TWI505040B - 微影裝置、量測輻射光束光點聚焦的方法及元件製造方法 - Google Patents

微影裝置、量測輻射光束光點聚焦的方法及元件製造方法 Download PDF

Info

Publication number
TWI505040B
TWI505040B TW101107932A TW101107932A TWI505040B TW I505040 B TWI505040 B TW I505040B TW 101107932 A TW101107932 A TW 101107932A TW 101107932 A TW101107932 A TW 101107932A TW I505040 B TWI505040 B TW I505040B
Authority
TW
Taiwan
Prior art keywords
grating
radiation
spot
substrate
value
Prior art date
Application number
TW101107932A
Other languages
English (en)
Other versions
TW201243512A (en
Inventor
Andre Bernardus Jeunink
Felix Godfried Peter Peeters
Michael Jozef Mathijs Renkens
Paulus Hendricus Maria Verheggen
Original Assignee
Asml Netherlands Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml Netherlands Bv filed Critical Asml Netherlands Bv
Publication of TW201243512A publication Critical patent/TW201243512A/zh
Application granted granted Critical
Publication of TWI505040B publication Critical patent/TWI505040B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/70391Addressable array sources specially adapted to produce patterns, e.g. addressable LED arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

微影裝置、量測輻射光束光點聚焦的方法及元件製造方法
本發明係關於一種微影裝置、一種用於量測輻射光束光點聚焦之方法,及一種用於製造元件之方法。
微影裝置為將所要圖案施加至基板或基板之部件上之機器。微影裝置可用於(例如)積體電路(IC)、平板顯示器及具有精細特徵之其他元件或結構之製造中。在習知微影裝置中,可被稱作光罩或比例光罩之圖案化元件可用以產生對應於IC、平板顯示器或其他元件之個別層之電路圖案。可(例如)經由成像至提供於基板(例如,矽晶圓或玻璃板)上之輻射敏感材料(抗蝕劑)層上而將此圖案轉印於基板(之部件)上。
代替電路圖案,圖案化元件可用以產生其他圖案,例如,彩色濾光器圖案或圓點矩陣。代替習知光罩,圖案化元件可包含圖案化陣列,圖案化陣列包含產生電路或其他適用圖案之個別可控制器件陣列。此「無光罩」系統相比於習知以光罩為基礎之系統的優點在於:可更快且成本更少地提供及/或改變圖案。
因此,無光罩系統包括可程式化圖案化元件(例如,空間光調變器、對比元件,等等)。可程式化圖案化元件經程式化(例如,電子地或光學地)以使用個別可控制器件陣列來形成所要經圖案化光束。可程式化圖案化元件之類型包括微鏡面陣列、液晶顯示器(LCD)陣列、光柵光閥陣 列、自發射對比元件陣列,及其類似者。
無光罩微影裝置可具備(例如)用以在基板之目標部分上創製圖案之光學柱。光學柱可具備經組態以發射光束之自發射對比元件,及經組態以將光束之至少一部分投影至目標部分上之投影系統。該裝置可具備致動器,致動器用以相對於基板來移動光學柱或其部件。藉此,光束可相對於基板而移動,且視情況,基板相對於光束而移動。藉由在移動期間「接通」或「切斷」自發射對比元件,可在基板上創製圖案。
在微影程序中,需要準確地聚焦投影至基板上之影像。詳言之,在一些無光罩微影配置中,聚焦範圍相比於具有相同臨界尺寸的基於光罩之系統可相對小。舉例而言,在無光罩系統中,複數個透鏡可各自用以將輻射光點投影至基板上,從而引起相對小聚焦範圍。因此,一系統可提供聚焦調整,諸如,藉由(例如)在平行於投影系統之光軸之方向上調整在基板與投影系統之間的相對位置而調整聚焦或調整成使得影像聚焦於基板上。
除了能夠提供聚焦調整以外,需要亦能夠量測在基板上形成輻射光點之輻射光束中每一者之聚焦。舉例而言,可藉由將每一光束或輻射投影至能夠量測輻射光點之直徑之影像感測器上而進行此量測。可接著調整聚焦,直至光點直徑為所要大小及/或系統可判定光點為所要直徑時的與投影系統相隔之距離為止。然而,可能難以獲得聚焦系統 之所要準確度,及/或此配置可能需要相對昂貴影像感測器及/或該系統可能不能夠足夠迅速地執行聚焦量測。
因此,需要(例如)提供一種(例如)包括改良型聚焦量測系統之改良型聚焦系統。
根據本發明之一實施例,提供一種微影裝置,該微影裝置包含:一可程式化圖案化元件,其經組態以提供複數個輻射光束;一投影系統,其經組態以將該複數個輻射光束投影至一基板上以形成各別輻射光點;及一光點聚焦感測器系統,其包含:一光柵,其經配置成使得該等輻射光束光點中至少一者可順次地投影至該光柵上之複數個不同部位上,以便執行一輻射光點聚焦量測;一輻射強度感測器,其經組態以自在該複數個部位處傳遞通過該光柵或自該光柵所反射之該輻射光束光點偵測輻射強度;及一控制器,其經組態以自對應於該複數個部位之該經偵測輻射強度判定一光點聚焦值。
根據本發明之一實施例,提供一種用於量測一微影裝置中之輻射光束光點聚焦之方法,該微影裝置包含:一可程式化圖案化元件,其經組態以提供複數個輻射光束;及一投影系統,其經組態以將該複數個輻射光束投影至一 基板上以形成各別輻射光點;該方法包含:將該等輻射光束光點中至少一者順次地投影至一光柵上之複數個不同部位上;使用一輻射強度感測器以自在該複數個部位處傳遞通過該光柵或自該光柵所反射之該輻射光束光點偵測輻射強度;及自對應於該複數個部位之該經偵測輻射強度判定一光點聚焦值。
根據本發明之一實施例,提供一種元件製造方法,該元件製造方法包含:使用以上方法以量測一微影裝置中之複數個輻射光束中至少一者之該輻射光束光點聚焦;及使用該經偵測光點聚焦值以控制該微影裝置之至少一參數,同時將該複數個輻射光束投影至一基板上。
現在將參看隨附示意性圖式而僅藉由實例來描述本發明之實施例,在該等圖式中,對應元件符號指示對應部件。
圖1示意性地描繪微影裝置之部件的示意性橫截面側視圖。在此實施例中,微影裝置具有在X-Y平面中實質上靜止之個別可控制器件(如下文進一步所論述),但無需為該狀況。微影裝置1包含用以固持基板之基板台2,及用以在高達6個自由度中移動基板台2之定位元件3。基板可為抗蝕劑塗佈基板。在一實施例中,基板為晶圓。在一實施例 中,基板為多邊形(例如,矩形)基板。在一實施例中,基板為玻璃板。在一實施例中,基板為塑膠基板。在一實施例中,基板為箔片。在一實施例中,微影裝置適於卷軸式製造。
微影裝置1進一步包含經組態以發射複數個光束之複數個個別可控制自發射對比元件4。在一實施例中,自發射對比元件4為輻射發射二極體,諸如,發光二極體(LED)、有機LED(OLED)、聚合物LED(PLED)或雷射二極體(例如,固態雷射二極體)。在一實施例中,個別可控制器件4中每一者為一藍紫色雷射二極體(例如,Sanyo型號DL-3146-151)。此等二極體可由諸如Sanyo、Nichia、Osram及Nitride之公司供應。在一實施例中,二極體發射(例如)具有約365奈米或約405奈米之波長之UV輻射。在一實施例中,二極體可提供選自0.5毫瓦特至200毫瓦特之範圍之輸出功率。在一實施例中,雷射二極體(裸晶粒)之大小係選自100微米至800微米之範圍。在一實施例中,雷射二極體具有選自0.5平方微米至5平方微米之範圍之發射面積。在一實施例中,雷射二極體具有選自5度至44度之範圍之發散角。在一實施例中,二極體具有用以提供大於或等於約6.4×108 W/(m2 .sr)之總亮度之組態(例如,發射面積、發散角、輸出功率,等等)。
自發射對比元件4配置於框架5上且可沿著Y方向及/或X方向而延伸。雖然展示一個框架5,但微影裝置可具有複數個框架5,如圖2所示。透鏡12進一步配置於框架5上。 框架5在X-Y平面中實質上靜止,且因此,自發射對比元件4及透鏡12在X-Y平面中實質上靜止。框架5、自發射對比元件4及透鏡12可藉由致動器7在Z方向上移動。或者或另外,透鏡12可藉由與此特定透鏡有關之致動器在Z方向上移動。視情況,每一透鏡12可具備一致動器。
自發射對比元件4可經組態以發射光束,且投影系統12、14及18可經組態以將光束投影至基板之目標部分上。自發射對比元件4及投影系統形成光學柱。微影裝置1可包含致動器(例如,馬達11),致動器用以相對於基板來移動光學柱或其部件。經配置有場透鏡14及成像透鏡18之框架8可用致動器而可旋轉。場透鏡14及成像透鏡18之組合形成可移動光學件9。在使用中,框架8(例如)在圖2中之箭頭所示之方向上圍繞其自有軸線10而旋轉。框架8係使用致動器(例如,馬達11)圍繞軸線10而旋轉。另外,框架8可藉由馬達7在Z方向上移動,使得可移動光學件9可相對於基板台2而位移。
具有孔隙之孔隙結構13可在透鏡12與自發射對比元件4之間位於透鏡12上方。孔隙結構13可限制透鏡12、關聯自發射對比元件4及/或鄰近透鏡12/自發射對比元件4之繞射效應。
可藉由旋轉框架8且同時地在光學柱下方移動基板台2上之基板而使用所描繪裝置。當透鏡12、14及18彼此實質上對準時,自發射對比元件4可將光束發射通過該等透鏡。藉由移動透鏡14及18,使基板上之光束之影像遍及基板之 部分進行掃描。藉由同時地在光學柱下方移動基板台2上之基板,經受自發射對比元件4之影像的基板之部分亦移動。藉由在控制器之控制下以高速度「接通」及「切斷」自發射對比元件4(例如,當自發射對比元件4「切斷」時不具有輸出或具有低於臨限值之輸出,且當自發射對比元件4「接通」時具有高於臨限值之輸出)、控制光學柱或其部件之旋轉、控制自發射對比元件4之強度且控制基板之速度,可將所要圖案成像於基板上之抗蝕劑層中。
圖2描繪具有自發射對比元件4的圖1之微影裝置的示意性俯視圖。類似於圖1所示之微影裝置1,微影裝置1包含:基板台2,其用以固持基板17;定位元件3,其用以在高達6個自由度中移動基板台2;對準/位階感測器19,其用以判定在自發射對比元件4與基板17之間的對準,且用以判定基板17是否處於相對於自發射對比元件4之投影之位階。如所描繪,基板17具有矩形形狀,然而,或者或又,可處理圓形基板。
自發射對比元件4配置於框架15上。自發射對比元件4可為輻射發射二極體,例如,雷射二極體(例如,藍紫色雷射二極體)。如圖2所示,自發射對比元件4可經配置成在X-Y平面中延伸之陣列21。
陣列21可為狹長線。在一實施例中,陣列21可為自發射對比元件4之一維陣列。在一實施例中,陣列21可為自發射對比元件4之二維陣列。
可提供旋轉框架8,旋轉框架8可在箭頭所描繪之方向上 旋轉。旋轉框架可具備透鏡14、18(圖1所示),透鏡14、18用以提供自發射對比元件4中每一者之影像。該裝置可具備致動器,致動器用以相對於基板來旋轉包含框架8及透鏡14、18之光學柱。
圖3描繪旋轉框架8的高度示意性透視圖,旋轉框架8在其周邊處具備透鏡14、18。複數個光束(在此實例中為10個光束)入射至該等透鏡中之一者上,且投影至藉由基板台2固持之基板17之目標部分上。在一實施例中,複數個光束係以直線之形式而配置。可旋轉框架係藉由致動器(圖中未繪示)圍繞軸線10而可旋轉。由於可旋轉框架8之旋轉,光束將入射於順次透鏡14、18(場透鏡14及成像透鏡18)上,且將在入射於每一順次透鏡上之情況下被偏轉,藉此以便沿著基板17之表面之部分而行進,如將參看圖4更詳細地所解釋。在一實施例中,每一光束係藉由各別源(亦即,自發射對比元件,例如,雷射二極體(圖3中未繪示))產生。在圖3所描繪之配置中,光束係藉由分段鏡面30偏轉及聚集,以便縮減光束之間的距離、藉此使較大數目個光束能夠投影通過同一透鏡且達成待在下文論述之解析度要求。
隨著可旋轉框架旋轉,光束入射於順次透鏡上,且每當透鏡受到光束輻照時,供光束入射於透鏡之表面上的地點便移動。因為光束取決於光束在透鏡上之入射地點而不同地(以(例如)不同偏轉)投影於基板上,所以光束(當到達基板時)將隨著每次通過一後繼透鏡而進行一掃描移動。參 看圖4來進一步解釋此原理。圖4描繪可旋轉框架8之部件的高度示意性俯視圖。第一光束集合係藉由B1表示,第二光束集合係藉由B2表示,且第三光束集合係藉由B3表示。每一光束集合投影通過可旋轉框架8之各別透鏡集合14、18。隨著可旋轉框架8旋轉,光束B1在掃描移動中投影至基板17上,藉此掃描區域A14。相似地,光束B2掃描區域A24,且光束B3掃描區域A34。在藉由對應致動器對可旋轉框架8之旋轉的同時,基板17及基板台在方向D上移動,其可沿著如圖2所描繪之X軸,藉此實質上垂直於區域A14、A24、A34中之光束之掃描方向。由於藉由第二致動器在方向D上之移動(例如,藉由對應基板台馬達對基板台之移動),當藉由可旋轉框架8之順次透鏡投影時光束之順次掃描被投影,以便彼此實質上鄰接,從而引起針對光束B1之每一順次掃描之實質上鄰接區域A11、A12、A13、A14(區域A11、A12、A13先前被掃描且A14當前被掃描,如圖4所示)、引起針對光束B2之每一順次掃描之區域A21、A22、A23及A24(區域A21、A22、A23先前被掃描且A24當前被掃描,如圖4所示),且引起針對光束B3之每一順次掃描之區域A31、A32、A33及A34(區域A31、A32、A33先前被掃描且A34當前被掃描,如圖4所示)。藉此,在旋轉可旋轉框架8的同時,可隨著在方向D上基板之移動而覆蓋基板表面之區域A1、A2及A3。多個光束通過同一透鏡之投影會允許在較短時間範圍內處理整個基板(以可旋轉框架8之相同旋轉速度),此係因為:對於對透鏡之每次 通過,複數個光束用每一透鏡來掃描基板,藉此允許針對順次掃描在方向D上之位移增加。以不同觀點而言,對於給定處理時間,當多個光束經由同一透鏡而投影至基板上時,可縮減可旋轉框架之旋轉速度,藉此可能地縮減歸因於高旋轉速度之效應,諸如,可旋轉框架之變形、磨損、振動、擾動,等等。在一實施例中,複數個光束經配置為與透鏡14、18之旋轉之切線方向成角度,如圖4所示。在一實施例中,複數個光束經配置成使得每一光束重疊於或鄰接於鄰近光束之掃描路徑。
可在放寬容許度時發現多個光束藉由同一透鏡同時地投影之態樣之另外效應。歸因於透鏡之容許度(定位、光學投影,等等),順次區域A11、A12、A13、A14(及/或區域A21、A22、A23及A24,及/或區域A31、A32、A33及A34)之位置可展示相對於彼此的某種程度之定位不準確度。因此,可能需要在順次區域A11、A12、A13、A14之間的某種程度之重疊。在一個光束之(例如)10%作為重疊之狀況下,處理速度將藉此在單一光束同時通過同一透鏡之狀況下縮減達相同因數10%。在5個或5個以上光束同時地投影通過同一透鏡之情形中,將針對每5個或5個以上經投影線提供10%之相同重疊(相似地參考上文之一個光束實例),因此將總重疊縮減達大約5%或5%以上至2%或2%以下之因數,藉此具有對總處理速度之顯著較低效應。類似地,投影至少10個光束可將總重疊縮減達大約為原先的1/10之因數。因此,容許度對基板之處理時間之效應可因多個光束 藉由同一透鏡同時地投影之特徵而縮減。或者或另外,可允許較多重疊(因此允許較大容許度帶),此係因為其對處理之效應低(假如多個光束係藉由同一透鏡同時地投影)。
替代經由同一透鏡而同時地投影多個光束或除了經由同一透鏡同時地投影多個光束以外,可使用交織技術,然而,此情形可能需要在透鏡之間的可比較更嚴格之匹配。因此,經由透鏡中之同一透鏡而同時地投影至基板上之至少兩個光束具有相互間距,且微影裝置可經配置以操作第二致動器,以便相對於光學柱來移動基板以具有待投影於該間距中之光束之後繼投影。
為了在方向D上縮減在群組中之順次光束之間的距離(藉此(例如)在方向D上達成較高解析度),相對於方向D,可相對於彼此對角地配置該等光束。可藉由在光學路徑中提供分段鏡面30而進一步縮減間距,每一片段用以反射光束中之一各別光束,該等片段經配置以便相對於在入射於該等鏡面上之光束之間的間距來縮減在藉由該等鏡面反射之光束之間的間距。此效應亦可藉由複數個光纖達成,光束中每一者入射於該等光纖中之一各別光纖上,該等光纖經配置以便沿著光學路徑相對於在該等光纖上游之光束之間的間距來縮減在該等光纖下游之光束之間的間距。
另外,可使用具有複數個輸入之整合式光學波導電路來達成此效應,每一輸入用於接收光束中之一各別光束。整合式光學波導電路經配置以便沿著光學路徑相對於在整合式光學波導電路上游之光束之間的間距來縮減在整合式光 學波導電路下游之光束之間的間距。
可提供用以控制投影至基板上之影像之聚焦的系統。可提供用以調整藉由呈如上文所論述之配置之光學柱之部件或全部投影的影像之聚焦的配置。
如圖5所描繪,聚焦調整配置可包括輻射光束擴展器40,輻射光束擴展器40經配置成使得投影至場透鏡14上的可程式化圖案化元件4之影像(上文所論述)係經由輻射光束擴展器40而投影。場透鏡14及成像透鏡18(上文所論述)經配置成使得投影至場透鏡14上之影像投影至在基板台2上所支撐之基板上。因此,藉由在實質上平行於投影系統之光軸46之方向上調整投影至場透鏡14上之影像之位置,可調整在基板之位階處所形成之影像之聚焦。如將在下文進一步所論述,輻射光束擴展器40用以提供投影至場透鏡14上之影像之位置之此調整。
此情形可能有利,此係因為其意謂可在不調整基板相對於投影系統之位置的情況下執行聚焦調整。此情形可針對橫越基板上之照明場之全寬而定位的不同區域而獨立地實現準確聚焦控制。舉例而言,每一光學柱或其部件可具有調整由其投影至基板上之影像之聚焦的獨立能力。
此外,此配置可能不需要在平行於投影系統之光軸46之方向上調整場透鏡14或成像透鏡18之位置。此控制在如下配置中可能困難:在該配置中,如上文所論述,場透鏡14及成像透鏡18經配置以在垂直於投影系統之光軸46之方向上移動。舉例而言,如圖5所描繪且與上文所論述之配置 一致,場透鏡14及成像透鏡18可安裝至藉由第一致動器系統11驅動之可移動(例如,旋轉)框架8。
輻射光束擴展器40可由一對軸向對準式正透鏡41、42形成。透鏡41、42可(例如)藉由硬質支撐框架43相對於彼此固定地定位。
在一實施例中,輻射光束擴展器40可經組態成使得其既係物件-空間遠心又係影像-空間遠心。應理解,就物件-空間遠心而言,其意謂入射光瞳位於無窮遠處,且就影像-空間遠心而言,其意謂出射光瞳位於無窮遠處。
可提供及配置第二致動器系統44以在實質上平行於投影系統之光軸46之方向上控制輻射光束擴展器40之位置。詳言之,第二致動器系統44可經組態以作用於支撐框架43,以便調整第一透鏡41及第二透鏡42相對於場透鏡14之位置,同時維持第一透鏡41及第二透鏡42之相對位置。
第二致動器系統44可經組態以幫助確保輻射光束擴展器40僅在實質上平行於光軸46之方向上移動,使得在垂直於投影系統之光軸46之方向上實質上不存在輻射光束擴展器40之移動。在平行於投影系統之光軸46之方向上輻射光束擴展器40之移動用以調整投影至場透鏡14上的可程式化圖案化元件4之影像之位置。
可提供控制器45,控制器45經調適以控制第二致動器44,以便以適當方式移動輻射光束擴展器40,以便提供投影至基板上之影像之所要聚焦控制。詳言之,輻射光束擴展器40沿著投影系統之光軸46之移動係與在基板處之後續 聚焦移位成比例。因此,控制器可儲存該系統之某一倍數且使用此倍數以將基板處之所要聚焦移位轉換成輻射光束擴展器40之適當移動。隨後,控制器45可控制第二致動器系統44,以便提供所要移動。
舉例而言,結合在待投影有影像之目標部分處基板之上部表面之失真的量測,可自基板17及/或基板台2之位置之量測來判定基板之位階處之所要聚焦移位。可組合此所要聚焦移位與關於投影至基板上之輻射光束中每一者之光點聚焦的經先前判定資訊。可在基板上曝光圖案之前映射基板之上部表面之失真,及/或可在緊接地在將圖案投影至基板之每一部分上之前針對基板之彼部分來量測基板之上部表面之失真。
可藉由以下公式來判定使輻射光束擴展器40之移動與基板處之聚焦移位有關之倍數:(1/B2 )/(A2 -1)其中A為輻射光束擴展器40之放大率,且B為自透鏡14(該輻射光束擴展器將可程式化圖案化元件之影像投影至透鏡14上)至基板的光學系統之放大率,即,場透鏡14及成像透鏡18之組合之放大率。
在一配置中,場透鏡14及成像透鏡18之組合式系統之放大率可為1/15(亦即,縮小率),且輻射光束擴展器40之放大率可為2。因此,在使用以上公式之情況下,將看出,對於在基板之位階處的25微米之聚焦移位,輻射光束擴展器之移動應為1.875毫米。
如上文所提及,可針對微影裝置內之每一光學柱分離地提供聚焦配置。因此,應瞭解,每一光學柱可包括一各別輻射光束擴展器40及關聯致動器系統44,關聯致動器系統44經配置以在實質上平行於投影系統之光軸46之方向上移動各別輻射光束擴展器40。
圖6描繪根據本發明之一實施例的光點聚焦感測器系統之配置。如圖所示,光點聚焦感測器系統包括光柵50及輻射強度感測器51(諸如,光電二極體或其他光偵測器)。光柵50及輻射強度感測器51經配置成使得輻射強度感測器51可在輻射光束52投影至光柵50上時偵測傳遞通過光柵50之輻射強度。
在所描繪配置中,光柵50可形成為形成於基板54上之複數個鉻條帶53。可使用光柵之其他建構。基板54可經選擇為對輻射實質上透明(例如,由SiO2 形成)。輻射強度感測器51可形成於與光柵50相對置的基板54之側上。光柵50之節距P可經選擇為與待投影至基板上之輻射光束之所要光點大小相同的數量級(例如,與待投影至基板上之輻射光束之所要光點大小相同)。
如圖6所示,若相對聚焦光束52投影至光柵50上,使得光點入射於光柵50之鉻條帶53之間的間隙上,則輻射光束強度之實質上全部可透射通過至輻射強度感測器51,從而引起在輻射強度感測器51處所接收之最大可能輻射強度。與此對比,若輻射光束52'入射於鉻條帶53中之一者上,則很少或無輻射光束可透射通過至輻射強度感測器51,從而 引起在輻射強度感測器51處所接收之最小可能輻射強度。
光點聚焦感測器系統可經組態以使輻射光束52橫越光柵50進行掃描,使得輻射光束52在複數個部位處投影至光柵50上(及/或造成光柵50相對於光束52而移動,使得光束52在複數個部位處入射於光柵50上)。如圖6所示,若光束或輻射52相對良好地聚焦於光柵之位階處,則在輻射強度感測器51處所接收之最大輻射強度位準與最小輻射強度位準之間將存在顯著對比度。
然而,若輻射光束52未良好地聚焦於光柵之位階處,則將不存在光束52之實質上全部傳遞通過鄰近鉻條帶53之間的間隙之點,且不存在輻射光束52'之實質上全部將入射於單一鉻條帶53上且因此未透射至輻射強度感測器51之點。因此,在此狀況下,在輻射強度感測器51處所接收之最大輻射強度與最小輻射強度之間的差將縮減。
因此,光點聚焦感測器系統可包括經組態以控制光點聚焦感測器系統之控制器55。控制器55可經組態以自輻射強度感測器51接收對應於在輻射強度感測器51處所接收之輻射強度位準之信號。自此等信號,控制器55可判定在光柵50處光束52之聚焦。舉例而言,控制器55可判定光點聚焦值。此光點聚焦值可表示針對光柵50相對於投影系統之位置的光束52之聚焦範圍之量測。或者或另外,光點聚焦值可表示自投影系統至輻射光束52處於最佳聚焦或可接受聚焦時之點的距離。
如上文所論述,為了使控制器55具有足夠資料以判定光 點聚焦值,在複數個部位處將光束52投影至光柵50上。此情形使能夠識別在輻射強度感測器51處所接收之最大輻射強度位準及最小輻射強度位準之識別。控制器55可經組態以控制在光點聚焦量測期間光柵50與光束52之間的相對移動。因此,控制器55可經由微影裝置之控制器而直接地或間接地控制用以移動光柵50中之一者或其兩者之一或多個致動器系統,及可用以移動光束52的投影系統之一或多個組件。
圖7示意性地描繪可在輻射光束52與光柵50之間存在相對移動時自輻射強度感測器51所輸出之信號I,即,在光柵50相對於輻射光束52之位置範圍處之信號I。如圖所示,信號I包括複數個最大值及複數個最小值,其分別對應於輻射光束52投影至鉻條帶53之間的空間上及投影至鉻條帶53上。
為了判定光點聚焦值,控制器55可分析來自輻射強度感測器51之信號,以便識別最大強度Imax 之值及最小強度Imin 之值。自此值,控制器55可判定對比度值。舉例而言,可自如下方程式判定對比度值Cv: 然而,應瞭解,可使用對比度之另一定義。
因此,控制器55可獲得供判定光點聚焦值的對比度之數值。可使用針對在平行於光束52之光軸之方向上光柵50之表面相對於投影系統之不同位置而判定的對比度值之一對 值,以便判定光點聚焦值。然而,此系統可能不方便,此係因為可能有必要提供校準以考量(例如)輻射光束之強度之變化及輻射強度感測器51之回應之變化。
因此,在一實施例中,光點聚焦感測器系統經組態以判定在平行於光束52之光軸之方向上光柵50之表面相對於投影系統之若干位置的對比度值。藉由識別在平行於光束52之光軸之方向上光柵50之部位(在該部位處,對比度值達到其最大值),有可能識別最佳聚焦位置且因此識別光點聚焦值。
在一實施例中,控制器55可經組態以接收對應於在平行於光束52之光軸之方向上光柵50相對於投影系統之位置的資訊,及/或能夠直接地或間接地控制經入射有光束52的光柵50之表面相對於投影系統之位置。
在一實施例中,光點聚焦感測器系統可經組態以判定在平行於光束52之光軸之方向上經入射有光束52的光柵50之表面相對於投影系統之複數個部位的對比度值。控制器55可接著藉由選擇對比度值具有所識別之最高值時的位置而識別最佳聚焦位置。
在一替代實施例中,控制器55可使一曲線擬合,該曲線使在平行於光束52之光軸之方向上經入射有光束52的光柵50之表面相對於投影系統之部位與經判定對比度值有關。控制器55可接著藉由識別對應於曲線之最大值之位置而判定最佳聚焦點且又判定光點聚焦值。
此配置可具有改良型準確度,此係因為其可縮減系統中 之任何誤差之效應。此情形可特別相關,此係因為系統可具有對接近最佳聚焦位置之誤差之相對高敏感度。舉例而言,在接近最佳聚焦位置之情況下,光柵50相對於投影系統之給定移動的對比度值之改變可相對小。藉由包括自遠離最佳聚焦點之位置對該對比度值之量測,可改良準確度。
如圖8所示,光點聚焦感測器系統之光柵50及(視情況)關聯輻射強度感測器51可提供於微影裝置之基板台WT上。舉例而言,如圖所示,光柵50可提供於鄰近於可經定位有基板W之部位之區中。此部位可能有利,此係因為經提供以控制在基板W上圖案之形成期間基板台WT相對於投影系統之位置的致動器系統60可用以控制在光點聚焦值之量測期間光柵50之位置。
舉例而言,用以控制基板台WT之位置之致動器系統60可用以在實質上垂直於光束52之光軸之方向上相對於光束52來掃描光柵50,以便將光束52投影至光柵50上之複數個部位上,以便判定對比度值。
或者或又,用於基板台WT之致動器系統60可用以在實質上平行於光束52之方向上調整基板台WT之位置,且因此調整光柵50之位置。因此,可在平行於光束52之光軸之方向上的多個位置處重複該程序,以便獲得對比度值之多個量測(如上文所論述),以便找到對比度值被最大化時的位置。
在一實施例中,用以控制基板台WT之位置之致動器系 統60可能能夠使基板台WT之上部表面傾斜為相對於光束52之光軸成斜角,如圖9所示(應瞭解,圖9描繪誇示圖)。因此,光柵50之上部表面(其可平行於基板台WT之上部表面)亦可相對於光束52之光軸成斜角。
隨後,用以控制基板台WT之位置之致動器系統60可在實質上垂直於光束52之光軸之方向上移動基板台,且因此移動光柵50。在此配置中,應瞭解,光束52可投影至在平行於光束52之光軸之方向上與投影系統相隔第一距離的光柵50之一個區上,且投影至在平行於光束52之光軸之方向上與投影系統相隔不同距離的光柵50之第二區上。
因此,自使得光束52橫越光柵50的在光束52與光柵50之間的單一相對掃描移動,控制器55可獲得足夠資料以判定在平行於光束52之光軸之方向上各自與投影系統相隔不同距離的光柵之複數個區的對比度值。自此對比度值,控制器可判定最大對比度值之點,且因此判定光點聚焦值。此程序相比於在平行於光束52之光軸之方向上基板台WT相對於投影系統之不同位置處藉由光束52分離地且重複地掃描光柵50的程序可較快地執行。
如圖10所描繪,代替使用致動器系統60而使基板台WT傾斜或除了使用致動器系統60而使基板台WT傾斜以外,光柵50亦可經配置成使得其上部表面相對於基板台WT之上部表面永久地成斜角。舉例而言,用以使光柵50與輻射強度感測器51分離之基板54可為楔狀,如圖10所描繪。或者或另外,光柵50可具有其自有致動器以造成光柵50傾 斜。
如上文所論述,投影系統可經組態以包括一或多個移動光學器件,以便使輻射光束可在基板W上影像之形成期間橫越該基板進行掃描。在此微影裝置中,可在光點聚焦值之判定期間使用投影系統以使光束52橫越光柵50進行掃描。因此,可能沒有必要使用致動器系統以在實質上垂直於光束52之光軸之方向上移動光柵50,以便將光束52投影至光柵50上之複數個部位上以用於判定一或多個對比度值。
在此配置中,光柵50可經配置為與光束52之光軸成斜角(如上文所論述),使得可在不相對於投影系統來移動光柵50的情況下判定光點聚焦值。
或者,光柵50之上部表面可經配置為垂直於光束52之光軸。在彼狀況下,致動器系統(例如,用以控制基板台WT之位置之致動器系統60)可用以在平行於光束52之光軸之方向上使光柵50移動通過相對於投影系統之複數個位置,以便獲得可供判定光點聚焦值之複數個對比度值。
在上文所論述之實施例中,光點聚焦感測器系統之光柵50及輻射強度感測器51可位於基板台WT上。此配置可能方便,此係因為其可准許檢測藉由投影系統週期性地投影之一或多個輻射光束,以便在微影裝置內不提供顯著額外設備的情況下判定光點聚焦值。
在具有藉由投影系統投影之複數個輻射光束之系統中,每當存在使用微影裝置之生產之方便中止時(例如,當裝 載新基板時),便可針對該等輻射光束中之一或多者來判定光點聚焦值。在一配置中,每當進行檢測時,便可檢測所有輻射光束。或者或另外,可在一些或所有檢測期間檢測光束之僅一比例。在彼狀況下,可排程在每一檢測中所檢測之輻射光束,使得遍及給定數目個檢測,每一輻射光束被檢測至少一次。
亦應瞭解,無需將光點聚焦感測器系統提供至基板台WT。因此,舉例而言,可提供可包括致動器系統之分離系統,致動器系統用以在基板台WT遠離投影系統時將光柵移動至必要位置以檢測一或多個輻射光束。舉例而言,可在裝載基板及/或自基板台卸載基板期間發生此情形。
圖11描繪根據本發明之一實施例的供光點聚焦感測器系統中使用之光柵50之配置。如圖所示,光柵50包括第一光柵部件50a及第二光柵部件50b,第一光柵部件50a及第二光柵部件50b經配置成在平行於光束52之光軸之方向上與投影系統相隔不同距離。在輻射光束52與光柵50之間的單一相對掃描中,控制器55可獲得第一光柵部件50a及第二光柵部件50b之各別對比度值。
此配置可有益地用以判定光點聚焦值,此係因為對比度值隨著光柵相對於投影系統之位置之變化可圍繞最佳聚焦點實質上對稱。因此,當最佳聚焦平面61在第一光柵部件50a之上部表面與第二光柵部件50b之上部表面之間的中途(如圖11所描繪)時,第一光柵部件50a及第二光柵部件50b中每一者之對比度值將實質上相同。因此,控制器55可經 組態以自第一光柵部件50a之對比度值及第二光柵部件50b之對比度值實質上相同時的光柵50之位置之識別來判定光點聚焦值。
為了識別此位置,控制器可控制致動器系統(諸如,上文所論述之致動器系統中任一者),以在平行於光束52之光軸之方向上反覆地調整光柵50相對於投影系統之位置,直至第一光柵部件50a之對比度值與第二光柵部件50b之對比度值實質上相同(即,當該等對比度值之間的差低於某一臨限值時)為止。此時,第一光柵部件50a係在最佳聚焦平面61上方,且第二光柵部件50b係在最佳聚焦平面61下方。
或者,控制器55可控制致動器系統以在平行於光束52之光軸之方向上通過相對於投影系統之位置範圍而掃描光柵50,從而判定在每一位置處第一光柵部件50a及第二光柵部件50b中每一者之對比度值。自此對比度值,控制器55可識別第一光柵部件50a之對比度值與第二光柵部件50b之對比度值實質上相同時的位置。舉例而言,控制器55可選擇兩個對比度值最相似時的位置。或者,控制器55可使一曲線擬合於兩個對比度值之間的差同光柵50與投影系統相隔之距離之間的關係,且選擇對應於該曲線之最小值之距離。
在一配置中,光柵50可經建構成使得在平行於光束52之光軸之方向上在第一光柵部件50a與第二光柵部件50b之間的距離為與系統之聚焦深度相同的數量級。在此配置中, 可規定,在第一光柵部件50a之對比度值與第二光柵部件50b之對比度值實質上相等時的點處(即,在最佳聚焦平面61係在第一光柵部件50a與第二光柵部件50b之間的中途時),第一光柵部件50a及第二光柵部件50b兩者皆不接近最佳聚焦平面61。在最佳聚焦平面61處,對比度值針對位置之給定變化可變化最少,且因此可對系統中之雜訊相對敏感,如上文所論述。因此,因為在此配置中第一光柵部件50a及第二光柵部件50b經配置成遠離最佳聚焦平面61,所以可達成改良型準確度。
儘管以上描述已涉及經組態以檢測單一光束52以便判定彼輻射光束之光點聚焦值之光點感測器系統,但光點聚焦感測器系統可經組態以同時地檢測複數個輻射光束。舉例而言,若光柵50為合適大小,則複數個輻射光束可同時地投影至光柵50上。可提供複數個輻射強度感測器51,以便同時地判定投影至光柵50上之輻射光束中每一者之對比度值。或者,單一輻射強度感測器51可經組態以能夠區別來自傳遞通過光柵之複數個輻射光束中每一者之輻射強度。
儘管以上描述已涉及光柵50(其係透射的,使得(例如)微影裝置可在光柵50提供於投影系統與輻射強度感測器之間的情況下予以配置,使得輻射強度感測器51自傳遞通過光柵50之輻射光點偵測輻射)之使用,但無需為此狀況。舉例而言,可使用反射光柵。在彼狀況下,輻射強度感測器可提供於與投影系統相同的光柵之側上以自光柵所反射之輻射光點偵測輻射。在一實施例中,輻射強度感測器可安 裝至投影系統或以其他方式併入至投影系統中。
儘管已在平行於輻射光束之光軸之方向上移動光柵50以便提供足夠資料以判定光點聚焦值的內容背景中描述特定實施例,但無需為此狀況。詳言之,或者或另外,可在平行於輻射光束之光軸之方向上移動輻射光束中之一或多者之聚焦點,從而提供相同效應。因此,可將上文所論述之所有實施例(其中在平行於輻射光束之光軸之方向上移動光柵)修改為藉由移動輻射光束之聚焦點予以實施。可藉由使用聚焦調整系統(諸如,上文所描述之聚焦調整系統)來調整輻射光束之聚焦點。
微影裝置可包括位置量測系統,位置量測系統可用以判定光點聚焦感測器系統相對於微影裝置內之另一器件之位置,以便使藉由光點聚焦感測器系統判定之光點聚焦值可用以控制微影裝置之操作。舉例而言,此系統可用以量測光點聚焦感測器系統相對於投影系統及/或相對於微影裝置內之基板之上部表面之位置。
另外,來自如上文所描述之光點聚焦感測器系統之資訊可用以在用以將輻射光束投影至基板上之後續程序期間(即,在經執行為元件製造方法之部分之後續程序期間)調整微影裝置之一或多個參數。
根據元件製造方法,可自已經投影有圖案之基板來製造諸如顯示器、積體電路或任何其他項目之元件。
在一實施例中,提供一種微影裝置,微影裝置包含:可程式化圖案化元件,其經組態以提供複數個輻射光束;投 影系統,其經組態以將複數個輻射光束投影至基板上以形成各別輻射光點;及光點聚焦感測器系統,其包含:光柵,其經配置成使得輻射光束光點中至少一者可順次地投影至光柵上之複數個不同部位上,以便執行輻射光點聚焦量測;輻射強度感測器,其經組態以自在複數個部位處傳遞通過光柵或自光柵所反射之輻射光束光點偵測輻射強度;及控制器,其經組態以自對應於複數個部位之經偵測輻射強度判定光點聚焦值。
在一實施例中,微影裝置進一步包含基板台,基板台經組態以支撐基板,其中光柵安裝至基板台之上部表面。在一實施例中,微影裝置進一步包含致動器系統,致動器系統經組態以在實質上垂直於複數個輻射光束之光軸之方向上移動基板台,其中在輻射光點聚焦量測期間,致動器系統用以相對於輻射光束光點來移動光柵,使得輻射光束光點投影至光柵上之複數個不同部位上。在一實施例中,投影系統經組態成使得其可使複數個輻射光束在實質上垂直於輻射光束之光軸之方向上橫越基板進行掃描;且在輻射光點聚焦量測期間,投影系統用以將輻射光束光點投影至光柵上之複數個不同部位上。在一實施例中,控制器經組態以判定包括複數個不同部位的光柵之至少一區之最大經偵測輻射強度與最小經偵測輻射強度之間的差之對比度值,且使用至少一對比度值以便判定光點聚焦值。在一實施例中,對比度值係基於下式予以判定:,其 中Cv為對比度值,Imax 為光柵之區之最大經偵測輻射強度,且Imin 為光柵之區之最小經偵測輻射強度。在一實施例中,微影裝置進一步包含聚焦調整系統,聚焦調整系統經組態以在實質上平行於輻射光束之光軸之方向上控制供導出光點的輻射光束之聚焦點之位置;且其中控制器經組態以針對輻射光束之聚焦點之不同位置來判定光柵之一或多個區之各別對比度值,且自對應於最大對比度值的聚焦點之位置之判定來判定光點聚焦值。在一實施例中,控制器經組態以判定光柵之一或多個區之各別對比度值,在一或多個區中光柵之表面處於在實質上平行於複數個輻射光束之光軸之方向上之不同各別位置,且控制器經組態以自對應於最大對比度值的在實質上平行於複數個輻射光束之光軸之方向上光柵之表面之位置之判定來判定光點聚焦值。在一實施例中,控制器經組態以自對應於自經偵測輻射強度所判定之最高對比度值之位置來判定光點聚焦值。在一實施例中,控制器經組態以判定在實質上平行於複數個輻射光束之光軸之方向上之至少三個不同位置的對比度值,以使一曲線擬合於對比度值與對應位置之間的關係,且自對應於該曲線之最大值之位置判定光點聚焦值。在一實施例中,微影裝置包含致動器系統,致動器系統組態以在實質上平行於複數個輻射光束之光軸之方向上移動光柵;且其中對比度值係在該方向上之不同位置處針對光柵之單一區予以判定。在一實施例中,微影裝置包含致動器系統,致動器系統經組態以在實質上垂直於複數個輻射光 束之光軸之方向上移動光柵;且其中光柵之表面經配置為與複數個輻射光束之光軸成斜角,且針對光柵之各別不同區來判定對比度值。在一實施例中,光柵之表面實質上平行於基板台之上部表面;致動器系統經組態以控制基板台,使得當複數個輻射光束投影至基板上時基板台之上部表面實質上垂直於複數個輻射光束之光軸,且當複數個輻射光束投影至光柵上時基板台之上部表面與複數個輻射光束之光軸成斜角;且針對光柵之各別不同區來判定對比度值。在一實施例中,光柵包含第一光柵部件及第二光柵部件,第一光柵部件及第二光柵部件配置於在實質上平行於複數個輻射光束之光軸之方向上之不同各別位置處;且控制器經組態以分別針對第一光柵部件及第二光柵部件中每一者中的光柵之區來判定第一對比度值及第二對比度值,且比較第一對比度值與第二對比度值以便判定光點聚焦值。在一實施例中,微影裝置進一步包含致動器系統,致動器系統經組態以在實質上平行於複數個輻射光束之光軸之方向上調整光柵相對於投影系統之位置;且其中控制器經組態以自第一對比度值與第二對比度值實質上相同時的光柵之位置之識別來判定光點聚焦值。在一實施例中,微影裝置進一步包含聚焦調整系統,聚焦調整系統經組態以在實質上平行於輻射光束之光軸之方向上控制供導出光點的輻射光束之聚焦點之位置;且其中控制器經組態以自第一對比度值與第二對比度值實質上相同時的輻射光束之聚焦點之位置之識別來判定光點聚焦值。在一實施例中,控 制器經組態以藉由基於第一對比度值與第二對比度值之比較而反覆地調整位置直至第一對比度值與第二對比度值之間的差低於某一臨限值為止來識別位置。在一實施例中,控制器經組態以藉由經由判定第一對比度值及第二對比度值中每一者所針對之位置範圍而調整位置且自複數個第一對比度值及第二對比度值識別第一對比度值與第二對比度值實質上相同時的位置來識別位置。在一實施例中,光柵係透射的,且配置於投影系統與輻射強度感測器之間。在一實施例中,光柵係反射的,且輻射強度感測器安裝至投影系統。在一實施例中,光點聚焦系統經組態以同時地判定複數個輻射光束光點之各別光點聚焦值。
在一實施例中,提供一種用於量測微影裝置中之輻射光束光點聚焦之方法,微影裝置包含:可程式化圖案化元件,其經組態以提供複數個輻射光束;及投影系統,其經組態以將複數個輻射光束投影至基板上以形成各別輻射光點,該方法包含:將輻射光束光點中至少一者順次地投影至光柵上之複數個不同部位上;自在複數個部位處傳遞通過光柵或自光柵所反射之輻射光束光點偵測輻射強度;及自對應於複數個部位之經偵測輻射強度判定光點聚焦值。
在一實施例中,微影裝置包含基板台,基板台經組態以支撐基板,且光柵安裝至基板台之上部表面;且該方法進一步包含使用致動器系統以在輻射光點聚焦量測期間在實質上垂直於複數個輻射光束之光軸之方向上移動基板台,使得輻射光束光點投影至光柵上之複數個不同部位上。在 一實施例中,在輻射光點聚焦量測期間,投影系統用以使輻射光束光點橫越光柵上之複數個不同部位進行掃描。在一實施例中,該方法包含針對包括複數個不同部位的光柵之至少一區來判定最大經偵測輻射強度與最小經偵測輻射強度之間的差之對比度值,且使用至少一對比度值以便判定光點聚焦值。在一實施例中,基於下式而判定對比度值:,其中Cv為對比度值,Imax 為光柵之區之最大經偵測輻射強度,且Imin 為光柵之區之最小經偵測輻射強度。在一實施例中,該方法包含:判定光柵之一或多個區之各別對比度值,在一或多個區中光柵之表面處於在實質上平行於複數個輻射光束之光軸之方向上之不同各別位置;及自對應於最大對比度值的在實質上平行於複數個輻射光束之光軸之方向上光柵之表面之位置來判定光點聚焦值。在一實施例中,該方法包含自對應於自經偵測輻射強度所判定之最高對比度值的光柵之表面之位置來判定光點聚焦值。在一實施例中,該方法包含:判定在實質上平行於複數個輻射光束之光軸之方向上光柵之表面之至少三個不同位置之對比度值;使一曲線擬合於對比度值與對應位置之間的關係;及自對應於該曲線之最大值之位置判定光點聚焦值。在一實施例中,該方法包含:使用致動器系統以在實質上平行於複數個輻射光束之光軸之方向上移動光柵;及在該方向上之不同位置處針對光柵之單一區來判定對比度值。在一實施例中,該方法包含:使用致動器系 統以在實質上垂直於複數個輻射光束之光軸之方向上移動光柵,其中光柵之表面經配置為與複數個輻射光束之光軸成斜角;及針對光柵之各別不同區來判定對比度值。在一實施例中,該方法包含:使用致動器系統以控制基板台,使得當複數個輻射光束投影至光柵上時基板台之上部表面與複數個輻射光束之光軸成斜角,其中光柵之表面實質上平行於基板台之上部表面;及針對光柵之各別不同區來判定對比度值。在一實施例中,光柵包含第一光柵部件及第二光柵部件,第一光柵部件及第二光柵部件配置於在實質上平行於複數個輻射光束之光軸之方向上之不同各別位置處;且該方法包含分別針對第一光柵部件及第二光柵部件中每一者中的光柵之區來判定第一對比度值及第二對比度值,且比較第一對比度值與第二對比度值以便判定光點聚焦值。在一實施例中,該方法進一步包含:使用致動器系統以在實質上平行於複數個輻射光束之光軸之方向上調整光柵相對於投影系統之位置;及自第一對比度值與第二對比度值實質上相同時的光柵之位置之識別來判定光點聚焦值。在一實施例中,該方法包含藉由基於第一對比度值與第二對比度值之比較而使用致動器系統反覆地調整光柵之位置直至第一對比度值與第二對比度值之間的差低於某一臨限值為止來識別光柵之位置。在一實施例中,該方法包含:藉由使用致動器系統以使光柵移動通過判定第一對比度值及第二對比度值中每一者所針對之位置範圍來識別光柵之位置;及自複數個第一對比度值及第二對比度值識別 第一對比度值與第二對比度值實質上相同時的位置。在一實施例中,該方法包含同時地判定複數個輻射光束光點之各別光點聚焦值。在一實施例中,提供一種元件製造方法,元件製造方法包含:使用本文所描述之方法以量測微影裝置中之複數個輻射光束中至少一者之輻射光束光點聚焦;及使用經判定光點聚焦值以控制微影裝置之至少一參數,從而控制複數個輻射光束至基板上之投影。
儘管在本文中可特定地參考微影裝置在IC製造中之使用,但應理解,本文所描述之微影裝置可具有其他應用,諸如,製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭,等等。熟習此項技術者應瞭解,在此等替代應用之內容背景中,可認為本文對術語「晶圓」或「晶粒」之任何使用分別與更通用之術語「基板」或「目標部分」同義。可在曝光之前或之後在(例如)塗佈顯影系統(通常將抗蝕劑層施加至基板且顯影經曝光抗蝕劑之工具)、度量衡工具及/或檢測工具中處理本文所提及之基板。適用時,可將本文之揭示內容應用於此等及其他基板處理工具。另外,可將基板處理一次以上,例如,以便創製多層IC,使得本文所使用之術語「基板」亦可指代已經含有多個經處理層之基板。
術語「透鏡」在內容背景允許時可指代各種類型之光學組件中任一者,包括折射、繞射、反射、磁性、電磁及靜電光學組件,或其組合。
微影裝置亦可為如下類型:其中基板被浸潤於具有相對 高折射率之液體(例如,水)中,以便填充在投影系統之最終器件與基板之間的空間。亦可將浸潤液體施加於微影裝置中之其他空間,例如,在圖案化元件與投影系統之第一器件之間的空間。浸潤技術在此項技術中被熟知用於增加投影系統之數值孔徑。
在以下編號條項中提供根據本發明之另外實施例:
1.一種微影裝置,其包含:一可程式化圖案化元件,其經組態以提供複數個輻射光束;一投影系統,其經組態以將該複數個輻射光束投影至一基板上以形成各別輻射光點;及一光點聚焦感測器系統,其包含:一光柵,其經配置成使得該等輻射光束光點中至少一者可順次地投影至該光柵上之複數個不同部位上,以便執行一輻射光點聚焦量測;一輻射強度感測器,其經組態以自在該複數個部位處傳遞通過該光柵或自該光柵所反射之該輻射光束光點偵測輻射強度;及一控制器,其經組態以自對應於該複數個部位之該經偵測輻射強度判定一光點聚焦值。
2.如條項1之微影裝置,其進一步包含一基板台,該基板台經組態以支撐該基板,其中該光柵安裝至該基板台之一上部表面。
3.如條項2之微影裝置,其進一步包含一致動器系統, 該致動器系統經組態以在實質上垂直於該複數個輻射光束之光軸之一方向上移動該基板台,其中在一輻射光點聚焦量測期間,該致動器系統用以相對於該輻射光束光點來移動該光柵,使得該輻射光束光點投影至該光柵上之複數個不同部位上。
4.如前述條項中任一項之微影裝置,其中該投影系統經組態成使得其可使該複數個輻射光束在實質上垂直於該等輻射光束之該等光軸之一方向上橫越該基板進行掃描;且在一輻射光點聚焦量測期間,該投影系統用以將該輻射光束光點投影至該光柵上之複數個不同部位上。
5.如前述條項中任一項之微影裝置,其中該控制器經組態以針對包括複數個該等不同部位的該光柵之至少一區來判定最大經偵測輻射強度與最小經偵測輻射強度之間的差之一對比度值,且使用該至少一對比度值以便判定該光點聚焦值。
6.如條項5之微影裝置,其中該對比度值係基於下式予以判定: 其中Cv為該對比度值,Imax 為該光柵之該區之該最大經偵測輻射強度,且Imin 為該光柵之該區之該最小經偵測輻射強度。
7.如條項5或6之微影裝置,其進一步包含一聚焦調整系統,該聚焦調整系統經組態以在實質上平行於該輻射光束 之該光軸之一方向上控制供導出該光點的該輻射光束之聚焦點之位置;且其中該控制器經組態以針對該輻射光束之該聚焦點之不同位置來判定該光柵之一或多個區之各別對比度值,且自對應於最大對比度值的該聚焦點之一位置之一判定來判定該光點聚焦值。
8.如條項5或6之微影裝置,其中該控制器經組態以判定該光柵之一或多個區之各別對比度值,在該一或多個區中該光柵之表面處於在實質上平行於該複數個輻射光束之該等光軸之一方向上之不同各別位置,且該控制器經組態以自對應於該最大對比度值的在實質上平行於該複數個輻射光束之該等光軸之該方向上該光柵之該表面之一位置之一判定來判定該光點聚焦值。
9.如條項7或8之微影裝置,其中該控制器經組態以自對應於自該等經偵測輻射強度所判定之最高對比度值之位置來判定該光點聚焦值。
10.如條項7或8之微影裝置,其中該控制器經組態以判定在實質上平行於該複數個輻射光束之該等光軸之該方向上之至少三個不同位置的對比度值、使一曲線擬合於該等對比度值與該等對應位置之間的關係,且自對應於該曲線之最大值之位置判定該光點聚焦值。
11.如條項8至10中任一項之微影裝置,其包含一致動器系統,該致動器系統經組態以在實質上平行於該複數個輻射光束之該等光軸之該方向上移動該光柵;且 其中該等對比度值係在該方向上之不同位置處針對該光柵之單一區予以判定。
12.如條項8至11中任一項之微影裝置,其包含一致動器系統,該致動器系統經組態以在實質上垂直於該複數個輻射光束之該等光軸之一方向上移動該光柵;且其中該光柵之該表面經配置為與該複數個輻射光束之該等光軸成一斜角,且該等對比度值係針對該光柵之各別不同區予以判定。
13.如條項8至12中任一項之微影裝置,當附屬於條項3時,其中:該光柵之該表面實質上平行於該基板台之該上部表面;該致動器系統經組態以控制該基板台,使得當該複數個輻射光束投影至該基板上時該基板台之該上部表面實質上垂直於該複數個輻射光束之該等光軸,且當該複數個輻射光束投影至該光柵上時該基板台之該上部表面與該複數個輻射光束之該等光軸成一斜角;且該等對比度值係針對該光柵之各別不同區予以判定。
14.如條項5或6之微影裝置,其中該光柵包含第一光柵部件及第二光柵部件,該第一光柵部件及該第二光柵部件配置於在實質上平行於該複數個輻射光束之該等光軸之一方向上之不同各別位置處;且該控制器經組態以分別針對該第一光柵部件及該第二光柵部件中每一者中的該光柵之區來判定第一對比度值及第二對比度值,且比較該第一對比度值與該第二對比度值以 便判定該光點聚焦值。
15.如條項14之微影裝置,其進一步包含一致動器系統,該致動器系統經組態以在實質上平行於該複數個輻射光束之該等光軸之一方向上調整該光柵相對於該投影系統之該位置;且其中該控制器經組態以自該第一對比度值與該第二對比度值實質上相同時的該光柵之該位置之一識別來判定該光點聚焦值。
16.如條項14之微影裝置,其進一步包含一聚焦調整系統,該聚焦調整系統經組態以在實質上平行於該輻射光束之該光軸之一方向上控制供導出該光點的該輻射光束之該聚焦點之該位置;且其中該控制器經組態以自該第一對比度值與該第二對比度值實質上相同時的該輻射光束之該聚焦點之該位置之一識別來判定該光點聚焦值。
17.如條項15或16之微影裝置,其中該控制器經組態以藉由基於該第一對比度值與該第二對比度值之該比較而反覆地調整該位置直至該第一對比度值與該第二對比度值之間的差低於某一臨限值為止來識別該位置。
18.如條項15或16之微影裝置,其中該控制器經組態以藉由經由判定該第一對比度值及該第二對比度值中每一者所針對之一位置範圍而調整該位置且自該複數個第一對比度值及第二對比度值識別該第一對比度值與該第二對比度值實質上相同時的該位置來識別該位置。
19.如前述條項中任一項之微影裝置,其中該光柵係透射的,且配置於該投影系統與該輻射強度感測器之間。
20.如條項1至18中任一項之微影裝置,其中該光柵係反射的,且該輻射強度感測器安裝至該投影系統。
21.如前述條項中任一項之微影裝置,其中該光點聚焦系統經組態以同時地判定複數個該等輻射光束光點之各別光點聚焦值。
22.一種用於量測一微影裝置中之輻射光束光點聚焦之方法,該微影裝置包含:一可程式化圖案化元件,其經組態以提供複數個輻射光束;及一投影系統,其經組態以將該複數個輻射光束投影至一基板上以形成各別輻射光點;該方法包含:將該等輻射光束光點中至少一者順次地投影至一光柵上之複數個不同部位上;自在該複數個部位處傳遞通過該光柵或自該光柵所反射之該輻射光束光點偵測輻射強度;及自對應於該複數個部位之該經偵測輻射強度判定一光點聚焦值。
23.如條項22之方法,其中該微影裝置包含一基板台,該基板台經組態以支撐該基板,且該光柵安裝至該基板台之一上部表面;且該方法進一步包含使用一致動器系統以在一輻射光點聚 焦量測期間在實質上垂直於該複數個輻射光束之光軸之一方向上移動該基板台,使得該輻射光束光點投影至該光柵上之複數個不同部位上。
24.如條項22或23之方法,其中在一輻射光點聚焦量測期間,該投影系統用以使該輻射光束光點橫越該光柵上之複數個不同部位進行掃描。
25.如條項22至24中任一項之方法,其包含:針對包括複數個該等不同部位的該光柵之至少一區來判定最大經偵測輻射強度與最小經偵測輻射強度之間的差之一對比度值;及使用該至少一對比度值以便判定該光點聚焦值。
26.如條項25之方法,其中基於下式而判定該對比度值: 其中Cv為該對比度值,Imax 為該光柵之該區之該最大經偵測輻射強度,且Imin 為該光柵之該區之該最小經偵測輻射強度。
27.如條項25或26之方法,其包含:判定該光柵之一或多個區之各別對比度值,在該一或多個區中該光柵之表面處於在實質上平行於該複數個輻射光束之該等光軸之一方向上之不同各別位置;及自對應於最大對比度值的在實質上平行於該複數個輻射光束之該等光軸之該方向上該光柵之該表面之一位置來判定該光點聚焦值。
28.如條項27之方法,其包含自對應於自該等經偵測輻射強度所判定之最高對比度值的該光柵之該表面之該位置來判定該光點聚焦值。
29.如條項27之方法,其包含:判定在實質上平行於該複數個輻射光束之該等光軸之該方向上該光柵之該表面之至少三個不同位置的對比度值;使一曲線擬合於該等對比度值與該等對應位置之間的關係;及自對應於該曲線之最大值之位置判定該光點聚焦值。
30.如條項27至29中任一項之方法,其包含:使用一致動器系統以在實質上平行於該複數個輻射光束之該等光軸之該方向上移動該光柵;及在該方向上之不同位置處針對該光柵之單一區來判定該等對比度值。
31.如條項27至29中任一項之方法,其包含:使用一致動器系統以在實質上垂直於該複數個輻射光束之該等光軸之一方向上移動該光柵,其中該光柵之該表面經配置為與該複數個輻射光束之該等光軸成一斜角;及針對該光柵之各別不同區來判定該等對比度值。
32.如條項27至29中任一項之方法,當附屬於條項23時,該方法包含:使用該致動器系統以控制該基板台,使得當該複數個輻射光束投影至該光柵上時該基板台之該上部表面與該複數個輻射光束之該等光軸成一斜角,其中該光柵之該表面實 質上平行於該基板台之該上部表面;及針對該光柵之各別不同區來判定該等對比度值。33.如條項25或26之方法,其中該光柵包含第一光柵部件及第二光柵部件,該第一光柵部件及該第二光柵部件配置於在實質上平行於該複數個輻射光束之該等光軸之一方向上之不同各別位置處;且該方法包含分別針對該第一光柵部件及該第二光柵部件中每一者中的該光柵之區來判定第一對比度值及第二對比度值,且比較該第一對比度值與該第二對比度值以便判定該光點聚焦值。
34.如條項33之方法,其進一步包含:使用一致動器系統以在實質上平行於該複數個輻射光束之該等光軸之一方向上調整該光柵相對於該投影系統之該位置;及自該第一對比度值與該第二對比度值實質上相同時的該光柵之該位置之一識別來判定該光點聚焦值。
35.如條項34之方法,其包含藉由基於該第一對比度值與該第二對比度值之該比較而使用該致動器系統反覆地調整該光柵之該位置直至該第一對比度值與該第二對比度值之間的差低於某一臨限值為止來識別該光柵之該位置。
36.如條項34之方法,其包含:藉由使用該致動器系統以使該光柵移動通過判定該第一對比度值及該第二對比度值中每一者所針對之一位置範圍來識別該光柵之該位置;及 自該複數個第一對比度值及第二對比度值識別該第一對比度值與該第二對比度值實質上相同時的該位置。
37.如條項22至36中任一項之方法,其包含同時地判定複數個該等輻射光束光點之各別光點聚焦值。
38.一種元件製造方法,其包含:使用如條項22至37中任一項之方法以量測一微影裝置中之複數個輻射光束中至少一者之該輻射光束光點聚焦;及使用該經偵測光點聚焦值以控制該微影裝置之至少一參數,從而控制該複數個輻射光束至一基板上之該投影。
雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述之方式不同的其他方式來實踐本發明。舉例而言,本發明可採取如下形式:電腦程式,其含有經組態以執行如上文所揭示之方法的機器可讀指令之一或多個序列;或電腦可讀資料儲存媒體(例如,半導體記憶體、磁碟或光碟),其具有儲存於其中之此電腦程式。
以上描述意欲為說明性而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下對所描述之本發明進行修改。
1‧‧‧微影裝置
2‧‧‧基板台
3‧‧‧定位元件
4‧‧‧個別可控制自發射對比元件/個別可控制器件/可程式化圖案化元件
5‧‧‧框架
7‧‧‧致動器/馬達
8‧‧‧旋轉框架/可旋轉框架
9‧‧‧可移動光學件
10‧‧‧軸線
11‧‧‧馬達/第一致動器系統
12‧‧‧透鏡/投影系統
13‧‧‧孔隙結構
14‧‧‧投影系統/場透鏡
15‧‧‧框架
17‧‧‧基板
18‧‧‧投影系統/成像透鏡
19‧‧‧對準/位階感測器
21‧‧‧陣列
30‧‧‧分段鏡面
40‧‧‧輻射光束擴展器
41‧‧‧正透鏡/第一透鏡
42‧‧‧正透鏡/第二透鏡
43‧‧‧硬質支撐框架
44‧‧‧第二致動器系統/第二致動器
45‧‧‧控制器
46‧‧‧光軸
50‧‧‧光柵
50a‧‧‧第一光柵部件
50b‧‧‧第二光柵部件
51‧‧‧輻射強度感測器
52‧‧‧輻射光束/聚焦光束
52'‧‧‧輻射光束
53‧‧‧鉻條帶
54‧‧‧基板
55‧‧‧控制器
60‧‧‧致動器系統
61‧‧‧最佳聚焦平面
A1‧‧‧區域
A2‧‧‧區域
A3‧‧‧區域
A11‧‧‧區域
A12‧‧‧區域
A13‧‧‧區域
A14‧‧‧區域
A21‧‧‧區域
A22‧‧‧區域
A23‧‧‧區域
A24‧‧‧區域
A31‧‧‧區域
A32‧‧‧區域
A33‧‧‧區域
A34‧‧‧區域
B1‧‧‧第一光束集合/光束
B2‧‧‧第二光束集合/光束
B3‧‧‧第三光束集合/光束
P‧‧‧節距
W‧‧‧基板
WT‧‧‧基板台
圖1描繪根據本發明之一實施例的微影裝置之部件;圖2描繪根據本發明之一實施例的圖1之微影裝置之部件的俯視圖;圖3描繪根據本發明之一實施例的微影裝置之部件的高度示意性透視圖; 圖4描繪根據本發明之一實施例的藉由根據圖3之微影裝置至基板上之投影的示意性俯視圖;圖5描繪根據本發明之一實施例的用以控制聚焦之系統之配置;圖6示意性地描繪根據本發明之一實施例的光點聚焦感測器系統之配置;圖7描繪可用於本發明之一實施例中的輻射強度感測器之預期輸出;圖8描繪根據本發明之一實施例的感測器系統之配置;圖9及圖10描繪根據本發明之一實施例的光點聚焦感測器系統之配置之變化;及圖11描繪根據本發明之一實施例的光點聚焦感測器系統。
50‧‧‧光柵
51‧‧‧輻射強度感測器
52‧‧‧輻射光束/聚焦光束
52'‧‧‧輻射光束
53‧‧‧鉻條帶
54‧‧‧基板
55‧‧‧控制器
P‧‧‧節距

Claims (13)

  1. 一種微影裝置,其包含:一可程式化圖案化元件,其經組態以提供複數個輻射光束;一投影系統,其經組態以將該複數個輻射光束投影至一基板上以形成各別輻射光點;及一光點聚焦感測器系統,其包含:一光柵,其經配置成使得該等輻射光束光點中至少一者可順次地投影至該光柵上之複數個不同部位上,以便執行一輻射光點聚焦量測;一輻射強度感測器,其經組態以自在該複數個部位處傳遞通過該光柵或自該光柵所反射之該輻射光束光點偵測輻射強度;及一控制器,其經組態以自對應於該複數個部位之該經偵測輻射強度判定一光點聚焦值,其中該控制器經組態以針對包括複數個該等不同部位的該光柵之至少一區來判定最大經偵測輻射強度與最小經偵測輻射強度之間的差之一對比度值,且使用該至少一對比度值以便判定該光點聚焦值,其中該控制器經組態以判定該光柵之一或多個區之各別對比度值(contrast value),在該一或多個區中該光柵之表面處於在實質上平行於該複數個輻射光束之該等光軸之一方向上之不同各別位置,且該控制器經組態以自在實質上平行於該複數個輻射光束之該等光 軸之該方向上該光柵之該表面之對應於該最大對比度值的一位置之一判定來判定該光點聚焦值。
  2. 如請求項1之微影裝置,其進一步包含一基板台,該基板台經組態以支撐該基板,其中該光柵安裝至該基板台之一上部表面。
  3. 如請求項2之微影裝置,其進一步包含一致動器系統,該致動器系統經組態以在實質上垂直於該複數個輻射光束之光軸之一方向上移動該基板台,其中在一輻射光點聚焦量測期間,該致動器系統用以相對於該輻射光束光點來移動該光柵,使得該輻射光束光點投影至該光柵上之複數個不同部位上。
  4. 如請求項1至3中任一項之微影裝置,其中該投影系統經組態成使得其可使該複數個輻射光束在實質上垂直於該等輻射光束之該等光軸之一方向上橫越該基板進行掃描;且在一輻射光點聚焦量測期間,該投影系統用以將該輻射光束光點投影至該光柵上之複數個不同部位上。
  5. 如請求項1之微影裝置,其進一步包含一聚焦調整系統,該聚焦調整系統經組態以在實質上平行於該輻射光束之該光軸之一方向上控制供導出該光點的該輻射光束之聚焦點之位置;且其中該控制器經組態以針對該輻射光束之該聚焦點之不同位置來判定該光柵之一或多個區之各別對比度值,且自對應於最大對比度值的該聚焦點之一位置之一判定 來判定該光點聚焦值。
  6. 如請求項5之微影裝置,其中該控制器經組態以自對應於自該等經偵測輻射強度所判定之最高對比度值之位置來判定該光點聚焦值。
  7. 如請求項5之微影裝置,其中該控制器經組態以判定在實質上平行於該複數個輻射光束之該等光軸之該方向上之至少三個不同位置的對比度值、使一曲線擬合於該等對比度值與該等對應位置之間的關係,且自對應於該曲線之最大值之位置判定該光點聚焦值。
  8. 如請求項1之微影裝置,其包含一致動器系統,該致動器系統經組態以在實質上平行於該複數個輻射光束之該等光軸之該方向上移動該光柵;且其中該等對比度值係在該方向上之不同位置處針對該光柵之單一區予以判定。
  9. 如請求項1之微影裝置,其包含一致動器系統,該致動器系統經組態以在實質上垂直於該複數個輻射光束之該等光軸之一方向上移動該光柵;且其中該光柵之該表面經配置為與該複數個輻射光束之該等光軸成一斜角,且該等對比度值係針對該光柵之各別不同區予以判定。
  10. 如請求項1之微影裝置,其中:該光柵之該表面實質上平行於該基板台之該上部表面;該致動器系統經組態以控制該基板台,使得當該複數 個輻射光束投影至該基板上時該基板台之該上部表面實質上垂直於該複數個輻射光束之該等光軸,且當該複數個輻射光束投影至該光柵上時該基板台之該上部表面與該複數個輻射光束之該等光軸成一斜角;且該等對比度值係針對該光柵之各別不同區予以判定。
  11. 如請求項1之微影裝置,其中該光柵包含第一光柵部件及第二光柵部件,該第一光柵部件及該第二光柵部件配置於在實質上平行於該複數個輻射光束之該等光軸之一方向上之不同各別位置處;且該控制器經組態以分別針對該第一光柵部件及該第二光柵部件中每一者中的該光柵之區來判定第一對比度值及第二對比度值,且比較該第一對比度值與該第二對比度值以便判定該光點聚焦值。
  12. 一種用於量測一微影裝置中之輻射光束光點聚焦之方法,該微影裝置包含:一可程式化圖案化元件,其經組態以提供複數個輻射光束;及一投影系統,其經組態以將該複數個輻射光束投影至一基板上以形成各別輻射光點;該方法包含:將該等輻射光束光點中至少一者順次地投影至一光柵上之複數個不同部位上;自在該複數個部位處傳遞通過該光柵或自該光柵所反射之該輻射光束光點偵測輻射強度; 自對應於該複數個部位之該經偵測輻射強度判定一光點聚焦值,其中該方法進一步包含針對包括複數個該等不同部位的該光柵之至少一區來判定最大經偵測輻射強度與最小經偵測輻射強度之間的差之一對比度值,且使用該至少一對比度值以便判定該光點聚焦值;及判定該光柵之一或多個區之各別對比度值,在該一或多個區中該光柵之表面處於在實質上平行於該複數個輻射光束之該等光軸之一方向上之不同各別位置,且自在實質上平行於該複數個輻射光束之該等光軸之該方向上該光柵之該表面之對應於該最大對比度值的一位置之一判定來判定該光點聚焦值。
  13. 一種元件製造方法,其包含:使用如請求項12之方法以量測一微影裝置中之複數個輻射光束中至少一者之該輻射光束光點聚焦;及使用該經偵測光點聚焦值以控制該微影裝置之至少一參數,從而控制該複數個輻射光束至一基板上之該投影。
TW101107932A 2011-03-11 2012-03-08 微影裝置、量測輻射光束光點聚焦的方法及元件製造方法 TWI505040B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161451950P 2011-03-11 2011-03-11

Publications (2)

Publication Number Publication Date
TW201243512A TW201243512A (en) 2012-11-01
TWI505040B true TWI505040B (zh) 2015-10-21

Family

ID=45755330

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101107932A TWI505040B (zh) 2011-03-11 2012-03-08 微影裝置、量測輻射光束光點聚焦的方法及元件製造方法

Country Status (4)

Country Link
JP (1) JP5973472B2 (zh)
NL (1) NL2008292A (zh)
TW (1) TWI505040B (zh)
WO (1) WO2012123205A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5801737B2 (ja) * 2012-03-16 2015-10-28 株式会社Screenホールディングス 検査装置、露光装置及び検査方法
AU2014203992B2 (en) 2013-01-04 2018-03-22 Meso Scale Technologies, Llc. Assay apparatuses, methods and reagents
US10741354B1 (en) * 2018-02-14 2020-08-11 Kla-Tencor Corporation Photocathode emitter system that generates multiple electron beams

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604344A (en) * 1994-10-10 1997-02-18 Nova Measuring Instruments Ltd. Autofocussing microscope having a pattern imaging system
US20050200820A1 (en) * 2004-03-09 2005-09-15 Asml Holding N.V. Lithographic apparatus and device manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476382B1 (en) * 2000-09-27 2002-11-05 Carnegie Mellon University System and method for measuring the size of a focused optical spot
US20050083398A1 (en) * 2003-10-16 2005-04-21 Agfa Corporation Plate scanning system with field replaceable laser source subsystem
DE102007055530A1 (de) * 2007-11-21 2009-05-28 Carl Zeiss Ag Laserstrahlbearbeitung
JP5351272B2 (ja) * 2008-09-22 2013-11-27 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604344A (en) * 1994-10-10 1997-02-18 Nova Measuring Instruments Ltd. Autofocussing microscope having a pattern imaging system
US20050200820A1 (en) * 2004-03-09 2005-09-15 Asml Holding N.V. Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
NL2008292A (en) 2012-09-12
JP5973472B2 (ja) 2016-08-23
JP2014513412A (ja) 2014-05-29
TW201243512A (en) 2012-11-01
WO2012123205A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
KR101149842B1 (ko) 기판 내의 결함들을 결정하는 방법 및 리소그래피 프로세스에서 기판을 노광하기 위한 장치
TWI585540B (zh) 微影裝置及元件製造方法
TWI437378B (zh) 微影裝置及元件製造方法
JP4401368B2 (ja) リソグラフィ装置およびデバイス製造方法
CN118068655A (zh) 量测设备
JP2018139010A (ja) 移動体装置及び露光装置
JP5162669B2 (ja) リソグラフィ装置及び方法
TWI505040B (zh) 微影裝置、量測輻射光束光點聚焦的方法及元件製造方法
JP2010206221A (ja) リソグラフィ装置、放射線ビーム検査デバイス、放射線ビームの検査方法およびデバイス製造方法
TWI613520B (zh) 微影裝置、用於量測輻射光束光點位置之方法、元件製造方法、及用於一微影裝置之輻射偵測器系統
JP4759556B2 (ja) 基板の特定を測定する方法、装填装置、検査装置、リソグラフィ装置およびリソグラフィ処理セル
TWI448840B (zh) 微影裝置及器件製造方法
TWI398739B (zh) 度量衡裝置,微影裝置及測量基板特性的方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees