TWI505163B - Touch detecting method, touch screen detecting device, touch sensitive device, and portable electronic apparatus - Google Patents

Touch detecting method, touch screen detecting device, touch sensitive device, and portable electronic apparatus Download PDF

Info

Publication number
TWI505163B
TWI505163B TW101126426A TW101126426A TWI505163B TW I505163 B TWI505163 B TW I505163B TW 101126426 A TW101126426 A TW 101126426A TW 101126426 A TW101126426 A TW 101126426A TW I505163 B TWI505163 B TW I505163B
Authority
TW
Taiwan
Prior art keywords
electrode
touch
sensing unit
detection value
self
Prior art date
Application number
TW101126426A
Other languages
Chinese (zh)
Other versions
TW201308181A (en
Inventor
Zhengang Li
Chen Huang
Yun Yang
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011102110214A external-priority patent/CN102902388A/en
Priority claimed from CN201110459473.4A external-priority patent/CN102902438B/en
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TW201308181A publication Critical patent/TW201308181A/en
Application granted granted Critical
Publication of TWI505163B publication Critical patent/TWI505163B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Description

觸摸檢測方法及裝置、觸控裝置及可攜式電子設備 Touch detection method and device, touch device and portable electronic device

本發明涉及電子設備設計及製造技術領域,特別涉及一種觸摸檢測方法、觸摸螢幕檢測裝置以及觸控裝置和可攜式電子設備。 The present invention relates to the field of electronic device design and manufacturing technology, and in particular, to a touch detection method, a touch screen detecting device, and a touch device and a portable electronic device.

目前觸摸螢幕的應用範圍從以往的銀行自動櫃員機,工控電腦等小眾商用市場,迅速擴展到手機,PDA(個人數位助理),GPS(全球定位系統),PMP(MP3,MP4等),甚至平板電腦等大眾消費電子領域。用於觸摸螢幕具有觸控操作簡單、便捷、人性化的優點,因此觸摸螢幕有望成為人機互動的最佳介面而迅速在可攜式設備中得到了廣泛應用。 At present, the application range of touch screens has been rapidly expanded from mobile phone ATMs such as bank ATMs and industrial computer computers to mobile phones, PDAs (personal digital assistants), GPS (Global Positioning System), PMP (MP3, MP4, etc.) and even tablets. Computer and other fields of mass consumer electronics. The touch screen has the advantages of simple, convenient and user-friendly touch operation, so the touch screen is expected to be the best interface for human-computer interaction and has been widely used in portable devices.

電容觸摸螢幕通常被分為自電容和互電容兩類。如第1圖所示,為現有技術中常見的一種自電容觸摸螢幕的結構圖。該自電容觸摸螢幕主要有雙層的菱形結構感應單元100’和200’,其檢測原理是對X軸和Y軸分別掃描,如果檢測到某個交叉點的電容變化超出了預設範圍,則將該行和列的交叉點做為觸摸座標。雖然該自電容觸摸螢幕的線性度較好,但是經常有鬼點出現,難以實現多點觸摸。此外,由於採用雙層屏,也會導致結構及成本大幅增加,並且菱形結構在電容變化量很小的情況下會出 現座標飄移,受外界干擾影響大。 Capacitive touch screens are usually divided into two types: self-capacitance and mutual capacitance. As shown in FIG. 1, it is a structural diagram of a self-capacitive touch screen that is common in the prior art. The self-capacitive touch screen mainly has double-layered diamond-shaped structure sensing units 100' and 200'. The detection principle is to scan the X-axis and the Y-axis respectively. If the capacitance change of a certain intersection is detected beyond the preset range, then Use the intersection of the row and column as the touch coordinates. Although the self-capacitance touch screen has a good linearity, there are often ghost points that make it difficult to achieve multi-touch. In addition, due to the use of a double-layer screen, the structure and cost are greatly increased, and the diamond structure will occur when the capacitance variation is small. The coordinates of the coordinates are now drifting and are greatly affected by external disturbances.

如第2a圖所示,為現有技術中常見的另一種自電容觸摸螢幕的結構圖。該自電容觸摸螢幕採用三角形圖形屏結構。該自電容觸摸螢幕包括基板300’、設置在基板300’之上的多個三角形感應單元400’、和每個三角形感應單元400’相連的多個電極500’。如第2b圖所示,為三角形自電容觸摸螢幕的檢測原理。如圖所示,橢圓表示手指,S1、S2表示手指與兩個三角形感應單元的接觸面積。假設座標原點在左下角,則橫坐標X=S2/(S1+S2)*P,其中,P為解析度。當手指向右移動時,由於S2不是線性增大,所以X座標存在一個偏差。從上述原理可以看出,目前的三角形感應單元是單端檢測,即只從一個方向檢測,然後通過演算法算出兩個方向的座標。雖然該自電容觸摸螢幕結構更為簡單,但並沒有針對螢幕的電容感應進行優化,電容變化量小,從而導致信噪比不夠。此外,由於該感應單元為三角形,當手指橫向移動時面積不是線性增大,因此線性度較差,導致了座標計算發生偏移,線性度不夠好。 As shown in Fig. 2a, it is a structural diagram of another self-capacitive touch screen that is common in the prior art. The self-capacitive touch screen adopts a triangular graphic screen structure. The self-capacitive touch screen includes a substrate 300', a plurality of triangular sensing units 400' disposed over the substrate 300', and a plurality of electrodes 500' connected to each of the triangular sensing units 400'. As shown in Figure 2b, it is the detection principle of the triangular self-capacitance touch screen. As shown, the ellipse represents the finger, and S1, S2 represent the contact area of the finger with the two triangular sensing units. Assuming that the coordinate origin is in the lower left corner, the abscissa X = S2 / (S1 + S2) * P, where P is the resolution. When the finger moves to the right, there is a deviation in the X coordinate since S2 does not increase linearly. It can be seen from the above principle that the current triangular sensing unit is single-ended detection, that is, detecting only from one direction, and then calculating the coordinates in two directions by an algorithm. Although the self-capacitive touch screen structure is simpler, it is not optimized for the capacitive sensing of the screen, and the capacitance variation is small, resulting in insufficient signal-to-noise ratio. In addition, since the sensing unit is triangular, the area does not increase linearly when the finger moves laterally, so the linearity is poor, resulting in offset calculation of the coordinates, and the linearity is not good enough.

此外,該電容感應單元輸出電容變化量很小,達到飛法級,其電纜雜散電容的存在,對測量電路提出了更高的要求。而且,雜散電容會隨溫度、位置、內外電場分佈等諸多因素影響而變化,干擾甚至淹沒被測電容信號。此外,對於單層電容來說,由於Vcom電平信號的影響會對感應電容形成嚴重的干擾,其中,Vcom電平信號是為了防止LCD螢幕液晶老化而不停翻轉的電平信號。 In addition, the capacitance sensing unit has a small amount of change in the output capacitance, reaching the flying level, and the presence of the stray capacitance of the cable puts higher requirements on the measuring circuit. Moreover, the stray capacitance will vary with temperature, position, internal and external electric field distribution and other factors, and even interfere with the measured capacitance signal. In addition, for a single-layer capacitor, the influence of the Vcom level signal may cause serious interference to the sensing capacitor, wherein the Vcom level signal is a level signal for preventing the LCD screen from aging and not flipping.

本發明的目的旨在至少解決上述技術缺陷之一,特別是解決或避免出現現有自電容觸摸螢幕中的上述缺點。 It is an object of the present invention to address at least one of the above-mentioned technical deficiencies, and in particular to solve or avoid the above-mentioned disadvantages of existing self-capacitive touch screens.

本發明第一方面提出了一種觸控裝置,包括:基板;多個感應單元,所述多個感應單元彼此不相交,所述多個感應單元形成在所述基板之上,且所述多個感應單元的每個均具有第一電極和第二電極;和觸摸螢幕控制晶片,所述觸摸螢幕控制晶片分別與所述多個感應單元中每個的第一電極和第二電極相連,所述觸摸螢幕控制晶片向所述多個感應單元的第一電極和/或第二電極施加電平信號,所述電平信號在感應單元被觸摸時向所述感應單元產生的自電容充電,且所述觸摸螢幕控制晶片在檢測到所述多個感應單元中一個或部分被觸摸時,計算相應的感應單元中所述第一電極至所述自電容的第一電阻與所述第二電極至所述自電容的第二電阻之間的比例關係,以及根據所述第一電阻和所述第二電阻之間的比例關係確定觸摸位置。 A first aspect of the present invention provides a touch device including: a substrate; a plurality of sensing units, the plurality of sensing units do not intersect each other, the plurality of sensing units are formed on the substrate, and the plurality of Each of the sensing units has a first electrode and a second electrode; and a touch screen control wafer, the touch screen control wafer being respectively connected to the first electrode and the second electrode of each of the plurality of sensing units, Touching the screen control wafer to apply a level signal to the first electrode and/or the second electrode of the plurality of sensing units, the level signal charging the self-capacitance generated by the sensing unit when the sensing unit is touched, and The touch screen control chip calculates a first resistance of the first electrode to the self-capacitance and a second electrode to the second sensing unit when detecting that one or a portion of the plurality of sensing units are touched Defining a proportional relationship between the second resistors of the self-capacitance, and determining a touch position according to a proportional relationship between the first resistor and the second resistor.

本發明第二方面還提出了一種觸摸螢幕檢測裝置,包括:基板;和多個不相交的感應單元,所述多個感應單元形成在所述基板之上,且所述多個感應單元的每個均具有相對設置的第一電極和第二電極,其中,每個第一電極和第二電極均與觸摸螢幕控制器的一個管腳相連。 A second aspect of the present invention also provides a touch screen detecting apparatus comprising: a substrate; and a plurality of disjoint sensing units, the plurality of sensing units being formed on the substrate, and each of the plurality of sensing units Each has a first electrode and a second electrode disposed opposite each other, wherein each of the first electrode and the second electrode is connected to one pin of the touch screen controller.

本發明第三方面還提出了一種觸摸檢測方法,包括以下步驟:向感應單元的第一電極和/或第二電極施加電平信號,其中,當所述感應單元被觸摸時,所述電平信號對所述感應單元產生的自電容進行充電;檢測所述多個感應單元中一個或部分感應單元是否被觸摸;如果檢測到所述多個感應單元中一個或部分被觸摸,則計算相應的感應單元中所述第一電極至所述自電容的第一電阻與所述第二電極至所述自電容的第二電阻之間的比例關係;以及根據所述第一電阻和所述第二電阻之間的比例關係確定觸摸位置。 A third aspect of the present invention also provides a touch detection method comprising the steps of: applying a level signal to a first electrode and/or a second electrode of a sensing unit, wherein the level is when the sensing unit is touched The signal charges a self-capacitance generated by the sensing unit; detects whether one or a part of the sensing units of the plurality of sensing units are touched; if one or a part of the plurality of sensing units is detected to be touched, calculating a corresponding a proportional relationship between the first resistance of the first electrode to the self-capacitance and a second resistance of the second electrode to the self-capacitance in the sensing unit; and according to the first resistance and the second The proportional relationship between the resistors determines the touch location.

本發明第四方面還提出了一種可攜式電子設備,包括如上所述的觸控裝置。 A fourth aspect of the present invention also provides a portable electronic device comprising the touch device as described above.

本發明第五方面還提出了一種可攜式電子設備,包括如上所述的觸控裝置。 A fifth aspect of the present invention also provides a portable electronic device comprising the touch device as described above.

本發明的觸摸螢幕檢測裝置中的感應單元採用雙端檢測,即感應單元的兩端均具有電極,且每個電極均與觸摸螢幕控制晶片的對應管腳相連,在進行觸摸檢測時通過感應單元自身即可實現對觸摸點的定位。 The sensing unit in the touch screen detecting device of the present invention adopts double-end detection, that is, both ends of the sensing unit have electrodes, and each electrode is connected to a corresponding pin of the touch screen control chip, and passes through the sensing unit when performing touch detection. The positioning of the touch points can be achieved by itself.

更為重要的是,本發明通過計算第一電阻和第二電阻之間比例實現觸摸位置的確定,因此相對於目前的菱形或三角形設計來說,由於在確定觸摸位置時,無需計算自電容的大小,且自電容的大小不會影響觸摸位置的精度,從而提高了測量精度,改善了線性度。 More importantly, the present invention achieves the determination of the touch position by calculating the ratio between the first resistance and the second resistance, so that compared to the current diamond or triangle design, since the touch position is determined, there is no need to calculate the self-capacitance. The size and the size of the self-capacitance do not affect the accuracy of the touch position, thereby improving measurement accuracy and improving linearity.

本發明提出了一種新穎的檢測方法,通過現對感應單元產生的自電容充電,再根據第一電阻和第二電阻之間的比例關係確定在第一方向上的觸摸位置。例如在本發明的一個實施例中,第一電阻和第二電阻之間的比例關係可以根據在對自電容充電/放電時,從第一電極和/或第二電極進行檢測獲得的第一檢測值和第二檢測值之間的比例關係計算得到。因此該方法相對與現有的自電容檢測方法,能夠極大地提高檢測精度和電路的性噪比,並降低電路雜訊,提高感應線性度。並且,在檢測過程中由於對被觸摸的感應單元進行充電或放電,因此其中會產生小電流,從而增強了抗干擾能力。 The present invention proposes a novel detection method for determining the touch position in the first direction according to the proportional relationship between the first resistance and the second resistance by charging the self-capacitance generated by the sensing unit. For example, in an embodiment of the present invention, the proportional relationship between the first resistance and the second resistance may be based on the first detection obtained by detecting the first electrode and/or the second electrode when charging/discharging the self-capacitance. The proportional relationship between the value and the second detected value is calculated. Therefore, compared with the existing self-capacitance detection method, the method can greatly improve the detection accuracy and the noise-to-noise ratio of the circuit, reduce the circuit noise, and improve the linearity of the induction. Moreover, since the touched sensing unit is charged or discharged during the detection process, a small current is generated therein, thereby enhancing the anti-interference ability.

本發明附加的方面和優點將在下面的描述中部分給出,部分將從下面的描述中變得明顯,或通過本發明的實踐瞭解到。 The additional aspects and advantages of the invention will be set forth in part in the description which follows.

100、300'‧‧‧基板 100, 300'‧‧‧ substrate

100'、200'‧‧‧菱形結構感應單元 100', 200'‧‧‧Rhombus structure sensing unit

110‧‧‧第一邊 110‧‧‧ first side

120‧‧‧第二邊 120‧‧‧ second side

200‧‧‧感應單元 200‧‧‧Sensor unit

210‧‧‧第一電極 210‧‧‧First electrode

220‧‧‧第二電極 220‧‧‧second electrode

230‧‧‧第一部分 230‧‧‧Part I

240‧‧‧第二部分 240‧‧‧Part II

250‧‧‧第三部分 250‧‧‧Part III

260‧‧‧第四部分 260‧‧‧Part IV

270‧‧‧第五部分 270‧‧‧Part V

280‧‧‧第六部分 280‧‧‧Part VI

290‧‧‧第七部分 290‧‧‧ Part VII

300‧‧‧觸摸螢幕控制晶片 300‧‧‧Touch screen control chip

400'‧‧‧三角形感應單元 400'‧‧‧triangular sensing unit

500'‧‧‧電極 500'‧‧‧ electrodes

1000‧‧‧第一凹槽 1000‧‧‧first groove

2000‧‧‧第二凹槽 2000‧‧‧second groove

A‧‧‧觸摸位置 A‧‧‧ touch location

C1‧‧‧電容 C1‧‧‧ capacitor

S1、S2‧‧‧手指與兩個三角形感應單元的接觸面積 Contact area of S1, S2‧‧‧ fingers and two triangular sensing units

R1、R2‧‧‧電阻 R1, R2‧‧‧ resistance

本發明上述的和/或附加的方面和優點從下面結合附圖 對實施例的描述中將變得明顯和容易理解,其中:第1圖為現有技術中常見的一種自電容觸摸螢幕的結構圖;第2a圖為現有技術中常見的另一種自電容觸摸螢幕的結構圖;第2b圖為現有技術中常見的另一種自電容觸摸螢幕的檢測原理圖;第3圖為本發明實施例觸控裝置的檢測原理示意圖;第4圖為本發明實施例的觸摸檢測方法流程圖;第5圖為本發明一個實施例的觸控裝置示意圖;第6a圖為本發明一個實施例的感應單元結構圖;第6b圖為本發明一個實施例的感應單元結構圖;第7a圖為本發明另一個實施例觸摸螢幕檢測設備結構圖;第7b圖為本發明另一個實施例觸摸螢幕檢測裝置結構圖;第8圖為本發明實施例的感應單元被觸摸時的示意圖;第9a圖為本發明再一個實施例觸摸螢幕檢測設備結構圖;第9b圖為本發明再一個實施例觸摸螢幕檢測裝置結構圖;以及第10圖為本發明實施例的感應單元被觸摸時的示意圖。 The above and/or additional aspects and advantages of the present invention are described below in conjunction with the accompanying drawings The description of the embodiments will become apparent and easy to understand, wherein: FIG. 1 is a structural diagram of a self-capacitive touch screen commonly seen in the prior art; FIG. 2a is another self-capacitive touch screen commonly seen in the prior art. FIG. 2b is a schematic diagram of detection of another self-capacitive touch screen commonly seen in the prior art; FIG. 3 is a schematic diagram of a detection principle of a touch device according to an embodiment of the present invention; and FIG. 4 is a touch detection method according to an embodiment of the present invention; FIG. 5 is a schematic diagram of a touch device according to an embodiment of the present invention; FIG. 6a is a structural diagram of a sensing unit according to an embodiment of the present invention; FIG. 6b is a structural diagram of a sensing unit according to an embodiment of the present invention; 7a is a structural diagram of a touch screen detecting device according to another embodiment of the present invention; FIG. 7b is a structural diagram of a touch screen detecting device according to another embodiment of the present invention; and FIG. 8 is a schematic diagram of the sensing unit when the sensing unit is touched according to an embodiment of the present invention; 9a is a structural diagram of a touch screen detecting device according to still another embodiment of the present invention; FIG. 9b is a structural diagram of a touch screen detecting device according to still another embodiment of the present invention; and 10th Example schematic view of the sensing unit is touched embodiment of the invention.

下面詳細描述本發明的實施例,所述實施例的示例在附圖中示出,其中自始至終相同或類似的標號表示相同或類似的元件或具有相同或類似功能的元件。下面通過參考附圖描述的實施例是示例性的,僅用於解釋本發明,而不能解釋為對本發明的限制。 The embodiments of the present invention are described in detail below, and the examples of the embodiments are illustrated in the drawings, wherein the same or similar reference numerals are used to refer to the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the drawings are intended to be illustrative of the invention and are not to be construed as limiting.

本發明實施例提出了一種新穎的自電容檢測方式,在感應單元被觸摸時,觸摸點可以將該感應單元分為兩個電阻,在進行自電容檢測的同時考慮這兩個電阻就可以確定觸摸點在該感應單元上的位置。如第3圖所示,為本發明實施例觸控裝置的檢測原理示意圖。當手指觸摸該感應單元時,將相當於將該感應單元分割為兩個電阻,這兩個電阻的阻值與觸摸點的位置相關。例如,如圖所述,當觸摸點與第一電極210較近時,則電阻R1就較小,而電阻R2就較大;反之,當觸摸點與第二電極220較近時,則電阻R1就較大,而電阻R2就較小。因此,本發明通過對電阻R1和R2的檢測就可以確定觸摸點在該感應單元上的位置。在本發明的實施例中,可通過多種方式檢測電阻R1和R2,例如可通過檢測第一電極和第二電極的電流檢測值、自電容檢測值、電平信號檢測值和電荷變化量中的一種或多種,從而根據這些檢測值獲得電阻R1和R2。另外,在本發明的實施例中,檢測可在充電時進行(即獲得第一充電檢測值和第二充電檢測值),也可在放電時進行(即獲得第一放電檢測值和第二放電檢測值)。此外,在充電和放電時進行的檢測可以採用多種方式。但是需要說明的是,充電、放電或者檢測中至少有一個步驟是對第一電極和第二電極進行的,這樣才能夠獲得反應第一電阻和第二電阻之間差值的兩個檢測值,即第一檢測值和第二檢測值。也就是說,在充電、放電或檢測時需要有電流經過第一電阻和第二電阻,這樣檢測到的第一檢測值和第二檢測值才能夠反應第一電阻和第二電阻之間的差值。在本發明的實施例中,通常需要充兩次電(包括同時對第一電極和第二電極充電的情況),以及兩次檢測。在一些實施例中,還可能會進行兩次放電。在以下的實施例中均是進行兩次充電及兩次檢測,在以下的實施例中不再贅述。在此需要說明的 是,進行兩次充電及兩次檢測僅是本發明實施例的一種方案,演算法相對比較簡單。然而本領域技術人員也可根據上述思想增加充電及檢測的次數,例如可進行三次充電和檢測,之後根據第一次的充電檢測值和第二次的充電檢測值計算第一電阻,再根據第一次的充電檢測值和第三次的充電檢測值計算第二電阻。 The embodiment of the invention provides a novel self-capacitance detection method. When the sensing unit is touched, the touch point can divide the sensing unit into two resistors, and the two resistors can be used to determine the touch while performing self-capacitance detection. The position on the sensing unit. FIG. 3 is a schematic diagram of a detection principle of a touch device according to an embodiment of the present invention. When the finger touches the sensing unit, it will be equivalent to splitting the sensing unit into two resistors, and the resistance values of the two resistors are related to the position of the touch point. For example, as shown in the figure, when the touch point is closer to the first electrode 210, the resistor R1 is smaller and the resistor R2 is larger; conversely, when the touch point is closer to the second electrode 220, the resistor R1 is It is larger and the resistance R2 is smaller. Therefore, the present invention can determine the position of the touch point on the sensing unit by detecting the resistors R1 and R2. In an embodiment of the present invention, the resistors R1 and R2 can be detected in various ways, for example, by detecting a current detection value, a self-capacitance detection value, a level signal detection value, and a charge variation amount of the first electrode and the second electrode. One or more, thereby obtaining the resistors R1 and R2 based on these detected values. In addition, in the embodiment of the present invention, the detecting may be performed at the time of charging (ie, obtaining the first charging detection value and the second charging detection value), or may be performed at the time of discharging (ie, obtaining the first discharging detection value and the second discharging) Detection value). In addition, the detection performed during charging and discharging can be performed in various ways. However, it should be noted that at least one step in charging, discharging or detecting is performed on the first electrode and the second electrode, so that two detection values of the difference between the first resistance and the second resistance can be obtained. That is, the first detected value and the second detected value. That is to say, when charging, discharging or detecting, a current needs to pass through the first resistor and the second resistor, so that the detected first detection value and second detection value can reflect the difference between the first resistance and the second resistance. value. In an embodiment of the invention, charging is typically required twice (including the simultaneous charging of the first and second electrodes), as well as two measurements. In some embodiments, it is also possible to perform two discharges. In the following embodiments, charging and two detections are performed twice, which will not be described in the following examples. Need to explain here Yes, performing two charging and two detecting is only one solution of the embodiment of the present invention, and the algorithm is relatively simple. However, those skilled in the art can also increase the number of times of charging and detecting according to the above idea, for example, three times of charging and detecting can be performed, and then the first resistance is calculated according to the first charging detection value and the second charging detection value, and then according to the first The second resistance is calculated by the primary charge detection value and the third charge detection value.

具體地,本發明包括但不限於以下幾種測量方式進行檢測: Specifically, the present invention includes, but is not limited to, the following measurement methods for detecting:

1、先向感應單元的第一電極和第二電極施加電平信號以對自電容充電(如果該感應單元被觸摸則就會產生自電容);接著從第一電極和/或第二電極進行充電檢測以獲得第一充電檢測值和第二充電檢測值。在該實施例中,由於充電是從第一電極和第二電極進行的,因此對於檢測來說既可以從第一電極進行檢測,也可以從第二電極進行檢測,或者也可從第一電極和第二電極分別進行檢測。還需要說明的是,在該實施例中,對第一電極和第二電極的充電可同時進行,也可分別進行,例如在第一電極和第二電極同時施加相同的電平信號以對自電容進行充電,在其他實施例中,第一電極和第二電極施加的電平信號也可以不同;或者,也可以先在第一電極上施加一個電平信號,之後再在第二電極上施加同一個電平信號或另一個電平信號。同樣地,進行檢測時既可以同時進行,也可分別進行。在以下實施例中,充電、放電或檢測均可同時進行,或者分別進行,在此不再贅述。 1. First applying a level signal to the first electrode and the second electrode of the sensing unit to charge the self-capacitor (if the sensing unit is touched, a self-capacitance is generated); then proceeding from the first electrode and/or the second electrode The charge detection obtains a first charge detection value and a second charge detection value. In this embodiment, since the charging is performed from the first electrode and the second electrode, it is possible to detect from the first electrode or the second electrode for the detection, or also from the first electrode. And detecting the second electrode separately. It should be noted that, in this embodiment, the charging of the first electrode and the second electrode may be performed simultaneously, or separately, for example, the same level signal is simultaneously applied to the first electrode and the second electrode to The capacitor is charged. In other embodiments, the level signals applied by the first electrode and the second electrode may be different. Alternatively, a level signal may be applied to the first electrode and then applied to the second electrode. The same level signal or another level signal. Similarly, the detection may be performed simultaneously or separately. In the following embodiments, charging, discharging, or detecting may be performed simultaneously, or separately, and will not be described herein.

2、向所述感應單元的第一電極或第二電極分別兩次施加電平信號以對所述自電容進行兩次充電;接著在每次充電之後從所述第一電極和/或第二電極進行充電檢測以獲得所述第一充電檢測值和第二充電檢測值。在該實施例中,由於充電是從第一電極或第二電極進行的,因 此在檢測時需要從第一電極和第二電極分別進行檢測,其中,檢測可同時進行,也可分別進行。此外,在本發明的實施例中,還可以在第一電極進行兩次充電,並從第一電極進行兩次檢測,或者,從第二電極進行兩次充電,在第二電極進行兩次檢測。只要是,在兩次充電時,分別將另一個電極接地或接高阻以改變另一個電極的狀態。例如當向感應單元的第一電極分別兩次施加電平信號以對自電容進行兩次充電時,其中,兩次充電中的一次將所述第二電極接地,另一次將所述第二電極接為高阻;當向感應單元的第二電極分別兩次施加電平信號以對自電容進行兩次充電時,兩次充電中的一次將所述第一電極接地,另一次將所述第一電極接為高阻。這樣即使是在第一電極進行了兩次充電,由於第二電極狀態的改變,也能夠在第一電極進行兩次檢測,以獲得能夠反應第一電阻R1和第二電阻R2之間比例關係的第一檢測值和第二檢測值。 2. applying a level signal to the first electrode or the second electrode of the sensing unit twice to charge the self-capacitor twice; then from the first electrode and/or second after each charging The electrode performs charging detection to obtain the first charging detection value and the second charging detection value. In this embodiment, since charging is performed from the first electrode or the second electrode, In the detection, it is necessary to perform detection from the first electrode and the second electrode respectively, wherein the detection may be performed simultaneously or separately. In addition, in the embodiment of the present invention, it is also possible to perform charging twice on the first electrode and two times from the first electrode, or two times from the second electrode, and two times on the second electrode. . As long as it is, at the time of two charges, the other electrode is grounded or connected to a high resistance to change the state of the other electrode. For example, when a level signal is applied twice to the first electrode of the sensing unit to charge the self-capacitor twice, wherein one of the two charges grounds the second electrode, and the other time the second electrode Connected to high resistance; when a level signal is applied to the second electrode of the sensing unit twice to charge the self-capacitor twice, one of the two charges grounds the first electrode, and the other time One electrode is connected to a high resistance. Thus, even if the first electrode is charged twice, the second electrode can be detected twice at the first electrode to obtain a proportional relationship between the first resistor R1 and the second resistor R2. The first detected value and the second detected value.

3、向感應單元的第一電極和第二電極施加電平信號以對自電容充電;接著控制第一電極和/或第二電極接地以對自電容放電;之後從第一電極和/或第二電極進行放電檢測以獲得所述第一放電檢測值和第二放電檢測值。在該實施例中,由於對自電容充電是從第一電極和第二電極進行的,因此放電或檢測就可從第一電極和/或第二電極進行。具體地,例如可同時向第一電極和第二電極施加電平信號以對自電容進行充電,或者也可不同時施加。在放電時兩次放電可均將第一電極接地,或者均將第二電極接地。 3. applying a level signal to the first electrode and the second electrode of the sensing unit to charge the self-capacitor; then controlling the first electrode and/or the second electrode to be grounded to discharge the self-capacitance; thereafter from the first electrode and/or the first The two electrodes perform discharge detection to obtain the first discharge detection value and the second discharge detection value. In this embodiment, since the self-capacitance is charged from the first electrode and the second electrode, discharge or detection can be performed from the first electrode and/or the second electrode. Specifically, for example, a level signal may be applied to the first electrode and the second electrode simultaneously to charge the self-capacitance, or may not be applied at the same time. The two electrodes may be grounded at the time of discharge, or the second electrode may be grounded.

4、向感應單元的第一電極或第二電極施加電平信號以對自電容充電;接著分別控制第一電極和第二電極接地以對自電容放電;之後分別從第一電極和/或第二電極進行放電檢測以獲得第一放電檢測值和第二放電檢測 值。在該實施例中,由於對自電容放電是從第一電極和第二電極進行的,因此充電或檢測就可從第一電極和/或第二電極進行。在該實施例中,兩次充電也可均用第一電極,而將第二電極分別接地或接為高阻。同樣地,兩次充電也可均用第二電極,而將第一電極分別接地或接為高阻。 4. Applying a level signal to the first electrode or the second electrode of the sensing unit to charge the self-capacitor; then controlling the first electrode and the second electrode to ground respectively to discharge the self-capacitance; thereafter, respectively from the first electrode and/or the first electrode The two electrodes perform discharge detection to obtain a first discharge detection value and a second discharge detection value. In this embodiment, since the self-capacitance discharge is performed from the first electrode and the second electrode, charging or detecting can be performed from the first electrode and/or the second electrode. In this embodiment, the first electrode may be used for both charging, and the second electrode may be grounded or connected to a high resistance. Similarly, the second electrode can also be used for both charging, and the first electrode is grounded or connected to a high resistance.

5、向感應單元的第一電極或第二電極施加電平信號以對自電容充電;接著分別控制第一電極或第二電極接地以對自電容放電,之後分別從第一電極和第二電極進行放電檢測以獲得第一放電檢測值和第二放電檢測值。在該實施例中,由於對自電容檢測是從第一電極和第二電極進行的,因此充電或放電就可從第一電極和/或第二電極進行。在該實施例中,兩次充電也可均用第一電極,而將第二電極分別接地或接為高阻。同樣地,兩次充電也可均用第二電極,而將第一電極分別接地或接為高阻。 5. Applying a level signal to the first electrode or the second electrode of the sensing unit to charge the self-capacitor; then respectively controlling the first electrode or the second electrode to ground to discharge the self-capacitance, and then respectively from the first electrode and the second electrode The discharge detection is performed to obtain a first discharge detection value and a second discharge detection value. In this embodiment, since the self-capacitance detection is performed from the first electrode and the second electrode, charging or discharging can be performed from the first electrode and/or the second electrode. In this embodiment, the first electrode may be used for both charging, and the second electrode may be grounded or connected to a high resistance. Similarly, the second electrode can also be used for both charging, and the first electrode is grounded or connected to a high resistance.

或者,在上述實施例的基礎之上,還可以在充電時進行一次檢測以獲得第一充電檢測值,在放電時進行第二次檢測以獲得第二放電檢測值,再根據第一充電檢測值和第二放電檢測值獲得第一電阻和第二電阻之間的比例關係。 Alternatively, on the basis of the above embodiment, one detection may be performed at the time of charging to obtain a first charging detection value, and a second detection is performed at the time of discharging to obtain a second discharging detection value, and then according to the first charging detection value. And a second discharge detection value obtains a proportional relationship between the first resistance and the second resistance.

需要說明的是,在本發明的實施例中,上述第一電極和第二電極的功能相同,且二者可以互換,因此在上述實施例中,既可以從第一電極檢測也可以從第二電極檢測,只要能滿足在充電、放電或檢測時需要有電流經過第一電阻和第二電阻這一要求即可。 It should be noted that, in the embodiment of the present invention, the functions of the first electrode and the second electrode are the same, and the two are interchangeable. Therefore, in the above embodiment, the first electrode may be detected from the first electrode or the second The electrode detection can be performed as long as it satisfies the requirement that a current needs to pass through the first resistor and the second resistor during charging, discharging or detecting.

從上述描述中可以看出,對於本發明的上述充電及檢測方式有很多種變化,但本發明的核心就是根據第一電阻和第二電阻之間的關係,例如比例關係或者其他關係來確定觸摸點的位置。進一步地,該第一電阻和第二電阻之間的關係需要通過自電容的充電和/或放電來檢測。如 果感應單元沒有被觸摸,則就不會與手產生自電容,因此檢測到自電容的資料會很小,不滿足觸摸的判斷條件,對於此本發明實施例中會不斷掃描,等待手指觸摸到感應單元之後才開始計算,在此不再贅述。 As can be seen from the above description, there are many variations on the above charging and detecting methods of the present invention, but the core of the present invention is to determine the touch according to the relationship between the first resistance and the second resistance, such as a proportional relationship or other relationship. The location of the point. Further, the relationship between the first resistor and the second resistor needs to be detected by charging and/or discharging of the self-capacitance. Such as If the sensing unit is not touched, the self-capacitance is not generated with the hand. Therefore, the data of the self-capacitance is detected to be small, and the judgment condition of the touch is not satisfied. For the embodiment of the present invention, the scanning is continuously performed, waiting for the finger to touch. The calculation is started after the sensing unit, and will not be described here.

在本發明的實施例中,可以以掃描的方式依次向多個感應單元施加相應的電壓,同時在檢測時也可以以掃描的方式依次進行檢測。 In the embodiment of the present invention, the corresponding voltages may be sequentially applied to the plurality of sensing units in a scanning manner, and may also be sequentially detected in a scanning manner during the detection.

另外還需要說明的是,上述檢測方式僅為本發明的一些優選方式,本領域技術人員還可根據上述思想進行擴展或修改,這些均應包含在本發明的保護範圍之內。 It should be noted that the above detection manners are only some preferred modes of the present invention, and those skilled in the art may also expand or modify according to the above ideas, and these should be included in the protection scope of the present invention.

如第4圖所示,為本發明實施例的觸摸檢測方法流程圖,該流程圖結合第3圖所示的原理圖一同進行說明。該方法包括以下步驟: As shown in FIG. 4, it is a flowchart of a touch detection method according to an embodiment of the present invention, which is described together with the schematic diagram shown in FIG. The method includes the following steps:

步驟S401,向感應單元的兩端施加電平信號,即向感應單元的第一電極和/或第二電極施加電平信號。在該實施例中,可向第一電極和第二電極施加相同的電平信號,也可施加不同的電平信號。在其他實施例中,也可僅從第一電極或第二電極進行充電兩次,或者第一次從第一電極充電第二次從第二電極充電,或者第一次從第二電極充電第二次從第一電極充電。 In step S401, a level signal is applied to both ends of the sensing unit, that is, a level signal is applied to the first electrode and/or the second electrode of the sensing unit. In this embodiment, the same level signal may be applied to the first electrode and the second electrode, and different level signals may be applied. In other embodiments, charging may be performed only from the first electrode or the second electrode twice, or charging the second electrode from the first electrode for the second time, or charging the second electrode from the second electrode for the first time. Charged from the first electrode twice.

如果此時該感應單元被手指或其他物體觸摸,則該感應單元將會產生自電容C1(參照第3圖),通過施加的電平信號就可對自電容進行充電。在本發明的實施例中,通過對自電容的充電,可以提高自電容的檢測精度。 If the sensing unit is touched by a finger or other object at this time, the sensing unit will generate a self-capacitance C1 (refer to FIG. 3), and the self-capacitance can be charged by the applied level signal. In the embodiment of the present invention, the detection accuracy of the self-capacitance can be improved by charging the self-capacitance.

需要說明的是,如果向感應單元的兩端同時施加電平信號的話,則需要相應的兩個電容檢測模組CTS同時從感應單元的兩端進行檢測。而如果分別向兩端時間的話,則僅需要一個電容檢測模組CTS即可。在本發明的一 個實施例中,第一檢測值和第二檢測值可以為從第一電極和/或第二電極檢測到的電容電荷變化量△Q1和△Q2。通過△Q1與△Q2,即檢測到得自電容變化量,就可以算出R1與R2的比例,由於圖形的規則線性關係,則可以算出觸摸點所在的橫坐標的位置,及自電容C1所在的位置。 It should be noted that if a level signal is simultaneously applied to both ends of the sensing unit, the corresponding two capacitance detecting modules CTS need to be simultaneously detected from both ends of the sensing unit. If it is time to both ends, only one capacitance detecting module CTS is needed. In the first aspect of the invention In one embodiment, the first detection value and the second detection value may be capacitance charge variations ΔQ1 and ΔQ2 detected from the first electrode and/or the second electrode. By ΔQ1 and ΔQ2, that is, the amount of capacitance change is detected, the ratio of R1 to R2 can be calculated. Due to the regular linear relationship of the graph, the position of the abscissa where the touch point is located can be calculated, and the position of the self-capacitance C1 is position.

步驟S402,從感應單元的兩端對感應單元進行檢測,以獲得第一檢測值和第二檢測值。在該實施例中,檢測可在充電時進行,也可在放電時進行。在上述例子中,第一檢測值和第二檢測值分別為△Q1和△Q2。以下以第一檢測值和第二檢測值為電荷變化量為例進行描述,但是能夠反應電阻R1和R2關係的其他檢測值,例如電平信號、電流等也均可採用。在本發明的實施例中,既可以同時檢測,也可以分別檢測。 Step S402, detecting the sensing unit from both ends of the sensing unit to obtain a first detection value and a second detection value. In this embodiment, the detection may be performed while charging or during discharging. In the above example, the first detected value and the second detected value are ΔQ1 and ΔQ2, respectively. Hereinafter, the first detection value and the second detection value are described as an example of the amount of charge change, but other detection values capable of reacting the relationship between the resistances R1 and R2, such as level signals, currents, and the like, may also be employed. In the embodiment of the present invention, it may be detected simultaneously or separately.

在本發明的一個實施例中,如果進行同時檢測,則需要兩個電容檢測模組CTS同時對第一電極和第二電極進行檢測,因此所述觸摸螢幕控制晶片包括一個或兩個電容檢測模組CTS。 In an embodiment of the present invention, if simultaneous detection is performed, two capacitance detecting modules CTS are required to simultaneously detect the first electrode and the second electrode, so the touch screen control chip includes one or two capacitance detecting modes. Group CTS.

在本發明的另一個實施例中,也可採用一個電容檢測模組CTS進行檢測,參照步驟S401中,在通過第一電極對自電容C1充滿之後,即該電容檢測模組CTS通過第一電極對自電容C1進行檢測。接著再通過第二電極對自電容C2充電,接著該電容檢測模組CTS再通過第二電極對自電容C1進行檢測。 In another embodiment of the present invention, a capacitance detecting module CTS can also be used for detecting. Referring to step S401, after the self-capacitance C1 is filled by the first electrode, the capacitance detecting module CTS passes through the first electrode. The self-capacitance C1 is detected. Then, the self-capacitance C2 is charged by the second electrode, and then the capacitance detecting module CTS detects the self-capacitance C1 through the second electrode.

由於自電容觸摸螢幕控制晶片掃描該感應單元時採用的相位和電平信號均一致,因此對於同一個自電容C1來說充電時的電荷就等於它們電阻的反比。假設,從感應單元的第一電極和第二電極對感應單元檢測獲得的電荷變化量分別是△Q1與△Q2。在本發明的實施例中,電容檢測模組CTS可為目前已知的電容檢測模組CTS。在本發 明的一個實施例中,如果採用兩個電容檢測模組CTS的話,則由於兩個電容檢測模組CTS可工藝多個器件,因此不會增大晶片的整體功耗。 Since the phase and level signals used in the self-capacitance touch screen control wafer scanning the sensing unit are the same, the charge when charging is the same self-capacitance C1 is equal to the inverse ratio of their resistance. It is assumed that the amount of change in charge obtained from the sensing of the sensing unit by the first electrode and the second electrode of the sensing unit is ΔQ1 and ΔQ2, respectively. In the embodiment of the present invention, the capacitance detecting module CTS can be a currently known capacitance detecting module CTS. In this hair In one embodiment of the present invention, if two capacitance detecting modules CTS are used, since the two capacitance detecting modules CTS can process a plurality of devices, the overall power consumption of the wafer is not increased.

步驟S403,根據第一檢測值和第二檢測值判斷該感應單元是否被觸摸。具體地,在本發明的一個實施例中,可通過判斷電荷變化量△Q1與△Q2是否大於閾值來確定是否被觸摸。當然,在本發明的其他實施例中,還可設置其他判斷方式,例如判斷電荷變化量△Q1與△Q2是否小於閾值,如果小於,則判斷感應單元被觸摸。同樣地,該閾值也需要根據觸摸螢幕的大小和類型,感應單元的尺寸確定。 Step S403, determining whether the sensing unit is touched according to the first detection value and the second detection value. Specifically, in one embodiment of the present invention, whether or not the touch is touched can be determined by judging whether or not the charge change amounts ΔQ1 and ΔQ2 are greater than a threshold. Of course, in other embodiments of the present invention, other manners of determining may be set, such as determining whether the amount of charge change ΔQ1 and ΔQ2 is less than a threshold, and if so, determining that the sensing unit is touched. Similarly, the threshold also needs to be determined according to the size and type of the touch screen.

步驟S404,如果判斷該感應單元被觸摸,則此時進一步計算相應的感應單元中所述第一電極至所述自電容的第一電阻與所述第二電極至所述自電容的第二電阻之間的比例關係。並根據第一電阻和所述第二電阻之間的比例關係確定觸摸物體(例如手指)的觸摸位置。在本發明的實施例中,第一電阻和所述第二電阻之間的比例關係根據在對自電容充電/放電時,從第一電極和/或第二電極進行檢測獲得的第一檢測值和第二檢測值之間的比例關係計算得到。同上,C1所在的感應單元上的座標即為△Q2/(△Q1+△Q2)。 Step S404, if it is determined that the sensing unit is touched, then further calculating a first resistance of the first electrode to the self-capacitance and a second resistance of the second electrode to the self-capacitance of the corresponding sensing unit The proportional relationship between. And determining a touch position of the touch object (eg, a finger) according to a proportional relationship between the first resistance and the second resistance. In an embodiment of the invention, the proportional relationship between the first resistance and the second resistance is based on a first detection value obtained by detecting from the first electrode and/or the second electrode when charging/discharging the self-capacitance The proportional relationship between the second detected value and the second detected value is calculated. As above, the coordinate on the sensing unit where C1 is located is ΔQ2/(ΔQ1+△Q2).

在本發明的實施例中,如果感應單元為門形感應單元或L形感應單元,則通過第一電阻和第二電阻之間的比值就可確定在觸摸螢幕上的觸摸位置,以下將結合具體的例子進行詳述。但在本發明的其他實施例中,如果感應單元為矩形感應單元或蛇形(但整體上看相當於矩形)感應單元,則步驟S404只能計算出在觸摸螢幕第一方向上的觸摸位置,該第一方向可以是感應單元的長度方向(例如觸摸螢幕的水準方向)。 In the embodiment of the present invention, if the sensing unit is a gate sensing unit or an L-shaped sensing unit, the touch position on the touch screen can be determined by the ratio between the first resistor and the second resistor, and the following will be combined The examples are detailed. However, in other embodiments of the present invention, if the sensing unit is a rectangular sensing unit or a serpentine (but generally equivalent to a rectangular) sensing unit, step S404 can only calculate the touch position in the first direction of the touch screen. The first direction may be the length direction of the sensing unit (eg, the level of the touch screen).

如果感應單元為矩形感應單元或蛇形(但整體上看相當於矩形)感應單元,則還需要根據感應單元的位置確定在第二方向上的觸摸位置。在本發明的一個實施例中,第一方向為感應單元的長度方向,第二方向為垂直於感應單元的方向,感應單元水準設置或垂直設置。 If the sensing unit is a rectangular sensing unit or a serpentine (but overall equivalent to a rectangular) sensing unit, it is also necessary to determine the touch position in the second direction according to the position of the sensing unit. In an embodiment of the invention, the first direction is a length direction of the sensing unit, the second direction is a direction perpendicular to the sensing unit, and the sensing unit is horizontally or vertically disposed.

具體地,可採用質心算法計算觸摸點在第二方向上的觸摸位置,以下對質心算法進行簡單介紹。 Specifically, the centroid algorithm can be used to calculate the touch position of the touch point in the second direction. The following describes the centroid algorithm briefly.

在滑條和觸摸板應用中,經常有必要在具體感應單元的本質間距以上確定出手指(或其他電容性物體)的位置。手指在滑條或觸摸板上的接觸面板通常大於任何個感應單元。為了採用一個中心來計算觸摸後的位置,對這個陣列進行掃描以驗證所給定的感測器位置是有效的,對於一定數量的相鄰感應單元信號的要求是要大於預設觸摸閾值。在找到最為強烈的信號後,此信號和那些大於觸摸閾值的臨近信號均用於計算中心: 其中,Ncent為中心處感應單元的標號,n為檢測到被觸摸的感應單元的個數,i為被觸摸感應單元的序號,其中i大於等於2。 In slider and touchpad applications, it is often necessary to determine the position of a finger (or other capacitive object) above the essential spacing of a particular sensing unit. The touch panel of the finger on the slider or touchpad is typically larger than any of the sensing units. In order to use a center to calculate the position after the touch, the array is scanned to verify that the given sensor position is valid, and the requirement for a certain number of adjacent sensing unit signals is greater than the preset touch threshold. After finding the strongest signal, this signal and those adjacent to the touch threshold are used in the calculation center: Ncent is the label of the sensing unit at the center, n is the number of sensing units that are touched, and i is the serial number of the touched sensing unit, where i is greater than or equal to 2.

例如,當手指觸摸在第一條通道,其電容變化量為y1,第二條通道上的電容變化量為y2和第三條通道上的電容變化量為y3時。其中第二通道y2電容變化量最 大。Y座標就可以算是: For example, when the finger touches the first channel, the capacitance change amount is y1, the capacitance change amount on the second channel is y2, and the capacitance change amount on the third channel is y3. The second channel y2 capacitance changes the most. The Y coordinate can be regarded as:

本發明實施例根據上述思想提出了一種觸控裝置。該觸控裝置包括基板、多個不相交的感應單元。在本發明的實施例中,不相交的感應單元之間可以相互平行,或者不相交的感應單元之間也可以部分地平行。其中,多個感應單元形成在基板之上,且多個感應單元的每個均具有相對設置的第一電極和第二電極。如第5圖所示,為本發明一個實施例的觸控裝置示意圖。該觸控裝置包括基板100、多個不相交的感應單元200和觸摸螢幕控制晶片300,多個感應單元200彼此不相交,多個感應單元200形成在基板100之上。在本發明的實施例中,基板100可為單層基板。其中,如圖所示,該觸控裝置採用矩形的感應單元200,該矩形感應單元200具有較高的長寬比,且感應單元200具有相對設置的第一電極210和第二電極220。採用平行的矩形感應單元200可以降低裝置的結構複雜度,從而可以在保證檢測精度的基礎上降低製造成本。但是在此需要說明的是,對於多個感應單元來說,並不限制其為第5圖的結構,該感應單元200還可採用其他的結構,例如感應單元的一部分或全部具有一定的弧度等,這些均可應用在本發明中。觸摸螢幕控制晶片300分別與多個感應單元200的第一電極210和第二電極220相連。且觸摸螢幕控制晶片300向多個感應單元200的第一電極210和/或第二電極220施加電平信號,使得該電平信號能夠在感應單元200被觸摸時向感應單元200產生的自電容充電,且觸摸螢幕控制晶片300在檢測到多個感應單元200中一個或部分被觸摸時,計算相應的感應單元中第一電極210 至自電容的第一電阻與第二電極220至自電容的第二電阻之間的比例關係,並根據第一電阻和第二電阻之間的比例關係確定在第一方向上的觸摸位置,以及根據被觸摸的感應單元200的位置確定在第二方向上的觸摸位置。 The embodiment of the invention provides a touch device according to the above idea. The touch device includes a substrate and a plurality of disjoint sensing units. In an embodiment of the invention, the disjoint sensing units may be parallel to each other, or the non-intersecting sensing units may be partially parallel. Wherein, a plurality of sensing units are formed on the substrate, and each of the plurality of sensing units has a first electrode and a second electrode disposed opposite to each other. FIG. 5 is a schematic diagram of a touch device according to an embodiment of the present invention. The touch device includes a substrate 100, a plurality of disjoint sensing units 200, and a touch screen control wafer 300. The plurality of sensing units 200 do not intersect each other, and the plurality of sensing units 200 are formed on the substrate 100. In an embodiment of the invention, the substrate 100 can be a single layer substrate. As shown in the figure, the touch device adopts a rectangular sensing unit 200 having a high aspect ratio, and the sensing unit 200 has a first electrode 210 and a second electrode 220 disposed opposite to each other. The use of the parallel rectangular sensing unit 200 can reduce the structural complexity of the device, thereby reducing the manufacturing cost while ensuring the detection accuracy. However, it should be noted that, for a plurality of sensing units, the structure of FIG. 5 is not limited. The sensing unit 200 may also adopt other structures, for example, some or all of the sensing units have a certain degree of curvature. These can be applied to the present invention. The touch screen control wafer 300 is connected to the first electrode 210 and the second electrode 220 of the plurality of sensing units 200, respectively. And the touch screen control wafer 300 applies a level signal to the first electrode 210 and/or the second electrode 220 of the plurality of sensing units 200 such that the level signal can generate self-capacitance to the sensing unit 200 when the sensing unit 200 is touched. Charging, and the touch screen control wafer 300 calculates the first electrode 210 of the corresponding sensing unit when detecting that one or a portion of the plurality of sensing units 200 are touched a proportional relationship between the first resistance of the self-capacitance and the second resistance of the second electrode 220 to the self-capacitance, and determining a touch position in the first direction according to a proportional relationship between the first resistance and the second resistance, and The touch position in the second direction is determined according to the position of the touched sensing unit 200.

具體地,第一電阻和第二電阻之間的比例關係根據在對自電容充電/放電時,從第一電極和/或第二電極進行檢測獲得的第一檢測值和第二檢測值之間的比例關係計算得到,如上所述對第一電極和第二電極的充電、放電或檢測可同時進行,也可分開進行。當觸摸螢幕控制晶片300根據第一檢測值和第二檢測值確定對應的感應單元被觸摸時,則觸摸螢幕控制晶片300根據第一檢測值和第二檢測值計算第一電阻和第二電阻的比例關係,從而進一步判斷在第一方向上的觸摸位置,並根據對應的感應單元200的位置確定在第二方向上的觸摸位置。最後觸摸螢幕控制晶片300根據第一方向上的觸摸位置和第二方向上的觸摸位置就可確定觸摸點在觸摸螢幕上的位置。在此還需要說明的是,在本發明的實施例中對於對感應單元的充電和放電次序來說沒有限制,例如在一個實施例中,可以以掃描的方式對所有的感應單元200依次進行充電,接著再依次地對其進行放電檢測;在另一個實施例中,可以逐個對感應單元200進行充電和放電,例如對一個感應單元200充電之後,接著就對其進行放電檢測,對該感應單元200處理完成之後,再對下一個感應單元200進行處理。在本發明的一個實施例中,觸摸螢幕控制晶片300向感應單元200的第一電極210和第二電極220施加電平信號以對自電容充電,觸摸螢幕控制晶片300從第一電極210和/或第二電極220進行充電檢測以獲得第一充電檢測值和第二充電檢測值。 Specifically, the proportional relationship between the first resistance and the second resistance is between the first detection value and the second detection value obtained by detecting from the first electrode and/or the second electrode when charging/discharging the self capacitance The proportional relationship is calculated, and the charging, discharging or detecting of the first electrode and the second electrode may be performed simultaneously as described above, or may be performed separately. When the touch screen control wafer 300 determines that the corresponding sensing unit is touched according to the first detection value and the second detection value, the touch screen control wafer 300 calculates the first resistance and the second resistance according to the first detection value and the second detection value. The proportional relationship further determines the touch position in the first direction, and determines the touch position in the second direction according to the position of the corresponding sensing unit 200. Finally, the touch screen control wafer 300 determines the position of the touch point on the touch screen according to the touch position in the first direction and the touch position in the second direction. It should also be noted here that there is no limitation on the order of charging and discharging the sensing unit in the embodiment of the present invention. For example, in one embodiment, all the sensing units 200 may be sequentially charged in a scanning manner. Then, discharge detection is sequentially performed; in another embodiment, the sensing unit 200 can be charged and discharged one by one, for example, after charging one sensing unit 200, and then discharging detection is performed on the sensing unit. After the processing of 200 is completed, the next sensing unit 200 is processed. In one embodiment of the present invention, the touch screen control wafer 300 applies a level signal to the first electrode 210 and the second electrode 220 of the sensing unit 200 to charge the self capacitance, and the touch screen controls the wafer 300 from the first electrode 210 and / Or the second electrode 220 performs charging detection to obtain a first charging detection value and a second charging detection value.

在本發明的一個實施例中,觸摸螢幕控制晶片 300向感應單元200的第一電極210或第二電極220施加電平信號以對自電容充電,觸摸螢幕控制晶片300分別從第一電極210和第二電極220進行充電檢測以獲得第一充電檢測值和第二充電檢測值。 In one embodiment of the invention, touch screen control chip 300 applies a level signal to the first electrode 210 or the second electrode 220 of the sensing unit 200 to charge the self-capacitance, and the touch screen control wafer 300 performs charging detection from the first electrode 210 and the second electrode 220, respectively, to obtain a first charging detection. Value and second charge detection value.

在本發明的一個實施例中,觸摸螢幕控制晶片300向感應單元200的第一電極210和第二電極220施加電平信號以對自電容充電,觸摸螢幕控制晶片300控制第一電極210和/或第二電極220接地以對自電容放電,觸摸螢幕控制晶片300從第一電極和/或第二電極進行放電檢測以獲得第一放電檢測值和第二放電檢測值。 In one embodiment of the present invention, the touch screen control wafer 300 applies a level signal to the first electrode 210 and the second electrode 220 of the sensing unit 200 to charge the self capacitance, and the touch screen control wafer 300 controls the first electrode 210 and / Or the second electrode 220 is grounded to discharge the self-capacitance, and the touch screen control wafer 300 performs discharge detection from the first electrode and/or the second electrode to obtain a first discharge detection value and a second discharge detection value.

在本發明的一個實施例中,觸摸螢幕控制晶片300向感應單元200的第一電極210或第二電極220施加電平信號以對自電容充電,觸摸螢幕控制晶片300分別控制第一電極210和第二電極220接地以對自電容放電,觸摸螢幕控制晶片300分別從第一電極210和/或第二電極220進行放電檢測以獲得第一放電檢測值和第二放電檢測值。 In one embodiment of the present invention, the touch screen control wafer 300 applies a level signal to the first electrode 210 or the second electrode 220 of the sensing unit 200 to charge the self capacitance, and the touch screen control wafer 300 controls the first electrode 210 and The second electrode 220 is grounded to discharge the self-capacitance, and the touch screen control wafer 300 performs discharge detection from the first electrode 210 and/or the second electrode 220, respectively, to obtain a first discharge detection value and a second discharge detection value.

在本發明的一個實施例中,觸摸螢幕控制晶片300向感應單元200的第一電極210或第二電極220施加電平信號以對自電容充電,觸摸螢幕控制晶片300分別控制第一電極210或第二電極220接地以對自電容放電,觸摸螢幕控制晶片300分別從第一電極210和第二電極220進行放電檢測以獲得第一放電檢測值和第二放電檢測值。 In one embodiment of the present invention, the touch screen control wafer 300 applies a level signal to the first electrode 210 or the second electrode 220 of the sensing unit 200 to charge the self capacitance, and the touch screen control wafer 300 controls the first electrode 210 or The second electrode 220 is grounded to discharge the self-capacitance, and the touch screen control wafer 300 performs discharge detection from the first electrode 210 and the second electrode 220, respectively, to obtain a first discharge detection value and a second discharge detection value.

在本發明的一個實施例中,第一方向為感應單元200的長度方向,第二方向為垂直於感應單元200的方向,具體地,感應單元200可水準設置或垂直設置。雖然,在該實施例的第5圖中,感應單元沿水準方向放置,但是在其他實施例中,感應單元也可沿垂直方向設置。 In one embodiment of the present invention, the first direction is the length direction of the sensing unit 200, and the second direction is the direction perpendicular to the sensing unit 200. Specifically, the sensing unit 200 is horizontally or vertically. Although, in the fifth diagram of the embodiment, the sensing unit is placed in the horizontal direction, in other embodiments, the sensing unit may also be disposed in the vertical direction.

本領域技術人員可以理解,對於感應單元來 說,只要感應單元的長度滿足觸摸螢幕要求,且兩端電極分別與觸摸螢幕控制器的不同的管腳相連以能夠對感應單元進行充電和放電即可,因此可以看出本發明並不限制感應單元的具體結構。感應單元可以有多種結構,本領域技術人員可在本發明上述思想的基礎上對感應單元進行變化或者改進,但是只要未脫離本發明的上述思想這些結構就應包含在本發明的範圍之內。在此本發明實施例也提出了一種改進的感應單元結構。 Those skilled in the art can understand that for the sensing unit As long as the length of the sensing unit satisfies the requirements of the touch screen, and the electrodes at both ends are respectively connected to different pins of the touch screen controller to be able to charge and discharge the sensing unit, it can be seen that the present invention does not limit the sensing. The specific structure of the unit. The sensing unit can have a variety of configurations, and those skilled in the art can make variations or improvements to the sensing unit based on the above-described ideas of the present invention, but such structures are included in the scope of the present invention without departing from the above-described ideas of the present invention. An improved sensing unit structure is also proposed herein in the embodiments of the present invention.

如第6a圖所示,為本發明一個實施例的感應單元結構圖。該感應單元200包括多個第一部分230和多個平行第二部分240,其中,相鄰的第一部分230之間通過第二部分240相連,以形成多個交替排列的第一凹槽1000和第二凹槽2000,其中,多個第一凹槽1000和多個第二凹槽2000的開口方向相反,所述觸摸位置,為在第一方向上的觸摸位置。優選地,第二部分240沿第一方向排列。在本發明的一個實施例中,多個第一部分230可以相互平行,也可以不平行。且,優選地,第二部分240為矩形。在本發明的其他實施例中,第一部分230也可為矩形,但第一部分230還可為其他多種形狀。在該實施例中,通過第一部分230增加電阻的阻抗,從而增大感應單元200的阻抗,使得第一電阻和第二電阻更易檢測,進一步地提高檢測精度。且在該實施例中,優選地,第二部分240之間的間隔相等,從而能夠從感應單元的阻抗進行均勻地提高,以改善檢測精度。在本發明的一個實施例中,第一方向為感應單元200的長度方向,第二方向為垂直於感應單元200的方向,具體地,感應單元200可水準設置或垂直設置。 As shown in Fig. 6a, it is a structural diagram of an induction unit according to an embodiment of the present invention. The sensing unit 200 includes a plurality of first portions 230 and a plurality of parallel second portions 240, wherein adjacent first portions 230 are connected by a second portion 240 to form a plurality of alternately arranged first grooves 1000 and The two grooves 2000, wherein the opening directions of the plurality of first grooves 1000 and the plurality of second grooves 2000 are opposite, and the touch position is a touch position in the first direction. Preferably, the second portions 240 are aligned in a first direction. In one embodiment of the invention, the plurality of first portions 230 may or may not be parallel to one another. And, preferably, the second portion 240 is rectangular. In other embodiments of the invention, the first portion 230 can also be rectangular, but the first portion 230 can also have a variety of other shapes. In this embodiment, the impedance of the resistor is increased by the first portion 230, thereby increasing the impedance of the sensing unit 200, making the first resistor and the second resistor easier to detect, further improving the detection accuracy. And in this embodiment, preferably, the intervals between the second portions 240 are equal, so that the impedance of the sensing unit can be uniformly increased to improve the detection accuracy. In one embodiment of the present invention, the first direction is the length direction of the sensing unit 200, and the second direction is the direction perpendicular to the sensing unit 200. Specifically, the sensing unit 200 is horizontally or vertically.

在本發明的實施例中,感應單元200長度方向的尺寸與基板的尺寸基本一致,因此觸控裝置結構簡單, 容易製造,且製造成本低。 In the embodiment of the present invention, the size of the sensing unit 200 in the length direction is substantially the same as the size of the substrate, so the touch device has a simple structure. Easy to manufacture and low in manufacturing cost.

在本發明的一個實施例中,第一電極210和第二電極220分別與多個第一部分230中的兩個第一部分相連。但是在本發明的另一個實施例中,第一電極210和第二電極220分別與多個第二部分240中的兩個第二部分相連,如第6b圖所示。 In one embodiment of the invention, the first electrode 210 and the second electrode 220 are respectively connected to two of the plurality of first portions 230. However, in another embodiment of the invention, the first electrode 210 and the second electrode 220 are respectively coupled to two of the plurality of second portions 240, as shown in Figure 6b.

並且,在本發明的實施例中,第二部分240和第一部分230之間相互垂直,二者之間的角度優選為90度,當然也可選擇其他角度。如第6a圖所示,該感應單元200通過多個第二部分240將多個第一部分230首尾相連,感應單元200的第一電極210和第二電極220分別與兩端的第一部分230相連。從整體結構上看,該感應單元200為具有較大長寬比的矩形。該需要說明的是,雖然在第6a圖中將感應單元200沿X軸設置,但是本領域技術人員應該理解的是,該感應單元200也可沿Y軸設置。通過該感應單元的結構可以有效地減少雜訊,提高感應的線性度。 Moreover, in the embodiment of the present invention, the second portion 240 and the first portion 230 are perpendicular to each other, and the angle between them is preferably 90 degrees, and of course other angles may be selected. As shown in FIG. 6a, the sensing unit 200 connects the plurality of first portions 230 end to end through a plurality of second portions 240. The first electrode 210 and the second electrode 220 of the sensing unit 200 are respectively connected to the first portions 230 at both ends. The sensing unit 200 is a rectangle having a large aspect ratio as a whole. It should be noted that although the sensing unit 200 is disposed along the X axis in FIG. 6a, it should be understood by those skilled in the art that the sensing unit 200 can also be disposed along the Y axis. The structure of the sensing unit can effectively reduce noise and improve linearity of sensing.

如第7a圖所示,為本發明另一個實施例的感應單元結構圖。在該實施例中,該感應單元200可為門形,且多個感應單元200中每個感應單元200的長度不同,多個感應單元200之間相互嵌套。其中,每個所述感應單元包括第三部分250、不相交的第四部分260和第五部分270。優選地,第三部分250與基板100的第一邊110平行,第四部分260和第五部分270與基板100的第二邊120平行,且第四部分260一端與第三部分250的一端相連,第五部分270的一端與第三部分250的另一端相連。感應單元200的第四部分260的另一端具有第一電極210,第五部分270的另一端具有第二電極220,其中,每個第一電極210和第二電極220均與觸摸螢幕控制晶片的對應的管腳相連。 As shown in Fig. 7a, there is shown a structural diagram of a sensing unit according to another embodiment of the present invention. In this embodiment, the sensing unit 200 can be gate-shaped, and each of the plurality of sensing units 200 has a different length, and the plurality of sensing units 200 are nested with each other. Wherein each of the sensing units includes a third portion 250, a non-intersecting fourth portion 260, and a fifth portion 270. Preferably, the third portion 250 is parallel to the first side 110 of the substrate 100, the fourth portion 260 and the fifth portion 270 are parallel to the second side 120 of the substrate 100, and one end of the fourth portion 260 is coupled to one end of the third portion 250. One end of the fifth portion 270 is connected to the other end of the third portion 250. The other end of the fourth portion 260 of the sensing unit 200 has a first electrode 210, and the other end of the fifth portion 270 has a second electrode 220, wherein each of the first electrode 210 and the second electrode 220 is associated with a touch screen control wafer The corresponding pins are connected.

在本發明的實施例中,所謂相互嵌套是指外側的感應單元部分地包圍內側的感應單元,例如如第7a圖所示,這樣能夠在保證精度的同時達到較大的覆蓋率,並且降低運算的複雜度,提高觸摸螢幕的回應速度。當然本領域技術人員還可根據第7a圖的思想採用其他相互嵌套的方式排列感應單元。在本發明的一個實施例中,每個感應單元200的第三部分250與其他感應單元200的第三部分250平行,每個感應單元200的第四部分260與其他感應單元200的第四部分260平行,每個感應單元200的第五部分270與其他感應單元200的第五部分270平行。在本發明的一個實施例中,感應單元200的第三部分250、第四部分260和第五部分270中至少一個為矩形,優選地,第三部分250、第四部分260和第五部分270均為矩形。在該實施例中,由於矩形結構圖形規則,因此在手指橫向或縱向移動時線性度好,此外,兩個矩形結構之間的間距相同,便於計算,從而提高計算速度。 In the embodiment of the present invention, the mutual nesting means that the outer sensing unit partially surrounds the inner sensing unit, for example, as shown in FIG. 7a, which can achieve a large coverage while ensuring accuracy, and is reduced. The complexity of the operation increases the response speed of the touch screen. Of course, those skilled in the art can also arrange the sensing units in other nested manners according to the idea of FIG. 7a. In one embodiment of the invention, the third portion 250 of each sensing unit 200 is parallel to the third portion 250 of the other sensing unit 200, and the fourth portion 260 of each sensing unit 200 and the fourth portion of the other sensing unit 200 The second portion 270 of each sensing unit 200 is parallel to the fifth portion 270 of the other sensing unit 200. In one embodiment of the invention, at least one of the third portion 250, the fourth portion 260, and the fifth portion 270 of the sensing unit 200 is rectangular, preferably, the third portion 250, the fourth portion 260, and the fifth portion 270 Both are rectangular. In this embodiment, since the rectangular structure pattern is regular, the linearity is good when the finger is moved laterally or longitudinally. In addition, the spacing between the two rectangular structures is the same, which is convenient for calculation, thereby increasing the calculation speed.

在本發明的一個實施例中,每個感應單元200的第四部分260與第五部分270長度相等。 In one embodiment of the invention, the fourth portion 260 of each sensing unit 200 is equal in length to the fifth portion 270.

在本發明的一個實施例中,基板100為矩形,第一邊110和第二邊120之間相互垂直,且第四部分260和第三部分250之間相互垂直,第五部分270和第三部分250之間相互垂直。 In one embodiment of the invention, the substrate 100 is rectangular, the first side 110 and the second side 120 are perpendicular to each other, and the fourth portion 260 and the third portion 250 are perpendicular to each other, and the fifth portion 270 and the third portion The portions 250 are perpendicular to each other.

在本發明的一個實施例中,相鄰兩個感應單元200的第三部分250之間的間距相等,相鄰兩個感應單元200的第四部分260之間的間距相等,相鄰兩個感應單元200的第五部分270之間的間距相等。這樣就可以通過多個感應單元200對觸摸螢幕的第一邊110和第二邊120均勻劃分,從而提高運算速度。當然在本發明的其他實施例中,相鄰兩個感應單元200的第三部分250之間的間距也 可不相等,或者,相鄰兩個感應單元200的第四部分260之間的間距也可不相等,如第7b圖所示。例如,由於用戶往往觸摸在觸摸螢幕的中心部位,因此可以將觸摸螢幕中心部位的感應單元之間的間距減小,從而提高中心部位的檢測精度。 In one embodiment of the present invention, the spacing between the third portions 250 of the adjacent two sensing units 200 is equal, the spacing between the fourth portions 260 of the adjacent two sensing units 200 is equal, and the adjacent two sensing The spacing between the fifth portions 270 of unit 200 is equal. In this way, the first side 110 and the second side 120 of the touch screen can be evenly divided by the plurality of sensing units 200, thereby increasing the operation speed. Of course, in other embodiments of the invention, the spacing between the third portions 250 of adjacent two sensing units 200 is also The spacing between the fourth portions 260 of the adjacent two sensing units 200 may not be equal, as shown in Figure 7b. For example, since the user often touches the center of the touch screen, the spacing between the sensing units at the center of the touch screen can be reduced, thereby improving the detection accuracy of the center portion.

在本發明的一個實施例中,多個感應單元200相對於基板100的中心軸Y對稱,如第7a圖所示,中心軸Y垂直於第三部分250,從而更有利於提高精度。 In one embodiment of the present invention, the plurality of sensing units 200 are symmetrical with respect to the central axis Y of the substrate 100. As shown in FIG. 7a, the central axis Y is perpendicular to the third portion 250, thereby being more advantageous for improving accuracy.

如第7a圖所示,在該實施例中,感應單元200的第一電極210和第二電極220均位於基板100的第一邊110上。在該實施例中,檢測到在感應單元上的觸摸位置之後,即可獲得在觸摸螢幕之上的觸摸位置。 As shown in FIG. 7a, in this embodiment, the first electrode 210 and the second electrode 220 of the sensing unit 200 are both located on the first side 110 of the substrate 100. In this embodiment, after detecting the touch location on the sensing unit, a touch location above the touch screen is obtained.

需要說明的是,上述第7a圖為本發明較優的實施例,其能夠獲得較大的覆蓋率,但是本發明的其他實施例可對第7a圖進行一些等同的變化,例如第四部分260和第五部分270可以是不平行的。 It should be noted that the above-mentioned FIG. 7a is a preferred embodiment of the present invention, which can obtain a large coverage, but other embodiments of the present invention can perform some equivalent changes to the 7a figure, for example, the fourth portion 260. And the fifth portion 270 can be non-parallel.

本發明實施例中的感應單元採用類似門形的結構,不僅結構簡單,便於製作,所有引線都在同一邊,設計方便,減少銀漿成本並且製作容易,對減少生產成本有很大幫助。 The sensing unit in the embodiment of the invention adopts a gate-like structure, which is not only simple in structure, but also easy to manufacture. All the leads are on the same side, the design is convenient, the cost of the silver paste is reduced, and the production is easy, which greatly helps to reduce the production cost.

如第8圖所示,為本發明實施例的感應單元被觸摸時的示意圖。從第8圖可知,第一電極為210,第二電極為220,觸摸位置A接近於第二電極,假設感應單元的長度為10個單位長度,且將感應單元均勻地分為10份,其中,感應單元第三部分250的長度為4個單位長度,感應單元第四部分260和第五部分270的長度為3個單位長度。經過檢測,獲知第一電阻和第二電阻之比為4:1,即第一電極210至觸摸位置的長度(由第一電阻體現)為全部感應單元長度的80%。換句話說,觸摸點位於距離第一電 極210處8個單位長度的位置,獲知,觸摸點位於距離第二電極220處2個單位長度的位置。當手指移動時,觸摸位置會相應移動,因此通過觸摸位置的變換就可判斷手指相應的移動軌跡,從而判斷用戶的輸入指令。 As shown in FIG. 8, it is a schematic diagram when the sensing unit of the embodiment of the present invention is touched. As can be seen from FIG. 8, the first electrode is 210, the second electrode is 220, the touch position A is close to the second electrode, and the length of the sensing unit is 10 unit lengths, and the sensing unit is evenly divided into 10 parts, wherein The length of the third portion 250 of the sensing unit is 4 unit lengths, and the lengths of the fourth portion 260 and the fifth portion 270 of the sensing unit are 3 unit lengths. After detecting, it is learned that the ratio of the first resistance to the second resistance is 4:1, that is, the length of the first electrode 210 to the touch position (reflected by the first resistance) is 80% of the length of all the sensing units. In other words, the touch point is located at the distance from the first At a position of 8 unit lengths at the pole 210, it is known that the touch point is located 2 units long from the second electrode 220. When the finger moves, the touch position moves accordingly, so the change of the touch position can determine the corresponding movement trajectory of the finger, thereby judging the user's input instruction.

從第8圖的以上例子可以看出,本發明的計算方式非常簡單,因此能夠極大地提高觸摸螢幕檢測的反應速度。 As can be seen from the above example of Fig. 8, the calculation method of the present invention is very simple, so that the reaction speed of the touch screen detection can be greatly improved.

如第9a圖所示,為本發明再一個實施例觸摸螢幕檢測設備結構圖。在本發明的一個實施例中,多個感應單元的長度逐漸增加,且每個所述感應單元包括第六部分280和第七部分290。第六部分280的一端具有第一電極210,第七部分290的一端與第六部分280的另一端相連,且第七部分290的另一端具有第二電極220。 As shown in FIG. 9a, it is a structural diagram of a touch screen detecting device according to still another embodiment of the present invention. In one embodiment of the invention, the lengths of the plurality of sensing units are gradually increased, and each of the sensing units includes a sixth portion 280 and a seventh portion 290. The sixth portion 280 has a first electrode 210 at one end, one end of the seventh portion 290 is connected to the other end of the sixth portion 280, and the other end of the seventh portion 290 has a second electrode 220.

具體地,第六部分280與基板100的第一邊110平行,第七部分290與基板100的第二邊120平行,且第一邊110和第二邊120相鄰。且每個第一電極210和第二電極220均與觸摸螢幕控制晶片的對應管腳相連。 Specifically, the sixth portion 280 is parallel to the first side 110 of the substrate 100, the seventh portion 290 is parallel to the second side 120 of the substrate 100, and the first side 110 and the second side 120 are adjacent. And each of the first electrode 210 and the second electrode 220 is connected to a corresponding pin of the touch screen control wafer.

在本發明的優選實施例中,每個感應單元200的第六部分280與其他感應單元200的第六部分280平行,每個感應單元200的第七部分290與其他感應單元200的第七部分290平行。通過這樣的設置能夠有效地提高感應單元對觸摸螢幕的覆蓋率。在本發明的一個實施例中,感應單元200的第六部分280、第七部分290中至少一個為矩形,優選地,第六部分280、第七部分290均為矩形。在該實施例中,由於矩形結構圖形規則,因此在手指橫向或縱向移動時線性度好,此外,兩個矩形結構之間的間距相同,便於計算。 In a preferred embodiment of the invention, the sixth portion 280 of each sensing unit 200 is parallel to the sixth portion 280 of the other sensing unit 200, and the seventh portion 290 of each sensing unit 200 and the seventh portion of the other sensing unit 200 290 parallel. With such an arrangement, the coverage of the touch screen by the sensing unit can be effectively improved. In one embodiment of the present invention, at least one of the sixth portion 280 and the seventh portion 290 of the sensing unit 200 is rectangular. Preferably, the sixth portion 280 and the seventh portion 290 are both rectangular. In this embodiment, since the rectangular structure pattern is regular, the linearity is good when the finger is moved laterally or longitudinally, and further, the spacing between the two rectangular structures is the same, which is convenient for calculation.

本發明實施例的觸摸螢幕檢測裝置中的感應單元採用雙端檢測,即感應單元的兩端均具有電極,且每 個電極均與觸摸螢幕控制晶片的對應管腳相連,在進行觸摸檢測時通過感應單元自身即可實現對觸摸點的定位。 The sensing unit in the touch screen detecting device of the embodiment of the invention adopts double-end detection, that is, both ends of the sensing unit have electrodes, and each Each of the electrodes is connected to a corresponding pin of the touch screen control chip, and the touch point can be positioned by the sensing unit itself when performing touch detection.

更為重要的是,本發明通過計算第一電阻和第二電阻之間比例實現觸摸位置的確定,因此相對於目前的菱形或三角形設計來說,由於在確定觸摸位置時,無需計算自電容的大小,且自電容的大小不會影響觸摸位置的精度,對自電容檢測精度的依賴降低,從而提高了測量精度,改善了線性度。此外,由於本發明實施例的第六部分280和第七部分290中任意一個均可為形狀規則的矩形,因此相對於目前的菱形或三角形等不規則的形狀來說,也可以進一步地提高線性度。 More importantly, the present invention achieves the determination of the touch position by calculating the ratio between the first resistance and the second resistance, so that compared to the current diamond or triangle design, since the touch position is determined, there is no need to calculate the self-capacitance. The size and the size of the self-capacitance do not affect the accuracy of the touch position, and the dependence on the accuracy of the self-capacitance detection is reduced, thereby improving the measurement accuracy and improving the linearity. In addition, since any one of the sixth portion 280 and the seventh portion 290 of the embodiment of the present invention may be a rectangular shape, the linearity may be further improved with respect to an irregular shape such as a current rhombus or a triangle. degree.

在本發明的一個實施例中,每個感應單元的第六部分280與第七部分290長度相等,從而能夠提高運算速度。優選地,基板100為矩形,第一邊110和第二邊120之間相互垂直。第一邊110和第二邊120相互垂直,不僅使得感應單元設計更加規則,例如使得感應單元的第六部分280和第七部分290之間也相互垂直,從而提高對觸摸螢幕的覆蓋率,而且第六部分280和第七部分290之間相互垂直也可以提高檢測的線性度。 In one embodiment of the invention, the sixth portion 280 and the seventh portion 290 of each sensing unit are of equal length so that the speed of operation can be increased. Preferably, the substrate 100 is rectangular, and the first side 110 and the second side 120 are perpendicular to each other. The first side 110 and the second side 120 are perpendicular to each other, not only making the sensing unit design more regular, for example, the sixth portion 280 and the seventh portion 290 of the sensing unit are also perpendicular to each other, thereby improving the coverage of the touch screen, and The fact that the sixth portion 280 and the seventh portion 290 are perpendicular to each other also improves the linearity of the detection.

在本發明的一個實施例中,相鄰兩個感應單元200之間的間距相等,這樣就可以通過多個感應單元200對觸摸螢幕的第一邊110和第二邊120均勻劃分,從而提高運算速度,提高計算速度。 In an embodiment of the present invention, the spacing between adjacent two sensing units 200 is equal, so that the first side 110 and the second side 120 of the touch screen can be evenly divided by the plurality of sensing units 200, thereby improving the operation. Speed, increase the speed of calculation.

當然在本發明的另一個實施例中,相鄰兩個感應單元200之間的間距也可以不等,如第9b圖所示,例如由於用戶往往觸摸在觸摸螢幕的中心部位,因此可以將觸摸螢幕中心部位的感應單元之間的間距減小,從而提高中心部位的檢測精度。 Of course, in another embodiment of the present invention, the spacing between adjacent two sensing units 200 may also be unequal, as shown in FIG. 9b, for example, since the user often touches the center of the touch screen, the touch can be touched. The spacing between the sensing units in the center of the screen is reduced, thereby improving the detection accuracy of the center portion.

如第9a圖所示,在該實施例中,感應單元200 的第一電極210位於基板100的第一邊110上,第二電極220位於基板100的第二邊120上,且第一邊110和第二邊120相互垂直。在該實施例中,檢測到在感應單元上的觸摸位置之後,即可獲得在觸摸螢幕之上的觸摸位置。 As shown in FIG. 9a, in this embodiment, the sensing unit 200 The first electrode 210 is located on the first side 110 of the substrate 100, the second electrode 220 is located on the second side 120 of the substrate 100, and the first side 110 and the second side 120 are perpendicular to each other. In this embodiment, after detecting the touch location on the sensing unit, a touch location above the touch screen is obtained.

如第10圖所示,為本發明實施例的感應單元被觸摸時的示意圖。從第10圖可知,第一電極為210,第二電極為220,觸摸位置A接近於第二電極220,假設感應單元的長度為10個單位長度,且將感應單元均勻地分為10份,其中,感應單元第六部分280的長度為5個單位長度,感應單元第七部分290的長度為5個單位長度。經過檢測,獲知第一電阻和第二電阻之比為9:1,即第一電極210至觸摸位置的長度(由第一電阻體現)為全部感應單元長度的90%。換句話說,觸摸點位於距離第一電極210處9個單位長度的位置,獲知,觸摸點位於距離第二電極220處1個單位長度的位置。 As shown in FIG. 10, it is a schematic diagram when the sensing unit of the embodiment of the present invention is touched. As can be seen from FIG. 10, the first electrode is 210, the second electrode is 220, and the touch position A is close to the second electrode 220. It is assumed that the length of the sensing unit is 10 unit lengths, and the sensing unit is evenly divided into 10 parts. The length of the sixth portion 280 of the sensing unit is 5 unit lengths, and the length of the seventh portion 290 of the sensing unit is 5 unit lengths. After detecting, it is known that the ratio of the first resistance to the second resistance is 9:1, that is, the length of the first electrode 210 to the touch position (reflected by the first resistance) is 90% of the length of all the sensing units. In other words, the touch point is located 9 units long from the first electrode 210, and it is known that the touch point is located 1 unit long from the second electrode 220.

從第10圖的以上例子可以看出,本發明的計算方式非常簡單,因此能夠極大地提高觸摸螢幕檢測的反應速度。 As can be seen from the above example of Fig. 10, the calculation method of the present invention is very simple, so that the reaction speed of the touch screen detection can be greatly improved.

在本發明的一個實施例中,多個感應單元200位於同一層,因此只需要一層ITO即可,從而在保證精度的同時,極大地降低製造成本。 In one embodiment of the present invention, the plurality of sensing units 200 are located in the same layer, so that only one layer of ITO is required, thereby greatly reducing the manufacturing cost while ensuring accuracy.

本發明實施例的觸摸螢幕檢測裝置中的感應單元採用雙端檢測,即感應單元的兩端均具有電極,且每個電極均與觸摸螢幕控制晶片的對應管腳相連,在進行觸摸檢測時通過感應單元自身即可實現對觸摸點的定位。 The sensing unit in the touch screen detecting device of the embodiment of the invention adopts double-end detection, that is, both ends of the sensing unit have electrodes, and each electrode is connected to a corresponding pin of the touch screen control chip, and passes through the touch detection. The sensing unit itself can realize the positioning of the touch point.

更為重要的是,本發明通過計算第一電阻和第二電阻之間比例實現觸摸位置的確定,因此相對於目前的菱形或三角形設計來說,由於在確定觸摸位置時,無需計算自電容的大小,且自電容的大小不會影響觸摸位置的精 度,對自電容檢測精度的依賴降低,從而提高了測量精度,改善了線性度。 More importantly, the present invention achieves the determination of the touch position by calculating the ratio between the first resistance and the second resistance, so that compared to the current diamond or triangle design, since the touch position is determined, there is no need to calculate the self-capacitance. Size, and the size of the self-capacitance does not affect the precision of the touch position Degree, the dependence on the accuracy of self-capacitance detection is reduced, thereby improving measurement accuracy and improving linearity.

綜上所述,本發明實施例通過對感應單元兩端的電極施加電平信號,如果該感應單元被觸碰,則會該感應單元會形成自電容,因此本發明通過施加的電平信號可對該自電容進行充電,並根據第一電阻和第二電阻之間的比例關係確定在第一方向上的觸摸位置。例如在本發明的一個實施例中,第一電阻和第二電阻之間的比例關係根據在對所述自電容充電/放電時,從所述第一電極和/或第二電極進行檢測獲得的第一檢測值和第二檢測值之間的比例關係計算得到。因此從第一電極和/或第二電極檢測該自電容充電/放電時產生的第一檢測值和第二檢測值。這樣,通過第一檢測值和第二檢測值就能夠反應觸摸點位於該感應單元的位置,從而進一步確定觸摸點在觸摸螢幕的位置。 In summary, the embodiment of the present invention applies a level signal to the electrodes at both ends of the sensing unit. If the sensing unit is touched, the sensing unit forms a self-capacitance. Therefore, the present invention can be applied by applying a level signal. The self capacitance is charged, and the touch position in the first direction is determined according to a proportional relationship between the first resistance and the second resistance. For example, in an embodiment of the present invention, the proportional relationship between the first resistance and the second resistance is obtained according to the detection of the first electrode and/or the second electrode when charging/discharging the self-capacitance. The proportional relationship between the first detected value and the second detected value is calculated. Therefore, the first detection value and the second detection value generated when the self-capacitance is charged/discharged are detected from the first electrode and/or the second electrode. In this way, the position of the touch point at the sensing unit can be reflected by the first detection value and the second detection value, thereby further determining the position of the touch point on the touch screen.

本發明實施例提出了一種新穎的自電容檢測方式,在感應單元被觸摸時,觸摸點就可將該感應單元分為兩個電阻,從而在進行自電容檢測的同時考慮這兩個電阻就可以確定觸摸點在該感應單元上的位置。本發明實施例的結構簡單,並且對於一個感應單元來說,可從其的第一電極和/或第二電極進行充電或放電,並在充電或放電時進行檢測,不僅能夠降低RC常數,節省時間提高效率,並且還能夠保證座標不會偏移。此外,本發明實施例還可以有效提高電路的性噪比,降低電路雜訊,提高感應線性度。並且,在檢測過程中由於對被觸摸的感應單元進行充電,因此其中會產生小電流,能夠很好地消除Vcom電平信號對觸摸螢幕中感應單元產生的自電容的影響,因此可以相應地消除螢幕遮罩層及相關工序,從而可以在增強了抗干擾能力的同時進一步降低成本。 The embodiment of the invention provides a novel self-capacitance detection method. When the sensing unit is touched, the touch point can divide the sensing unit into two resistors, so that the two resistors can be considered while performing self-capacitance detection. Determine the location of the touch point on the sensing unit. The structure of the embodiment of the invention is simple, and for a sensing unit, charging or discharging can be performed from the first electrode and/or the second electrode thereof, and detecting when charging or discharging, not only can the RC constant be reduced, and the saving can be achieved. Time increases efficiency and also ensures that coordinates are not offset. In addition, the embodiment of the invention can effectively improve the performance-to-noise ratio of the circuit, reduce circuit noise, and improve the linearity of the induction. Moreover, since the touched sensing unit is charged during the detection process, a small current is generated therein, which can well eliminate the influence of the Vcom level signal on the self-capacitance generated by the sensing unit in the touch screen, and thus can be eliminated accordingly. The screen mask layer and related processes can further reduce the cost while enhancing the anti-interference ability.

在本說明書的描述中,參考術語“一個實施 例”、“一些實施例”、“示例”、“具體示例”、或“一些示例”等的描述意指結合該實施例或示例描述的具體特徵、結構、材料或者特點包含于本發明的至少一個實施例或示例中。在本說明書中,對上述術語的示意性表述不一定指的是相同的實施例或示例。而且,描述的具體特徵、結構、材料或者特點可以在任何的一個或多個實施例或示例中以合適的方式結合。 In the description of this specification, reference is made to the term "one implementation. The description of the examples, "some embodiments", "example", "specific examples", or "some examples" and the like means that the specific features, structures, materials, or characteristics described in connection with the embodiments or examples are included in the invention. In the present specification, the schematic representation of the above terms does not necessarily mean the same embodiment or example. Moreover, the specific features, structures, materials or features described may be in any one or more. The embodiments or examples are combined in a suitable manner.

儘管已經示出和描述了本發明的實施例,對於本領域的普通技術人員而言,可以理解在不脫離本發明的原理和精神的情況下可以對這些實施例進行多種變化、修改、替換和變型,本發明的範圍由所附申請專利範圍及其等同限定。 While the embodiments of the present invention have been shown and described, it will be understood by those skilled in the art Variations, the scope of the invention is defined by the scope of the appended claims and their equivalents.

100‧‧‧基板 100‧‧‧Substrate

200‧‧‧感應單元 200‧‧‧Sensor unit

210‧‧‧第一電極 210‧‧‧First electrode

220‧‧‧第二電極 220‧‧‧second electrode

300‧‧‧觸摸螢幕控制晶片 300‧‧‧Touch screen control chip

Claims (46)

一種觸控裝置,其特徵在於,包括:基板;多個感應單元,所述多個感應單元彼此不相交,所述多個感應單元形成在所述基板之上,且所述多個感應單元的每個均具有第一電極和第二電極;和觸摸螢幕控制晶片,所述觸摸螢幕控制晶片分別與所述多個感應單元中每個的第一電極和第二電極相連,所述觸摸螢幕控制晶片向所述多個感應單元的第一電極和/或第二電極施加電平信號,所述電平信號在感應單元被觸摸時向所述感應單元產生的自電容充電,且所述觸摸螢幕控制晶片在檢測到所述多個感應單元中一個或部分被觸摸時,計算相應的感應單元中所述第一電極至所述自電容的第一電阻與所述第二電極至所述自電容的第二電阻之間的比例關係,以及根據所述第一電阻和所述第二電阻之間的比例關係確定觸摸位置。 A touch device, comprising: a substrate; a plurality of sensing units, the plurality of sensing units do not intersect each other, the plurality of sensing units are formed on the substrate, and the plurality of sensing units Each having a first electrode and a second electrode; and a touch screen control wafer, the touch screen control wafer being respectively connected to the first electrode and the second electrode of each of the plurality of sensing units, the touch screen control The wafer applies a level signal to the first electrode and/or the second electrode of the plurality of sensing units, the level signal charges a self-capacitance generated by the sensing unit when the sensing unit is touched, and the touch screen The control chip calculates a first resistance of the first electrode to the self-capacitance and a second electrode to the self-capacitance of the first sensing electrode in the corresponding sensing unit when detecting that one or a portion of the plurality of sensing units are touched a proportional relationship between the second resistors, and determining a touch position according to a proportional relationship between the first resistor and the second resistor. 如申請專利範圍第1項所述的觸控裝置,其中,所述第一電阻和所述第二電阻之間的比例關係根據在對所述自電容充電/放電時,從所述第一電極和/或第二電極進行檢測獲得的第一檢測值和第二檢測值之間的比例關係計算得到。 The touch device of claim 1, wherein a proportional relationship between the first resistor and the second resistor is from the first electrode according to when charging/discharging the self-capacitance And/or a proportional relationship between the first detected value and the second detected value obtained by detecting the second electrode is calculated. 如申請專利範圍第2項所述的觸控裝置,其中,所述第一檢測值和所述第二檢測值為電流檢測值、自電容檢測值、電平信號檢測值和電荷變化量中的一種或多種。 The touch device of claim 2, wherein the first detection value and the second detection value are among a current detection value, a self-capacitance detection value, a level signal detection value, and a charge variation amount. One or more. 如申請專利範圍第1項所述的觸控裝置,其中,所述感應單元為矩形,所述觸摸位置為在第一方向上的觸摸位置。 The touch device of claim 1, wherein the sensing unit is rectangular, and the touch position is a touch position in the first direction. 如申請專利範圍第1項所述的觸控裝置,其中,所述感應單元包括:多個第一部分和多個平行的第二部分,其中,相鄰的所述第一部分之間經由所述第二部分相連,以形成多個交替排列的第一凹槽和第二凹槽,其中,所述多個第一凹槽和所述多個第二凹槽的開口方向相反,所述觸摸位置為在第一方向上的觸摸位置。 The touch device of claim 1, wherein the sensing unit comprises: a plurality of first portions and a plurality of parallel second portions, wherein the adjacent first portions are via the first The two portions are connected to form a plurality of alternately arranged first and second grooves, wherein the plurality of first grooves and the plurality of second grooves have opposite openings, and the touch position is The touch location in the first direction. 如申請專利範圍第5項所述的觸控裝置,其中,所述第二部分沿所述第一方向排列。 The touch device of claim 5, wherein the second portion is aligned along the first direction. 如申請專利範圍第4-6項任一項所述的觸控裝置,其中,所述觸摸螢幕控制晶片還用於根據所述被觸摸的感應單元的位置確定在第二方向上的觸摸位置。 The touch device of any one of claims 4-6, wherein the touch screen control chip is further configured to determine a touch position in the second direction according to a position of the touched sensing unit. 如申請專利範圍第7項所述的觸控裝置,其中,所述觸摸螢幕控制晶片根據所述第一方向上的觸摸位置和第二方向上的觸摸位置確定所述觸摸位置。 The touch device of claim 7, wherein the touch screen control wafer determines the touch position according to a touch position in the first direction and a touch position in a second direction. 如申請專利範圍第1項所述的觸控裝置,其中,所述感應單元包括:第三部分;不相交的第四部分和第五部分,所述第四部分一端與所述第三部分的一端相連,所述第五部分的一端與所述第三部分的另一端相連,所述第四部分的另一端具有所述第一電極,且所述第五部分的另一端具有所述第二電極。 The touch device of claim 1, wherein the sensing unit comprises: a third portion; a fourth portion and a fifth portion that do not intersect, and one end of the fourth portion and the third portion One end is connected, one end of the fifth portion is connected to the other end of the third portion, the other end of the fourth portion has the first electrode, and the other end of the fifth portion has the second end electrode. 如申請專利範圍第1項所述的觸控裝置,其中,所述感應單元包括:第六部分,所述第六部分的一端具有所述第一電極;第七部分,所述第七部分的一端與所述第六部分的另一端相連,所述第七部分的另一端具有所述第二電極。 The touch device of claim 1, wherein the sensing unit comprises: a sixth portion, the first portion of the sixth portion has the first electrode; and the seventh portion, the seventh portion One end is connected to the other end of the sixth portion, and the other end of the seventh portion has the second electrode. 如申請專利範圍第10項所述的觸控裝置,其中,所述第六部分和所述第七部分中至少一個為矩形。 The touch device of claim 10, wherein at least one of the sixth portion and the seventh portion is rectangular. 如申請專利範圍第9項所述的觸控裝置,其中,所述多個感應單元的長度彼此不同,且所述多個感應單元之間相互嵌套。 The touch device of claim 9, wherein the lengths of the plurality of sensing units are different from each other, and the plurality of sensing units are nested with each other. 如申請專利範圍第12項所述的觸控裝置,其中,所述基板為矩形,所述基板的第一邊和所述基板的第二邊之間相互垂直,所述第四部分和所述第三部分之間相互垂直,且所述第五部分和所述第三部分之間相互垂直。 The touch device of claim 12, wherein the substrate is rectangular, the first side of the substrate and the second side of the substrate are perpendicular to each other, the fourth portion and the The third portions are perpendicular to each other, and the fifth portion and the third portion are perpendicular to each other. 如申請專利範圍第9項所述的觸控裝置,其中,所述第三部分、所述第四部分和所述第五部分中至少一個為矩形。 The touch device of claim 9, wherein at least one of the third portion, the fourth portion, and the fifth portion is rectangular. 如申請專利範圍第7項所述的觸控裝置,其中,所述第一方向為所述感應單元的長度方向,所述第二方向為垂直於所述感應單元的方向,所述感應單元水平設置或垂直設置。 The touch device of claim 7, wherein the first direction is a length direction of the sensing unit, and the second direction is a direction perpendicular to the sensing unit, the sensing unit level Settings or vertical settings. 如申請專利範圍第1項所述的觸控裝置,其中,所述基板為矩形,所述基板的第一邊和第二邊之間相互垂直。 The touch device of claim 1, wherein the substrate is rectangular, and the first side and the second side of the substrate are perpendicular to each other. 如申請專利範圍第1項所述的觸控裝置,其中,所述多個感應單元位於同一層。 The touch device of claim 1, wherein the plurality of sensing units are located in the same layer. 如申請專利範圍第2項所述的觸控裝置,其中,所述第一檢測值包括第一充電檢測值或第一放電檢測值,所述第二檢測值包括第二充電檢測值或第二放電檢測值。 The touch device of claim 2, wherein the first detection value comprises a first charging detection value or a first discharging detection value, and the second detection value comprises a second charging detection value or a second Discharge detection value. 如申請專利範圍第1項所述的觸控裝置,其中,所述觸摸螢幕控制晶片包括一個或兩個電容檢測模組CTS。 The touch device of claim 1, wherein the touch screen control chip comprises one or two capacitance detecting modules CTS. 一種觸摸螢幕檢測裝置,其特徵在於,包括:基板;和多個不相交的感應單元,所述多個感應單元形成在所述基板之上,且所述多個感應單元的每個均具有相對設置的第一電極和第二電極,其中,每個第一電極和第二電極均與觸摸螢幕控制器的一個管腳相連。 A touch screen detecting device, comprising: a substrate; and a plurality of disjoint sensing units, the plurality of sensing units being formed on the substrate, and each of the plurality of sensing units has a relative The first electrode and the second electrode are disposed, wherein each of the first electrode and the second electrode is connected to one pin of the touch screen controller. 如申請專利範圍第20項所述的觸摸螢幕檢測裝置,其中,所述感應單元為矩形。 The touch screen detecting device of claim 20, wherein the sensing unit is rectangular. 如申請專利範圍第20項所述的觸摸螢幕檢測裝置,其中,所述感應單元包括:多個第一部分和多個平行的第二部分,其中,相鄰的所述第一部分之間通過所述第二部分相連,以形成多個交替排列的第一凹槽和第二凹槽,其中,所述多個第一凹槽和所述多個第二凹槽的開口方向相反。 The touch screen detecting device of claim 20, wherein the sensing unit comprises: a plurality of first portions and a plurality of parallel second portions, wherein the adjacent first portions pass between The second portions are connected to form a plurality of alternately arranged first and second grooves, wherein the plurality of first grooves and the plurality of second grooves have opposite openings. 如申請專利範圍第20項所述的觸摸螢幕檢測裝置,其中,所述感應單元包括:第三部分;不相交的第四部分和第五部分,所述第四部分一端與所述第三部分的一端相連,所述第五部分的一端與所述第三部分的另一端相連,所述第四部分的另一端具有所述第一電極,且所述第五部分的另一端具有所述第二電極。 The touch screen detecting device of claim 20, wherein the sensing unit comprises: a third portion; a fourth portion and a fifth portion that do not intersect, and one end and the third portion of the fourth portion One end of the fifth portion is connected to the other end of the third portion, the other end of the fourth portion has the first electrode, and the other end of the fifth portion has the first Two electrodes. 如申請專利範圍第20項所述的觸摸螢幕檢測裝置,其中,所述感應單元包括:第六部分,所述第六部分的一端具有所述第一電極;第七部分,所述第七部分的一端與所述第六部分的另一端相連,所述第七部分的另一端具有所述第二電極。 The touch screen detecting device of claim 20, wherein the sensing unit comprises: a sixth portion, one end of the sixth portion has the first electrode; and a seventh portion, the seventh portion One end is connected to the other end of the sixth portion, and the other end of the seventh portion has the second electrode. 如申請專利範圍第23項所述的觸摸螢幕檢測裝置,其中,所述多個感應單元的長度彼此不同,且所述多個感應單元之間相互嵌套。 The touch screen detecting device of claim 23, wherein the lengths of the plurality of sensing units are different from each other, and the plurality of sensing units are nested with each other. 如申請專利範圍第23項所述的觸摸螢幕檢測裝置,其中,所述基板為矩形,所述基板的第一邊和所述基板的第二邊之間相互垂直,所述第四部分和所述第三部分之間相互垂直,且所述第五部分和所述第三部分之間相互垂直。 The touch screen detecting device of claim 23, wherein the substrate is rectangular, a first side of the substrate and a second side of the substrate are perpendicular to each other, and the fourth portion The third portions are perpendicular to each other, and the fifth portion and the third portion are perpendicular to each other. 如申請專利範圍第23項所述的觸摸螢幕檢測裝置,其中,相鄰兩個感應單元的第三部分之間的間距相等,相鄰兩個感應單元的第四部分之間的間距相等,相鄰兩個感應單元的第五部分之間的間距相等。 The touch screen detecting device of claim 23, wherein the spacing between the third portions of the adjacent two sensing units is equal, and the spacing between the fourth portions of the adjacent two sensing units is equal. The spacing between the fifth portions of the adjacent two sensing units is equal. 如申請專利範圍第20項所述的觸摸螢幕檢測裝置,其中,所述多個感應單元位於同一層。 The touch screen detecting device of claim 20, wherein the plurality of sensing units are located on the same layer. 一種觸摸檢測方法,其特徵在於,包括以下步驟:向感應單元的第一電極和/或第二電極施加電平信號,其中,當所述感應單元被觸摸時,所述電平信號對所述感應單元產生的自電容進行充電;檢測所述多個感應單元中一個或部分感應單元是否被觸摸;如果檢測到所述多個感應單元中一個或部分被觸摸,則計算相應的感應單元中所述第一電極至所述自電 容的第一電阻與所述第二電極至所述自電容的第二電阻之間的比例關係;以及根據所述第一電阻和所述第二電阻之間的比例關係確定觸摸位置。 A touch detection method, comprising the steps of: applying a level signal to a first electrode and/or a second electrode of a sensing unit, wherein when the sensing unit is touched, the level signal is The self-capacitance generated by the sensing unit is charged; detecting whether one or a part of the sensing units of the plurality of sensing units are touched; if one or a part of the plurality of sensing units is detected to be touched, calculating the corresponding sensing unit Describe the first electrode to the self-electricity a proportional relationship between a first resistance of the capacitor and a second resistor of the second electrode to the self-capacitance; and determining a touch position according to a proportional relationship between the first resistor and the second resistor. 如申請專利範圍第29項所述的觸摸檢測方法,其中,所述第一電阻和所述第二電阻之間的比例關係根據在對所述自電容充電/放電時,從所述第一電極和/或第二電極進行檢測獲得的第一檢測值和第二檢測值之間的比例關係計算得到。 The touch detection method of claim 29, wherein a proportional relationship between the first resistance and the second resistance is from the first electrode according to when charging/discharging the self-capacitance And/or a proportional relationship between the first detected value and the second detected value obtained by detecting the second electrode is calculated. 如申請專利範圍第30項所述的觸摸檢測方法,其中,所述第一檢測值和所述第二檢測值為電流檢測值、自電容檢測值、電平信號檢測值和電荷變化量中的一種或多種。 The touch detection method according to claim 30, wherein the first detection value and the second detection value are among a current detection value, a self-capacitance detection value, a level signal detection value, and a charge variation amount. One or more. 如申請專利範圍第29項所述的觸摸檢測方法,其中,所述感應單元為矩形,所述觸摸位置為在第一方向上的觸摸位置。 The touch detection method of claim 29, wherein the sensing unit is a rectangle, and the touch position is a touch position in a first direction. 如申請專利範圍第29項所述的觸摸檢測方法,其中,所述感應單元包括:多個第一部分和多個平行的第二部分,其中,相鄰的所述第一部分之間通過所述第二部分相連,以形成多個交替排列的第一凹槽和第二凹槽,其中,所述多個第一 凹槽和所述多個第二凹槽的開口方向相反,所述觸摸位置為在第一方向上的觸摸位置。 The touch detection method of claim 29, wherein the sensing unit comprises: a plurality of first portions and a plurality of parallel second portions, wherein the adjacent first portions pass the first The two portions are connected to form a plurality of alternately arranged first and second grooves, wherein the plurality of first The groove and the opening of the plurality of second grooves are opposite in direction, and the touch position is a touch position in the first direction. 如申請專利範圍第32或33項所述的觸摸檢測方法,其中,還包括:根據所述被觸摸的感應單元的位置確定在第二方向上的觸摸位置。 The touch detection method of claim 32, wherein the method further comprises: determining a touch position in the second direction according to the position of the touched sensing unit. 如申請專利範圍第34項所述的觸摸檢測方法,其中,還包括:根據所述第一方向上的觸摸位置和第二方向上的觸摸位置確定所述觸摸位置。 The touch detection method of claim 34, further comprising: determining the touch position according to the touch position in the first direction and the touch position in the second direction. 如申請專利範圍第29項所述的觸摸檢測方法,其中,所述感應單元包括:第三部分;不相交的第四部分和第五部分,所述第四部分一端與所述第三部分的一端相連,所述第五部分的一端與所述第三部分的另一端相連,所述第四部分的另一端具有所述第一電極,且所述第五部分的另一端具有所述第二電極。 The touch detection method of claim 29, wherein the sensing unit comprises: a third portion; a fourth portion and a fifth portion that are not intersected, and one end of the fourth portion and the third portion One end is connected, one end of the fifth portion is connected to the other end of the third portion, the other end of the fourth portion has the first electrode, and the other end of the fifth portion has the second end electrode. 如申請專利範圍第29項所述的觸摸檢測方法,其中,所述感應單元包括:第六部分,所述第六部分的一端具有所述第一電極; 第七部分,所述第七部分的一端與所述第六部分的另一端相連,所述第七部分的另一端具有所述第二電極。 The touch detection method of claim 29, wherein the sensing unit comprises: a sixth portion, the first portion of the sixth portion having the first electrode; In a seventh portion, one end of the seventh portion is connected to the other end of the sixth portion, and the other end of the seventh portion has the second electrode. 如申請專利範圍第30項所述的觸摸檢測方法,其中,所述第一檢測值包括第一充電檢測值或第一放電檢測值,所述第二檢測值包括第二充電檢測值或第二放電檢測值。 The touch detection method of claim 30, wherein the first detection value comprises a first charging detection value or a first discharging detection value, and the second detection value comprises a second charging detection value or a second Discharge detection value. 如申請專利範圍第38項所述的觸摸檢測方法,其中,還包括:向所述感應單元的第一電極和第二電極施加電平信號以對所述自電容充電;從所述第一電極和/或第二電極進行充電檢測以獲得所述第一充電檢測值和第二充電檢測值。 The touch detection method of claim 38, further comprising: applying a level signal to the first electrode and the second electrode of the sensing unit to charge the self-capacitor; from the first electrode And/or the second electrode performs charging detection to obtain the first charging detection value and the second charging detection value. 如申請專利範圍第38項所述的觸摸檢測方法,其中,還包括:向所述感應單元的第一電極或第二電極分別兩次施加電平信號以對所述自電容進行兩次充電;在每次充電之後,從所述第一電極和/或第二電極進行充電檢測以獲得所述第一充電檢測值和第二充電檢測值。 The touch detection method of claim 38, further comprising: applying a level signal to the first electrode or the second electrode of the sensing unit twice to charge the self-capacitor twice; Charging detection is performed from the first electrode and/or the second electrode after each charge to obtain the first charge detection value and the second charge detection value. 如申請專利範圍第40項所述的觸摸檢測方法,其中,當向所述感應單元的第一電極分別兩次施加電平信號以對所述自電容進行兩次充電時,所述兩次充電中的 一次將所述第二電極接地,另一次將所述第二電極接為高阻;當向所述感應單元的第二電極分別兩次施加電平信號以對所述自電容進行兩次充電時,所述兩次充電中的一次將所述第一電極接地,另一次將所述第一電極接為高阻。 The touch detection method of claim 40, wherein the charging is performed twice when a level signal is applied to the first electrode of the sensing unit twice to charge the self-capacitor twice. middle Grounding the second electrode once and connecting the second electrode to high resistance; when applying a level signal to the second electrode of the sensing unit twice to charge the self-capacitor twice One of the two charges connects the first electrode to ground, and the other connects the first electrode to a high resistance. 如申請專利範圍第38項所述的觸摸檢測方法,其中,還包括:向所述感應單元的第一電極和第二電極施加電平信號以對所述自電容充電;控制所述第一電極和/或所述第二電極接地以對所述自電容放電,並從所述第一電極和/或第二電極進行放電檢測以獲得所述第一放電檢測值和第二放電檢測值。 The touch detection method of claim 38, further comprising: applying a level signal to the first electrode and the second electrode of the sensing unit to charge the self-capacitor; and controlling the first electrode And/or the second electrode is grounded to discharge the self-capacitance, and discharge detection is performed from the first electrode and/or the second electrode to obtain the first discharge detection value and the second discharge detection value. 如申請專利範圍第38項所述的觸摸檢測方法,其中,還包括:向所述感應單元的第一電極或第二電極施加電平信號以對所述自電容充電;分別控制所述第一電極和所述第二電極接地以對所述自電容放電,並分別從所述第一電極和/或第二電極進行放電檢測以獲得所述第一放電檢測值和第二放電檢測值。 The touch detection method of claim 38, further comprising: applying a level signal to the first electrode or the second electrode of the sensing unit to charge the self-capacitor; respectively controlling the first The electrode and the second electrode are grounded to discharge the self-capacitance, and discharge detection is performed from the first electrode and/or the second electrode, respectively, to obtain the first discharge detection value and the second discharge detection value. 如申請專利範圍第38項所述的觸摸檢測方法,其中,還包括:向所述感應單元的第一電極或第二電極施加電平信號以對所述自電容充電;分別控制所述第一電極或所述第二電極接地以對所述自電容放電,並分別從所述第一電極和第二電極進行放電檢測以獲得所述第一放電檢測值和第二放電檢測值。 The touch detection method of claim 38, further comprising: applying a level signal to the first electrode or the second electrode of the sensing unit to charge the self-capacitor; respectively controlling the first The electrode or the second electrode is grounded to discharge the self-capacitance, and discharge detection is performed from the first electrode and the second electrode, respectively, to obtain the first discharge detection value and the second discharge detection value. 一種應用觸摸檢測方法的可攜式電子設備,其特徵在於,包括如申請專利範圍第1-19項任一項所述的觸控裝置。 A portable electronic device using a touch detection method, comprising the touch device according to any one of claims 1 to 19. 一種應用觸摸檢測方法的可攜式電子設備,其特徵在於,包括如申請專利範圍第20-28項任一項所述的觸摸螢幕檢測裝置。 A portable electronic device using a touch detection method, comprising the touch screen detecting device according to any one of claims 20-28.
TW101126426A 2011-07-26 2012-07-23 Touch detecting method, touch screen detecting device, touch sensitive device, and portable electronic apparatus TWI505163B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110211018 2011-07-26
CN2011102110214A CN102902388A (en) 2011-07-26 2011-07-26 Touch detection method, touch screen detector and touch device
CN201110210959 2011-07-26
CN201110459473.4A CN102902438B (en) 2011-07-26 2011-12-31 Touch detecting method, touch screen detection device and contactor control device

Publications (2)

Publication Number Publication Date
TW201308181A TW201308181A (en) 2013-02-16
TWI505163B true TWI505163B (en) 2015-10-21

Family

ID=47600522

Family Applications (2)

Application Number Title Priority Date Filing Date
TW101214202U TWM454578U (en) 2011-07-26 2012-07-23 Touch screen detecting device, touch sensitive device, and portable electronic apparatus
TW101126426A TWI505163B (en) 2011-07-26 2012-07-23 Touch detecting method, touch screen detecting device, touch sensitive device, and portable electronic apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW101214202U TWM454578U (en) 2011-07-26 2012-07-23 Touch screen detecting device, touch sensitive device, and portable electronic apparatus

Country Status (2)

Country Link
TW (2) TWM454578U (en)
WO (1) WO2013013629A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9542023B2 (en) 2013-08-07 2017-01-10 Synaptics Incorporated Capacitive sensing using matrix electrodes driven by routing traces disposed in a source line layer
US9703431B2 (en) 2014-06-03 2017-07-11 Synaptics Incorporated Noise detection and mitigation for capacitive sensing devices
US9753587B2 (en) 2014-06-05 2017-09-05 Synaptics Incorporated Driving sensor electrodes for absolute capacitive sensing
US9703430B2 (en) 2014-06-30 2017-07-11 Synaptics Incorporated Driving sensor electrodes for proximity sensing
US9746975B2 (en) 2015-03-27 2017-08-29 Synaptics Incorporated Capacitive measurement processing for mode changes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW438988B (en) * 1998-08-18 2001-06-07 Ibm Liquid crystal display device employing a guard plane between a layer for measuring touch position and common electrode layer
US6297811B1 (en) * 1999-06-02 2001-10-02 Elo Touchsystems, Inc. Projective capacitive touchscreen
TW200627288A (en) * 2005-01-27 2006-08-01 Apex Material Technology Corp Resistive touch panel, and it manufacturing method
US20100044122A1 (en) * 2008-04-10 2010-02-25 Atmel Corporation Capacitive Touch Screen with Noise Suppression

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050083833A (en) * 2002-10-31 2005-08-26 해럴드 필립 Charge transfer capacitive position sensor
KR100601152B1 (en) * 2006-03-21 2006-07-19 (주) 넥스트칩 Touch sensing apparatus and method using charge sharing
CN101715574B (en) * 2007-08-15 2012-08-15 阿佐特克(私人)有限公司 Circuit and method for capacitor determining touch or closing position in one or two dimensions
CN202422046U (en) * 2011-07-26 2012-09-05 比亚迪股份有限公司 Induction unit, touch screen detection device and touch control device
CN202267944U (en) * 2011-07-26 2012-06-06 比亚迪股份有限公司 Touch screen detecting device and touch control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW438988B (en) * 1998-08-18 2001-06-07 Ibm Liquid crystal display device employing a guard plane between a layer for measuring touch position and common electrode layer
US6297811B1 (en) * 1999-06-02 2001-10-02 Elo Touchsystems, Inc. Projective capacitive touchscreen
TW200627288A (en) * 2005-01-27 2006-08-01 Apex Material Technology Corp Resistive touch panel, and it manufacturing method
US20100044122A1 (en) * 2008-04-10 2010-02-25 Atmel Corporation Capacitive Touch Screen with Noise Suppression

Also Published As

Publication number Publication date
TWM454578U (en) 2013-06-01
WO2013013629A1 (en) 2013-01-31
TW201308181A (en) 2013-02-16

Similar Documents

Publication Publication Date Title
TWI483164B (en) Touch detecting method, touch sensitive device, and portable electronic apparatus
TWI475455B (en) Induction unit, touch screen detecting device, and touch sensitive device
TWI505163B (en) Touch detecting method, touch screen detecting device, touch sensitive device, and portable electronic apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees