TWI509840B - Method for forming the white light emitting diode - Google Patents

Method for forming the white light emitting diode Download PDF

Info

Publication number
TWI509840B
TWI509840B TW101140655A TW101140655A TWI509840B TW I509840 B TWI509840 B TW I509840B TW 101140655 A TW101140655 A TW 101140655A TW 101140655 A TW101140655 A TW 101140655A TW I509840 B TWI509840 B TW I509840B
Authority
TW
Taiwan
Prior art keywords
emitting diode
oxide
layer
light
package structure
Prior art date
Application number
TW101140655A
Other languages
Chinese (zh)
Other versions
TW201419585A (en
Inventor
Shing Chung Wang
Hao Chung Kuo
Hsin Chu Chen
Kuo Ju Chen
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW101140655A priority Critical patent/TWI509840B/en
Publication of TW201419585A publication Critical patent/TW201419585A/en
Application granted granted Critical
Publication of TWI509840B publication Critical patent/TWI509840B/en

Links

Description

白光發光二極體封裝結構的製造方法Method for manufacturing white light emitting diode package structure

本發明係有關於一種白光發光二極體封裝結構的製造方法,特別是將螢光粉層及氧化物膠層形成在發光二極體封裝結構之白光發光二極體封裝結構的製造方法。The invention relates to a method for manufacturing a white light emitting diode package structure, in particular to a method for manufacturing a white light emitting diode package structure in which a phosphor powder layer and an oxide glue layer are formed in a light emitting diode package structure.

利用發光二極體(light-emitting diode,LED)產生與太陽光色相似之白光,以致大幅取代傳統的日光做為白光照明,是目前照明光源科技領域中,積極研發的目標,因為與傳統的光源相比,發光二極體比傳統的照明設備高出10倍以上的使用壽命。此外,體積小、亮度高,在製作過程與廢棄處理上較傳統的照明光源有環保等許多優點,而可視為下一世代重要的照明光源。The use of light-emitting diodes (LEDs) to produce white light similar to the color of sunlight, so as to substantially replace traditional daylight as white light illumination, is currently actively developed in the field of lighting source technology, because with the traditional Compared to conventional light sources, light-emitting diodes are 10 times longer than conventional lighting devices. In addition, the small size, high brightness, environmental protection and other advantages in the production process and disposal of the traditional lighting source, and can be regarded as an important source of illumination for the next generation.

目前單晶片白光發光二極體的技術主要的方式主要有,以發光波長小於400 nm的紫外光發光二極體(UV-LED)的晶片作為激發光源激發紅、綠、藍(RGB)三種不同光色的螢光體(phosphor)以混合形成白光。在本方法中,需要尋找數種在品質、劣化程度搭配得宜的螢光組成物,以控制白光光源品質。另一種技術是以藍光發光二極體的晶片激發黃光螢光組成物而產生白光。於本方法中,尋找適當品質的黃光螢光劑十分重要,除了已知的釔鋁石榴石結構的Y3 Al5 O12 :Ce3+ (YAG:Ge)螢光組成物以外,並無沒有其他有效的黃光材料或者其他材料能夠被發現。At present, the main methods of single-chip white light-emitting diodes mainly include ultraviolet light-emitting diode (UV-LED) wafers with an emission wavelength of less than 400 nm as excitation light sources to excite red, green and blue (RGB). Light-colored phosphors are mixed to form white light. In this method, it is necessary to find a plurality of fluorescent compositions that are properly matched in quality and degree of deterioration to control the quality of the white light source. Another technique is to generate white light by exciting a yellow fluorescent composition with a wafer of blue light emitting diodes. In this method, it is important to find a suitable quality yellow fluorescent agent, and there is no other than the known Y 3 Al 5 O 12 :Ce 3+ (YAG:Ge) fluorescent composition of the yttrium aluminum garnet structure. Effective yellow materials or other materials can be found.

此外,白光的產生一直是藉由兩種以上的螢光物質發 出不同波長的冷光(luminescence)混合達成,如果用直接發射白光的單一物質,將可大幅簡化製程,是產業界追求的目標。In addition, the generation of white light has always been produced by two or more kinds of fluorescent substances. The luminescence mixing of different wavelengths is achieved. If a single substance that directly emits white light is used, the process can be greatly simplified, which is an object pursued by the industry.

目前白光發光二極體最多的作法係利用互補色調配白光的原理,以波長460 nm的氮化鎵銦(InGaN)藍光晶粒塗上一層YAG螢光物質,利用藍光發光二極體照射螢光物質產生與藍光互補的黃光,再利用透鏡原理將互補的藍光和黃光混合,即可得到肉眼所見的白光。因此,只需要使用單一晶粒,因此製作的成本相對較低。但此方法的缺點在於,於光譜中缺乏紅色,使得在照射紅色物體時,會顯示出偏黃色的紅色,其色彩的均勻性不足或是無法獲得真實的色彩演光性。因此,目前亦有開發數種以紅光螢光組成物與YAG:Ce所產生之黃光混合,加以改善並且獲得較佳光源演色係數。但是由於兩種不同的主體螢光組成物之間,其劣化程度差異甚大,因此容易產生色彩的偏差,無法產生自然的白光。At present, the most common method of white light-emitting diodes is to apply a layer of YAG phosphor with a 460 nm indium gallium nitride (InGaN) blue crystal, and to illuminate the phosphor with a blue light-emitting diode. The substance produces yellow light complementary to the blue light, and then the complementary blue and yellow light are mixed by the lens principle to obtain the white light seen by the naked eye. Therefore, only a single die needs to be used, so the cost of fabrication is relatively low. However, the disadvantage of this method is that there is a lack of red in the spectrum, so that when the red object is illuminated, a yellowish red color is displayed, and the uniformity of the color is insufficient or the true color light effect cannot be obtained. Therefore, there have been several developments in which a red light fluorescent composition is mixed with yellow light generated by YAG:Ce to improve and obtain a better color rendering coefficient. However, since the degree of deterioration between the two different main body fluorescent compositions is greatly different, color deviation is liable to occur, and natural white light cannot be generated.

根據以上所述之習知技術的缺點,本發明係主要目的係揭露一種將螢光粉層與含氧化物膠層依序形成在發光二極體封裝結構上,以使白光發光二極體封裝結構在發光時,具有均勻的色彩。According to the disadvantages of the above-mentioned prior art, the main purpose of the present invention is to sequentially form a phosphor layer and an oxide-containing layer on a light-emitting diode package structure to enable white light-emitting diode package. The structure has a uniform color when illuminated.

本發明的又一目的係將螢光粉層與含氧化物膠層分別形成在發光二極體封裝結構上,以使白光發光二極體封裝結構在發光時,可以增加光線的均勻性。Another object of the present invention is to form a phosphor layer and an oxide-containing layer on the LED package structure, so that the white light emitting diode package structure can increase the uniformity of light when emitting light.

根據上述目的,本發明揭露一種白光發光二極體封裝結構的製造方法,包括:提供基板;提供發光二極體晶片,且將發光二極體晶片置放在基板上且與基板以導線電性連接,並使得在基板及在發光二極體晶片之上形成容置空間;執行封裝製程,係於容置空間內填入封裝材料以包覆發光二極體晶片、基板及導線以形成封裝結構;形成螢光粉層在封裝結構之表面上;以及形成氧化物膠層在螢光粉層上。According to the above object, a method for fabricating a white light emitting diode package structure includes: providing a substrate; providing a light emitting diode chip, and placing the light emitting diode chip on the substrate and electrically connecting the substrate to the substrate Connecting and forming an accommodating space on the substrate and on the illuminating diode chip; performing a packaging process, filling the encapsulating material into the accommodating space to cover the illuminating diode chip, the substrate and the wire to form a package structure Forming a phosphor layer on the surface of the package structure; and forming an oxide layer on the phosphor layer.

本發明之一實施例中,上述之發光二極體晶片設置在基板上的方式包括打線接合(wire bonding)技術及覆晶晶片(flip chip)結合技術。In one embodiment of the present invention, the manner in which the above-described light emitting diode chip is disposed on a substrate includes a wire bonding technique and a flip chip bonding technique.

本發明之一實施例中,上述之封裝材料為矽膠(silicon)或環氧樹脂(epoxy)。In an embodiment of the invention, the encapsulating material is silicon or epoxy.

本發明之一實施例中,上述之形成螢光粉層係利用噴塗法。In one embodiment of the invention, the above-described formation of the phosphor layer is by a spray coating method.

本發明之一實施例中,上述之形成氧化物膠層包括:提供氧化物奈米粒子;以及將氧化物奈米粒子與矽膠層混合以形成氧化物膠層。In an embodiment of the invention, the forming the oxide layer comprises: providing oxide nanoparticles; and mixing the oxide nanoparticles with the silicone layer to form an oxide layer.

本發明之一實施例中,上述之氧化物膠層內之封裝結構之氧化物奈米粒子及矽膠層的濃度比為5%:95%。In one embodiment of the present invention, the concentration ratio of the oxide nanoparticles and the silicone layer in the package structure in the oxide layer is 5%:95%.

此外,根據上述方法,本發明揭露一種白光發光二極體封裝結構,包括:發光二極體封裝結構;螢光粉層,設置在發光二極體封裝結構之表面上;以及含氧化物膠層,設置在該螢光粉層之上。In addition, according to the above method, the present invention discloses a white light emitting diode package structure, comprising: a light emitting diode package structure; a phosphor powder layer disposed on a surface of the light emitting diode package structure; and an oxide layer , disposed above the phosphor layer.

本發明之一實施例中,上述之氧化物膠層係由氧化物 奈米粒子及矽膠所構成。In an embodiment of the invention, the oxide layer is made of an oxide It consists of nano particles and silicone.

本發明之一實施例中,上述之氧化物奈米粒子為氧化鋯(ZrO2 )、氧化鈦(TiO2 )、氧化鋁(AlO2 )或二氧化矽(SiO2 )。In one embodiment of the present invention, the oxide nanoparticle is zirconia (ZrO 2 ), titanium oxide (TiO 2 ), aluminum oxide (AlO 2 ) or cerium oxide (SiO 2 ).

故而,關於本發明之優點與精神可以藉由以下發明詳述及附圖式解說來得到進一步的瞭解。Therefore, the advantages and spirit of the present invention can be further understood from the following detailed description of the invention and the accompanying drawings.

本發明在此所探討的方向為一種白光發光二極體封裝結構的製造方法,係在發光二極體封裝結構上形成螢光粉層及氧化物膠層,以增加白光發光二極體封裝結構在發光時,光線均勻性及色彩均勻性。The invention is directed to a method for fabricating a white light emitting diode package structure, which comprises forming a phosphor powder layer and an oxide glue layer on the light emitting diode package structure to increase the white light emitting diode package structure. Light uniformity and color uniformity when illuminated.

請先參考第1A圖,係表示將發光二極體晶片設置在基板上之示意圖。在第1A圖中,係先提供一基板10,於此實施例中,係以導線架(lead-frame)做為基板10以及發光二極體晶片20為氮化鎵系之藍光發光二極體晶片(GaN-based blue LEDs)。Referring first to FIG. 1A, there is shown a schematic view of a light-emitting diode wafer disposed on a substrate. In FIG. 1A, a substrate 10 is first provided. In this embodiment, a lead-frame is used as the substrate 10 and the light-emitting diode chip 20 is a gallium nitride-based blue light-emitting diode. GaN-based blue LEDs.

於本發明第1A圖中的實施例,做為基板10之導線架通常具有晶片承座12、至少一對內引腳14及至少一對外引腳16,其中晶片承座(die paddle)12係以沉置(down-set)的方式設置,使得外引腳16與晶片承座12之間具有一高度差。In the embodiment of FIG. 1A of the present invention, the lead frame as the substrate 10 generally has a wafer holder 12, at least one pair of inner leads 14 and at least one outer lead 16, wherein the die paddle 12 is It is disposed in a down-set manner such that there is a height difference between the outer lead 16 and the wafer holder 12.

接著仍於本發明第1A圖中,提供具有一主動面22及一背面24之發光二極體晶片20,且於主動面22上具有焊墊222。然後,發光二極體晶片20以背面24,藉由黏著層30固著在導線架10的晶片承座12上,使得在發光二極體 晶片20之上方、導線架10的晶片承座12及一對內引腳14之間形成容置空間28。接著,利用打線接合製程(wire bonding process),將導線40的一端形成在發光二極體晶片20的主動面22的焊墊222上,而導線40的另一端則是形成在導線架10的晶片承座12的連接端點122上,使得發光二極體晶片20與導線架10彼此電性連接。於此實施例中,黏著層30可以是銀膠(silver paste)或是導電膠(conductive film)。Still in the first aspect of the present invention, a light-emitting diode wafer 20 having an active surface 22 and a back surface 24 is provided, and a solder pad 222 is provided on the active surface 22. Then, the LED wafer 20 is fixed to the wafer holder 12 of the lead frame 10 by the adhesive layer 30 on the back surface 24, so that the LED is in the light-emitting diode. An accommodating space 28 is formed above the wafer 20, between the wafer holder 12 of the lead frame 10, and a pair of inner leads 14. Next, one end of the wire 40 is formed on the pad 222 of the active surface 22 of the LED wafer 20 by a wire bonding process, and the other end of the wire 40 is formed on the wafer of the lead frame 10. The connection terminal 122 of the socket 12 is such that the LED array 20 and the lead frame 10 are electrically connected to each other. In this embodiment, the adhesive layer 30 may be a silver paste or a conductive film.

另外請參考第1B圖,於本發明中還揭露另一種將發光二極體晶片20設置在導線架10上的方式。在第1B圖中,發光二極體晶片20係以主動面22朝下,以覆晶接合(Flip chip)方式,藉由黏著層30,將發光二極體晶片20固著在導線架10的晶片承座12上,且發光二極體晶片20之主動面22上之焊墊222與導線架10形成電性連接。同樣地,在發光二極體20的背面24的上方與內引腳14之間係具有容置空間28。於此實施例中,黏著層30可以是導電膠(conductive film)。另外要說明的是,於後續的發光二極體封裝結構的製程步驟中,係以第1A圖中的發光二極體結構來做說明。In addition, please refer to FIG. 1B, and another way of disposing the LED wafer 20 on the lead frame 10 is disclosed in the present invention. In FIG. 1B, the light-emitting diode chip 20 is fixed to the lead frame 10 by the adhesive layer 30 with the active surface 22 facing downward in a flip chip manner. The pad 222 on the wafer holder 12 and the pad 222 on the active surface 22 of the LED chip 20 are electrically connected to the lead frame 10. Similarly, an accommodation space 28 is provided between the upper surface 24 of the light-emitting diode 20 and the inner lead 14. In this embodiment, the adhesive layer 30 may be a conductive film. In addition, in the process steps of the subsequent LED package structure, the structure of the LED in FIG. 1A will be described.

接著,請參考第2圖,係表示形成發光二極體封裝結構之示意圖。在第2圖中,其封裝結構的形成方式係包含:於晶片承座12、一對內引腳14及發光二極體晶片20上方所形成的容置空間28內填入封裝材料50,以包覆發光二極體晶片20、導線40及晶片承座12。接著,經過固化步驟之後於容置空間28內係形成發光二極體封裝結構32, 此封裝結構32之高度係與外引腳16之高度相同。於此實施例中,其封裝材料50為矽膠(silicon)或是環氧樹脂(epoxy)。Next, please refer to FIG. 2, which is a schematic view showing the formation of a light emitting diode package structure. In the second embodiment, the package structure is formed by filling the encapsulation material 50 into the accommodating space 28 formed on the wafer holder 12, the pair of inner leads 14 and the illuminating diode chip 20. The light emitting diode chip 20, the wires 40, and the wafer holder 12 are covered. Then, after the curing step, the LED package structure 32 is formed in the accommodating space 28, The height of the package structure 32 is the same as the height of the outer leads 16. In this embodiment, the encapsulating material 50 is silicon or epoxy.

接著請參考第3圖,係表示於發光二極體封裝結構上形成螢光粉層之示意圖。於第3圖中,係先將第2圖所示之結構置放在噴嘴裝置(spray nozzle)(未在圖中表示)的下方。接著,透過此噴嘴裝置,將含有螢光粉之漿液(或溶液)均勻的噴灑在發光二極體封裝結構32的表面上,使得在發光二極體封裝結構32的表面被覆蓋一層螢光粉層60。於此實施例中,在發光二極體封裝結構32上之螢光粉層60的厚度約為100μm,其螢光粉可以是釔鋁石榴石螢光粉(yttrium aluminum garnet,YAG,化學式為Y3 Al5 O12 :Ce)。Next, please refer to FIG. 3, which is a schematic diagram showing the formation of a phosphor layer on the LED package structure. In Fig. 3, the structure shown in Fig. 2 is placed below the nozzle nozzle (not shown). Then, the slurry (or solution) containing the phosphor powder is uniformly sprayed on the surface of the light emitting diode package structure 32 through the nozzle device, so that the surface of the light emitting diode package structure 32 is covered with a layer of phosphor powder. Layer 60. In this embodiment, the phosphor powder layer 60 on the LED package structure 32 has a thickness of about 100 μm, and the phosphor powder may be yttrium aluminum garnet (YAG), and the chemical formula is Y 3 Al. 5 O 12 :Ce).

緊接著,請參考第4圖,係表示在發光二極體封裝結構之螢光粉層上形成氧化物膠層之示意圖。在第4圖中,係先將氧化物奈米粒子(未在圖中表示)與矽膠(未在圖中表示)混合,以形成氧化物之奈米粒子膠狀物(未在圖中表示),於此膠狀物中,氧化物奈米粒子與矽膠的混合濃度比例約為5%:95%。接著,將此膠狀物均勻的塗佈在發光二極體封裝結構32的螢光粉層60上,待固化之後,即在發光二極體封裝結構32的螢光粉層60上形成氧化物膠層70,係完成白光發光二極體封裝結構之製程。於此實施例中,係以氧化鋯奈米粒子為例來做為氧化物膠層70之主要成份,而在本發明的其它實施例,氧化物奈米粒子還可以是氧化鋁(AlO2 )、氧化鈦(TiO2 )或是二氧化矽(SiO2 )。Next, please refer to FIG. 4, which is a schematic view showing the formation of an oxide paste layer on the phosphor layer of the light emitting diode package structure. In Fig. 4, an oxide nanoparticle (not shown) is first mixed with a silicone (not shown) to form an oxide nanoparticle gel (not shown in the figure). In this gel, the mixed concentration ratio of the oxide nanoparticles to the silicone is about 5%: 95%. Then, the gel is uniformly coated on the phosphor layer 60 of the LED package 32, and after being cured, an oxide is formed on the phosphor layer 60 of the LED package 32. The glue layer 70 is a process for completing the white light emitting diode package structure. In this embodiment, zirconia nanoparticles are taken as an example of the main component of the oxide layer 70, and in other embodiments of the invention, the oxide nanoparticles may also be aluminum oxide (AlO 2 ). , titanium oxide (TiO 2 ) or cerium oxide (SiO 2 ).

於本發明之另一實施例,係以電路板做為基板101。首先請參考第5A圖,係表示以發光二極體晶片設置在基板上之示意圖。在圖5中,基板101可以是印刷電路板、玻璃、石英、陶瓷或金屬薄板(metal foil)。接著,將發光二極體晶片20以主動面22朝上的方式,並藉由黏著層30將發光二極體晶片20的背面24與固著在印刷電路板101上。接下來,同樣利用打線接合的方式,將導線40的一端(未在圖中表示)形成在發光二極體晶片20之主動面22上之焊墊222上,導線40的另一端(未在圖中表示)形成在印刷電路板101表面上所預設的連接端點1012,使得發光二極體晶片20藉由導線40與印刷電路板101電性連接。In another embodiment of the present invention, a circuit board is used as the substrate 101. First, please refer to FIG. 5A, which is a schematic view showing a light-emitting diode wafer disposed on a substrate. In FIG. 5, the substrate 101 may be a printed circuit board, glass, quartz, ceramic, or metal foil. Next, the light-emitting diode wafer 20 is placed with the active surface 22 facing upward, and the back surface 24 of the light-emitting diode wafer 20 is fixed to the printed circuit board 101 by the adhesive layer 30. Next, one end of the wire 40 (not shown) is formed on the pad 222 on the active surface 22 of the LED chip 20 by wire bonding, and the other end of the wire 40 (not shown) The terminal terminal 1012 is formed on the surface of the printed circuit board 101 so that the LED chip 20 is electrically connected to the printed circuit board 101 by the wire 40.

於另一實施例中,如第5B圖所示,係表示發光二極體晶片20係以覆晶方式設置在印刷電路板上之示意圖。再第5B圖中,係將發光二極體晶片20的主動面22朝下,並以覆晶接合(flip chip)的方式,將發光二極體晶片20之主動面22上藉由黏著層30固著於印刷電路板101上,並讓發光二極體晶片20之主動面22上之焊墊222與印刷電路板101電性連接。其中,黏著層30係為導電膠(conductive film)。In another embodiment, as shown in FIG. 5B, a schematic diagram of the LED array 20 in a flip chip manner on a printed circuit board is shown. In FIG. 5B, the active surface 22 of the LED wafer 20 is directed downward, and the active surface 22 of the LED wafer 20 is bonded to the active surface 22 of the LED substrate 20 by flip chip bonding. The soldering pad 222 on the active surface 22 of the LED chip 20 is electrically connected to the printed circuit board 101. The adhesive layer 30 is a conductive film.

在此要說明的是,在接下來的製程步驟中,由於第5A圖與第5B圖僅在於發光二極體晶片20設置於印刷電路板101上之方式不同,而在後續的製程中其實施步驟均相同,因此係以第5A圖之結構做說明。It should be noted that, in the following process steps, since FIG. 5A and FIG. 5B are only different in the manner in which the LED wafer 20 is disposed on the printed circuit board 101, it is implemented in a subsequent process. The steps are the same, and therefore the description is made with the structure of Fig. 5A.

接著請參考第6圖,係表示發光二極體封裝結構之示意圖。在第6圖中,係執行封裝製程,將封裝材料50包覆 第5A圖中之印刷電路板101之表面、發光二極體晶片20及導線40,待經過烘烤等固化製程(未在圖中表示)之後,係形成具有一平坦表面之發光二極體封裝結構33。於此實施例中,其封裝材料50可以是矽膠或環氧樹脂。Next, please refer to FIG. 6 , which is a schematic diagram showing the structure of the light emitting diode package. In Figure 6, the encapsulation process is performed to encapsulate the encapsulation material 50. The surface of the printed circuit board 101 in FIG. 5A, the LED wafer 20 and the wires 40 are formed into a light-emitting diode package having a flat surface after being subjected to a curing process such as baking (not shown). Structure 33. In this embodiment, the encapsulating material 50 may be silicone or epoxy.

接著請參考第7圖,係表示在發光二極體封裝結構上形成螢光粉層之示意圖。在第7圖中,與前一實施例相同,將第6圖所示之結構置放在噴嘴裝置(spray nozzle)(未在圖中表示)的下方。接著,透過此噴嘴裝置,將含有螢光粉之漿液(或溶液)均勻的噴灑在發光二極體封裝結構33的表面上,使得在發光二極體封裝結構33的表面被覆蓋一層螢光粉層60。於此實施例中,在發光二極體封裝結構33上之螢光粉層60的厚度約為100μm。Next, please refer to FIG. 7 , which is a schematic diagram showing the formation of a phosphor layer on the LED package structure. In Fig. 7, as in the previous embodiment, the structure shown in Fig. 6 is placed below the nozzle nozzle (not shown). Then, the slurry (or solution) containing the phosphor powder is uniformly sprayed on the surface of the light emitting diode package structure 33 through the nozzle device, so that the surface of the light emitting diode package structure 33 is covered with a layer of phosphor powder. Layer 60. In this embodiment, the phosphor layer 60 on the LED package structure 33 has a thickness of about 100 μm.

接下來請參考第8圖,係表示在發光二極體封裝結構之螢光粉層上形成含氧化物膠層之示意圖。在第8圖中,先將氧化物奈米粒子(未在圖中表示)與矽膠(未在圖中表示)混合,以形成氧化物之奈米粒子膠狀物(未在圖中表示),於此膠狀物中,氧化物奈米粒子與矽膠的混合濃度比例約為5%:95%。接著,將此膠狀物均勻的塗佈在發光二極體封裝結構33的螢光粉層60上,待固化之後,即在發光二極體封裝結構33的螢光粉層60上形成氧化物膠層70,係完成白光發光二極體封裝結構之製程。於此實施例中,係以氧化鋯奈米粒子為例來做為氧化物膠層之主要成份,而於本發明的其它實施例中,氧化物奈米粒子還可以是氧化鋁(AlO2 )、氧化鈦(TiO2 )或是二氧化矽(SiO2 ),故皆可於本發明中產生無法預期的效果。Next, please refer to FIG. 8 , which is a schematic view showing the formation of an oxide-containing adhesive layer on the phosphor layer of the light-emitting diode package structure. In Fig. 8, oxide nanoparticle (not shown) is first mixed with silicone (not shown) to form an oxide nanoparticle gel (not shown in the figure). In the gel, the mixed concentration ratio of the oxide nanoparticles to the silicone is about 5%: 95%. Then, the gel is uniformly coated on the phosphor layer 60 of the LED package 33, and after being cured, an oxide is formed on the phosphor layer 60 of the LED package 33. The glue layer 70 is a process for completing the white light emitting diode package structure. In this embodiment, the zirconia nano particles are taken as an essential component of the oxide layer, and in other embodiments of the invention, the oxide nanoparticles may also be aluminum oxide (AlO 2 ). Titanium oxide (TiO 2 ) or cerium oxide (SiO 2 ) can produce unpredictable effects in the present invention.

而根據上述的實施例,本發明還進一步利用電子掃描顯微鏡(Scanning Electron Microscope,SEM)以及能量散射光譜儀(Energy Dispersive Spectrometer,EDS)來掃描氧化鋯奈米粒子及氧化鋯奈米膠層,並且得到氧化鋯奈米粒子及氧化鋯奈米膠層掃描後之圖像。如第9A圖及第9B圖所示。According to the above embodiment, the present invention further utilizes a scanning electron microscope (SEM) and an energy dispersive spectrometer (EDS) to scan the zirconia nano particles and the zirconia nano-layer, and obtain Images of zirconia nanoparticles and zirconia nanopowder layers after scanning. As shown in Figures 9A and 9B.

在第9A圖中,係利用電子掃描顯微鏡(Scanning Electron Microscope,SEM)掃描氧化鋯奈米粒子之示意圖,可以得到在本發明的實施例中,所使用的氧化鋯奈米粒子的大小約為300nm。In Fig. 9A, a schematic diagram of scanning a zirconia nanoparticle by a scanning electron microscope (SEM) can be used to obtain a zirconia nanoparticle having a size of about 300 nm in the embodiment of the present invention. .

而在第9B圖中,係利用能量散射光譜儀(Energy Dispersive Spectrometer,EDS)照射掃描矽膠及氧化鋯奈米粒子混合後之氧化鋯奈米膠層之示意圖,可以得到矽原子及鋯原子的散佈分析的光譜圖。In Fig. 9B, an energy dispersive spectrometer (EDS) is used to irradiate the zirconia nano-gel layer after mixing the yttrium-yellow and zirconia nano-particles, and the argon and zirconium atoms can be obtained. Spectrogram.

接著,第10圖係表示相對色溫差與氧化鋯奈米粒子重量之關係圖。在第10圖中,最低的相對色溫差偏差值是在氧化鋯奈米粒子重量為10 mg/cm2 。此意謂著,氧化鋯奈米粒子與矽膠混合的最適重量約為10 mg/cm2 可以較佳的色溫差,使得發光二極體在發光時,其光線的色彩具有較佳的均勻性。Next, Fig. 10 is a graph showing the relationship between the relative color temperature difference and the weight of the zirconia nanoparticle. In Fig. 10, the lowest relative color temperature difference deviation value is 10 mg/cm 2 in the weight of the zirconia nanoparticle. This means that the optimum weight of the zirconia nanoparticle mixed with the silicone rubber is about 10 mg/cm 2 , which is a better color temperature difference, so that the color of the light has better uniformity when the light-emitting diode emits light.

另外,第11圖係表示相對色溫與視角之關係圖。在第7圖中,在視角的角度為-70度至70度的範圍內,其傳統的遠端螢光發光二極體結構的色溫變化範圍是在4500K至5500K之間,其色溫之間的差值約為1000K。而本發明所揭露之具有氧化物膠層之發光二極體封裝結構中,在相同的 在視角的角度的範圍內,其色溫的變化範圍在4900K至5300K之間,其色溫之間的差值約為400K。因此,很明顯的得知,相較於傳統的遠端螢光發光二極體結構,本發明所揭露之具有氧化物膠層之發光二極體封裝結構中其色溫差變化較小但可以得到相同的視角角度。In addition, Fig. 11 is a graph showing the relationship between the relative color temperature and the viewing angle. In Fig. 7, in the range of the angle of view of -70 degrees to 70 degrees, the color temperature of the conventional far-end fluorescent diode structure ranges from 4500K to 5500K, and the color temperature is between The difference is approximately 1000K. In the light emitting diode package structure with an oxide glue layer disclosed in the present invention, the same In the range of the angle of view, the color temperature varies from 4900K to 5300K, and the difference between the color temperatures is about 400K. Therefore, it is apparent that the color temperature difference of the light-emitting diode package having the oxide glue layer disclosed in the present invention is smaller than that of the conventional remote fluorescent light-emitting diode structure, but can be obtained. The same angle of view.

第12圖係表示在固定的驅動電流下,其傳統的遠端螢光發光二極體結構與本發明所揭露之具有氧化物膠層之發光二極體封裝結構之流明流通量的變化。在第12圖中,係對傳統的遠端螢光發光二極體結構與本發明所揭露之具有氧化物膠層之發光二極體封裝結構通入同樣大小的電流,使得傳統的遠端螢光發光二極體結構以及本發明所揭露之具有氧化物膠層之發光二極體封裝結構在發光過程中,經量測之結果得知,在通入的驅動電流為120毫安培(mA)時,本發明所揭露之具有氧化物膠層之發光二極體封裝結構的流明流通量(luminescence flux)比傳統的遠端螢光發光二極體結構的流明流通量增加了2.25%。Figure 12 is a graph showing the change in lumen flux of a conventional remote fluorescent light emitting diode structure and a light emitting diode package having an oxide paste layer disclosed in the present invention at a fixed driving current. In Fig. 12, the conventional remote fluorescent light emitting diode structure is electrically connected to the light emitting diode package having the oxide adhesive layer disclosed in the present invention, so that the conventional remote fluorescent light is used. The light-emitting diode structure and the light-emitting diode package structure with the oxide glue layer disclosed in the invention are in the process of illuminating, and the measured driving current is 120 milliamperes (mA). At the time, the lumen flux of the light-emitting diode package having the oxide layer disclosed in the present invention is increased by 2.25% compared to the lumen flux of the conventional far-end fluorescent diode structure.

因此根據上述分析得知,本發明所揭露之具有氧化物膠層之發光二極體封裝結構可以增加照設時的光線均勻性,並且在相同的視角範圍下可以有較低的色溫差,可以有較均勻的色彩,並且可以降低在傳統遠端螢光發光二極體結構中所產生的炫光問題。因此可以廣泛的適用於發光二極體鏡片以及太陽能光板的應用上。Therefore, according to the above analysis, the light emitting diode package structure with the oxide glue layer disclosed in the present invention can increase the light uniformity during the illumination, and can have a lower color temperature difference in the same viewing angle range. It has a more uniform color and can reduce the glare problem generated in the conventional remote fluorescent LED structure. Therefore, it can be widely applied to applications of light-emitting diode lenses and solar panels.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍內。The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the present invention should be included in the following. Application Within the scope of the patent.

10‧‧‧基板(導線架)10‧‧‧Substrate (wire holder)

101‧‧‧基板101‧‧‧Substrate

1012‧‧‧連接端點1012‧‧‧Connection endpoint

12‧‧‧晶片承座12‧‧‧ wafer holder

122‧‧‧連接端點122‧‧‧Connection endpoint

14‧‧‧內引腳14‧‧‧Inside pin

16‧‧‧外引腳16‧‧‧External pin

20‧‧‧發光二極體晶片20‧‧‧Light Diode Wafer

22‧‧‧主動面22‧‧‧Active surface

222‧‧‧焊墊222‧‧‧ solder pads

24‧‧‧背面24‧‧‧Back

28‧‧‧容置空間28‧‧‧ accommodating space

30‧‧‧黏著層30‧‧‧Adhesive layer

32‧‧‧封裝結構32‧‧‧Package structure

33‧‧‧封裝結構33‧‧‧Package structure

40‧‧‧導線40‧‧‧ wire

50‧‧‧封裝材料50‧‧‧Packaging materials

60‧‧‧螢光粉層60‧‧‧Fluorescent powder layer

70‧‧‧氧化物膠層70‧‧‧Oxide layer

第1A圖係根據本發明所揭露之技術,表示將發光二極體晶片設置在基板上之示意圖;第1B圖係根據本發明所揭露之技術,表示將發光二極體晶片以覆晶結合方式設置在基板上之示意圖;第2圖係根據本發明所揭露之技術,表示形成發光二極體封裝結構之示意圖;第3圖係根據本發明所揭露之技術,表示於發光二極體封裝結構上形成螢光粉層之示意圖;第4圖係根據本發明所揭露之技術,表示在發光二極體封裝結構之螢光粉層上形成含氧化物膠層之示意圖;第5A圖係根據本發明所揭露之技術,表示以發光二極體晶片設置在基板上之示意圖;第5B圖係根據本發明所揭露之技術,表示發光二極體晶片係以覆晶方式設置在印刷電路板上之示意圖;第6圖係根據本發明所揭露之技術,表示發光二極體封裝結構之示意圖;第7圖係根據本發明所揭露之技術,表示在發光二極體封裝結構上形成螢光粉層之示意圖;第8圖係根據本發明所揭露之技術,表示在發光二極體封裝結構之螢光粉層上形成含氧化物膠層之示意圖;第9A圖係根據本發明所揭露之技術,表示利用電子掃描顯微鏡(Scanning Electron Microscope,SEM)掃描氧 化鋯奈米粒子之SEM圖;第9B圖係根據本發明所揭露之技術,表示利用能量散射光譜儀(Energy Dispersive Spectrometer,EDS)照射掃描矽膠及氧化鋯奈米粒子混合後之氧化鋯奈米膠層之EDS圖;第10圖係根據本發明所揭露之技術,表示相對色溫差與氧化鋯奈米粒子重量之關係圖;第11圖係根據本發明所揭露之技術,表示相對色溫與視角之關係圖;以及第12圖係根據本發明所揭露之技術,表示在固定的驅動電流下,其傳統的遠端螢光發光二極體結構與本發明所揭露之具有氧化物膠層之發光二極體封裝結構之流明流通量的變化。1A is a schematic view showing a method of disposing a light-emitting diode wafer on a substrate according to the technology disclosed in the present invention; FIG. 1B is a view showing a method of flip-chip bonding a light-emitting diode wafer according to the technology disclosed in the present invention. FIG. 2 is a schematic diagram showing the formation of a light emitting diode package structure according to the technology disclosed in the present invention; and FIG. 3 is a diagram showing the light emitting diode package structure according to the disclosed technology. FIG. 4 is a schematic view showing formation of an oxide-containing layer on a phosphor layer of a light-emitting diode package structure according to the technology disclosed in the present invention; FIG. 5A is a diagram according to the present invention; The technology disclosed in the invention shows a schematic diagram of a light-emitting diode chip disposed on a substrate; and FIG. 5B shows a light-emitting diode chip in a flip chip manner on a printed circuit board according to the technology disclosed in the present invention. FIG. 6 is a schematic diagram showing a package structure of a light-emitting diode according to the technology disclosed in the present invention; FIG. 7 is a view showing a light-emitting diode according to the technology disclosed in the present invention. A schematic diagram of forming a phosphor layer on a polar package structure; and FIG. 8 is a schematic view showing formation of an oxide-containing layer on a phosphor layer of a light-emitting diode package according to the disclosed technology; The figure shows the scanning of oxygen using a scanning electron microscope (SEM) according to the technique disclosed in the present invention. SEM image of zirconium-nanoparticles; Figure 9B shows zirconia nano-gels mixed with scanning yttrium and zirconia nanoparticles by energy dispersive spectrometer (EDS) irradiation according to the technology disclosed in the present invention. The EDS diagram of the layer; FIG. 10 is a diagram showing the relationship between the relative color temperature difference and the weight of the zirconia nanoparticle according to the technology disclosed in the present invention; and the 11th figure shows the relative color temperature and the viewing angle according to the technique disclosed by the present invention. FIG. 12 and FIG. 12 are diagrams showing a conventional remote fluorescent light emitting diode structure and a light emitting layer having an oxide layer disclosed in the present invention at a fixed driving current according to the disclosed technology. The change in lumen flux of the polar package structure.

10‧‧‧基板(導線架)10‧‧‧Substrate (wire holder)

12‧‧‧晶片承座12‧‧‧ wafer holder

122‧‧‧連接端點122‧‧‧Connection endpoint

14‧‧‧內引腳14‧‧‧Inside pin

16‧‧‧外引腳16‧‧‧External pin

20‧‧‧發光二極體晶片20‧‧‧Light Diode Wafer

22‧‧‧主動面22‧‧‧Active surface

222‧‧‧焊墊222‧‧‧ solder pads

24‧‧‧背面24‧‧‧Back

30‧‧‧黏著層30‧‧‧Adhesive layer

32‧‧‧封裝結構32‧‧‧Package structure

40‧‧‧導線40‧‧‧ wire

50‧‧‧封裝材料50‧‧‧Packaging materials

60‧‧‧螢光粉層60‧‧‧Fluorescent powder layer

70‧‧‧含氧化物膠層70‧‧‧Oxide-containing adhesive layer

Claims (1)

一種具有氧化物膠層之白光發光二極體封裝結構的製造方法,至少包含:提供一基板;提供一發光二極體晶片,設置該發光二極體晶片於該基板上,使得在該基板及在該發光二極體晶片之上形成一容置空間,其中設置該發光二極體晶片在該基板上的方法,包括:一打線接合(wire bonding)技術;以及一覆晶晶片(flip chip)結合技術;執行一封裝製程,係於該容置空間內填入一封裝材料以包覆該發光二極體晶片、該導線及該基板以形成一封裝結構,其封裝材料係由矽膠(silicon)以及環氧樹脂(epoxy)群組中所選出;利用一噴塗法形成一螢光粉層在該封裝結構之一表面上,其中該螢光粉層的厚度約為100μm;以及形成一氧化物膠層在該螢光粉層上,包含:提供一氧化物奈米粒子;以及混合該氧化物奈米粒子與一矽膠層,其中該氧化物奈米粒子係由氧化鋯、氧化鋁(AlO2 )、氧化鈦(TiO2 )以及二氧化矽(SiO2 )群組中所選出,該氧化物膠層內之該氧化物奈米粒子及該矽膠層的濃度比為5%:95%。A method for manufacturing a white light emitting diode package structure having an oxide adhesive layer, comprising: providing a substrate; providing a light emitting diode chip, disposing the light emitting diode chip on the substrate, so that the substrate and Forming an accommodating space on the illuminating diode chip, wherein the method of disposing the illuminating diode chip on the substrate comprises: a wire bonding technique; and a flip chip a packaging process is performed by filling a packaging material into the accommodating space to encapsulate the illuminating diode chip, the wire and the substrate to form a package structure, and the packaging material is made of silicon. And selecting an epoxy group; forming a phosphor layer on a surface of the package structure by a spray method, wherein the phosphor layer has a thickness of about 100 μm; and forming an oxide paste The layer on the phosphor powder layer comprises: providing an oxide nano particle; and mixing the oxide nano particle with a silicone layer, wherein the oxide nano particle is made of zirconia, alumina (AlO 2 ) In the group of titanium oxide (TiO 2 ) and cerium oxide (SiO 2 ), the concentration ratio of the oxide nanoparticles and the silicone layer in the oxide layer is 5%:95%.
TW101140655A 2012-11-02 2012-11-02 Method for forming the white light emitting diode TWI509840B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101140655A TWI509840B (en) 2012-11-02 2012-11-02 Method for forming the white light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101140655A TWI509840B (en) 2012-11-02 2012-11-02 Method for forming the white light emitting diode

Publications (2)

Publication Number Publication Date
TW201419585A TW201419585A (en) 2014-05-16
TWI509840B true TWI509840B (en) 2015-11-21

Family

ID=51294487

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101140655A TWI509840B (en) 2012-11-02 2012-11-02 Method for forming the white light emitting diode

Country Status (1)

Country Link
TW (1) TWI509840B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090057699A1 (en) * 2007-09-04 2009-03-05 Philips Lumileds Lighting Company, Llc LED with Particles in Encapsulant for Increased Light Extraction and Non-Yellow Off-State Color
US20120001204A1 (en) * 2009-03-19 2012-01-05 Koninklijke Philips Electronics N.V. Color adjusting arrangement
US20120107622A1 (en) * 2010-10-28 2012-05-03 Nicholas Francis Borrelli Phosphor containing glass frit materials for led lighting applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090057699A1 (en) * 2007-09-04 2009-03-05 Philips Lumileds Lighting Company, Llc LED with Particles in Encapsulant for Increased Light Extraction and Non-Yellow Off-State Color
US20120001204A1 (en) * 2009-03-19 2012-01-05 Koninklijke Philips Electronics N.V. Color adjusting arrangement
US20120107622A1 (en) * 2010-10-28 2012-05-03 Nicholas Francis Borrelli Phosphor containing glass frit materials for led lighting applications

Also Published As

Publication number Publication date
TW201419585A (en) 2014-05-16

Similar Documents

Publication Publication Date Title
JP5227252B2 (en) Sealing method for white light-emitting diode converted by phosphor
JP6309448B2 (en) Coated phosphor and light emitting device including the same
US8227269B2 (en) Manufacture of light emitting devices with phosphor wavelength conversion
US8597963B2 (en) Manufacture of light emitting devices with phosphor wavelength conversion
US7781783B2 (en) White light LED device
US8598608B2 (en) Light emitting device
JP4417906B2 (en) Light emitting device and manufacturing method thereof
CN106816520A (en) Wavelength conversion material and application thereof
US20130062648A1 (en) Light-emitting device and light-emitting device manufacturing method
JP2012504860A (en) LED with particles in encapsulant for increased light extraction and non-yellow off-state color
WO2002089219A1 (en) Light-emitting apparatus
Li et al. Detailed study on pulse-sprayed conformal phosphor configurations for LEDs
TWI509839B (en) Light emitting diode package and method for making it
WO2006121196A1 (en) Led with a phosphor layer having different thikness or different phosphor concentration
TW201705542A (en) Producing method of light emitting diode device and light emitting diode element
JP2012216713A (en) Light-emitting diode device and method for manufacturing the same
TWI449221B (en) Led packging structure and fabricating method thereof
JP2005311395A (en) Manufacturing method of semiconductor light-emitting device
JP2021061448A (en) Light-emitting device
KR20090034412A (en) Light generating chip and method of manufacturing the same
KR20120089927A (en) Encapsulant for led and manufacturing method thereof, led using the encapsulant and manufacturing method thereof
TWI509840B (en) Method for forming the white light emitting diode
JP2007324630A (en) Semiconductor light-emitting device
JPH11233831A (en) Light emitting diode and its forming method
KR101068651B1 (en) Method of manufacturing a LED package

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees