TWI512295B - Process and device to provide an alignment signal and an apparatus with such a device - Google Patents

Process and device to provide an alignment signal and an apparatus with such a device Download PDF

Info

Publication number
TWI512295B
TWI512295B TW100101174A TW100101174A TWI512295B TW I512295 B TWI512295 B TW I512295B TW 100101174 A TW100101174 A TW 100101174A TW 100101174 A TW100101174 A TW 100101174A TW I512295 B TWI512295 B TW I512295B
Authority
TW
Taiwan
Prior art keywords
value
appliance
determining
signal
measurement
Prior art date
Application number
TW100101174A
Other languages
Chinese (zh)
Other versions
TW201200875A (en
Inventor
Daniel Schifferdecker
Julian Bartholomeyczik
Original Assignee
Bosch Gmbh Robert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Gmbh Robert filed Critical Bosch Gmbh Robert
Publication of TW201200875A publication Critical patent/TW201200875A/en
Application granted granted Critical
Publication of TWI512295B publication Critical patent/TWI512295B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • User Interface Of Digital Computer (AREA)
  • Telephone Function (AREA)

Description

提供對準信號的方法與裝置以及具有此裝置的可攜帶的器具Method and apparatus for providing alignment signals and portable implements having the same

本發明有關於朝向(Ausrichtung)的測定,特別是本發明關於提供一信號的方法與裝置,該信號指示一可攜帶之器具的空間朝向。The invention relates to an orientation, in particular to a method and a device for providing a signal indicative of the spatial orientation of a portable appliance.

可攜帶的器具,如手機或個人數位助手(PDA)有一顯示器,它可依器具在空間的朝向而定將一預定的內容作不同的顯示。例如一容可在顯示器上呈高度格式(直格式)(Hochformat)(“肖像”)或呈橫格式(Querformat)(“風景”)方式顯示,各依使用者是否將該器具用度格式或橫格式拿住而定。Portable devices, such as cell phones or personal digital assistants (PDAs), have a display that can display a predetermined content differently depending on the orientation of the device. For example, a content can be displayed in a high format (Hochformat) ("portrait") or a horizontal format ("landscape") on the display, depending on whether the user uses the device in a format or horizontally. The format depends on it.

美專利US 2006/0204232 A1提到一種攝影機,具有一方向感測器以測定該器具在空間的朝向,俾依此器具的一定位置和一定之空間朝向利用一虛擬鍵盤輸入。US 2006/0204232 A1 refers to a camera having a directional sensor for determining the orientation of the appliance in space, a certain position of the appliance and a certain spatial orientation using a virtual keyboard input.

用於測定習知器具的空間朝向的器具一般所用的感測器會受到不同的干擾影響,因此一提供的信號(它指示該器具的空間朝向)往往不能忽視。為了根據所提供的信號充分準確地測定該可攜帶器具的朝向,故各感測器可針對干擾值個別地校準(kalibrieren)。在此該感測器施以一已知之加速度及一已知干擾值,並接收由感測器產生的值與一修正值之間的差。對多數干擾值作這種測定,並由多數如此測定的差值產生一特性線(Kennlinie),在作測量時,將特性線 的一值與各個由感測器產生的值根據一定的溫度為基礎相關聯,據此可測定一正確的測量值,這種所謂的「感測器的校準」由於在感測器生產時有製造誤差,因此須對各感測器個別地作,這點很繁複且花錢。The sensors used to measure the spatial orientation of conventional appliances are typically subject to different disturbances, so a provided signal (which indicates the spatial orientation of the appliance) is often not overlooked. In order to determine the orientation of the portable device sufficiently accurately based on the signal provided, the sensors can be individually calibrated for the interference value. Here the sensor applies a known acceleration and a known interference value and receives the difference between the value produced by the sensor and a correction value. This determination is made for most of the interference values, and a characteristic line (Kennlinie) is generated from the majority of the differences thus determined, and the characteristic line is taken when making the measurement. The value of each sensor is correlated with the value generated by the sensor based on a certain temperature, and accordingly, a correct measurement value can be determined. This so-called "sensor calibration" is due to the sensor production. Manufacturing errors are therefore required to be made individually for each sensor, which is complicated and costly.

本發明的目的在提供一種較佳的提供對準信號的技術。It is an object of the present invention to provide a preferred technique for providing an alignment signal.

這種目的達成之道係利用一種具有申請專利範圍第1項的特點的本發明的方法,及一種具有申請專利範圍第7項的特點的本發明的裝置,及一種具有申請專利範圍第10項的特點的本發明的器具。申請專利範圍附屬項為有利的實施例。This object is achieved by using a method of the invention having the features of claim 1 and a device of the invention having the features of claim 7 and a claim 10th. The features of the device of the invention. An appendix to the scope of the patent application is an advantageous embodiment.

為了提供一信號(它指示一可攜帶器具的空間朝向),首先測定一方向(地球重力加速度由此方向作用到該器具)。然將測定的方向與一確定的參考方向比較,當依比較結果提供信號。在此要確定此參考方向,係將一個影響方向的測定的值檢出,並依此有影響作用的值確定參考方向。也可不用此影響方向測定的值,而使用影響方向測定之準確性的值。在此,測定重力加速度作用到器具的方向的技術,二方向比較的方法,依比較結果如何產生信號,以及如何檢出該影響性的值以及如何判斷此值是否有影響性,以及如何根據此值確定參考方向的方法細節,並非本發明的要點所在,本發明重點在揭示申請專利範圍主項的大原則步 驟,而不在個別步驟如何實施的細節。這些細節對於信號處理的專家都是一般常識,並非發明要點,也沒有執行上的問題或困難。In order to provide a signal indicating the spatial orientation of a portable device, a direction is first determined (the earth's gravitational acceleration acts in this direction on the device). The measured direction is then compared to a determined reference direction, and a signal is provided as a result of the comparison. Here, to determine the reference direction, a measured value that affects the direction is detected, and the reference direction is determined according to the influential value. It is also possible to use a value that affects the direction measurement and a value that affects the accuracy of the direction measurement. Here, the technique of measuring the direction of gravity acceleration acting on the appliance, the method of comparing the two directions, how the signal is generated according to the comparison result, how to detect the influence value and how to judge whether the value is influential, and how to The method details of determining the reference direction are not the main points of the present invention, and the present invention focuses on revealing the principle steps of the main subject of the patent application. Details, not how to implement the individual steps. These details are common sense for experts in signal processing, not the main points of the invention, nor the problems or difficulties in implementation.

因此可避免一種裝置的繁複校準作業(利用它測定重力加速作用到該器具上的方向),如此生產成本可降低。舉例而言,該有影響作用的值以及其對於方向測定的影響之間的關係可廉價地用經驗對多數測定裝置實施,因此可使用一般情形或最惡劣情形中預期的影響的值以確定參考方向。Therefore, a complicated calibration operation of a device (using it to measure the direction in which gravity is accelerated to the appliance) can be avoided, so that the production cost can be reduced. For example, the relationship between the influential value and its effect on the direction determination can be implemented empirically for most assay devices, so the values of the expected effects in the general or worst case can be used to determine the reference. direction.

依本發明一較佳實施例也可使用二個不同的參考方向,其中比較結果取決於二個參考方向通過該一定方向的序列順序。這種方式的比較稱為磁滯(滯後現象)(Hysterese)比較或史密特觸發器。這二個參考方向之間的不同(磁滯)可與該影響作用的值(特別是該影響性的值與一固定之參考值的差有關,該確定的參考值可表示一種條件,在此條件下,該測定裝置可利用該值最佳化或校準或補償成儘量小的影響。在此,本發明的要點也只在這種原則性的步驟,至於個別步驟的細節,亦非本發明要點,例如二個不同參考方向的順序的檢出,就是習知之滯後現象或史密特觸發器的技術,而臨限值的設定及其與相關值的差異及處理做法,更是習知的自動控制方面的電子技術,並非本發明要點。Two different reference directions can also be used in accordance with a preferred embodiment of the invention, wherein the comparison results depend on the sequence order of the two reference directions through the direction. A comparison of this approach is called hysteresis (Hysterese) comparison or Schmitt trigger. The difference between the two reference directions (hysteresis) can be related to the value of the influence (especially the difference between the influence value and a fixed reference value, the determined reference value can represent a condition, here In this case, the measuring device can be optimized or calibrated or compensated to have as little influence as possible. Here, the gist of the invention is only in this principled step, and the details of the individual steps are not the invention. The point, for example, the detection of the order of two different reference directions is the technique of the conventional hysteresis or the Schmitt trigger, and the setting of the threshold value and the difference between the correlation value and the processing method are more conventional. The electronic technology in automatic control is not the gist of the present invention.

用此方式,如果該值對方向測定的影響很小,則磁滯可保持很小,且如果該值對方向測定的影響大,則磁滯可 加大,在最有利的狀況,換言之,當該值對方向測定的影響很大或該有影響作用的值與確定之參考值之間的差很大,固然信號相對對於器具空間朝向的變化的敏感性降低,但同時該測定作用的強固性(Robustheit,英:robustness)提高,因此可避免由於該有影響作用的值的干擾造成不想要的信號變化。也可用相關的方式將對於方向測定的準確性的影響模型化(modellieren)。In this way, if the value has little effect on the direction measurement, the hysteresis can be kept small, and if the value has a large influence on the direction measurement, the hysteresis can be Increase, in the most favorable condition, in other words, when the value has a great influence on the direction measurement or the difference between the influential value and the determined reference value is large, although the signal is relatively different from the orientation of the appliance space. The sensitivity is reduced, but at the same time the robustness (Robustheit) is increased, so that unwanted signal changes due to interference of the influential values can be avoided. The effect on the accuracy of the direction determination can also be modeled in a relevant manner.

要測定從該器具的一確定之「空間朝向」過渡到另一個確定的「空間朝向」的過渡作用,可根據該測定的方向測定該器具的傾斜角度。此傾斜角度可將一多維的朝向映射(abbilden,英:imaging)到單一值,因此進一步的處理〔例如與一臨限值(當作參考值)比較〕可簡化。To determine the transition from a defined "space orientation" of the appliance to another determined "space orientation", the angle of inclination of the appliance can be determined from the direction of the measurement. This tilt angle maps a multidimensional orientation (abbilden) to a single value, so further processing (eg, compared to a threshold (as a reference)) can be simplified.

此有影響性的值可為一溫度,特別是該用於測定方向的測定裝置的溫度。一有利方式係將測定裝置與一溫度感測器整合。該有影響作用的值可表示該溫度與一確定的參考溫度之間的差,其中該參考溫度可對應於一室溫。此測定裝置可包含一加速度感測器,以對於三個成對互相線性獨立的空間方向作感測,因此可在一個三維的空間中測定地球重力加速度的方向。這三個空間方向一般都是互相垂直的x、y、z(縱向、橫向、高度方向)。空間的加速度乃是三維加速度的合力。這種三維加速度的分析乃是習知技術,並非本發明要點。This influential value can be a temperature, in particular the temperature of the measuring device used to measure the direction. An advantageous way is to integrate the assay device with a temperature sensor. The influential value can represent the difference between the temperature and a determined reference temperature, wherein the reference temperature can correspond to a room temperature. The assay device can include an acceleration sensor to sense three spatially independent spatial directions in pairs, thereby determining the direction of the earth's gravitational acceleration in a three-dimensional space. These three spatial directions are generally x, y, z (longitudinal, lateral, and height directions) perpendicular to each other. The acceleration of space is the resultant force of three-dimensional acceleration. This analysis of three-dimensional acceleration is a well-known technique and is not essential to the invention.

此信號可代表該器具的數個確定之離散的空間朝向中的一個朝向。一種有利方式,可由此信號直接導出該器具 的一顯示模組或操作模組,例如「高(直)格式」「橫格式」或「平躺」。This signal may represent one of a number of determined discrete spatial orientations of the appliance. An advantageous way to derive the device directly from the signal A display module or operation module, such as "high (straight) format", "horizontal format" or "flat".

本發明另一標的為一測定信號的測定裝置以及一個具有此測定裝置的器具。Another subject of the invention is a measuring device for measuring a signal and an instrument having the measuring device.

以下配合附圖詳細說明本發明的實施例。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

圖1顯示一可攜帶器具(100)的一方塊圖,此可攜帶器具(100)包含一處理裝置(110)、一顯示器(120)、一輸入裝置(130)、一加速度感測器(140)及一溫度感測器(150)。此處理裝置(110)與各上述元件(120)(130)(140)(150)連接。此加速度感測器測定至少一維的加速度,且宜用MEMS技術建構成微電機械系統形式。加速度感測器(140)宜為一個三維加速度感測器,它將一個三維的笛卡爾(kartesisch)坐標系統中的加速度檢出。此加速度感測器(140)提供一測量值,它可推斷器具軸與空間軸之間的一個或數個角度。為此,加速度感測器可直接測定繞器具軸的角度或由該沿器具軸的重力加速度的值推斷該角度,例如:利用α=cos-1 (Fz)(在一維的情形)或利用(在二維的情形,其中Fx、Fy及Fz表示沿x軸、y軸、z軸的地球重力加速度。這種換算成角度的作業也可利用處理裝置(110)實施。最好,溫度感測器(150)做成與加速度感測器(140)整合。1 shows a block diagram of a portable device (100) including a processing device (110), a display (120), an input device (130), and an acceleration sensor (140). And a temperature sensor (150). The processing device (110) is coupled to each of the aforementioned components (120) (130) (140) (150). The acceleration sensor measures at least one dimension of acceleration and is preferably constructed in the form of a microelectromechanical system using MEMS technology. The acceleration sensor (140) is preferably a three-dimensional acceleration sensor that detects acceleration in a three-dimensional kartesch coordinate system. The acceleration sensor (140) provides a measurement that infers one or more angles between the appliance axis and the spatial axis. To this end, the acceleration sensor can directly determine the angle around the axis of the appliance or infer the angle from the value of the gravitational acceleration along the axis of the appliance, for example: using α=cos -1 (Fz) (in one dimension) or utilizing (In the case of two dimensions, where Fx, Fy, and Fz represent the gravitational acceleration of the Earth along the x-axis, the y-axis, and the z-axis. This conversion to angle can also be performed using the processing device (110). Preferably, the temperature sense The detector (150) is made integral with the acceleration sensor (140).

顯示器(120)設計成將一要顯示的內容用不同格式,例如高度皮或橫格式輸出。如不用此方式,也可由顯示器(120) 或由處理裝置(110)對應地配合要輸出的內容。The display (120) is designed to output a content to be displayed in a different format, such as a high skin or horizontal format. If you don't use this method, you can also use the display (120). Or the processing device (110) correspondingly cooperates with the content to be output.

處理裝置(110)設計成用於提供一信號,該信號表示器具(100)的一空間朝向。舉例而言,此信號可為一電信號或一軟體信號呈一信號燈(Semaphor)、一中斷(interrupt)、一多次使用的變數、一功能呼叫、或類似物的形式,特別是可提供一種應用(Applikation)的信號,此應用依信號而定將一內容顯示在顯示器(120)上或在顯示前作處理。此應用可同樣地在處理裝置(110)上進行。The processing device (110) is designed to provide a signal indicative of a spatial orientation of the appliance (100). For example, the signal may be in the form of a signal or a software signal in the form of a semaphor, an interrupt, a multi-use variable, a function call, or the like, in particular, a Application (Applikation) signal, which depends on the signal to display a content on the display (120) or to process it prior to display. This application can likewise be performed on the processing device (110).

圖2顯示圖1的器具(100)的一度空間朝向。器具(100)有一縱軸y、一橫軸x及一高度軸z,它們呈笛卡爾坐標形式。為了一目瞭然起見,在器具(100)旁並不從原點(Ursprung)而在θ的頂點(Scheitelpunkt)表示。器具(100)繞z軸在空間中轉動的朝向,使重力加速度Fg 對縱軸y呈一角度α作用到器具(100)。此外顯示二個對縱軸y的參考方向α1 ,α2 ,它們夾成一角度θ。Figure 2 shows the one-dimensional orientation of the appliance (100) of Figure 1. The appliance (100) has a longitudinal axis y, a transverse axis x and a height axis z, which are in Cartesian coordinates. For the sake of clarity, it is not indicated at the apex of θ (Scheitelpunkt) from the origin (Ursprung) next to the appliance (100). Appliance (100) to rotate about the z-axis direction in the space, so that F g gravitational acceleration at an angle α to the longitudinal axis y effect to the appliance (100). Furthermore, two reference directions α 1 , α 2 for the longitudinal axis y are shown, which are sandwiched at an angle θ.

在圖1的器具(100)中,在第一實施例中的信號係可藉著將角度α的參考方向α1 或α2 比較而測定。各依器具(100)繞z軸的轉動情形而定,一第一空間朝向A可利用α>α1 ,一第二空間朝向B可利用α1 >α>α2 ,一第三空間朝向C可利用α<α2 定義。在一第二實施例,器具(100)繞z軸朝向可藉著將角度α與二參考方向α1 ,α2 比較依一磁滯方式測定。各依α以何種順序通過參考方向α1 及α2 而定,可描述一第四朝向D一第五朝向E的α1 及α2 的一區域(見圖4)。舉例而言,朝向C與D可一高度格式,而朝向A與E可代 表圖1中的顯示器(120)的橫格式,其他可能的朝向包含一顛倒的高度格式及一顛倒的橫格式。In the appliance (100) of Fig. 1, the signal system in the first embodiment can be determined by comparing the reference direction α 1 or α 2 of the angle α. Depending on the rotation of the instrument (100) about the z-axis, a first spatial orientation A can utilize α > α 1 , a second spatial orientation B can utilize α 1 > α > α 2 , and a third spatial orientation C It can be defined by α<α 2 . In a second embodiment, the orientation of the instrument (100) about the z-axis can be determined by comparing the angle a with the two reference directions α 1 , α 2 in a hysteresis manner. In each order, depending on the reference directions α 1 and α 2 , a region of α 1 and α 2 of the fourth direction D to the fifth direction E can be described (see Fig. 4). For example, orientations C and D may be a high format, while orientations A and E may represent the horizontal format of the display (120) of FIG. 1, and other possible orientations include an inverted height format and an inverted horizontal format.

圖3顯示圖1的器具(100)的一種二維的朝向,在圖中呈導線架(Drahtgitter,英:wire frame)形式。器具(100)繞其x軸及繞其y軸旋轉,使重力加速度Fg 與器具(100)的z軸夾一角度α。圖示的圓錐體(210)在參考方向α1 及α2 之間有一開口角度θ。在圖中,圓錐體(210)呈旋轉對稱方式繞z軸開口;但參考方向也可沿軸y及z作不同的定義。器具(100)的一笛卡爾坐標系統為了一目瞭然起見,在器具(100)旁不用原點,而在圓錐體(210)的尖端表示,角度α表示器具(100)繞其x軸及y軸的傾斜角度。角度β另外表示器具(100)繞其z軸的朝向。Figure 3 shows a two-dimensional orientation of the appliance (100) of Figure 1 in the form of a lead frame in the figure. Appliance (100) about its x axis and is rotated about its axis y, so that the appliance F g gravitational acceleration (100) z-axis of a clip angle α. The illustrated cone (210) has an opening angle θ between the reference directions α 1 and α 2 . In the figure, the cone (210) is opened in a rotationally symmetric manner about the z-axis; however, the reference direction can also be defined differently along the axes y and z. A Cartesian coordinate system of the appliance (100), for the sake of clarity, does not use the origin next to the appliance (100), but at the tip of the cone (210), the angle a represents the appliance (100) about its x-axis and y-axis The angle of inclination. The angle β additionally indicates the orientation of the appliance (100) about its z-axis.

此處器具(100)繞其x軸及y軸的「空間朝向」F(圖未示)定義如下:角度α位於α1 及α2 的界限內。在圖中,如果重力加速度Fg 在示之相對於器具(100)固定的圓錐體(210)內延伸,則器具(100)就沿朝向A的方向朝向。如果器具(100)平平臥在一桌子上,舉例而言,空間朝向F可被器具(100)佔住。對應於此,器具(100)繞其x軸及y軸的朝向G(圖未示)可利用一角度α在界限α1 及α2 外定義。因此如果重力加速度Fg 在圓錐體(210)外延伸時。Here, the "space orientation" F (not shown) of the instrument (100) about its x-axis and y-axis is defined as follows: the angle α is within the limits of α 1 and α 2 . In the drawing, if F g gravitational acceleration in a direction toward the tool shown with respect to the (100) fixed cone (210) extending within, the appliance (100) in the direction towards the A. If the appliance (100) is lying flat on a table, for example, the space facing F can be occupied by the appliance (100). Corresponding to this, the orientation G (not shown) of the instrument (100) about its x-axis and y-axis can be defined outside the limits α 1 and α 2 by an angle α. Therefore, if the gravitational acceleration F g extends outside the cone (210).

為了將具不同臨限值的磁滯(如圖2所示)作實施(implementieren)。可定義二個具不同開口角度及一致的尖端的圓錐體。磁滯的值θ就測定為圓錐體的開口角度差的一半。為了將不同空間度量的磁滯及/或臨限值作不同的 空間設計,舉例而言,可在圓錐體的位置經由橢圓形使用。在使用一磁滯時,器具的朝向一如下文圖4的說明作測定。In order to implement hysteresis with different thresholds (as shown in Figure 2). Two cones with different opening angles and a consistent tip can be defined. The hysteresis value θ is measured as half the difference in the opening angle of the cone. In order to make the hysteresis and / or threshold of different spatial metrics different The spatial design, for example, can be used via the ellipse at the location of the cone. When a hysteresis is used, the orientation of the appliance is determined as described below in Figure 4.

圖4顯示圖2及圖3的角度α以及圖1的器具(100)提供的信號之間的關係圖。角度α係在水平方向,在垂直方向為圖1中器具(100)的信號。圖2的二個不同之例示的離散空間朝向D與E作圖示。其他朝向也可使用,特別是維者,如圖3中所述之朝向F與G。坐標圖(400)中的圖形(410)係一磁滯回路,如果角度α的值從其最小值(最左邊)到其最大值(最右邊),則當角度α超過參考方向α2 的時刻,則信號從朝向D切換到朝向E。如果角度α通過其最大值(最右邊)到最小值(最左邊)的值,則當角度α小於參考方向α1 時,信號才會從朝向E切換回到朝向D。此參考方向α1 及α2 在上述說明中的範圍也可交換(vertauschen),這點在圖式中對應於沿所示箭頭的磁滯回路的轉一圈。4 is a graph showing the relationship between the angle α of FIGS. 2 and 3 and the signal provided by the appliance (100) of FIG. 1. The angle α is in the horizontal direction and is the signal of the appliance (100) in Fig. 1 in the vertical direction. The two different exemplary discrete spaces of Figure 2 are illustrated with respect to D and E. Other orientations can also be used, particularly for the dimension, as directed by F and G as described in FIG. The graph (410) in the graph (400) is a hysteresis loop. If the value of the angle α is from its minimum value (leftmost) to its maximum value (rightmost), then when the angle α exceeds the reference direction α 2 Then the signal switches from facing D to facing E. If the angle α passes the value of its maximum value (rightmost) to the minimum value (leftmost), then when the angle α is smaller than the reference direction α 1 , the signal will switch from the direction E back to the direction D. The reference directions α 1 and α 2 can also be exchanged in the above description, which corresponds to a revolution of the hysteresis loop along the arrow shown in the drawing.

用此方式可將干擾影響〔它們會造成角度α在參考方向α1 及α2 的範圍內波動〕造成D與E間的信號不當地變動。In this way, the effects of interference [which cause the angle α to fluctuate within the range of the reference directions α 1 and α 2 ) cause an undesired shift in the signal between D and E.

磁滯θ越大,則器具(100)之相鄰空間朝向的切換性質的敏感性越小,但同時測定作業對於信號或空間朝向之不想要的變化的強固性提高。磁滯θ之由二參考方向α1 及α2 的差所予的值相當於圖2及圖3的參考方向α1,2 的差。The greater the hysteresis θ, the less sensitive the switching properties of the adjacent spatial orientation of the appliance (100), but at the same time the robustness of the measurement operation to unwanted changes in signal or spatial orientation. The hysteresis θ 1 [alpha] by the second reference direction and the difference between [alpha] 2 corresponds to the value of the reference direction in FIG. 2 and FIG. 3, the difference [alpha] 1,2.

圖5顯示圖1的器具(100)之與溫度有關的一個坐標圖。上方之坐標圖表示例示個別的加速度感測器(S1)~(S4)之典型之與溫度有關的誤差的關係,而下方的坐標圖表示圖2,圖3,圖4的磁滯θ與加速度感測器(140)的溫度之間 的關係。Figure 5 shows a temperature-dependent graph of the appliance (100) of Figure 1. The upper coordinate chart shows the typical temperature-dependent error of the individual acceleration sensors (S1)~(S4), while the lower graph shows the hysteresis θ and acceleration of Figure 2, Figure 3, and Figure 4. Between the temperature of the sensor (140) Relationship.

在二坐標圖(510)(520)中溫度的係為水平方向,圖示溫度T0 為一參考溫度,舉例而言,它等於室內空氣溫度(約25℃)。T0 對應於一溫度,對此溫度,上方坐標圖(510)的感測器(S1)~(S4)在操作時作最佳化,在圖示之溫度走勢中,感測器S1~S4有不同之線性誤差及偏差誤差,但一致地在此T0 的範圍有較小的誤差,實際的加速度感測器(S1)~(S4)的誤差可假設為與溫度有關的絕對值,可高達0.2g。The temperature in the two-graph (510) (520) is horizontal, and the temperature T 0 is a reference temperature, which is, for example, equal to the indoor air temperature (about 25 ° C). T 0 corresponds to a temperature at which the sensors (S1) to (S4) of the upper graph (510) are optimized during operation. In the temperature trend shown, the sensors S1 to S4 There are different linear errors and deviation errors, but there is a small error in the range of T 0 consistently. The error of the actual acceleration sensors (S1)~(S4) can be assumed as the absolute value related to temperature. Up to 0.2g.

利用一個所予之感測器(S1)~(S4)一般不能知道溫度對角度測定作業的絕對影響。然而可藉著觀察多數感測器(S1)~(S4)而測定知道溫度對感測器(S1)~(S4)的準確度(平均誤差)的典型方式有什麼影響,因此可根據這種平均數值而評估或推定該感測器之可預期的準確度。The absolute influence of temperature on the angle measurement operation is generally not known by a given sensor (S1)~(S4). However, by observing the majority of the sensors (S1) to (S4), it is possible to determine the effect of knowing the temperature on the accuracy (average error) of the sensors (S1) to (S4), so The average value is used to estimate or estimate the predictable accuracy of the sensor.

在下方坐標圖(520)中的磁的值相當於在各溫度時,在上方的坐標圖(510)中感測器(S1)~(S4)的相關之最小誤差和相關之最大誤差之間的差值。最好,該磁滯θ的值之在下方坐標圖(520)中所示的走勢根據夠大數目例子的加速度感測器(S1)~(S4)的測量利用蒙地卡羅(Monte-Carlo)方法測定。The value of the magnet in the lower graph (520) corresponds to the minimum error associated with the sensor (S1) to (S4) in the upper graph (510) and the associated maximum error at each temperature. The difference. Preferably, the value of the hysteresis θ is shown in the lower graph (520) according to a sufficiently large number of examples of acceleration sensors (S1) to (S4) using Monte Carlo (Monte-Carlo) ) Method determination.

圖6顯示在圖1的器具(100)內提供信號的方法(600)。此方法(600)包含狀態(610)~(670),在狀態(610)中,方法(600)係在起始狀態。然後在狀態(620)中利用溫度感測器(150)測定加速度感測器(140)的溫度。然後在步驟(630)中根據測定的溫度測定磁滯θ的值,它在上文中利用圖2~圖5 說明。然後在步驟(640)根據磁滯θ的值測定參考方向α1 及α2 比較(在該圖4所述之磁滯比較的範疇中比較)。最後在步驟(670)中對應於此比較結果提供一信號,此信號表示器具(100)的空間朝向。最後將程序(600)回轉到起始狀態(610)且可重新進行。Figure 6 shows a method (600) of providing a signal within the appliance (100) of Figure 1. The method (600) includes states (610) through (670), and in state (610), the method (600) is in an initial state. The temperature sensor (150) is then used to determine the temperature of the acceleration sensor (140) in state (620). The value of hysteresis θ is then determined from the measured temperature in step (630), which is illustrated above using Figures 2 through 5. Then, in step (640), the reference directions α 1 and α 2 are compared based on the value of the hysteresis θ (compared in the category of hysteresis comparison described in Fig. 4). Finally, in step (670) a signal is provided corresponding to this comparison, which signal represents the spatial orientation of the appliance (100). Finally, the program (600) is rotated to the initial state (610) and can be re-executed.

利用本發明,可將一可攜帶之器具的(特別是確定的)離散的空間方向可靠地測定,並依干擾值而定,在測定作業的強固性及細靈敏度之間選擇良好的折衷,因此對一使用者可將器具整體上調整成較佳的操作性,為此不須測定個別的加速感測器(140)的實際溫度相依性。According to the present invention, the (especially determined) discrete spatial direction of a portable device can be reliably measured, and depending on the interference value, a good compromise is selected between the robustness and the fine sensitivity of the measurement operation. The overall operability of the appliance can be adjusted for a user as a whole, without the need to determine the actual temperature dependence of the individual acceleration sensors (140).

(100)‧‧‧可攜帶器具(100)‧‧‧ portable appliances

(110)‧‧‧處理裝置(110)‧‧‧Processing device

(120)‧‧‧顯示器(120)‧‧‧ Display

(130)‧‧‧輸入裝置(130)‧‧‧ Input device

(140)‧‧‧加速度感測器(140)‧‧‧Acceleration sensor

(150)‧‧‧溫度感測器(150) ‧ ‧ temperature sensor

(210)‧‧‧圓錐體(210)‧‧‧Cone

(510)‧‧‧上方坐標圖(510) ‧‧‧ top graph

(520)‧‧‧下方坐標圖(520) ‧‧‧ lower chart

(600)‧‧‧方法(600) ‧ ‧ method

(610)‧‧‧狀態(步驟)(610)‧‧‧ Status (step)

(620)‧‧‧狀態(步驟)(620)‧‧‧ Status (step)

(630)‧‧‧狀態(步驟)(630)‧‧‧ Status (step)

(640)‧‧‧狀態(步驟)(640)‧‧‧ Status (step)

(650)‧‧‧狀態(步驟)(650)‧‧‧ Status (step)

(660)‧‧‧狀態(步驟)(660)‧‧‧ Status (step)

(670)‧‧‧狀態(步驟)(670)‧‧‧ Status (step)

A‧‧‧第一空間朝向A‧‧‧First space orientation

B‧‧‧第二空間朝向B‧‧‧Second space orientation

C‧‧‧第三空間朝向C‧‧‧ third space orientation

D‧‧‧第四空間朝向D‧‧‧fourth space orientation

E‧‧‧第五空間朝向E‧‧‧Film space orientation

F‧‧‧空間朝向F‧‧‧Space orientation

Fg ‧‧‧重力加速度F g ‧‧‧gravity acceleration

S1‧‧‧感測器S1‧‧‧ sensor

S2‧‧‧感測器S2‧‧‧ sensor

S3‧‧‧感測器S3‧‧‧ sensor

S4‧‧‧感測器S4‧‧‧ sensor

x‧‧‧空間方向x‧‧‧Space direction

y‧‧‧空間方向y‧‧‧Space direction

z‧‧‧空間方向z‧‧‧Space direction

α‧‧‧角度‧‧‧‧ angle

α1 ‧‧‧(角度α的)參考方向α 1 ‧‧‧ (angle α) reference direction

α2 ‧‧‧(角度α的)參考方向Reference direction of α 2 ‧‧‧ (angle α)

θ‧‧‧磁滯(滯後作用)Θ‧‧‧hysteresis (hysteresis)

圖1係一可攜帶器具的一方塊圖;圖2係圖1的器具的一維空間朝向;圖3係圖1的器具的二維空間朝向;圖4係圖1的器具的一朝向與該器具之一傾斜角度之間的關係示意圖;圖5係圖1的器具的溫度與參數之間的關係的示意圖;圖6係圖1的器具中測定信號的方法。Figure 1 is a block diagram of a portable device; Figure 2 is a one-dimensional orientation of the appliance of Figure 1; Figure 3 is a two-dimensional orientation of the appliance of Figure 1; Figure 4 is an orientation of the appliance of Figure 1 Schematic diagram of the relationship between the inclination angles of one of the appliances; FIG. 5 is a schematic diagram showing the relationship between the temperature and the parameters of the appliance of FIG. 1. FIG. 6 is a method for measuring signals in the apparatus of FIG.

(100)‧‧‧可攜帶器具(100)‧‧‧ portable appliances

A‧‧‧第一空間朝向A‧‧‧First space orientation

B‧‧‧第二空間朝向B‧‧‧Second space orientation

C‧‧‧第三空間朝向C‧‧‧ third space orientation

D‧‧‧第四空間朝向D‧‧‧fourth space orientation

E‧‧‧第五空間朝向E‧‧‧Film space orientation

Fg ‧‧‧重力加速度F g ‧‧‧gravity acceleration

x‧‧‧空間方向x‧‧‧Space direction

y‧‧‧空間方向y‧‧‧Space direction

z‧‧‧空間方向z‧‧‧Space direction

α‧‧‧角度‧‧‧‧ angle

α1 ‧‧‧(角度α的)參考方向α 1 ‧‧‧ (angle α) reference direction

α2 ‧‧‧(角度α的)參考方向Reference direction of α 2 ‧‧‧ (angle α)

θ‧‧‧磁滯(滯後作用)Θ‧‧‧hysteresis (hysteresis)

Claims (10)

一種提供對準信號的方法(600),該對準信號指示一個可攜帶的器具(100)的空間朝向,具有以下步驟:--測定一方向(600),地球重力加速度(FG)由此方向作用到該器具(100);--將此測定的方向與一定的參考方向作比較(600),及--依比較結果提供此信號(670),其特徵在以下確定參考方向的步驟:--檢出一影響此方向測定作業的值(T)及--依該有影響性的值(T)決定各參考方向。 A method (600) for providing an alignment signal indicative of a spatial orientation of a portable implement (100) having the following steps: - determining a direction (600), the earth's gravitational acceleration (FG) in this direction Acting on the device (100); - comparing the direction of the measurement with a certain reference direction (600), and - providing the signal (670) according to the comparison result, characterized by the steps of determining the reference direction below: - - Detect a value (T) that affects the measurement operation in this direction and -- determine the reference direction based on the influential value (T). 如申請專利範圍第1項之方法,其中:使用二個不同的參考方向(α1 )(α2 ),其中比較結果依二個參考方向(α1 )(α2 )經該一定的方向(T)而通過(α1 )(α2 )的順序而定,且其中,在臨限值(α1 )(α2 )之間的差異(A)係依該影響性的值(T)和一固定的參考值(T0 )的差而定。The method of claim 1, wherein: two different reference directions (α 1 ) (α 2 ) are used, wherein the comparison result is in the certain direction according to the two reference directions (α 1 ) (α 2 ) ( T) is determined by the order of (α 1 )(α 2 ), and wherein the difference (A) between the thresholds (α 1 ) (α 2 ) is based on the influential value (T) and A fixed reference value (T 0 ) depends on the difference. 如申請專利範圍第1或第2項之方法,其中:根據該測定的方向測定該器具(100)的一傾斜角度(α),其中該特定方向與參考方向的比較作業(660)包含將傾斜角度α與一臨限角度(α1 )(α2 )的差測定。The method of claim 1 or 2, wherein: determining an inclination angle (α) of the appliance (100) according to the direction of the measurement, wherein the comparison operation (660) of the specific direction with the reference direction comprises tilting The difference between the angle α and a threshold angle (α 1 ) (α 2 ) is determined. 如申請專利範圍第1或第2項之方法,其中:該有影響性的值為用於測定方向的一測定裝置(140)的溫度。 The method of claim 1 or 2, wherein the influential value is the temperature of an assay device (140) for determining the direction. 如申請專利範圍第1或第2項之方法,其中:該信號為該器具(100)的數個固定的離散的朝向(A)~ (G)。 The method of claim 1 or 2, wherein the signal is a plurality of fixed discrete orientations (A) of the appliance (100). (G). 如申請專利範圍第1或第2項之方法,其中:該測定一方向的作業〔地球重力加速度(FG )由此方向作用到該器具上〕包含一道檢出作業,將地球重力加速度沿三個互相成對之線性獨立空間方向(x)(y)(z)的量檢出。For example, the method of claim 1 or 2, wherein: the operation in the one direction of the measurement (the earth's gravitational acceleration (F G ) acts on the device in this direction) includes a detection operation, and the earth's gravitational acceleration is along three A quantity of mutually independent linear independent spatial directions (x)(y)(z) is detected. 一種提供一對準信號的裝置(110)(140)(150),該對準信號指示一可攜帶的器具的空間朝向,該裝置包含:--一測定裝置(140)以測定一方向,地球重力加速度由此方向作用到該器具;--一比較裝置(110),用於將該測定的方向與一確定的參考方向比較,及--一處理裝置(110),以依該比較結果提供信號,其特徵在:具以下用於確定該參考方向的元件:--一預測定裝置(110),以依該有影響性的值(T)而定預定臨限值(α1 )(α2 )。A device (110) (140) (150) for providing an alignment signal indicative of a spatial orientation of a portable device, the device comprising: - a measuring device (140) for determining a direction, the earth The gravitational acceleration acts on the appliance in this direction; a comparison device (110) for comparing the direction of the measurement with a determined reference direction, and a processing device (110) for providing the comparison result a signal characterized by: an element for determining the reference direction: a predictive means (110) for determining a predetermined threshold (α 1 ) according to the influential value (T) (α) 2 ). 如申請專利範圍第7項之裝置,其中:該測定裝置包含一個對三個互相成對線性獨立的空間方向(x)(y)(z)的加速感測器(140)。 The device of claim 7, wherein the measuring device comprises an acceleration sensor (140) for three spatially independent (x) (y) (z) spatially independent pairs. 如申請專利範圍第8項之裝置,其中:該影響性的值為該加速器感測器(140)的溫度。 A device as claimed in claim 8 wherein: the influential value is the temperature of the accelerator sensor (140). 一種可攜帶的器具(100),其具有申請專利範圍第7~9項任一項的一提供一對準信號的裝置。 A portable device (100) having a device for providing an alignment signal according to any one of claims 7 to 9.
TW100101174A 2010-01-15 2011-01-13 Process and device to provide an alignment signal and an apparatus with such a device TWI512295B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010000929 DE102010000929A1 (en) 2010-01-15 2010-01-15 Method for providing signal indicating spatial alignment of portable device e.g. mobile phone, involves detecting parameter influencing direction determination by using sensor, and determining reference direction based on detected parameter

Publications (2)

Publication Number Publication Date
TW201200875A TW201200875A (en) 2012-01-01
TWI512295B true TWI512295B (en) 2015-12-11

Family

ID=44313799

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100101174A TWI512295B (en) 2010-01-15 2011-01-13 Process and device to provide an alignment signal and an apparatus with such a device

Country Status (3)

Country Link
CN (1) CN102183232B (en)
DE (1) DE102010000929A1 (en)
TW (1) TWI512295B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006788A (en) * 2014-05-23 2014-08-27 深圳市元征科技股份有限公司 Method for detecting direction of automobile DLC (Data Link Connector) socket
CN104374363B (en) * 2014-10-29 2017-02-15 广东欧珀移动通信有限公司 Orientation method and device of mobile equipment
TWI568414B (en) * 2015-12-31 2017-02-01 Respiratory signal acquisition method and its fetching device
CN106125160B (en) * 2016-06-14 2018-11-09 重庆蓝岸通讯技术有限公司 The system and method in automatic calibration gravity sensor direction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266510A (en) * 1997-04-04 2000-09-13 弗雷德·史蒂文·伊索姆 Method of sequencing computer controlled tasks based on the relative spatial location of task objects in a directional field
CN1323571A (en) * 1999-10-28 2001-11-28 北方数字股份有限公司 System for defining one of several targets space poshtion and/or directions
US20060204232A1 (en) * 2005-02-01 2006-09-14 Harvey Weinberg Camera with acceleration sensor
TW200921133A (en) * 2007-11-07 2009-05-16 Dyna Image Corp 3D direction detecting device and detecting method thereof
CN101477192A (en) * 2008-01-03 2009-07-08 敦南科技股份有限公司 Three-dimensional space direction detecting apparatus and detecting method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6810738B2 (en) * 2002-07-10 2004-11-02 Hitachi Metals, Ltd. Acceleration measuring apparatus with calibration function
CN100359461C (en) * 2004-05-08 2008-01-02 纬创资通股份有限公司 Electronic device for regulating image display direction according to display panel rotation position
US7138979B2 (en) 2004-08-27 2006-11-21 Motorola, Inc. Device orientation based input signal generation
KR100677357B1 (en) * 2004-09-21 2007-02-02 엘지전자 주식회사 Apparatus and method for compensating horizontal angle of image in communication terminal with a built-in camera
CN101253387A (en) * 2005-08-18 2008-08-27 C&N株式会社 Sensor device
CN101488043A (en) * 2008-01-16 2009-07-22 华硕电脑股份有限公司 Intuition-browsing hand-hold digital device and its operation method
CN101567931A (en) * 2008-04-23 2009-10-28 英华达(上海)科技有限公司 Portable electronic device and display control method thereof
CN101577783A (en) * 2008-05-09 2009-11-11 宏达国际电子股份有限公司 Method for processing images and electronic device thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266510A (en) * 1997-04-04 2000-09-13 弗雷德·史蒂文·伊索姆 Method of sequencing computer controlled tasks based on the relative spatial location of task objects in a directional field
CN1323571A (en) * 1999-10-28 2001-11-28 北方数字股份有限公司 System for defining one of several targets space poshtion and/or directions
US20060204232A1 (en) * 2005-02-01 2006-09-14 Harvey Weinberg Camera with acceleration sensor
TW200921133A (en) * 2007-11-07 2009-05-16 Dyna Image Corp 3D direction detecting device and detecting method thereof
CN101477192A (en) * 2008-01-03 2009-07-08 敦南科技股份有限公司 Three-dimensional space direction detecting apparatus and detecting method

Also Published As

Publication number Publication date
CN102183232A (en) 2011-09-14
DE102010000929A1 (en) 2011-07-21
CN102183232B (en) 2015-08-12
TW201200875A (en) 2012-01-01

Similar Documents

Publication Publication Date Title
JP5017539B1 (en) Applied equipment for measuring and using geomagnetism
KR101485142B1 (en) Method and system for a self-calibrated multi-magnetometer platform
EP2482033B1 (en) Geomagnetism detection device
JP5927776B2 (en) Portable device
TWI512295B (en) Process and device to provide an alignment signal and an apparatus with such a device
JP2006133230A (en) Inclination sensor and utilization method therefor
TW200905166A (en) Auto-calibration of orientation sensing system
JP5445270B2 (en) Calibration data acquisition method, acceleration sensor output correction method, and calibration data acquisition system
CN105910593B (en) A kind of method and device of the geomagnetic sensor of calibrating terminal
JPWO2013125242A1 (en) Offset estimation apparatus, offset estimation method, offset estimation program, and information processing apparatus
TWI555994B (en) Dynamically calibrating magnetic sensors
JP5070428B2 (en) Electronic compass and direction measurement method
JP6485195B2 (en) Inclination measuring method and apparatus, electronic apparatus and program
KR101829058B1 (en) Method for adjusting equipment comprising automatic orientation detecting device and equipment comprising automatic image orientation device
JP6550906B2 (en) Method and apparatus for measuring inclination, electronic device and program
KR101598807B1 (en) Method and digitizer for measuring slope of a pen
TWI526672B (en) Method and computing device for computing a magnetic heading
CN113053074A (en) Sitting posture monitoring method
JP6477214B2 (en) Method and apparatus for measuring inclination, electronic device and program
KR101650300B1 (en) Digitizer and method for reducing detecting position error
TWI532978B (en) Gradient measuring device and its indicating method
JP2011209000A (en) Calibration data acquisition method, gyro sensor output correction method, and calibration data acquisition system
JP4426784B2 (en) Direction measuring device
US20230185384A1 (en) Method for detecting movement of ring controller, ring controller, and computer readable medium
TWI379996B (en) Electronic gradienter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees