TWI499165B - Renewable energy system for a constant-power-demand dc supply bus and method thereof - Google Patents

Renewable energy system for a constant-power-demand dc supply bus and method thereof Download PDF

Info

Publication number
TWI499165B
TWI499165B TW102109933A TW102109933A TWI499165B TW I499165 B TWI499165 B TW I499165B TW 102109933 A TW102109933 A TW 102109933A TW 102109933 A TW102109933 A TW 102109933A TW I499165 B TWI499165 B TW I499165B
Authority
TW
Taiwan
Prior art keywords
value
converter
output
source
boost
Prior art date
Application number
TW102109933A
Other languages
Chinese (zh)
Other versions
TW201438373A (en
Inventor
謝冠群
謝宏毅
陳振剛
Original Assignee
中原大學
至美科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中原大學, 至美科技股份有限公司 filed Critical 中原大學
Priority to TW102109933A priority Critical patent/TWI499165B/en
Publication of TW201438373A publication Critical patent/TW201438373A/en
Application granted granted Critical
Publication of TWI499165B publication Critical patent/TWI499165B/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

用於固定功率需求之直流電源匯流排的再生能源系統與其 方法Renewable energy system for DC power busbars for fixed power requirements and method

本發明涉及一種用於固定功率需求之直流電源匯流排的再生能源系統與其方法,該再生能源系統尤指一種具有一再生能源裝置、一Z源轉換器與一Z源脈波寬調變器之再生能源系統。The invention relates to a regenerative energy system and a method thereof for fixing a DC power supply bus of a power demand, in particular, a regenerative energy device, a Z-source converter and a Z-source pulse width modulator Renewable energy system.

再生能源基於珍惜能源與節約能源的觀念而被善加運用於複合式用途。基於複合式功率的價值與可行性,再生能源作為一替代方案以取代石油能源已成為一使用於我們生活中之不可避免的新能源型式。受歡迎的複合式功率只不過是燃料電池(fuel cell,FC)、風力、潮流、生質及/或光電(PV)等能源。目前,電力混合汽油,諸如插電式動力混合車(plug-in vehicle,PHV)在複合運用上是很著名的。如第一圖所示之多用途複合式功率系統,諸如FC/PV、FC/PV/風力以及FC/風力,視其不同之運用而可隨處發現。其透過轉換器1至轉換器3與電池而提供輸出功率至直流匯流排,並由直流匯流排提供直流輸入電流至轉換器4與逆變器,且透過轉換器4提供直流輸出電流至直流電源以及透過逆變器輸出交流輸出電流至電網。事實上,普遍使用的複合式系統包含不同種類的再生能源,伴隨一燃料電池與一電池的儲存備份,通常即運用於調控輸出功率需求的穩定。這是因為FC屬於新的能源,在能量遞送的運用上可以是穩定的,因此其常常像是一個複合式的夥伴,來與各種不同的再生能源搭配。此外,即使基於環境保護的意識,燃料電池可以導致一個在運用上非污染的能源,但由於電池的低成本、高可靠度以及易於調控複合式的直流匯流排,其仍是重要的搭配用於複合式電壓調控的儲存裝置。Renewable energy is used for composite purposes based on the concept of cherishing energy and saving energy. Based on the value and feasibility of hybrid power, renewable energy as an alternative to replacing petroleum energy has become an inevitable new energy type used in our lives. The popular composite power is nothing more than energy sources such as fuel cells (FCs), wind power, currents, biomass and/or photovoltaics (PV). At present, electric hybrid gasoline, such as a plug-in vehicle (PHV), is well known for its composite use. Multi-purpose hybrid power systems, such as FC/PV, FC/PV/Wind, and FC/Wind, as shown in the first figure, can be found everywhere depending on their application. It provides output power to the DC bus through the converter 1 to the converter 3 and the battery, and provides DC input current to the converter 4 and the inverter from the DC bus, and provides DC output current to the DC power through the converter 4 And output AC output current to the grid through the inverter. In fact, commonly used composite systems contain different types of renewable energy, with a fuel cell and a battery storage backup, usually used to regulate the stability of output power requirements. This is because FC is a new source of energy and can be used for energy delivery, so it is often like a compound partner to match a variety of renewable energy sources. In addition, even based on the awareness of environmental protection, fuel cells can lead to a non-polluting energy source, but due to the low cost, high reliability of the battery and the easy regulation of the compound DC bus, it is still an important match. Composite voltage regulated storage device.

職是之故,發明人鑒於習知技術之缺失,乃思及改良發明之意念,終能發明出本案之「用於固定功率需求之直流電源匯 流排的再生能源系統與其方法」。For the sake of his position, the inventor, in view of the lack of prior art, thought of and improved the idea of invention, and finally invented the "DC power sink for fixed power demand" in this case. The regenerative energy system and its methods.

本案之主要目的在於提供一種用於固定功率需求之直流電源匯流排的再生能源系統與其方法,該再生能源系統可包含諸如燃料電池與光電模組,但不包括蓄電池,不致污染環境,且可提供穩定的輸出功率,不受再生能源因天候而供電不穩的影響,因此極具有研究及商業化的價值。The main purpose of the present invention is to provide a regenerative energy system and method for a DC power busbar for fixing power demand, which can include, for example, a fuel cell and a photovoltaic module, but does not include a battery, does not pollute the environment, and can provide The stable output power is not affected by the unstable power supply due to the weather, so it is of great research and commercial value.

本案之又一主要目的在於提供一種複合式再生能源系統,包含一再生能源裝置,一升壓電流源轉換器,電連接於該再生能源裝置且輸出一具一第一值之第一輸出功率,一燃料電池,一Z源電壓轉換器,電連接於該燃料電池與該升壓電流源轉換器,以及一Z源脈波寬調變器,電連接於該Z源電壓轉換器與該升壓電流源轉換器,且當該第一值低於一輸出預定值時,使該Z源電壓轉換器輸出一具一第二值之第二輸出功率,以使該第一值與該第二值之和等於該輸出預定值。Another main object of the present invention is to provide a composite renewable energy system including a regenerative energy device, a boost current source converter electrically connected to the regenerative energy device and outputting a first output power having a first value. a fuel cell, a Z source voltage converter electrically connected to the fuel cell and the boost current source converter, and a Z source pulse width modulator electrically connected to the Z source voltage converter and the boost And a current source converter, and when the first value is lower than an output predetermined value, causing the Z source voltage converter to output a second output power having a second value, so that the first value and the second value The sum is equal to the output predetermined value.

本案之另一主要目的在於提供一種再生能源系統,包含一再生能源裝置,輸出一電流以產生一具一第一值之第一功率,一Z源轉換器,電連接於該再生能源裝置,以及一Z源脈波寬調變器,電連接於該Z源轉換器與該再生能源裝置,且當該第一值低於一輸出預定值時,使該Z源轉換器輸出一具一第二值之第二輸出功率,以使該第一值與該第二值之和等於該輸出預定值。Another main object of the present invention is to provide a regenerative energy system comprising a regenerative energy device, outputting a current to generate a first power having a first value, a Z-source converter electrically connected to the regenerative energy device, and a Z-source pulse width modulator electrically connected to the Z-source converter and the regenerative energy device, and when the first value is lower than an output predetermined value, causing the Z-source converter to output a second The second output power of the value such that the sum of the first value and the second value is equal to the output predetermined value.

本案之下一主要目的在於提供一種用於一複合式再生能源系統之控制方法,其中該複合式再生能源系統包括一升壓轉換器、一燃料電池與一電連接於該燃料電池與該升壓轉換器之Z源轉換器,該方法包括:使該升壓轉換器輸出一具一第一值之第一輸出功率;以及當該第一值低於一輸出預定值時,使該Z源轉換器輸出一具一第二值之第二輸出功率,以使該第一值與該第二值之和等於該輸出預定值。A primary objective of the present invention is to provide a control method for a hybrid renewable energy system, wherein the hybrid renewable energy system includes a boost converter, a fuel cell and an electrical connection to the fuel cell and the boost a Z source converter of the converter, the method comprising: causing the boost converter to output a first output power having a first value; and causing the Z source to be converted when the first value is lower than an output predetermined value The device outputs a second output power having a second value such that the sum of the first value and the second value is equal to the output predetermined value.

為了讓本發明之上述目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:The above described objects, features, and advantages of the present invention will become more apparent and understood.

1‧‧‧本發明第一較佳實施例之再生能源系統1‧‧‧Renewable energy system of the first preferred embodiment of the present invention

11‧‧‧Z源轉換器11‧‧‧Z source converter

12‧‧‧脈波寬調變控制器12‧‧‧ Pulse width modulation controller

13‧‧‧加法器13‧‧‧Adder

2‧‧‧本發明第二較佳實施例之再生能源系統2‧‧‧Renewable energy system of the second preferred embodiment of the present invention

21‧‧‧責任週期偵測器21‧‧‧Responsibility Cycle Detector

22‧‧‧Z源脈波寬調變器22‧‧‧Z source pulse width modulator

2’‧‧‧本發明第三較佳實施例之再生能源系統2'‧‧‧Renewable Energy System of the Third Preferred Embodiment of the Invention

BCC‧‧‧升壓電流源轉換器BCC‧‧‧Boost current source converter

DCB‧‧‧直流匯流排DCB‧‧‧ DC busbar

PI-INC MPPT‧‧‧功率增量輔助之增量電導最大功率點追蹤控制器PI-INC MPPT‧‧‧Power Incremental Incremental Conductance Maximum Power Point Tracking Controller

ZSVC‧‧‧Z源電壓轉換器ZSVC‧‧‧Z source voltage converter

第一圖:其係顯示一習知之多用途複合式功率系統之電路示意圖。First: It shows a schematic circuit diagram of a conventional multi-purpose hybrid power system.

第二圖:其係顯示一依據本發明構想之第一較佳實施例之複合式再生能源系統之電路示意圖。Second Figure: A schematic diagram of a circuit of a composite renewable energy system in accordance with a first preferred embodiment of the present invention.

第三圖(a):其係顯示一依據本發明構想之第二較佳實施例之複合式再生能源系統之電路示意圖。Figure 3 (a) is a circuit diagram showing a hybrid renewable energy system in accordance with a second preferred embodiment of the present invention.

第三圖(b):其係顯示一如第三圖(a)所示之PV模組與BCC以及燃料電池與ZSVC在複合時之動態狀態的波形圖。Third figure (b): This shows a waveform diagram of the dynamic state of the PV module and BCC as shown in Fig. 3(a) and the fuel cell and ZSVC at the time of recombination.

第四圖:其係顯示一如第三圖(a)所示之燃料電池與ZSVC之電路圖。Fourth: It shows the circuit diagram of the fuel cell and ZSVC as shown in the third diagram (a).

第五圖:其係顯示一用於PV模組與BCC之模擬的電流對責任週期dB 的反應以及用於FC與ZSVC之模擬的電流對責任週期dZ 的反應之曲線圖。Figure 5: A graph showing the response of a current used for the simulation of the PV module to the BCC to the duty cycle d B and the response of the current to the duty cycle d Z for the simulation of FC and ZSVC.

第六圖(a)與(b):其係分別顯示PV模組與BCC和FC與BCC具一等效負載Ro或是在輸出埠M處分開為兩個等效負載RoB,h 與RoZ,h 時的電路圖。Figure 6 (a) and (b): The system shows that the PV module and BCC and FC and BCC have an equivalent load Ro or are separated at the output 埠M into two equivalent loads R oB, h and R. Circuit diagram for oZ, h .

第六圖(c):其係顯示RoB,h 與RoZ,h 之間關係的曲線圖。Figure 6 (c): A graph showing the relationship between R oB,h and R oZ,h .

第七圖(a)與(b):其係分別顯示一當DCB處具固定功率250W時,dB 與dZ 的模擬關係與複合式電流對dB 之反應的曲線圖。Figure 7 (a) and (b): The graphs show the relationship between the simulated relationship of d B and d Z and the response of the composite current to d B when DCB has a fixed power of 250 W.

第八圖:其係顯示在PV模組的IPV -VPV 特性曲線圖上的用於PI-INC MPPT控制器之追蹤標準。Figure 8: This is the tracking standard for the PI-INC MPPT controller displayed on the I PV -V PV characteristic of the PV module.

第九圖(a)與(b):其係分別顯示一用於PI-INC MPPT控制器之演算法的主程式與副程式之流程圖。Figure 9 (a) and (b): A flowchart showing the main program and sub-program for the algorithm of the PI-INC MPPT controller.

第十圖:其係顯示一用於DCB之PV/FC的複合式再生能源系統的電路示意圖。Figure 10: A schematic diagram showing a circuit of a hybrid renewable energy system for PV/FC of DCB.

第十一圖:其係顯示一當負載變動時PEM-FC之特性曲線圖。Figure 11: This shows the characteristic curve of PEM-FC when the load changes.

第十二圖(a)-(c):其係分別顯示一當該PV模組與BCC運作於d B =0.75,且切換頻率f sB =39.13 kHz時之動態狀態,一當該FC模組與ZSVC運作於d Z =0.435和f sZ =31.6 kHz時之動態狀態及一相對於dZ和dB關係的輸出狀態之波形圖。Figure 12 (a)-(c): The system shows the dynamic state when the PV module and BCC operate at d B =0.75 and the switching frequency f sB =39.13 kHz. A waveform diagram of the dynamic state with ZSVC operating at d Z = 0.435 and f sZ = 31.6 kHz and an output state relative to dZ and dB.

第十三圖:其係顯示一在FC與ZSVC及PV模組與BCC間複合式電流行為之測試的曲線圖。Figure 13: A graph showing a test of the combined current behavior between FC and ZSVC and PV modules and BCC.

第十四圖(a)-(b):其係分別顯示一當太陽日曬變動時PI-INC MPPT控制器的五個追蹤劇本和在PV模組與BCC及FC與ZSVC間之動態複合式行為之波形圖。Figure 14 (a)-(b): This shows the five tracking scripts of the PI-INC MPPT controller and the dynamic combination between the PV module and the BCC and FC and ZSVC when the sun changes. Waveform of behavior.

如第二圖所示,其為一依據本發明構想之第一較佳實施例之複合式再生能源系統之示意圖。在第二圖中,該再生能源系統1是由一燃料電池及一轉換器(例如一Z源轉換器11)來調控輸出功率,但並未伴隨會造成環境污染之蓄電池。在第二圖中,該RS1、RS2與RS3為再生能源(例如,其可為燃料電池、生質能源、風力與潮流等再生能源),分別電連接於轉換器1、轉換器2與轉換器3;該轉換器1、轉換器2與轉換器3分別輸出一電流Iro1 、Iro2 與Iro3 ,該Z源轉換器11電連接於該燃料電池與一脈波寬調變控制器(pulse-width modulation(PWM)controller)12並輸出一電流Ioz ;該等電流Iro1 、Iro2 、Iro3 與IOZ 輸入一加法器13,該加法器13具一混合埠(hybrid port),並由該混合埠輸出一電流IoT 至一直流電源匯流排(DC supply bus),該再生能源系統具有一輸出電壓Vo。該直流電源匯流排為一固定功率需求(constant-power-demand)之直流匯流排(DC bus,DCB),而該燃料電池需在沒有蓄電池的情況下供應全能量給DCB以克服來自再生能源(例如光電模組)之能源供應的時斷時續或缺乏(例如,當陰天或夜晚時)。As shown in the second figure, it is a schematic diagram of a composite renewable energy system in accordance with a first preferred embodiment of the present invention. In the second figure, the regenerative energy system 1 is regulated by a fuel cell and a converter (for example, a Z-source converter 11), but is not accompanied by a battery that causes environmental pollution. In the second figure, the RS1, RS2, and RS3 are regenerative energy sources (for example, renewable energy sources such as fuel cells, biomass energy, wind power, and power flow), and are electrically connected to the converter 1, the converter 2, and the converter, respectively. 3; the converter 1, the converter 2 and the converter 3 respectively output a current I ro1 , I ro2 and I ro3 , the Z source converter 11 is electrically connected to the fuel cell and a pulse width modulation controller (pulse -width modulation (PWM) controller 12 and output a current I oz ; the currents I ro1 , I ro2 , I ro3 and I OZ are input to an adder 13 having a hybrid port, and A current I oT is output from the hybrid enthalpy to a DC supply bus having an output voltage Vo. The DC power bus is a constant-power-demand DC bus (DCB), and the fuel cell needs to supply full energy to the DCB without the battery to overcome the renewable energy ( For example, the photovoltaic module's energy supply is intermittent or lacking (for example, when it is cloudy or at night).

如第三圖(a)所示,其為一依據本發明構想之第二較佳實施例之複合式再生能源系統之電路示意圖。在第三圖(a)中,該複合式再生能源系統包含一光電模組(PV模組)、一升壓電流源轉換器(boost current-source converter,BCC)、一燃料電池(FC)、一Z源電壓轉換器(Z-source voltage converter,ZSVC)、一PI-INC MPPT(功率增量輔助之增量電導最大功率點追蹤控制器)、一責任週期偵測器(duty detector)21、一Z源脈波寬調變器(Z-source pulse width modulator,Z-source PWM)22、一分壓器(R1+R2)與一輸出電容Co,而該再生能源系統之負載為一DCB,且該再生能源系統之輸出電壓為Vo、輸出電流為IoT 。該BCC從該光電模組汲取能量, 且輸出一電流IoB ,該ZSVC從該燃料電池抽取能量,且輸出一電流IoZ ,而該PV模組與該FC的能量皆混合於該DCB以達成一固定功率需求,其中該FC與ZSVC調控DCB之電壓的固定,且負責功率之管理。據此,當考量珍惜能源時,該PV模組能量的饋入在用於互補性能量派遣之時具優先性。該PV模組與BCC是由責任週期所控制,是由具責任週期偵測(duty detection)之該PI-INC MPPT控制器所引導,用於來自FC與ZSVC之迅速能量派遣。該PI-INC MPPT控制器可調適性地偵測當下的責任週期差異△d B (=d Bn+1 -d Bn ,其中n+1是新的週期,而n是前一週期),而透過責任週期偵測,提供一爆發電壓(burst voltage)Vb 與一FC與ZSVC之錯誤訊號Ve =Vref,Z -Vof,Z (其中Vref,Z 是一Z源電壓轉換器之一參考電壓值,而Vof,Z 是一Z源電壓轉換器之一輸出回饋電壓值)混合以針對從PV模組與BCC來的饋入能量迅速地從FC派遣能量,俾保持輸出功率固定。當從PV模組注入之能量是固定的,而偵測的△d B =0,在FC與ZSVC的一個細微調控將發生。簡言之,在穩態時,該FC與ZSVC可藉由僅偵測該輸出電容Co上的電壓來針對由注入之PV模組能量所引起之電壓改變以微調該DCB固定電壓。其中該PV模組與BCC的d B 和該FC與ZSVC的d Z 間的動態關係可以實際上符合在PV模組與FC間的能量派遣是一互補的形式。此外,該FC與ZSVC無須任何用於調控之額外的電池,即可保持為了DCB需求之該輸出電壓與輸出功率之固定。As shown in the third diagram (a), it is a circuit diagram of a composite renewable energy system according to a second preferred embodiment of the present invention. In the third diagram (a), the composite renewable energy system includes a photovoltaic module (PV module), a boost current-source converter (BCC), a fuel cell (FC), A Z-source voltage converter (ZSVC), a PI-INC MPPT (power incrementally assisted incremental conductance maximum power point tracking controller), and a duty detector 21 A Z-source pulse width modulator (Z-source PWM) 22, a voltage divider (R1+R2) and an output capacitor Co, and the load of the regenerative energy system is a DCB. And the output voltage of the regenerative energy system is Vo, and the output current is I oT . The BCC draws energy from the optoelectronic module, and outputs a current I oB, the ZSVC extracting energy from the fuel cell, and outputs a current I oZ, which are mixed in a PV module with the energy of the DCB to achieve FC A fixed power requirement in which the FC and ZSVC regulate the voltage of the DCB and is responsible for power management. Accordingly, when considering the cherished energy source, the PV module energy feed is prioritized for use in complementary energy dispatch. The PV module and BCC are controlled by the duty cycle and are guided by the PI-INC MPPT controller with duty detection for rapid energy dispatch from FC and ZSVC. The PI-INC MPPT controller adjusts the current duty cycle difference Δ d B (= d Bn+1 - d Bn , where n+1 is the new period and n is the previous period), and Responsibility cycle detection, providing a burst voltage V b and an FC and ZSVC error signal V e =V ref,Z -V of,Z (where V ref,Z is one of the Z source voltage converters The reference voltage value, and V of, Z is one of the Z source voltage converters, the output feedback voltage value) is mixed to quickly dispatch energy from the FC for the feed energy from the PV module and the BCC, and keep the output power fixed. When the energy injected from the PV module is fixed and the detected Δ d B =0, a fine regulation of FC and ZSVC will occur. In short, at steady state, the FC and ZSVC can fine tune the DCB fixed voltage for the voltage change caused by the injected PV module energy by detecting only the voltage on the output capacitor Co. Wherein the dynamic relationship between the energy of the PV module and the BCC d B d Z and the FC may in fact conform with ZSVC between the PV module and dispatched FC is a complementary form. In addition, the FC and ZSVC maintain the output voltage and output power fixed for DCB without any additional batteries for regulation.

在第三圖(a)中,該FC與ZSVC是電壓控制的電壓源(VCVS),當任何其他能量饋入DCB時,用於維持DCB電壓固定。該PI-INC MPPT控制器可調控該FC與ZSVC即時回應該PV模組通過該PV模組與BCC至DCB的饋入能量,致使該FC與ZSVC可以克服該饋入能量之潛在的波動效應,該波動效應可能延後穩定該DCB電壓的決定時間。該責任週期的偵測具有一有限制的轉移特性,其輸出是一爆發直流電壓與現下之責任週期差△d B 成比例,他們的關係如下:V b =K B △d B (1)In the third diagram (a), the FC and ZSVC are voltage controlled voltage sources (VCVS) that are used to maintain the DCB voltage fixed when any other energy is fed into the DCB. The PI-INC MPPT controller can regulate the FC and ZSVC to instantly respond to the PV module's feed energy through the PV module and BCC to DCB, so that the FC and ZSVC can overcome the potential fluctuation effect of the feed energy. This wave effect may delay the decision time to stabilize the DCB voltage. The detection of the duty cycle has a limited transfer characteristic, and its output is an explosive DC voltage proportional to the current duty cycle difference Δ d B . Their relationship is as follows: V b = K B . △d B (1)

其中K B 是V/責任週期(duty-ratio )的敏感度,而該責任週期差是定義為 Where K B is the sensitivity of V / duty cycle (duty-ratio), and the duty cycle is defined as the difference

其中n+1是新的週期,而n是前一週期。例如,當考量參考鋸齒波波形的限制通常是3伏特時,其限制定義為±1伏特。責任週期偵測作業應當調適於FC與ZSVC的控制主題,而當無輸出時其是無用處的,如△d B =0,則V b =0,意謂該被FC與ZSVC調控的複合式系統是在穩態,而無任何改變來自饋入能量。Where n+1 is the new period and n is the previous period. For example, when considering the limit of the reference sawtooth waveform is typically 3 volts, the limit is defined as ±1 volt. The duty cycle detection operation should be adapted to the control theme of FC and ZSVC, and it is useless when there is no output. For example, Δ d B =0, then V b =0, which means that the FC and ZSVC are combined. The system is in steady state without any change from feeding energy.

互補能量派遣的狀態如第三圖(b)所示,其中PV模組與BCC以及FC與ZSVC均處在同樣的切換頻率,但實際上是沒有限制的。The state of the complementary energy dispatch is as shown in the third figure (b), in which the PV module and the BCC and the FC and the ZSVC are all at the same switching frequency, but there is actually no limit.

如第三圖(a)所示,PV模組與BCC用於依據來自PI-INC MPPT控制器的責任週期d B 以從PV模組汲取能量。該PV模組與BCC的阻抗應當調適到該PV模組最大功率傳輸時的阻抗,以便藉由該PI-INC MPPT控制器跟隨PV模組之IPV -VPV 曲線上的最大功率點(MPP)來抽取PV模組最大能量。為便於分析,所有裝置與組件假設是理想的。該PV模組與BCC是設計來運作於不連續傳導模式(DCM),如第三圖(b)所預測者,其中在PV模組與BCC中的電流iLB 的峰值是: As shown in Figure 3 (a), the PV module and BCC are used to draw energy from the PV module based on the duty cycle d B from the PI-INC MPPT controller. The impedance of the PV module and the BCC should be adjusted to the impedance of the PV module during maximum power transmission, so that the PI-INC MPPT controller follows the maximum power point on the I PV- V PV curve of the PV module (MPP) ) to extract the maximum energy of the PV module. All devices and components are assumed to be ideal for analysis. The PV module and BCC are designed to operate in discontinuous conduction mode (DCM), as predicted by the third diagram (b), where the peak value of current i LB in the PV module and BCC is:

其中d B 是該PV模組與BCC的責任週期。在平均後,平均輸出電流IoB 是: Where d B is the duty cycle of the PV module and BCC. After averaging, the average output current I oB is:

式(4)顯示平均輸出電流IoB 是與d B 的平方成比例。Equation (4) shows that the average output current I oB is proportional to the square of d B .

如從第三圖(a)所得之第四圖所示之該FC與ZSVC電路運作如VCVS。為易於分析,工作於BCM之該FC與ZSVC被分析,如果轉換損耗被忽略且假定PFC =PoZ ,即VFC IFC =VoZ IoZ ,產生: The FC and ZSVC circuits as shown in the fourth figure obtained from the third figure (a) operate as VCVS. For ease of analysis, the FC and ZSVC operating at BCM are analyzed, if the conversion loss is ignored and P FC = P oZ is assumed, ie V FC I FC =V oZ I oZ , resulting in:

從第三圖(b)與第五圖,在t=dZ T時,該峰值電感電流是: From the third (b) and fifth diagrams, at t = d Z T , the peak inductor current is:

以及該峰值輸出將是: And the peak output will be:

當t>dZ T時, When t>d Z T,

其中τ=2L Z /R oZ ,使L Z1 =L Z2 =L Z C 1 =C 2 =C Z 以及 Where τ=2L Z /R oZ such that L Z1 =L Z2 =L Z and C 1 =C 2 =C Z and

該平均輸出電流IoZ The average output current I oZ is

如果(1-dZ )T>>τ If (1-d Z )T>> τ ,

FC與ZSVC的控制輸出是: The control outputs of FC and ZSVC are:

式(14)顯示平均輸出電流IoZ 是與責任週期dZ 成線性比例。Equation (14) shows that the average output current I oZ is linearly proportional to the duty cycle d Z .

從式(4)與(14),用於PV模組與BCC之模擬的電流對責任週期dB 的反應以及用於FC與ZSVC之模擬的電流對責任週期dZ 的反應分別顯示於第五圖。該IoZ 是與責任週期dZ 成線性比例,但該IoB 是與責任週期dB 的平方成線性比例。為描述在複合之前轉換器的行為,PV模組與BCC以及FC與ZSVC自混合埠M所分離出來的各別的負載是分別顯示於第六圖(a)與第六圖(b)中,其中它們的關係是: From equations (4) and (14), the response of the current for the PV module to the BCC simulation to the duty cycle d B and the current for the simulation of the FC and ZSVC to the duty cycle d Z are shown in the fifth Figure. The I oZ is linearly proportional to the duty cycle d Z , but the I o B is linearly proportional to the square of the duty cycle d B . To describe the behavior of the converter prior to recombination, the individual loads separated by the PV module and BCC and FC and ZSVC from the mixing 埠M are shown in Figures 6(a) and 6(b), respectively. Their relationship is:

而RoB,h 與RoZ,h 分別是用於PV模組與BCC以及FC與 ZSVC之自混合埠M所分離出來的各別的負載,且VoB =VoZ =VoR oB,h and R oZ,h are the respective loads separated by the PV module and BCC and the FC and ZSVC self-mixing 埠M, respectively, and V oB =V oZ =V o .

由式(4),取決於責任週期之輸出電阻值RoB,h 是: From equation (4), depending on the duty cycle of the output resistance value R oB, h is:

而RoB,h 是與dB 2 成反比。因為PV模組與BCC是電流源,各別的RoB,h 是從式(15)中分離的複合式負載Ro 而獲得。此外,該分離的複合式RoZ,h 也可從在複合模組中之式(15)藉由: And R oB,h is inversely proportional to d B 2 . Since the PV module and the BCC are current sources, the respective R oB,h are obtained from the composite load R o separated from the equation (15). In addition, the separated composite R oZ,h can also be derived from the formula (15) in the composite module by:

而獲得。再者,如前所述,透過PV模組與BCC之光電能量是優先用於節點M的複合式負載。該複合式RoZ,h 取決於責任週期dB 且可從式(16)與(17)獲得。RoB,h 與RoZ,h 的關係如第六圖(c)所示。然而,從式(14),RoZ 是: And get. Furthermore, as mentioned above, the photovoltaic energy transmitted through the PV module and the BCC is preferentially used for the composite load of the node M. The composite R oZ,h depends on the duty cycle d B and can be obtained from equations (16) and (17). The relationship between R oB,h and R oZ,h is as shown in the sixth figure (c). However, from equation (14), R oZ is:

式(18)僅在各別模式沒有複合時是有效的,因為FC與ZSVC是一VCVS。依據式(4)與(14),該IoZ 與該IoB 在複合模式固定功率需求下,將有一關係: Equation (18) is valid only when the individual modes are not compounded because FC and ZSVC are a VCVS. According to equations (4) and (14), the I oZ and the I oB have a relationship in the composite mode fixed power requirement:

在複合模式時責任週期dB 與責任週期dZ 的關係以及電流的反應各自如第七圖(a)與第七圖(b)所示。The relationship between the duty cycle d B and the duty cycle d Z and the response of the current in the composite mode are as shown in the seventh (a) and seventh (b), respectively.

在本發明中,一使用固定頻率變動責任週期控制(CFVD)之功率增量輔助之增量電導最大功率點追蹤控制器(PI-INC MPPT controller)被用於引導PV模組與BCC,在最大功率點(MPP)精確與迅速的從PV模組抽取能量。第八圖提出兩個各自定義於IPV -VPV 與PPV -VPV 曲線之互相相等的門檻追蹤帶(THZ),用於與傳統的INC MPPT控制器相區隔。該PI-INC MPPT控制器可提供一功率增量粗略追蹤,快速的朝向THZ,使用PPV -VPV 曲線以避免由於IPV -VPV 曲線左手邊一些模糊的傳導偵測所引致的追蹤延遲。一旦功率增量測量的增量△P進入THZ,經過一個增量電導精密追蹤,使用IPV -VPV 曲線而趨向該MPP。因此,相較用於傳統INC-MPPT控制器中者,一個快與精確的追蹤成果可應用於PI-INC MPPT控制器中。而當 In the present invention, a power-increment assisted incremental power point maximum power point tracking controller (PI-INC MPPT controller) using fixed frequency variation duty cycle control (CFVD) is used to guide the PV module to the BCC at the maximum. The Power Point (MPP) extracts energy from the PV module accurately and quickly. Figure 8 presents two threshold tracking bands (THZ), each defined between the I PV -V PV and P PV -V PV curves, to distinguish them from the traditional INC MPPT controller. The PI-INC MPPT controller provides a coarse tracking of power increments, fast towards THZ, using the P PV -V PV curve to avoid tracking delays due to some obscured conduction detection on the left hand side of the I PV -V PV curve . Once the increment ΔP of the power increment measurement enters THZ, it is followed by an incremental conductance precision tracking, which is trended toward the MPP using the I PV -V PV curve. Therefore, a faster and more accurate tracking result can be applied to the PI-INC MPPT controller than those used in traditional INC-MPPT controllers. And when

時,該用於MPPT之MPP發生於PV模組中。The MPP for MPPT occurs in the PV module.

該INC MPPT的標準為 The standard for the INC MPPT is

事實上,為了易於應用下列演算法,一個差之表達式而非一微分常被用來描述式(21)中之標準,以使易於應用,其使用下列之演算法: In fact, in order to easily apply the following algorithms, a poor expression rather than a differential is often used to describe the criteria in equation (21) to make it easy to apply, using the following algorithms:

第八圖清楚的顯示該度量△C是被在I pv -V pv 曲線上的兩個比率ρ 1 ρ 2 所界定。對應地,△P 是被界定於P pv -V pv 曲線上的界限P ρ1 P ρ2 間。從特定的I pv -V pv 曲線上的△C,INC MPPT的追蹤界限是: The eighth figure clearly shows that the metric ΔC is defined by the two ratios ρ 1 and ρ 2 on the I pv -V pv curve. Correspondingly, ΔP is defined between the limits P ρ1 and P ρ2 on the P pv -V pv curve. From the △C on the specific I pv -V pv curve, the tracking limit of INC MPPT is:

差分電導△C是在THZ之外,而差分電導△C是被定義為 The differential conductance ΔC is outside the THZ, and the differential conductance ΔC is defined as

該兩個比率ρ 1 ρ 2 是實數。式(26)恆為負值,因為△I pv △V pv 具有相反的符號。在PTZ中,關於式(23)-(25)的對應追蹤界線是:P ρ 1 >△P >P ρ 2 (27)The two ratios ρ 1 and ρ 2 are real numbers. Equation (26) is always a negative value because ΔI pv and ΔV pv have opposite signs. In PTZ, the corresponding tracking boundary for equations (23)-(25) is: P ρ 1 > ΔP > P ρ 2 (27)

而△P=P n+1 -P n P n+1 是一個新的估計功率,且P n 是前一個。And Δ P = P n+1 - P n and P n+1 are a new estimated power, and P n is the previous one.

且,△P >P ρ 1 (28)And, △P > P ρ 1 (28)

△P <P ρ 2 (29)Or △P < P ρ 2 (29)

P ρ 1 ≡(1-ρ 1 )△VI n +1 (30)And P ρ 1 ≡(1- ρ 1 ) ΔVI n +1 (30)

P ρ 2 ≡(1-ρ 2 )△VI n +1 (31)And P ρ 2 ≡(1- ρ 2 ) ΔVI n +1 (31)

以容易的邏輯演算法實現PI-INC MPPT是可獲得的,其中一個執行方向D的重要方法被介紹來減少/增加PV模組與BCC的責任週期d B ,其被藉由功率增量(27)-(29)的度量來判斷。The implementation of PI-INC MPPT with an easy logic algorithm is available, and an important method of performing direction D is introduced to reduce/increase the duty cycle d B of the PV module and BCC, which is increased by power (27). ) - (29) metric to judge.

PI-INC MPPT的演算法如第九圖(a)與第九圖(b)所示,其中主程式將初始化一方向Dn,其為1或0,用以引導PV模組與BCC的責任週期d B ,以一減少/增加PV模組電流的追蹤方式來達到MPP。一旦功率增量正好為0時,P n +1 -P n =0意謂PI-INC MPPT控制器將保持該責任週期d B 不變,且在MPP時繼續從PV模組汲取能量。一個來自式(2)之額外的被計算,用以調適性地粗略追蹤在DCB處之電壓調控,其係藉由FC與ZSVC來調控,可維持在DCB的電壓固定,以對抗隨機的太陽的日曬改變。The PI-INC MPPT algorithm is shown in Figure 9 (a) and Figure 9 (b), where the main program will initialize a direction Dn, which is 1 or 0, to guide the duty cycle of the PV module and the BCC. d B , to achieve MPP by reducing/increasing the tracking current of the PV module. Once the power increment is exactly zero, P n +1 - P n =0 means that the PI-INC MPPT controller will keep the duty cycle d B unchanged and continue to draw energy from the PV module during MPP. An extra from equation (2) It is calculated to adaptively track the voltage regulation at DCB, which is regulated by FC and ZSVC, and maintains the voltage at DCB fixed to counter the sun's solar changes.

設計及實驗Design and experiment

一個縮小的250W複合式轉換器的實現電路如第十圖所示。該再生能源系統2’包含一PV模組與BCC以及一FC與ZSVC共同連 接到一DC匯流排(DCB)。一個250W的PV模組與一個1200W的聚合物電解質膜燃料電池(PEM-FC)被裝備為能量來源。該PV模組的特性是由兩個模組(Kyocera KC130T)串聯所形成,是在第六圖(a)中被模擬,而PEM-FC的特性是在第十一圖所量測。該PI-INC MPPT控制器的演算法程式是藉由微晶片DSPIC33FJ06GS202並依據第九圖(a)與第九圖(b)的追蹤指導所執行。第十圖與第三圖(a)的主要差異在於第十圖更包括一升壓脈波寬調變器(PWM),以及該微晶片包括該PI-INC MPPT控制器、該升壓PWM、該責任週期偵測器21與該Z源PWM22。該FC與ZSVC具有VCVS,是DCB的複合式基礎,用以調控終端電壓固定,以對抗隨機的太陽日曬。PV模組與BCC以及FC與ZSVC的動態狀態是各自顯示在第十二圖(a)與第十二圖(b),其中該PV模組與BCC運作於d B =0.75,且切換頻率f sB =39.13 kHz;該FC模組與ZSVC運作於d Z =0.435和f sZ =31.6 kHz。該d Z d B 的互補關係,用以維持在DCB處的終端電壓是顯示在第十二圖(c)中。在此劇本中的所有電源的條件是V pv =34.3 V,I pv =7.2 A,V FC =47.7 V,與I FC =4 A @ 1 kW/m2 。該d B d Z 是在DCB處的固定功率需求下,依據PV模組與FC間互補能量派遣來互相調適。在DCB處的複合式電流I oT 包含PV模組與BCC的輸出電流I oB 以及FC與ZSVC的輸出電流I oZ ,太陽日曬從0 W/m2 至1 kW/m2 ,是顯示於第十三圖中。其中該PV模組電流I pv 與FC電流I FC 亦牽涉其中。此外,PI-INC MPPT控制器的五個追蹤劇本用以驗證在太陽日曬改變下,在PV模組與BCC以及FC與ZSVC間的動態複合式行為,其被檢驗於第十四圖(a)與第十四圖(b),並顯示良好的能量派遣,用以維持輸出電流I oT 固定,以對抗在I oB I oZ 間的改變。回應PI-INC MPPT追蹤器的五種追蹤劇本的PV/FC系統的動態複合式行為是列示在表一。The implementation circuit of a reduced 250W composite converter is shown in the tenth figure. The renewable energy system 2' includes a PV module and a BCC and a FC and ZSVC connected in common to a DC bus (DCB). A 250W PV module with a 1200W polymer electrolyte membrane fuel cell (PEM-FC) is equipped as an energy source. The characteristics of the PV module are formed by two modules (Kyocera KC130T) connected in series, which are simulated in the sixth figure (a), and the characteristics of the PEM-FC are measured in the eleventh figure. The algorithm of the PI-INC MPPT controller is executed by the microchip DSPIC33FJ06GS202 and according to the tracking instructions of ninth (a) and ninth (b). The main difference between the tenth and third (a) is that the tenth figure further includes a boost pulse width modulator (PWM), and the microchip includes the PI-INC MPPT controller, the boost PWM, The duty cycle detector 21 is coupled to the Z source PWM22. The FC and ZSVC have VCVS, which is a composite foundation of DCB, which is used to regulate the terminal voltage to prevent random sun exposure. The dynamic states of the PV module and the BCC and the FC and ZSVC are respectively shown in the twelfth (a) and twelfth (b), wherein the PV module and the BCC operate at d B = 0.75, and the switching frequency f sB = 39.13 kHz; the FC module and ZSVC operate at d Z = 0.435 and f sZ = 31.6 kHz. The complementary relationship between d Z and d B for maintaining the terminal voltage at DCB is shown in the twelfth diagram (c). The conditions for all power supplies in this script are V pv = 34.3 V, I pv = 7.2 A, V FC = 47.7 V, and I FC = 4 A @ 1 kW/m 2 . The d B and d Z are mutually adapted according to the fixed power demand at the DCB, according to the complementary energy dispatch between the PV module and the FC. The composite current I oT at DCB includes the output current I oB of the PV module and BCC and the output current I oZ of FC and ZSVC. The solar sun is from 0 W/m 2 to 1 kW/m 2 , which is shown in the first In the thirteenth picture. The PV module current I pv and the FC current I FC are also involved. In addition, five tracking scripts for the PI-INC MPPT controller were used to verify the dynamic composite behavior between the PV module and the BCC and FC and ZSVC under sun-sun changes, which were examined in Figure 14 (a And Figure 14 (b), and shows a good energy dispatch to maintain the output current I oT fixed to counter the change between I oB and I oZ . The dynamic composite behavior of the PV/FC system in response to the five tracking scripts of the PI-INC MPPT tracker is listed in Table 1.

結論in conclusion

在本發明中研究了一PV/FC複合式轉換器,就PV模組透過PV模組與BCC的能量饋入,藉由FC與ZSVC調控,其中一***調控適用於在日曬改變時之快速能量派遣。一個在PV模組與BCC以及FC與ZSVC間的互補能量派遣成功地達成了珍惜能源的觀念。PI-INC MPPT控制器的五個追蹤劇本是要驗證在太陽日曬改變下,在PV模組與BCC以及FC與ZSVC間的動態複合式行為,故被檢驗了。該實驗結果驗證了藉由FC與ZSVC在DCB處的終端電壓調控,可以提供用於複合式的穩定的能量派遣,且無須以額外的電池調控。In the present invention, a PV/FC composite converter is studied, and the PV module is fed through the energy of the PV module and the BCC, and is controlled by FC and ZSVC, wherein an explosion regulation is suitable for the rapid change of the sun. Energy dispatch. A complementary energy dispatch between the PV module and the BCC and FC and ZSVC successfully achieved the concept of cherishing energy. The five tracking scripts for the PI-INC MPPT controller were tested to verify the dynamic composite behavior between the PV module and the BCC and FC and ZSVC under sun-sun changes. The experimental results verify that the terminal voltage regulation at DCB by FC and ZSVC can provide a stable energy dispatch for the complex without the need for additional battery regulation.

實施例:Example:

1.一種複合式再生能源系統,包含:一再生能源裝置;一升壓電流源轉換器,電連接於該再生能源裝置且輸出一具一第一值之第一輸出功率;一燃料電池;一Z源電壓轉換器,電連接於該燃料電池與該升壓電流源轉換器;以及一Z源脈波寬調變器,電連接於該Z源電壓轉換器與該升壓電流源轉換,且當該第一值低於一輸出預定值時,使該Z源電壓轉換器輸出一具一第二值之第二輸出功率,以使該第一值與該第二值之和等於該輸出預定值。A composite renewable energy system comprising: a regenerative energy device; a boost current source converter electrically coupled to the regenerative energy device and outputting a first output power having a first value; a fuel cell; a Z source voltage converter electrically connected to the fuel cell and the boost current source converter; and a Z source pulse width modulator, electrically connected to the Z source voltage converter and the boost current source, and And when the first value is lower than an output predetermined value, causing the Z source voltage converter to output a second output power having a second value, so that a sum of the first value and the second value is equal to the output predetermined value.

2.根據實施例1所述之複合式再生能源系統,其中該Z源脈波寬調變器更包括:一比較器,具一非反相輸入端、一反相輸入端與一輸出端,其中該非反相輸入端接收一輸入信號,該反相輸入端接收一參考鋸齒波,該輸出端 產生一輸出信號,該輸入信號是該第二值之一本週期錯誤信號與該第一值之一下一週期變動量兩者間之一差值,且該輸出信號用以決定該第二值之一下一週期數量;一第一加法器,接收該第二值之一本週期錯誤信號與該第一值之該下一週期變動量之一負值,並輸出該差值;以及一第二加法器,接收一參考電壓值與該第二值之一本週期回饋信號之一負值,並輸出該第二值之該本週期錯誤信號。2. The composite regenerative energy system of embodiment 1, wherein the Z-source pulse width modulator further comprises: a comparator having a non-inverting input, an inverting input, and an output. Wherein the non-inverting input receives an input signal, and the inverting input receives a reference sawtooth wave, the output Generating an output signal, the input signal being a difference between the periodic error signal of the second value and a next period variation of the first value, and the output signal is used to determine the second value a first period of time; a first adder receiving a negative value of one of the second period of the current period error signal and the next period of the first value, and outputting the difference; and a second addition And receiving a negative value of one of the reference voltage value and the second value of the periodic feedback signal, and outputting the current error signal of the second value.

3.根據實施例1或2所述之複合式再生能源系統,其中該Z源脈波寬調變器更包括:一分壓器,並聯電連接於該Z源電壓轉換器,且輸出該本週期回饋信號;以及一責任週期偵測器,接收一下一週期之責任週期變動量,並輸出該第一值之該下一週期變動量。3. The composite regenerative energy system of embodiment 1 or 2, wherein the Z-source pulse width modulator further comprises: a voltage divider electrically connected in parallel to the Z-source voltage converter, and outputting the a cycle feedback signal; and a duty cycle detector that receives the duty cycle variation of the first cycle and outputs the next cycle variation of the first value.

4.根據以上任一實施例所述之複合式再生能源系統,更包括一電連接於該再生能源裝置、該升壓電流源轉換器與該責任週期偵測器之功率增量輔助之增量電導最大功率點追蹤控制器(PI-INC MPPT controller)與一電連結於該控制器與該升壓電流源轉換器之升壓脈波寬調變器,其中該再生能源裝置為一光電模組且輸出一光電輸出電壓與一光電輸出電流至該控制器,且該控制器分別輸出一下一週期之責任週期與該下一週期之責任週期變動量至該升壓電流源轉換器與該責任週期偵測器。4. The composite renewable energy system according to any of the preceding embodiments, further comprising an incremental connection of power increments electrically coupled to the regenerative energy device, the boost current source converter, and the duty cycle detector a PI-INC MPPT controller and a boost pulse width modulator electrically coupled to the controller and the boost current source converter, wherein the regenerative energy device is a photoelectric module And outputting a photoelectric output voltage and a photoelectric output current to the controller, and the controller respectively outputs a duty cycle of the next cycle and a duty cycle variation of the next cycle to the boost current source converter and the duty cycle Detector.

5.一種再生能源系統,包含:一再生能源裝置,輸出一電流以產生一具一第一值之第一功率;一Z源轉換器,電連接於該再生能源裝置;以及一Z源脈波寬調變器,電連接於該Z源轉換器與該再生能源裝置,且當該第一值低於一輸出預定值時,使該Z源轉換器輸出一具一第二值之第二輸出功率,以使該第一值與該第二值之和等於該輸出預定值。5. A regenerative energy system comprising: a regenerative energy device that outputs a current to generate a first power having a first value; a Z source converter electrically coupled to the regenerative energy device; and a Z source pulse wave a wide modulator electrically connected to the Z source converter and the regenerative energy device, and when the first value is lower than an output predetermined value, causing the Z source converter to output a second output having a second value The power is such that the sum of the first value and the second value is equal to the output predetermined value.

6.根據實施例5所述之再生能源系統,更包括一電連接於該Z源轉換器之第一燃料電池與一電連接於該再生能源裝置與該Z源轉換器之升壓轉換器,其中該升壓轉換器接收該電流,且輸出具該第一 值之該第一輸出功率。6. The regenerative energy system of embodiment 5, further comprising a first fuel cell electrically coupled to the Z source converter and a boost converter electrically coupled to the regenerative energy device and the Z source converter, Wherein the boost converter receives the current and the output has the first The first output power of the value.

7.根據實施例5或6所述之再生能源系統,其中該升壓轉換器為一升壓電流源轉換器,該Z源轉換器為一Z源電壓轉換器,且該再生能源裝置為選自一光電模組、一第二燃料電池、一潮流發電機與一風力發電機所組成之群組的其中之一。7. The regenerative energy system of embodiment 5 or 6, wherein the boost converter is a boost current source converter, the Z source converter is a Z source voltage converter, and the regenerative energy device is selected One of a group consisting of a photovoltaic module, a second fuel cell, a tidal current generator and a wind power generator.

8.一種用於一複合式再生能源系統之控制方法,其中該複合式再生能源系統包括一升壓轉換器、一第一燃料電池與一電連接於該第一燃料電池與該升壓轉換器之Z源轉換器,該方法包括:使該升壓轉換器輸出一具一第一值之第一輸出功率;以及當該第一值低於一輸出預定值時,使該Z源轉換器輸出一具一第二值之第二輸出功率,以使該第一值與該第二值之和等於該輸出預定值。8. A control method for a hybrid renewable energy system, wherein the hybrid renewable energy system includes a boost converter, a first fuel cell and an electrical connection to the first fuel cell and the boost converter a Z-source converter, the method comprising: causing the boost converter to output a first output power having a first value; and causing the Z-source converter to output when the first value is lower than an output predetermined value And a second output power having a second value such that a sum of the first value and the second value is equal to the output predetermined value.

9.根據實施例8所述之方法,其中該複合式再生能源系統更包括一電連接於該升壓轉換器與該Z源轉換器之Z源脈波寬調變器與一電連接於該升壓轉換器之再生能源裝置,且該再生能源裝置用於產生該升壓轉換器之一輸入電流,該方法更包括:透過該Z源脈波寬調變器以偵測該第一值是否低於一輸出預定值;以及當該第一值低於該輸出預定值時,透過該Z源脈波寬調變器所產生之一控制信號以使該Z源轉換器輸出該第二輸出功率。9. The method of embodiment 8, wherein the hybrid renewable energy system further comprises a Z-source pulse width modulator electrically coupled to the boost converter and the Z-source converter. a regenerative energy device of the boost converter, and the regenerative energy device is configured to generate an input current of the boost converter, the method further comprising: transmitting the Z source pulse width modulator to detect whether the first value is Lower than an output predetermined value; and when the first value is lower than the output predetermined value, one of the control signals generated by the Z source pulse width modulator causes the Z source converter to output the second output power .

10.根據實施例8或9所述之控制方法,其中該再生能源裝置為選自一光電模組、一第二燃料電池、一潮流發電機與一風力發電機所組成之群組的其中之一。10. The control method according to embodiment 8 or 9, wherein the regenerative energy device is selected from the group consisting of a photovoltaic module, a second fuel cell, a tidal current generator and a wind power generator. One.

綜上所述,本發明提供一種用於固定功率需求之直流電源匯流排的再生能源系統與其方法,該再生能源系統可包含諸如燃料電池與光電模組,但不包括蓄電池,不致污染環境,且可提供穩定的輸出功率,不受再生能源因天候而供電不穩的影響,因此極具有研究及商業化的價值,故其確實具有進步性與新穎性。In summary, the present invention provides a regenerative energy system and method for a power supply demand DC power bus, which may include, for example, a fuel cell and a photovoltaic module, but does not include a battery, and does not pollute the environment, and It can provide stable output power, and is not affected by the instability of renewable energy due to weather. Therefore, it has great research and commercial value, so it is indeed progressive and novel.

是以,縱使本案已由上述之實施例所詳細敘述而可由熟悉本技藝之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。Therefore, even though the present invention has been described in detail by the above-described embodiments, it can be modified by those skilled in the art, and is not intended to be protected as claimed.

2‧‧‧本發明第二較佳實施例之再生能源系統2‧‧‧Renewable energy system of the second preferred embodiment of the present invention

21‧‧‧責任週期偵測器21‧‧‧Responsibility Cycle Detector

22‧‧‧Z源脈波寬調變器22‧‧‧Z source pulse width modulator

BCC‧‧‧升壓電流源轉換器BCC‧‧‧Boost current source converter

DCB‧‧‧直流匯流排DCB‧‧‧ DC busbar

PI-INC MPPT‧‧‧功率增量輔助之增量電導最大功率點追蹤控制器PI-INC MPPT‧‧‧Power Incremental Incremental Conductance Maximum Power Point Tracking Controller

ZSVC‧‧‧Z源電壓轉換器ZSVC‧‧‧Z source voltage converter

Claims (10)

一種複合式再生能源系統,包含:一再生能源裝置;一升壓電流源轉換器,電連接於該再生能源裝置且輸出一具一第一值之第一輸出功率;一燃料電池;一Z源電壓轉換器,電連接於該燃料電池與該升壓電流源轉換器;以及一Z源脈波寬調變器,電連接於該Z源電壓轉換器與該升壓電流源轉換器,且當該第一值低於一輸出預定值時,使該Z源電壓轉換器輸出一具一第二值之第二輸出功率,以使該第一值與該第二值之和等於該輸出預定值。A composite renewable energy system comprising: a regenerative energy device; a boost current source converter electrically connected to the regenerative energy device and outputting a first output power having a first value; a fuel cell; a Z source a voltage converter electrically connected to the fuel cell and the boost current source converter; and a Z source pulse width modulator electrically connected to the Z source voltage converter and the boost current source converter, and When the first value is lower than an output predetermined value, the Z source voltage converter outputs a second output power having a second value such that a sum of the first value and the second value is equal to the output predetermined value. . 如申請專利範圍第1項所述之複合式再生能源系統,其中該Z源脈波寬調變器更包括:一比較器,具一非反相輸入端、一反相輸入端與一輸出端,其中該非反相輸入端接收一輸入信號,該反相輸入端接收一參考鋸齒波,該輸出端產生一輸出信號,該輸入信號是該第二值之一本週期錯誤信號與該第一值之一下一週期變動量兩者間之一差值,且該輸出信號用以決定該第二值之一下一週期數量;一第一加法器,接收該第二值之一本週期錯誤信號與該第一值之該下一週期變動量之一負值,並輸出該差值;以及一第二加法器,接收一參考電壓值與該第二值之一本週期回饋信號之一負值,並輸出該第二值之該本週期錯誤信號。The composite renewable energy system of claim 1, wherein the Z-source pulse width modulator further comprises: a comparator having a non-inverting input, an inverting input, and an output The non-inverting input receives an input signal, the inverting input receives a reference sawtooth wave, and the output generates an output signal, the input signal being one of the second values of the periodic error signal and the first value a difference between the one of the next period fluctuations, and the output signal is used to determine the number of the next period of the second value; a first adder receiving the current error signal of the second value and the a negative value of the next period of the first period, and outputting the difference; and a second adder receiving a negative value of one of the reference voltage value and the second value of the periodic feedback signal, and The current period error signal of the second value is output. 如申請專利範圍第2項所述之複合式再生能源系統,其中該Z源脈波寬調變器更包括:一分壓器,並聯電連接於該Z源電壓轉換器,且輸出該本週期回饋信號;以及一責任週期偵測器,接收一下一週期之責任週期變動量,並輸出該第一值之該下一週期變動量。The composite renewable energy system of claim 2, wherein the Z-source pulse width modulator further comprises: a voltage divider connected in parallel to the Z-source voltage converter, and outputting the cycle a feedback signal; and a duty cycle detector that receives the duty cycle variation of the first cycle and outputs the next cycle variation of the first value. 如申請專利範圍第3項所述之複合式再生能源系統,更包括一電 連接於該再生能源裝置、該升壓電流源轉換器與該責任週期偵測器之功率增量輔助之增量電導最大功率點追蹤控制器(PI-INC MPPT controller)與一電連結於該控制器與該升壓電流源轉換器之升壓脈波寬調變器,其中該再生能源裝置為一光電模組且輸出一光電輸出電壓與一光電輸出電流至該控制器,且該控制器分別輸出一下一週期之責任週期與該下一週期之責任週期變動量至該升壓電流源轉換器與該責任週期偵測器。 For example, the composite renewable energy system described in claim 3 includes one Connected to the regenerative energy device, the boost current source converter and the power-increment-assisted incremental conductance maximum power point tracking controller (PI-INC MPPT controller) of the duty cycle detector and an electrical connection to the control And a boosting pulse width modulator of the boost current source converter, wherein the regenerative energy device is a photoelectric module and outputs a photoelectric output voltage and a photoelectric output current to the controller, and the controller respectively The duty cycle of one cycle and the duty cycle variation of the next cycle are outputted to the boost current source converter and the duty cycle detector. 一種再生能源系統,包含:一再生能源裝置,輸出一電流以產生一具一第一值之第一功率;一Z源轉換器,電連接於該再生能源裝置;以及一Z源脈波寬調變器,電連接於該Z源轉換器與該再生能源裝置,且當該第一值低於一輸出預定值時,使該Z源轉換器輸出一具一第二值之第二輸出功率,以使該第一值與該第二值之和等於該輸出預定值。 A regenerative energy system comprising: a regenerative energy device that outputs a current to generate a first power having a first value; a Z-source converter electrically coupled to the regenerative energy device; and a Z-source pulse width adjustment a converter electrically connected to the Z-source converter and the regenerative energy device, and when the first value is lower than an output predetermined value, causing the Z-source converter to output a second output power having a second value, The sum of the first value and the second value is equal to the output predetermined value. 如申請專利範圍第5項所述之再生能源系統,更包括一電連接於該Z源轉換器之燃料電池與一電連接於該再生能源裝置與該Z源轉換器之升壓轉換器,其中該升壓轉換器接收該電流,且輸出具該第一值之該第一輸出功率。 The renewable energy system of claim 5, further comprising a fuel cell electrically connected to the Z source converter and a boost converter electrically connected to the regenerative energy device and the Z source converter, wherein The boost converter receives the current and outputs the first output power having the first value. 如申請專利範圍第5項所述之再生能源系統,其中該升壓轉換器為一升壓電流源轉換器,該Z源轉換器為一Z源電壓轉換器,且該再生能源裝置為選自一光電模組、一燃料電池、一潮流發電機與一風力發電機所組成之群組的其中之一。 The regenerative energy system of claim 5, wherein the boost converter is a boost current source converter, the Z source converter is a Z source voltage converter, and the regenerative energy device is selected from the group consisting of One of a group of photovoltaic modules, a fuel cell, a tidal current generator and a wind power generator. 一種用於一複合式再生能源系統之控制方法,其中該複合式再生能源系統包括一升壓轉換器、一第一燃料電池與一電連接於該第一燃料電池與該升壓轉換器之Z源轉換器,該方法包括:使該升壓轉換器輸出一具一第一值之第一輸出功率;以及當該第一值低於一輸出預定值時,使該Z源轉換器輸出一具一第二值之第二輸出功率,以使該第一值與該第二值之和等於該輸出預定值。 A control method for a hybrid renewable energy system, wherein the hybrid renewable energy system includes a boost converter, a first fuel cell, and a Z electrically coupled to the first fuel cell and the boost converter a source converter, the method comprising: causing the boost converter to output a first output power having a first value; and causing the Z source converter to output when the first value is lower than an output predetermined value a second output power of the second value such that the sum of the first value and the second value is equal to the output predetermined value. 如申請專利範圍第8項所述之控制方法,其中該複合式再生能源系統更包括一電連接於該升壓轉換器與該Z源轉換器之Z源脈波寬調變器與一電連接於該升壓轉換器之再生能源裝置,且該再生能源裝置用於產 生該升壓轉換器之一輸入電流,該方法更包括:透過該Z源脈波寬調變器以偵測該第一值是否低於一輸出預定值;以及當該第一值低於該輸出預定值時,透過該Z源脈波寬調變器所產生之一控制信號以使該Z源轉換器輸出該第二輸出功率。 The control method of claim 8, wherein the composite renewable energy system further comprises a Z-source pulse width modulator electrically connected to the boost converter and the Z-source converter and an electrical connection a regenerative energy device of the boost converter, and the regenerative energy device is used for production Generating an input current to the boost converter, the method further comprising: transmitting the Z source pulse width modulator to detect whether the first value is lower than an output predetermined value; and when the first value is lower than the When the predetermined value is output, one of the control signals generated by the Z-source pulse width modulator causes the Z-source converter to output the second output power. 如申請專利範圍第8項所述之控制方法,其中該再生能源裝置為選自一光電模組、一第二燃料電池、一潮流發電機與一風力發電機所組成之群組的其中之一。The control method of claim 8, wherein the regenerative energy device is one selected from the group consisting of a photovoltaic module, a second fuel cell, a tidal current generator, and a wind power generator. .
TW102109933A 2013-03-20 2013-03-20 Renewable energy system for a constant-power-demand dc supply bus and method thereof TWI499165B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102109933A TWI499165B (en) 2013-03-20 2013-03-20 Renewable energy system for a constant-power-demand dc supply bus and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102109933A TWI499165B (en) 2013-03-20 2013-03-20 Renewable energy system for a constant-power-demand dc supply bus and method thereof

Publications (2)

Publication Number Publication Date
TW201438373A TW201438373A (en) 2014-10-01
TWI499165B true TWI499165B (en) 2015-09-01

Family

ID=52113510

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102109933A TWI499165B (en) 2013-03-20 2013-03-20 Renewable energy system for a constant-power-demand dc supply bus and method thereof

Country Status (1)

Country Link
TW (1) TWI499165B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201430540Y (en) * 2009-07-03 2010-03-24 南开大学 Z-source inverter controlling system with FPGA based on DSP
CN101867312A (en) * 2010-05-05 2010-10-20 西安交通大学 Dual sine pulse width modulation (PWM) control method for Z-source inverter
CN201682294U (en) * 2010-05-28 2010-12-22 上海理工大学 Three-phase photovoltaic grid-connected inverter based on Z sources
TW201230648A (en) * 2010-09-30 2012-07-16 Intersil Inc System and method for converting an AC input voltage to a regulated DC output voltage using a Z-type converter with rectified switches
TW201230649A (en) * 2010-09-30 2012-07-16 Intersil Inc System and method for converting an AC input voltage to a regulated output current
CN202678980U (en) * 2012-05-07 2013-01-16 雷霖 Three-phase photovoltaic grid-connection system based on novel Z-source inverter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201430540Y (en) * 2009-07-03 2010-03-24 南开大学 Z-source inverter controlling system with FPGA based on DSP
CN101867312A (en) * 2010-05-05 2010-10-20 西安交通大学 Dual sine pulse width modulation (PWM) control method for Z-source inverter
CN201682294U (en) * 2010-05-28 2010-12-22 上海理工大学 Three-phase photovoltaic grid-connected inverter based on Z sources
TW201230648A (en) * 2010-09-30 2012-07-16 Intersil Inc System and method for converting an AC input voltage to a regulated DC output voltage using a Z-type converter with rectified switches
TW201230649A (en) * 2010-09-30 2012-07-16 Intersil Inc System and method for converting an AC input voltage to a regulated output current
CN202678980U (en) * 2012-05-07 2013-01-16 雷霖 Three-phase photovoltaic grid-connection system based on novel Z-source inverter

Also Published As

Publication number Publication date
TW201438373A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
Sahu et al. Physical design and modelling of boost converter for maximum power point tracking in solar PV systems
Rani et al. Control strategy for power flow management in a PV system supplying DC loads
Ayub et al. The impact of grid-connected PV systems on Harmonic Distortion
US9729083B2 (en) Power supply system and power source apparatus
US20120212985A1 (en) Power conversion apparatus
Chandwani et al. Design, simulation and implementation of Maximum Power Point Tracking (MPPT) for solar based renewable systems
US9257896B1 (en) Control circuit of power converter and method for maximum power point tracking
Parthasarathy et al. Modelling and simulation of hybrid pv & bes systems as flexible resources in smartgrids–sundom smart grid case
KR20120013199A (en) Partial power micro-converter architecture
Sangeetha et al. Design and implementation of SEPIC converter based PV system using modified incremental conductance algorithm
Wu et al. Hybrid centralized-distributed power conditioning system for thermoelectric generator with high energy efficiency
KR102238340B1 (en) PCS Droop Control Device and Energy Storage System using the Same
Pragash et al. An integrated control for standalone PV system with battery management
TWI499165B (en) Renewable energy system for a constant-power-demand dc supply bus and method thereof
Bhunia et al. Cascaded DC-DC converter for a reliable standalone PV fed DC load
Wang et al. A 200W MPPT boost converter for BIPV applications with integrated controller
Metry et al. Sensitivity analysis to model parameter errors of MPPT by model predictive control for photovoltaic applications
Devika et al. SEPIC-CUK Converter For PV Application Using Maximum Power Point Tracking Method
Mondal et al. MPPT scheme for small scale photovoltaic systems using dSPACE
Lusijarto et al. Modelling and Simulation of Closed Loop Buck Converter to Supply Constant DC Load for Single Solar PV Panel
Bidi et al. Model Predictive Control for Micro Grid stabilisation in case of loss of units
Park et al. Controller design of a novel power conditioning system with an energy storage device for renewable energy sources under grid-connected operation
Carrasco et al. A PWM multiplier for maximum power point estimation of a solar panel
Vasudevan et al. Experimental Verification of Single Phase Z Source Inverter for Photovoltaic Applications
Dwari et al. Advanced techniques for integration of energy storage and photovoltaic generator in renewable energy systems