TWI495727B - 微型電化學多重即時定量聚合酶連鎖反應(pcr)系統 - Google Patents

微型電化學多重即時定量聚合酶連鎖反應(pcr)系統 Download PDF

Info

Publication number
TWI495727B
TWI495727B TW099134467A TW99134467A TWI495727B TW I495727 B TWI495727 B TW I495727B TW 099134467 A TW099134467 A TW 099134467A TW 99134467 A TW99134467 A TW 99134467A TW I495727 B TWI495727 B TW I495727B
Authority
TW
Taiwan
Prior art keywords
pcr
pcr reaction
wafer
time quantitative
reaction
Prior art date
Application number
TW099134467A
Other languages
English (en)
Other versions
TW201215681A (en
Inventor
Yi Chiuen Hu
Jui Yu Wu
jun sheng Wang
Tsung Tao Huang
Chih Sheng Yu
Original Assignee
Nat Applied Res Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Applied Res Laboratories filed Critical Nat Applied Res Laboratories
Priority to TW099134467A priority Critical patent/TWI495727B/zh
Priority to US13/163,855 priority patent/US20120088696A1/en
Publication of TW201215681A publication Critical patent/TW201215681A/zh
Application granted granted Critical
Publication of TWI495727B publication Critical patent/TWI495727B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

微型電化學多重即時定量聚合酶連鎖反應(PCR)系統
本發明技術微型電化學多重即時定量聚合酶連鎖反應(PCR)檢測系統(micro electrochemical multiplex Real-Time PCR)可廣泛使用於需核酸快速放大、即時檢測和準確定量之應用,除了應用於敗血症檢驗之外,還可用於動植物病毒和細菌感染快速檢測,植物病蟲害防制、環境即時監測、食品工業污染預防或農業品種改良等皆有應用之價值。
西元1953年英國科學家華生(James Dewey Watson)、克立克(Francis Harry Compton Crick)和富蘭克林(Rosalind Elsie Franklin)等人同時在自然(Nature)期刊上發表DNA分子的雙股螺旋結構,自此開啟分子生物學和遺傳學嶄新的一頁。當瞭解核酸分子如何排列和鍵結之後,人們對於分子生物學的研究與應用亦越來越廣泛,同時對於這些遺傳物質的複製和延續過程亦有了逐漸清晰的輪廓。以真核細胞為例:DNA分子轉錄成mRNA,mRNA再由tRNA轉譯為胺基酸序列,隨著胺基酸分子逐漸延長和相互鍵結之後便構形為成熟的蛋白質分子,也就是維持生命體活動的基本單位。
分子生物技術,無論基因重組或蛋白質表現技術的前提皆須大量複製研究人員所感興趣的目標DNA,當目標DNA的濃度達到一定的比例之上才有研究的價值,也因此聚合酶連鎖反應(PCR,Polymerase chain reaction)成為最被廣為運用的DNA放大技術,目前被廣泛應用在親子鑑定、食品工業、農業品種改良、基因體圖譜建立、基因重組技術、演化和遺傳學、環境監測等。而PCR技術對於分子生物學最大的貢獻在於生物體外以人工方式大量合成複製DNA片段,從此體外分子生物技術突飛猛進,也因此PCR技術發明者Kary Mullis於西元1993年獲得諾貝爾化學獎殊榮。
傳統即時定量核酸放大分析法
傳統PCR結束之後,即以瓊脂洋菜膠體電泳法進行DNA片段分子 量分析,此方法常以溴乙烷(EtBr)作為DNA染劑,但此物質易揮發且已被美國政府列為致癌物質,因此操作上容易造成污染和危險。此外終端PCR產物以洋菜膠體電泳分析之結果屬於定性分析,若以電腦軟體計算DNA亮帶的影像強弱也只是相對上的半定量分析,嚴格來說有失準確性。目前市面上販售之高效率毛細管電泳儀已大幅克服傳統洋菜膠體電泳法所遭遇的問題:EtBr的污染和分析過程繁冗費時,但毛細管電泳儀還是歸屬於終端PCR產物的分析,無法準確地進行PCR即時絕對定量。
為了探討PCR產物濃度和反應循環數的準確關係,科學家們開發出即時定量核酸放大技術(Quantitative real-time PCR,qPCR)。其原理在於傳統PCR反應溶液中添加螢光物質,隨著反應循環數增加,目標DNA產物濃度亦快速倍數成長,此時螢光物質與目標DNA產物結合而激發出螢光,藉由儀器偵測螢光訊號後可由電腦分析計算出彼此相對關係圖。
目前即時定量核酸放大技術舉例說明:以DNA鍵結染劑嵌入DNA而激發螢光,以SYBR-Green為代表,其在游離狀態下僅有微弱背景螢光,若遇到雙股DNA則可鑲嵌至次溝槽(minor groove)中,經激發後可產生強烈螢光訊號,此方法適合即時監控PCR過程中雙股DNA濃度。
Real-time PCR可精準定量,確定目標DNA的初始濃度,這對於植物防檢疫中的抗病育種及輸入農產品檢測方面,特別具有意義。而傳統PCR僅能用於定性分析,至多能達到「半定量(semi-quantitative)的程度。目前應用Real-time PCR在偵測植物病蟲害的例子越來越多,病害諸如馬鈴薯晚疫病菌(Phytophthora infestans)、番茄斑點萎凋病毒(Tomato spotted wilt virus)、葡萄皮爾斯病菌(Xylella fastidiosa)、青枯病菌(Ralstonia solanacearum,race 3,biovar 2)及柑橘黃龍病菌(Candidatus Liberibacter spp.)等。在害蟲的檢測上,目前已有開發數種鱗翅目捲葉蛾害蟲、果實蠅及南黃薊馬等。然而螢光式Real-time PCR的缺點則是機器及反應耗材的費用相對較高,造成目前在使用上無法達到普及化的主要原因。
另一方面運用即時定量核酸放大技術快速檢測感染性疾病為當今 醫療發展之重大課題,舉例而言敗血症是全球目前非心臟加護病房住院病患遭受感染人數的第一名,在美國每年發生嚴重敗血症的病患超過750,000人,等同於每日醫院有2,000名嚴重敗血症病人。根據最新資料統計,敗血症已於九十六年快速擠入台北市十大死因之一,而且敗血症的致死率高達27-50%。此外,台灣已逐漸走向人口老化,加上免疫抑制劑的廣泛使用、侵入性治療的增加、抗生素濫用造成抗藥性菌株的比例上升,這些因素將會使國內的敗血症病患激增。治療敗血症的費用對醫療資源而言更是昂貴,在美國每年約花費20億美元,在德國約是50億歐元。因此臨床醫師及醫療保險公司都亟欲尋找可以早期快速且正確診斷敗血症的檢驗方法。目前敗血症的黃金標準方法是”血液細菌培養法”(blood culture),但血液培養需要昂貴的大型儀器、有經驗的醫檢師和大量的耗材,最重要的是細菌培養的報告要花至少4-9天。這期間臨床醫師對敗血病人的治療方式都是使用經驗性抗生素(empirical antimicrobials),只能依賴平常的臨床經驗,但無法得知病人血液中感染的是何種病原體(細菌、病毒、真菌);就算是細菌性敗血症,抗生素的正確使用仍須知道是屬於格蘭氏陽性或是陰性菌,以及菌量的多寡。而目前的醫學檢驗領域,並無任何檢測儀器能夠在四小時內,可得知病人敗血症的病原菌種類,又可同步獲得抗藥性資訊準確定量血中菌濃度,並且是使用者方便操作的檢驗儀器。
新開發的相關檢測技術如下:
1. Tissari等人發表了用微矩陣(microarray,MOBIDIAG,Finland),進行檢測敗血症的病原菌(Prove-it sepsis assay),利用雜合反應後的反應取得訊號,但須花費18小時,而且無法測出血液中含菌濃度,臨床醫師也無法決定使用抗生素的劑量。
2. Kriegner等人也在今年初發表利用multiplex 16S rDNA引子,進行傳統PCR檢測,所須時間約6小時,但是必須使用DNA sequencing的方法來檢測致病原的種類(SepsiTestTM,Molzym,Germany),增加了流程的複雜度,同時也無法得知病患血液中含菌濃度。
3. 傳統螢光式即時定量PCR系統:複雜昂貴且試劑套組受限於國外廠 商,購置成本皆在2百萬以上,影響其普及性。
本發明”微型電化學多重即時定量聚合酶連鎖反應(PCR)檢測系統(micro electrochemical multiplex Real-Time PCR)”,運用電化學Real-time PCR技術成本低、體積小、使用簡單而且可針對本土特有需求開發試劑套組。電化學式即時定量PCR系統可在PCR放大過程即時量測反應曲線,進而可推算樣品濃度。疑似敗血症病人抵達醫院後,在六小時找出敗血症的致病原種類並測出該病菌的血中濃度,讓醫師可以根據以上的數據儘速開始使用正確的抗生素。而且在治療過程中,又能再次操作此檢驗來調整抗生素的劑量,並能在血液菌量濃度為零時讓病人結束治療而出院,如此才是最有效的敗血症治療且可縮短病人住院時間,讓醫療資源可以更有效的運用並降低敗血症的死亡率。本發明可廣泛使用於需核酸快速放大、即時檢測和準確定量之應用,除了應用於敗血症檢驗之外,還可用於動植物病毒和細菌感染快速檢測,如魚蝦養殖之病毒感染、禽流感、腸病毒、H1N1新流感、攜帶NDM-1基因的超級細菌等,其它如前述之植物病蟲害防制、環境即時監測、食品工業污染預防或農業品種改良等皆有應用之價值。
是以,本案發明人鑑於上述習用即時定量PCR所衍生的各項缺點,以及該電化學式即時定量PCR系統在臨床檢驗、動植物病毒和細菌感染快速檢測上的應用,乃亟思加以改良創新,並經多年苦心孤詣潛心研究後,終於成功研發完成本件微型電化學多重即時定量聚合酶連鎖反應(PCR)系統。
本發明為提供一微型電化學多重即時定量聚合酶連鎖反應(PCR)系統。
本發明之目的即在於利用該微型電化學多重即時定量聚合酶連鎖反應(PCR)系統,可應用於目標DNA的快速放大與定量。
本發明之另一目的為利用該微型電化學多重即時定量聚合酶連鎖反應(PCR)系統,可於臨床上快速檢測出引起敗血病之病原菌種類與濃度,以幫助臨床醫師的診治與監控。
為達上述目的,本發明運用具電活性物質之DNA結合染劑,來實現電化學式即時定量PCR檢測,以獲得反應時間與DNA濃度關係曲線。並且運用可拋棄式微型多孔電極晶片,在反應晶片上,整合電極與PCR反應物於一平面晶片,每次可同時進行8~96個樣品之PCR反應並即時量測其電化學反應訊號,使用之檢體僅需1~10ul。此反應晶片成本低,反應晶片為可拋棄式,其目的為減少交叉污染。
本發明係以下面的實施例予以示範闡明,但本發明不受下述實施例所限制。
實施例一
本發明微型電化學多重即時定量聚合酶連鎖反應(PCR)系統包括下列3項,如圖一所示:第一項是電化學即時定量PCR反應系統,其中該系統包括利用PCR升降溫控制模組(110)控制PCR反應晶片(120)之溫度;當待測樣品與具電活性物質之DNA結合染劑混合後,置於PCR反應晶片(120)上的PCR反應腔體(121)進行PCR反應;其中該PCR反應腔體(121)可為環形結構體、封閉型結構體、液珠或包覆油膜之液珠。第二項是電化學偵測系統,其中該系統包括電化學檢測模組(210)與電極(220),利用電極(220)偵測反應液中的電化學變化,最後整合至第三項人機介面控制系統(300),利用該系統之DNA濃度定量軟體來定量待測樣品之濃度。
聚合酶連鎖反應之原理與步驟
PCR之基本原理係利用DNA聚合酶之特性,此酵素可於溫度72℃時以原始DNA序列為母模板,去氧核醣核苷三磷酸(dNTP,Deoxynucleoside triphosphate)為材料進行複製延伸。PCR主要可分為三大步驟:
(1)雙股DNA的“變性(Denaturation)”:利用高溫破壞雙股DNA序列的氫鍵和凡得瓦力,將雙股DNA分開成兩條單股DNA,並以此為複製的模板(templates)。
(2)DNA引子(primers)“黏合(Annealing)”:接著加入兩段小片段DNA,此片段與DNA模板序列形成互補配對,我們稱之為PCR引子(primers),於適當的溫度下引子可與DNA模板鍵結,之後DNA聚合酶辨識到與模板鍵結的PCR引子便以此為複製起點或終點。
(3)DNA聚合酶開始作用“延伸(extension)”:在特定溫度(72℃)和環境(pH值)之下,DNA模板、前後端引子、dNTPs、DNA聚合酶等材料交互作用反應後,分別由前後端引子複製DNA模板並逐漸延長DNA序列,持續N個反應循環數後即可複製約2N倍的DNA片段。
即時定量PCR是目前主要公認檢測感染性疾病的主要工具,本發明「微型電化學多重即時定量聚合酶連鎖反應(PCR)系統」之優點在於能夠進行快速檢測、成本低、體積小、使用簡單,而且可針對本土特有需求開發各類試劑套組。其中該系統包括:
第一項:電化學即時定量PCR反應系統
1. PCR升降溫控制模組(110):利用可快速升降溫的半導體致冷晶片TE Cooler,並配合單晶片控制器與驅動電路,快速精確地控制加熱板(111)溫度的變化。
2. PCR反應晶片(120):該PCR反應晶片屬於可拋棄式微型多孔電極晶片(圖二),此可拋棄式微型多孔電極晶片至少包括一電極組,且電極組係為二電極或三電極所組成,整合電極與PCR反應於一平面晶片,每次可對8~96個樣品同時進行PCR反應,並即時量測其電化學反應訊號,使用之檢體僅需1~10ul。此反應晶片成本低,且為可拋棄式,可減少交叉污染。
第二項:電化學偵測系統
當待測樣品與具電活性物質之DNA結合染劑混合後,置於PCR反應晶片(120)上的PCR反應腔體(121)進行聚合酶連鎖反應,當核酸分子合成的越多,則與DNA結合的電活性物質也越多;其中該具電活性物質之DNA結合染劑為能選擇性地與雙股螺旋DNA(dsDNA)結合的帶有正電荷之有機分子,包括Methylene Blue(MB)、ethidium bromide、抗癌藥物(anticancer agent)、有機染料(organic dye)、金屬複合物(metal complexe)等,如圖三所示。未與dsDNA結合前,MB具有良好的氧化 還原電位,當與dsDNA結合後便會降低其氧化還原電位,故利用電極(220)偵測系統之氧化還原電流訊號變化,並經由電化學檢測模組(210)之整合運算,可運用於辨識dsDNA的濃度,如圖四所示。
第三項:人機介面控制系統
在進行聚合酶連鎖反應時,可利用該人機介面控制系統控制反應的溫度變化,同時偵測反應中的核酸濃度,並利用該系統之DNA濃度定量軟體來定量待測樣品之濃度。
實施例二
本發明以臨床敗血症快速檢測為Real-time PCR應用範例,說明該微型電化學多重即時定量聚合酶連鎖反應(PCR)系統於臨床診斷之應用流程,如圖五所示,採集病人血液檢體約1mL,經由專一性全自動磁珠核酸純化系統,檢體處理之後萃取出基因體核酸物質,藉由DNA高通量快速純化之後,以此核酸待測物作為PCR之母模版。接著利用敗血症臨床菌株之DNA指紋圖譜(包括Gram-negative,Gram-positive,以及fungus),設計一對新型並具高專一性之特定引子,以供微型電化學即時定量PCR反應使用。於試管內配製即時定量PCR反應試劑,分別加入前段及後段新型特定引子(Forward and reverse primers)、10倍PCR緩衝液、dNTPs、二次過濾水、Taq DNA聚合酶、電活性物質,最後加入先前純化之核酸待測物作為母模版,反應試劑混合均勻後取5~40μL體積滴入即時定量晶片反應槽,接著執行快速升降溫PCR反應約20~30循環且即時偵測氧化還原之電訊號,以DNA濃度定量軟體分析把電訊號轉換成相對應之複製DNA的定量濃度,最後利用生物資訊比對資料庫分析實驗結果得知病人血液檢體待測物,臨床醫師便可得知病患血液中致病菌的種類及濃度,作為投藥準確性及劑量的重要依據。
上列詳細說明係針對本發明之可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,例如:該微型電化學多重即時定量聚合酶連鎖反應(PCR)系統於親子鑑定、食品工業、農業品種改良、基因圖譜建立、基 因重組技術、環境監測、植物病蟲害偵測及臨床感染性疾病監控之應用等變化之等效性實施例,均應包含於本案之專利範圍中。
綜上所述,本案不但在方法型態上確屬創新,並能較習用物品增進上述多項功效,應已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請貴局核准本件發明專利申請案,以勵發明,至感德便。
110‧‧‧PCR升降溫控制模組
111‧‧‧加熱板
120‧‧‧PCR反應晶片
121‧‧‧PCR反應腔體
210‧‧‧電化學檢測模組
220‧‧‧電極
300‧‧‧人機介面控制系統
圖一、微型電化學多重即時定量聚合酶連鎖反應(PCR)系統反應檢測裝置示意圖。
圖二、微型多孔電極晶片。
圖三、Methylene Blue與雙股螺旋DNA結合示意圖。黑色實體代表Methylene Blue分子。
圖四、Methylene Blue的電訊號隨雙股DNA濃度增加而遞減之關係圖。
圖五、微型電化學多重即時定量聚合酶連鎖反應(PCR)系統臨床檢測應用流程圖。
Methylene Blue的電訊號隨雙股螺旋DNA濃度增加而遞減,X軸為電壓(伏特),Y軸為電流值(安培)。
110‧‧‧PCR升降溫控制模組
111‧‧‧加熱板
120‧‧‧PCR反應晶片
121‧‧‧PCR反應腔體
210‧‧‧電化學檢測模組
220‧‧‧電極
300‧‧‧人機介面控制系統

Claims (6)

  1. 一種微型電化學多重即時定量聚合酶連鎖反應(PCR)系統,其中該系統包括(a)一電化學即時定量PCR反應系統,其中該系統包括一PCR升降溫控制模組、一PCR反應晶片以及一PCR反應腔體,該系統係利用該PCR升降溫控制模組來控制該PCR反應晶片之溫度;當待測樣品與一與雙股螺旋DNA結合之電活性物質混合後,置於該PCR反應晶片上的該PCR反應腔體,進行PCR反應;以及(b)一電化學偵測系統,其中該系統包括一電化學檢測模組與一個以上之電極;其中該系統係利用該電活性物質與雙股螺旋DNA結合後會失去或降低其電活性,故該PCR反應晶片量測該電活性物質之電化學訊號,係辨識雙股螺旋DNA的種類與數量;又該PCR反應腔體位於PCR反應晶片上,每完成一複製循迴均以同一組電極即時定量檢測,或複製循迴全部完成後,再以同一組電極即時定量檢測;其中該PCR反應晶片係為一可拋棄式微型多孔電極晶片,其中該可拋棄式微型多孔電極晶片至少包括一電極組,該電極組係為二電極或三電極所組成;以及其中該電活性物質,包括Methylene Blue、ethidium bromide、有機染料(organic dye)、金屬複合物(metal complexe)與雙股螺旋DNA結合的電活性物質。
  2. 如申請專利範圍第1項所述之微型電化學多重即時定量聚合酶連鎖反應(PCR)系統,其中該PCR反應腔體為一位於該PCR反應晶片上之環形結構體。
  3. 如申請專利範圍第1項所述之微型電化學多重即時定量聚合酶連鎖反應(PCR)系統,其中該PCR反應腔體為一包覆於該PCR反應晶片上之封閉型結構體。
  4. 如申請專利範圍第1項所述之微型電化學多重即時定量聚合酶連鎖反應(PCR)系統,其中該PCR反應腔體為一液珠或一包覆油膜之液珠。
  5. 如申請專利範圍第1項所述之微型電化學多重即時定量聚合酶連鎖 反應(PCR)系統,其中該系統係由一人機介面控制系統來整合控制,其中該人機介面控制系統包括一DNA濃度定量軟體。
  6. 如申請專利範圍第1項所述之微型電化學多重即時定量聚合酶連鎖反應(PCR)系統,其中該系統係應用於親子鑑定、食品工業、農業品種改良、基因圖譜建立、基因重組技術、環境監測、植物病蟲害偵測及臨床感染性疾病監控,在臨床性感染疾病上快速完成即時定量檢測。
TW099134467A 2010-10-08 2010-10-08 微型電化學多重即時定量聚合酶連鎖反應(pcr)系統 TWI495727B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099134467A TWI495727B (zh) 2010-10-08 2010-10-08 微型電化學多重即時定量聚合酶連鎖反應(pcr)系統
US13/163,855 US20120088696A1 (en) 2010-10-08 2011-06-20 Micro electrochemical multiplex real-time pcr platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099134467A TWI495727B (zh) 2010-10-08 2010-10-08 微型電化學多重即時定量聚合酶連鎖反應(pcr)系統

Publications (2)

Publication Number Publication Date
TW201215681A TW201215681A (en) 2012-04-16
TWI495727B true TWI495727B (zh) 2015-08-11

Family

ID=45925601

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099134467A TWI495727B (zh) 2010-10-08 2010-10-08 微型電化學多重即時定量聚合酶連鎖反應(pcr)系統

Country Status (2)

Country Link
US (1) US20120088696A1 (zh)
TW (1) TWI495727B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404455B1 (ko) * 2012-07-04 2014-06-10 나노바이오시스 주식회사 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법
CN107241434A (zh) * 2017-07-18 2017-10-10 深圳森阳环保材料科技有限公司 一种农产品养殖智能监测***
WO2020197487A1 (en) * 2019-03-28 2020-10-01 Cell Id Pte Ltd Real-time pcr chip
EP3933049A1 (de) 2020-07-03 2022-01-05 Bayer AG Früherkennung von krankheitserregern bei pflanzen
BR112022023090A2 (pt) 2020-05-13 2022-12-20 Bayer Ag Detecção precoce de patógenos em plantas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090057147A1 (en) * 1999-04-21 2009-03-05 Clinical Micro Sensors, Inc. Devices and methods for biochip multiplexing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7348183B2 (en) * 2000-10-16 2008-03-25 Board Of Trustees Of The University Of Arkansas Self-contained microelectrochemical bioassay platforms and methods
DE10253337B4 (de) * 2002-11-14 2005-10-20 November Ag Molekulare Medizin Verfahren zum Nachweis einer Nukleinsäure
WO2005108612A2 (en) * 2003-11-28 2005-11-17 Genorx, Inc. Nanoscale biosensor device, system and technique
WO2007078850A2 (en) * 2005-12-29 2007-07-12 I-Stat Corporation Molecular diagnostics amplification system and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090057147A1 (en) * 1999-04-21 2009-03-05 Clinical Micro Sensors, Inc. Devices and methods for biochip multiplexing

Also Published As

Publication number Publication date
TW201215681A (en) 2012-04-16
US20120088696A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
Pandey et al. Integrating programmable DNAzymes with electrical readout for rapid and culture-free bacterial detection using a handheld platform
Tsaloglou et al. Handheld isothermal amplification and electrochemical detection of DNA in resource-limited settings
US9222126B2 (en) Methods for point-of-care detection of nucleic acid in a sample
Derda et al. Filter-based assay for Escherichia coli in aqueous samples using bacteriophage-based amplification
Liu et al. Rapid antimicrobial susceptibility testing with electrokinetics enhanced biosensors for diagnosis of acute bacterial infections
TWI495727B (zh) 微型電化學多重即時定量聚合酶連鎖反應(pcr)系統
CN103614489B (zh) 一种登革热病毒的恒温扩增检测试剂盒及检测方法
Zakaria et al. A review of detection methods for vancomycin-resistant enterococci (VRE) genes: from conventional approaches to potentially electrochemical DNA biosensors
CN107937579A (zh) 一种用于检测血培养瓶中临床常见病原菌的产品和方法
Che-Engku-Chik et al. Detection of tuberculosis (TB) using gold standard method, direct sputum smears microscopy, PCR, qPCR and electrochemical DNA sensor: A mini review
RU2550257C2 (ru) СПОСОБ ДИФФЕРЕНЦИАЦИИ ТИПИЧНЫХ И АТИПИЧНЫХ ШТАММОВ Yersinia pestis СРЕДНЕВЕКОВОГО БИОВАРА МЕТОДОМ ПЦР С ГИБРИДИЗАЦИОННО-ФЛУОРЕСЦЕНТНЫМ УЧЕТОМ РЕЗУЛЬТАТОВ
TWI732827B (zh) 高效能mRNA標記偵測試劑組之偵測方法
WO2021039777A1 (ja) 関節リウマチを検査する方法
CN102146467A (zh) 检测鼠疫耶尔森氏菌的试剂及荧光定量pcr检测鼠疫耶尔森氏菌的方法
CN106414775A (zh) 用于宏基因组生物标志检测的组合物和方法
Yue et al. Development of next-generation sequencing-based sterility test
CN106591468B (zh) 黑腹果蝇中自噬作用关键基因表达水平检测的引物组合物、试剂盒及其使用方法
KR101731400B1 (ko) 금나노입자 및 자성비드입자를 이용한 비-증폭 dna 검출방법
US20240117404A1 (en) Automatic Phagogram
Li et al. Development of a portable DNA extraction and cross-priming amplification (CPA) tool for rapid in-situ visual diagnosis of plant diseases
Parmin et al. A mini review of electrochemical genosensor based biosensor diagnostic system for infectious diseases
Ogundolie et al. Microbiome characterization and identification: key emphasis on molecular approaches
Alvarez Nicarao L. Delgado
Lu et al. Simplified Electrochemical Approach for End-Point Yet Quantitative Detection of Nucleic Acids in Resource-Limited Settings
Lopes et al. Antibiotic Resistance Detection in Pseudomonas aeruginosa: Recent Strategies, Advances, and Challenges