramic spacer microstructure accounts for 0.5 to 5% by weight. 如申請專利範圍第10項所述之可抗光害的的液晶薄膜,其中該金屬粒子可為氮化鈦(TiN)、氮化鋁(AlN)、氧化鐵(FeO)、氧化銫(CeO)、氧化釩(VO)、二氧化鈦(TiO2)、氧化鋅(ZnO)、氧化銦(In2O3)、氧化鈰(CeO2)、氧化錫(SnO2)、氧化銻(Sb2O3)、硫化鋅(ZnS)、銻錫氧化物(ATO)選擇其中之一。 The liquid crystal film resistant to light damage as described in claim 10, wherein the metal particles may be titanium nitride (TiN), aluminum nitride (AlN), iron oxide (FeO), or cerium oxide (CeO). , vanadium oxide (VO), titanium dioxide (TiO2), zinc oxide (ZnO), indium oxide (In2O3), cerium oxide (CeO2), tin oxide (SnO2), cerium oxide (Sb2O3), zinc sulfide (ZnS), antimony tin One of the oxides (ATO) is selected.
TW102133106A 2013-09-12 2013-09-12 And a method for manufacturing the same TWI528048B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102133106A TWI528048B (en) 2013-09-12 2013-09-12 And a method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102133106A TWI528048B (en) 2013-09-12 2013-09-12 And a method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201510560A TW201510560A (en) 2015-03-16
TWI528048B true TWI528048B (en) 2016-04-01

Family

ID=53186693

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102133106A TWI528048B (en) 2013-09-12 2013-09-12 And a method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI528048B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10996518B1 (en) 2019-12-26 2021-05-04 Industrial Technology Research Institute Light switchable device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10996518B1 (en) 2019-12-26 2021-05-04 Industrial Technology Research Institute Light switchable device

Also Published As

Publication number Publication date
TW201510560A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6374508B2 (en) Smart glass structure and window glass for transportation
CN202383391U (en) Dimming insulation film
KR102605053B1 (en) Electrically controllable device with variable scattering properties due to liquid crystals
JP2000169765A (en) Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom
JP5297125B2 (en) Gas barrier film with transparent conductive film and touch panel using the same
CN105759469A (en) Multifunctional smart glass and manufacturing method thereof
WO2016103629A1 (en) Optical device
KR20210064300A (en) Electrically controllable device with variable diffusion by liquid crystal and method therefor
CN112379546B (en) Polymer disperse dye liquid crystal material, electrochromic dimming film and preparation method
CN203818685U (en) Photochromic dimming heat-insulation film
CN207937721U (en) A kind of intelligent dimming glass with ink-jet
WO2018117256A1 (en) Light control member, method for producing light control member, light control body and vehicle
CN104015452B (en) Uvioresistant automobile adhesive film
TWI528048B (en) And a method for manufacturing the same
CN108828867A (en) A kind of electrochromic rearview and preparation method thereof
KR102113225B1 (en) smart window film and manufacturing method thereof
KR102581929B1 (en) Smart window based on anti-reflective color glass integrated polymer liquid crystal(PDLC)
KR20160034577A (en) Manufacturing method of energy saving transparent paint
TWI541560B (en) And a method for manufacturing the liquid crystal film
CN210605296U (en) Liquid crystal writing board
CN203786432U (en) Liquid crystal film with light-damage-prevention measure taken in surface
KR20170090895A (en) Superb optical characteristics silver nanowire, coating film and preparing method of the same
KR102547207B1 (en) Reverse-operating smart window film, manufacturing method thereof and smart window including the same
US20190004389A1 (en) Light reflective material and light control device
CN221125043U (en) Dimming film and dimming glass

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees