TWI491409B - 外用型超音波微氣泡對比劑 - Google Patents

外用型超音波微氣泡對比劑 Download PDF

Info

Publication number
TWI491409B
TWI491409B TW102122588A TW102122588A TWI491409B TW I491409 B TWI491409 B TW I491409B TW 102122588 A TW102122588 A TW 102122588A TW 102122588 A TW102122588 A TW 102122588A TW I491409 B TWI491409 B TW I491409B
Authority
TW
Taiwan
Prior art keywords
ultrasonic
microbubble
contrast agent
microbubbles
chemical
Prior art date
Application number
TW102122588A
Other languages
English (en)
Other versions
TW201500056A (zh
Inventor
Ai Ho Liao
Chih Hung Wang
Original Assignee
Univ Nat Taiwan Science Tech
Nat Defense Medical Ct
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Science Tech, Nat Defense Medical Ct filed Critical Univ Nat Taiwan Science Tech
Priority to TW102122588A priority Critical patent/TWI491409B/zh
Priority to JP2013161536A priority patent/JP5801355B2/ja
Priority to US13/961,903 priority patent/US20140377186A1/en
Priority to US14/526,496 priority patent/US20150056273A1/en
Publication of TW201500056A publication Critical patent/TW201500056A/zh
Application granted granted Critical
Publication of TWI491409B publication Critical patent/TWI491409B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)

Description

外用型超音波微氣泡對比劑
本發明是關於一種超音波微氣泡對比劑應用於藥物傳輸之領域,特別關於一種外用型超音波微氣泡對比劑應用於藥物傳輸之領域。
數十年來超音波由於方便、準確、價廉且無游離輻射,而成為醫學領域最重要的工具,超音波微氣泡對比劑是藉由超音波能量激發注射到血管內的超音波微氣泡對比劑中的微小氣泡,使其產生倍頻諧振,以增強所接收的超音波顯示影像。超音波微氣泡對比劑,可幫助高頻超音波影像增加對比解析度與靈敏度,一般傳統的超音波微氣泡對比劑是經由血管或其他方式注射到生物體內,用以增強超音波影像。此外,由於超音波以機械波之形式傳遞,因此其所產生之力學作用亦延伸出超音波成像以外的應用。但由於超音波微氣泡對比劑需要注射到生物體內,導致整體風險增高,而不利於醫療或研究之進行。
本發明提供一種外用型超音波微氣泡對比劑,其使用時係塗覆於生物體之體表,而不需採用習知的注射方式來使用。所述的外用型超音波微氣泡對比劑,其介質可為水相或膠狀形態,並包含有特定濃度、粒徑大小之微氣泡。微氣泡材質可以是白蛋白、微脂體、聚合物、前述材質之共聚物或混合物或以上各者之組合,而搭配不同應用範圍之力學振盪能量,藉由該力學振盪波動使得該些微氣泡經振盪能量之壓力誘導而生成、脹縮的一連串過程而使該些微氣泡破裂(destruction),進而產生能量及震波(shock wave)導致細胞或組織的細微破損,以加強搭配使用之各種化學物或小分子的吸收效果。常見的力學振盪能量源可以是聲學能量或光學能量,例如是超音波或雷射光。本發明所提供之外用型超音波微氣泡對比劑係適於塗覆在生物體之體表時,可透過搭配使用之力學振盪能量源所產生力學波動作用,而造成該外用型超音波微氣泡對比劑其中的微氣泡破裂進而產生能量及震波,所述微氣泡破裂產生之能量及震波對體表接觸部位之皮膚或黏膜造成微量且可回復的破損,藉此增加在該部位之化學物或小分子之經皮吸收,因此可廣泛運用在醫療或美容等領域。舉例而言,可協助手術後之外用疼痛藥物吸收、加強各種美容美體保養成分之吸收等。
本發明提供一種外用型超音波微氣泡對比劑,至少包括一介質與分散於該介質中之多個微氣泡,其中該介質是液狀或膠 狀形態,該些微氣泡材質選自白蛋白、聚合物、微脂體、前述材質之共聚物或混合物,或以上各者之組合,且該外用型超音波微氣泡對比劑中的微氣泡濃度為範圍在1x109 ~2x 109 顆/毫升之間。
根據本發明之實施例,該些微氣泡材質係選自白蛋白、聚合物、微脂體、前述材質之共聚物或混合物,或以上各者之組合。該介質係選自等張之生理食鹽水、洋菜膠、蘆薈凝膠或外用凝膠,或前述材質所組成之組合。
根據本發明之實施例,該介質係膠狀形態,該膠狀形態介質佔該外用型超音波微氣泡對比劑總重的0至0.2重量百分份。
根據本發明之實施例,該些微氣泡粒徑介於0.5微米至2.5微米之間。
根據本發明之實施例,所述外用型超音波微氣泡對比劑可與一化學物或小分子合併使用,以強化該化學物或小分子經生物體之體表傳輸而吸收。
本發明提供一種一種強化化學物或小分子於體表的局部區域之滲透吸收的方法,該方法包含將一微氣泡組成物外用施用至體表的局部區域,其中該微氣泡組成物包括至少一介質與分散於該介質中之多個微氣泡,其中該介質是液狀或膠狀介質,該些微氣泡材質選自白蛋白、聚合物或微脂體。將一治療有效劑量之化學物或小分子施用至該局部區域。然後將一力學振盪源產生裝置直接接觸於該微氣泡組成物與該化學物或小分子施用過的該局部區域,藉由該力學振盪源產生裝置產生之力學波,使該微氣泡 組成物中的該些微氣泡,受力學波作用而振盪擠壓,而增進該化學物或小分子於該局部區域穿透過體表之滲透吸收。
根據本發明之實施例,其中相對於該微氣泡組成物與該化學物或小分子合計之總體積,該些微氣泡濃度範圍在2x106 ~2x108 顆/毫升之間。
根據本發明之實施例,所述之強化化學物或小分子於體表的局部區域之滲透吸收的方法更包括以該化學物或小分子作為稀釋劑,而將該微氣泡組成物進行2-1000倍稀釋混合之步驟。
根據本發明之實施例,其中施用該微氣泡組成物之步驟與施用該化學物或該小分子之步驟,是分別施用並非同時施用。
根據本發明之實施例,其中該力學振盪源產生裝置包括一超音波裝置與/或一雷射光裝置。
基於上述,本發明所提供之外用型超音波微氣泡對比劑可安全有效地加強施用部位之化學物或小分子之滲透吸收,且避免對比劑注入體內所可能導致之過敏風險。
為讓本發明之上述特徵和優點能更明顯易懂,下文特列舉實施例配合所附圖解作詳細說明如下。
20‧‧‧仿體
22‧‧‧滴管架
30‧‧‧灌流區
35‧‧‧傳導膠
40、201‧‧‧超音波探頭
101‧‧‧A劑或D劑
102‧‧‧B劑或E劑
103‧‧‧C劑或F劑
202‧‧‧雷射光裝置
301‧‧‧施打部位
圖1為依據本發明的實施例之超音波微氣泡對比劑與搭配超音波施打之流程示意圖。
圖2為依據本發明的實施例之經皮穿透實驗系統結構示意圖。
圖3A為依據本發明的實施例之經皮穿透實驗的穿透深度圖。
圖3B為依據本發明的實施例之經皮穿透實驗的穿透深度與滯留時間量化圖。
圖4A為放大100倍之依據本發明的實施例之經皮穿透實驗的穿透深度。
圖4B為放大400倍之依據本發明的實施例之經皮穿透實驗的穿透深度。
圖5為依據本發明的實施例在內耳藥物傳輸實驗中不同的外用型微氣泡與所施加之超音波條件的效率比較圖。
圖6A-6F顯示依據本發明的實施例用不同施用方式導致混合製劑中綠色指示染劑能否進入內耳圓窗膜細胞中的差異。
圖7A-7B顯示依據本發明的實施例使用藥物搭配施打超音波之實驗組或搭配不施打超音波之對照組,分別以滴答音(click)以及***音(tone burst)的聽性腦幹反應(auditory brainstem responses,ABRs)來測試對內耳聽覺功能影響的實驗結果。
本發明之超音波微氣泡對比劑可為水相形態或膠狀形態,其中有特定濃度、粒徑大小之微氣泡,而依其所含微氣泡之材質可分為大致三類:白蛋白微氣泡、微脂體微氣泡、或是聚合物微氣泡。超音波微氣泡對比劑所含之微氣泡係具有穩定包覆的 球殼,可被用來加強超音波反射的散射信號。在不同的超音波強度能量之下,伴隨著使用超音波微氣泡對比劑,將可加強化學物質或小分子對於超音波施打部位之滲透深度(亦即吸收效率)與/或穿透量(亦即吸收量)。
以脂質超音波微氣泡對比劑為例,在機械指數 (mechanical index,MI)小於0.05~0.1的極低聲場能量作用下,此時超音波微氣泡對比劑為線性、對稱的震盪;當機械指數提升為0.1~0.3,此時超音波微氣泡對比劑被擠壓的程度會大於舒張的程度,雖然此時超音波微氣泡對比劑的穴蝕效應仍不明顯但是非線性響應明顯,同時在訊號頻譜上有明顯的諧波成分,諧波影像能有效的加強微氣泡對組織的散射比;然而在高聲壓的情形下(機械指數大於0.3~0.6),超音波微氣泡對比劑會承受很大的擠壓以及舒張,導致超音波微氣泡對比劑破裂成碎片進而發生線性散射以及穴蝕效應。穴蝕效應所產生之震波會導致細胞膜擾動並增加其通透性。根據研究顯示,在高聲場的情況下超音波微氣泡對比劑所產生的穴蝕效應,可以加強微循環滲透(microvascular leakages)、免疫細胞滲透(inflammatory cell infiltrations)、溶解血栓(hemolysis)、甚或造成微血管破裂(capillary ruptures)等等情況。
本發明所提供之外用型超音波微氣泡對比劑,乃係用於 塗覆或塗抹至生物體體表面之特定區域(亦即外用),該外用型超音波微氣泡對比劑可加強生物體體表部位對與該外用型超音波微氣泡對比劑所混合的具藥效之化學物或小分子的吸收效果。相較 於一般所使用注入於體內之血液循環系統的超音波微氣泡對比劑來說,本發明是將超音波微氣泡對比劑設計成為介於超音波探頭與超音波作用部位(體表局部區域,如面部、關節部位或耳孔內等)中間的介質,也就是說微氣泡係穩定存在於超音波微氣泡對比劑中並且直接與超音波探頭接觸,在超音波能量誘導下產生穴蝕效應,進而加強體表淺部位對於其所搭配的化學物或小分子物質的吸收與利用。此外,由於與本發明的超音波微氣泡對比劑混合使用的化學物或小分子並非包覆於微氣泡內,因此,它可以與本發明之超音波微氣泡對比劑混合使用或是分開使用,亦即該等化學物或小分子可以不同先後順序施用或塗覆至體表外側。
本發明之外用型超音波微氣泡對比劑,可以針對微氣泡濃度以及介質張力來進行設計調整,而使超音波微氣泡對比劑變為可直接接觸超音波探頭式的外用製劑。超音波微氣泡對比劑所使用之介質可以為水相或膠狀形態,並且在搭配特定濃度之微氣泡後仍可具備有效之聲學傳導特性。超音波微氣泡對比劑所使用之微氣泡材質可以是白蛋白、微脂體、聚合物、前述材質之共聚物或混合物,或以上各者之組合。
本發明更提供一種外用型超音波微氣泡組成物之用途,其係外用施用於體表的局部區域以促進具藥效之一化學物或小分子穿透該局部區域之皮膚或黏膜,以強化該些化學物或小分子的滲透吸收。該外用型超音波微氣泡組成物包括至少一介質與分散於該介質中之多個微氣泡,其中該介質是液狀、膠狀形態,該些 微氣泡材質選自白蛋白、聚合物或微脂體、前述材質之共聚物或混合物,或以上各者之組合,當使用時,該外用型超音波微氣泡組成物需由原本的1x109 ~2x 109 顆/毫升先以增加其中介質比例之方式稀釋2-1000倍,使經稀釋後的微氣泡濃度範圍在2x106 ~2x 108 顆/毫升之間。
以下實施例係以白蛋白超音波微氣泡對比劑為例,但本發明之超音波微氣泡對比劑並不僅限於下列實施例之內容。
實施例
外用型微氣泡製劑之製作步驟:方法一:水相超音波微氣泡對比劑製作:將生理食鹽水與1.2 wt%人類血清白蛋白(human serum albumin,HSA,購自Octapharma,Vienna,Austria)均勻混合成10毫升之溶液並充入C3 F8 氣體後,以細胞粉碎儀振盪2分鐘以製成超音波微氣泡對比劑,其在振盪過程中會形成以白蛋白為球殼包覆C3 F8 的微氣泡。將震盪完成的超音波微氣泡對比劑分裝至微量離心管中,置於微量離心機中進行分離(轉速:1200 rpm(128.7g)、時間:2分鐘),抽取下清液並加入適量的生理食鹽水,可保存於4℃冰箱中。在本實驗所使用對比劑所包含之微氣泡濃度為2×109 顆/ml而微氣泡粒徑分佈為0.5~2.5μm。
A劑:以生理食鹽水為介質,將各種商用脂質球殼之微氣泡(包括磷脂類微氣泡SonoVue®(購自Bracco Diagnostics,Milan,Italy)或Targestar(購自Targeson,La Jolla,CA)或前述自製 之白蛋白球殼超音波微氣泡對比劑的濃度,皆調整成1×109 ~2×109 顆/ml(微氣泡原液)。
B劑:配製搭配運用之化學物、生物小分子或藥品等,所欲搭配之物質須調配為液狀、乳狀或膠狀,並使其與人體細胞成等張而pH值=7.4。化學物、生物小分子或藥品可以為例如止痛藥雙氯芬酸、熊果素、維他命C磷酸鎂鹽、美白成分九胜肽、健大黴素或糖皮質激素等物質。
C劑:以B劑作為稀釋劑而將A劑進行2~1000倍稀釋混合後所得到之混合組成物,將其塗抹應用於生物體體表。其中效果特佳組為以B劑將A劑作2~40倍稀釋,較佳組為以B劑將A劑作30~150倍稀釋,或者也可以用B劑將A劑作100~1000倍稀釋。根據實驗,施用於皮膚時,10倍稀釋效果為最佳,但其他稀釋濃度也有效力,但效果不一。故應視施用區域而調整。一般而言,外用對比劑中微氣泡濃度較佳為約2x106 ~2 x108 顆/ml。
一般而言,可以將超音波探頭直接與塗抹於生物體體表外之C劑接觸,來進行局部超音波施打,能量為功率0.1~5 W/cm2 ,而機械指數(MI)<1.9。此外,用以與C劑作用之超音波能量,可以使用其他可產生力學振盪效應能量形式之裝置替代或合併使用,例如,將各式治療雷射光束接觸於C劑來進行局部施打。可與C劑發生作用之該力學振盪裝置,本領域技術人員應可輕易思及相應之置換,其並非用以限制使用時應用的能量源種類。
方法二:膠狀超音波微氣泡對比劑製作: 以生理食鹽水配製0.2 wt%以下之洋菜凝膠、蘆薈凝膠或其他外用凝膠。
D劑:以上述外用凝膠為介質,將超音波微氣泡對比劑與0.2 wt%以下(例如0.1 wt%或0.15 wt%)之洋菜凝膠、蘆薈凝膠或其他外用凝膠混合,並將微氣泡濃度濃度調整為約1 x109 ~2 x109 顆/ml(微氣泡原液)。
E劑:配製欲搭配之化學物、生物小分子或藥品等,所欲搭配物質須調配為液狀、乳狀或膠狀,並使其與人體細胞成等張而pH值=7.4。化學物、生物小分子或藥品可以為例如止痛藥雙氯芬酸、熊果素、維他命C磷酸鎂鹽、美白成分九胜肽、健大黴素或糖皮質激素等物質。
F劑:以E劑作為稀釋劑而將D劑進行2~1000倍稀釋混合後所得到之混合組成物,將其塗抹應用於生物體體表外。其中效果特佳組為以E劑將D劑作2~40倍稀釋,較佳組為以E劑將D劑作30~150倍稀釋,或者也可以E劑將D劑作100~1000倍稀釋。根據實驗,施用於皮膚時,10倍稀釋效果為最佳,但其他稀釋濃度也有效力,但效果不一。故應視施用區域而調整。一般而言,當施用於生物體之體表時,該經稀釋之本發明之外用型超音波微氣泡對比劑中的微氣泡濃度較佳為約2x106 ~2 x108 顆/ml。
一般而言,可以將超音波探頭直接與塗抹於生物體體表之F劑接觸,進行局部超音波施打,能量為功率0.1~5 W/cm2 ,而機械指數(MI)<1.9。更可考慮將各式治療雷射光束接觸於C劑而 進行局部施打。為說明本發明之原理及設計,特以下列具體實施例來做說明。圖1為依據本發明實施例之超音波微氣泡對比劑與搭配的超音波施打之流程示意圖。首先,將A劑或D劑(101)與B劑或E劑充分混合(102)而製備得到C劑或F劑(103),並將所得到之C劑或F劑(103)均勻塗抹於施打部位(301)表面,再將超音波探頭(201)直接碰觸塗抹於施打部位(301)表面上的C劑或F劑(103),並施加超音波(弧形表示之)藉以加強藥劑或任何化學物之滲透吸收作用。該系統更可包括***或雷射光裝置(202)。不論是水相或膠狀超音波微氣泡對比劑(103),其等之超音波訊號相較於水仍有明顯之基頻與諧波訊號,因此其並沒有減弱超音波所誘發的各種物理效應。
經皮穿透實驗流程
圖2為依據本發明的實施例之仿體穿透實驗系統結構示意圖。先以濃度為0.3 wt%之洋菜膠製作仿體20,以利用仿體來模擬人體皮膚並進行穿透實驗。將探頭架設於滴管架22上,超音波探頭40與仿體20距離為約5mm。傳導膠35係置於探頭40上以使得傳導膠35與仿體20距離為約3mm。請參見圖2,灌流區30係置於仿體20上方而傳導膠35則位於灌流區30外圍。本發明所提供之膠狀超音波微氣泡對比劑係用來作為傳導膠35,而所搭配施打之化學物質或小分子係置於灌流區30中。
超音波施打流程:放置傳導膠樣品並施打超音波1分鐘。沖洗仿體表面3次(1000μl)。控制組乃是採用0.01 wt%的依文思 藍(Evans blue)染劑食鹽水溶液(0.0001g依文思藍染劑溶解於1ml食鹽水中),來進行對照實驗。將施打完超音波的仿體,放置於灌流區中靜置於2~30分鐘(例如:靜置於5分鐘、10分鐘、15分鐘或20分鐘),在靜置完預定時間後,即可利用顯微鏡觀察染劑之仿體穿透深度,並利用使用MATLAB書寫程式來計算穿透深度。
進行下列三組實驗並變化不同的參數,以找出對應於最 佳之染劑穿透深度的條件:(1)僅含依文思藍染劑(以E來表示);(2)依文思藍染劑+超音波(以E+U來表示);(3)依文思藍染劑+超音波+微氣泡(以E+U+MB或MB來表示);(4)依文思藍染劑+超音波+稀釋10倍微氣泡(以E+U+10xMB或10xMB來表示);E代表依文思藍染色液;U代表超音波;M代表微氣泡;10xMB代表10倍稀釋。在進行上述超音波施打流程並靜置完後,即可利用顯微鏡來觀察仿體穿透深度並利用計算程式MATLAB來計算穿透深度圖3A為依據本發明的實施例之經洋菜仿體穿透實驗的穿透深度圖。圖3B為依據本發明的實施例之經洋菜仿體穿透實驗的穿透深度與滯留時間量化圖。
在另一實驗中,將灌流區放置於厚度約2 mm豬皮上進行 經皮穿透實驗,其之實驗方式係與仿體穿透實驗相似,其之實驗結果如圖4A-4B所示,圖4A為放大100倍後之依據本發明的實施例之經皮穿透實驗的穿透深度。圖4B為放大400倍後之依據本發明的實施例之經皮穿透實驗的穿透深度。
從穿透實驗結果可知,超音波搭配本發明之超音波微氣 泡對比劑可以使得染劑穿透較深或穿透較為均勻。而相對於仿體,豬皮的穿透實驗,更顯示出本發明之超音波微氣泡對比劑確實有強化小分子滲透(穿透)之功效。本發明的外用型超音波微氣泡對比劑在使用時,需先將本發明微氣泡對比劑與稀釋劑的稀釋以約1:2至1:1000之比例稀釋,所述的稀釋劑可以是本發明之微氣泡對比劑本身所含之介質,更增加其比例;或以藥效成分本身(亦即,前述之該些化學物或小分子)作為稀釋劑。此外,本發明的外用型微氣泡對比劑之介質並非不侷限於傳統液狀等張溶液。本發明的外用型微氣泡對比劑之微氣泡球殼材質可以是白蛋白、聚合物、微脂體、前述材質之共聚物或混合物,或以上各者之組合。外用型超音波微氣泡對比劑中的微氣泡濃度範圍係介於2x106 ~2x108 顆/ml之間,如為膠狀介質,該微氣泡對比劑中微氣泡則應佔該微氣泡對比劑與介質之組合物總重量之0至0.2 wt%(重量百分份),可有效傳遞聲波。
針對實際應用,測試本發明外用型微氣泡對比劑應用於 內耳治療中,將本發明的外用型微氣泡對比劑與藥效成份混合並施用於天竺鼠內耳中,而以不同方式施用來檢測該藥效成分之傳輸效率。
動物實驗流程
使用的動物為60隻具正常音源轉向反射(Preyer’s reflex) 的天竺鼠,以下列三組條件進行實驗:(1)其中24隻於中耳鼓室胞(tympanic bullae)填充本發明之超音波微氣泡對比劑混合指示染 劑,並搭配施打超音波的處置;(2)其中9隻僅於中耳鼓室胞填充指示染劑搭配施打超音波;(3)其餘27隻係於耳內圓窗口(round window)放置本發明超音波微氣泡對比劑混合指示染劑,不加施打超音波而使該超音波微氣泡對比劑混合指示染劑係以擴散方式進入圓窗膜(round window membrane)。
本發明使用日本NepaGene公司的超音波傳送儀 (ST2000V,NepaGene,Japan),所使用的探頭尺寸為6mm,採用波形為方波。本發明所使用的頻率為1MHz,工作週期(duty cycle)為50%,能量為3W/cm2 ,施打時間1分鍾。進行實驗時探頭係放置於面向圓窗膜但與之距離5mm的體表局部。
圖5為在內耳藥物傳輸實驗中的不同的外用型微氣泡對 比劑與其所搭配施打的超音波條件的效率比較圖。其中:USM代表給予一次微氣泡對比劑與施用一次超音波,USMx2代表給予兩次微氣泡對比劑與施用兩次超音波,USMx2-10m代表給予兩次微氣泡對比劑與施用兩次超音波並滯留10分鐘。相較於單純透過擴散效應傳輸藥物(對照組)至內耳中,實驗結果可看出本發明之外用型超音波微氣泡對比劑在搭配使用超音波時可以加強藥物傳輸效率,於是提升USM、USMx2、USMx2-10m之傳輸效率分別為對照組之3.5倍、8.8倍以及37.9倍之多。此外,使用本案的微氣泡對比劑並施打超音波之方式來輸送健大黴素,也可使特定耳蝸組織內之健大黴素濃度明顯高於沒有給予超音波的對照組組織,證實外用型微氣泡對比劑係便於應用且更容易控制,並具有 更好之傳遞或強化吸收的效果。
圖6A-6F顯示施用本案超音波微氣泡對比劑並施打超音 波之方式來比較混合製劑中綠色指示染劑進入內耳圓窗膜細胞中的差異。圖6A~圖6C是顯示實驗組中使用超音波微氣泡對比劑混合綠色指示染劑,並搭配施打超音波而使綠色指示染劑傳輸進入內耳圓窗細胞之效果。而圖6D~圖6F是顯示對照組中使用微氣泡對比劑混合綠色指示染劑但無施打超音波,僅透過擴散方式使該對比劑與染劑之混合物進入內耳圓窗細胞的效果。相較於圖6D-6F以及圖6A-6C,顯示綠色指示染劑在使用微氣泡對比劑並施打超音波時會比未施打超音波的控制組更易通透進入圓窗膜細胞;反觀圖6D~圖6F所示,在同一作用時間下的控制組,其圓窗膜細胞未呈現出綠色指示染劑。
此外,為驗證本發明的超音波微氣泡對比劑搭配超音波 施用後是否造成內耳耳蝸聽覺系統中細胞的危害,本發明亦透過前述動物實驗針對完成超音波藥物傳輸實驗後之天竺鼠進行聽力閾值之功能性評估實驗。圖7A-7B顯示使用藥物搭配施打超音波之實驗組(USM)或使用藥物搭配不施打超音波之對照組(RWS),兩者於滴答音(圖7A)及***音(圖7B)的聽性腦幹反應測試,結果顯示兩組聽力閾值並無差異,意謂本案的微氣泡對比劑搭配超音波作用於耳蝸器官不會造成內耳耳蝸聽覺系統中細胞的危害。
本發明所搭配使用之超音波能量範圍係較佳地屬於非聚 焦式的低能超音波,其能量只有MI=0.2~0.4的範圍,相較美國 FDA所規範之醫用超音波MI須低於1.9,眼科使用須低於0.2;本發明搭配使用之超音波能量範圍不但遠低於其所規範之MI=1.9,也未包含在眼科使用範圍內。本發明所使用之超音波能量範圍並不會產生局部的溫度變化,在上述之本發明實驗的操作過程中進行溫度監控,發現溫度差異只在正負0.1度之間,因此本發明搭配使用之超音波能量範圍與熱效應無關。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。
101‧‧‧A/D劑
102‧‧‧B/E劑
103‧‧‧C/F劑
201‧‧‧超音波探頭
202‧‧‧雷射光裝置
301‧‧‧施打部位

Claims (7)

  1. 一種外用型超音波微氣泡對比劑,至少包括:一介質,其係液狀或膠狀形態,該介質係選自等張之生理食鹽水、洋菜膠、蘆薈凝膠、外用凝膠或前述材質所組成之組合;一化學物或小分子作為稀釋劑;以及多個分散於該介質中之微氣泡;其中相對於該外用型超音波微氣泡對比劑之總體積,該些微氣泡的濃度範圍係介於2x106 至2x108 顆/毫升之間,該外用型超音波微氣泡對比劑強化該化學物或小分子經生物體之體表傳輸而吸收。
  2. 如申請專利範圍第1項所述之外用型超音波微氣泡對比劑,其中:該些微氣泡材質係選自白蛋白、聚合物、微脂體、前述材質之共聚物或混合物,或以上各者之組合。
  3. 如申請專利範圍第1項所述之外用型超音波微氣泡對比劑,其中該介質係膠狀形態,該膠狀形態介質佔該外用型超音波微氣泡對比劑總重的0至0.2重量百分份。
  4. 如申請專利範圍第1項所述之外用型超音波微氣泡對比劑,其中該些微氣泡粒徑介於0.5微米至2.5微米之間。
  5. 一種強化用於美容的化學物或小分子於體表的局部區域之滲透吸收的方法,該方法包含提供一微氣泡組成物,其中該微氣泡組成物包括至少一介質 與分散於該介質中之多個微氣泡,其中該介質是液狀或膠狀介質,該些微氣泡材質選自白蛋白、聚合物或微脂體,且該些微氣泡的濃度範圍係介於1x109 至2x109 顆/毫升之間;將一化學物或小分子作為稀釋劑而將該微氣泡組成物進行2-1000倍稀釋混合後得到一微氣泡混合組成物,其中相對於該微氣泡混合組成物之總體積,該些微氣泡濃度範圍在2x106 至2x108 顆/毫升之間;將該化學物或小分子施用至該局部區域;以及將一力學振盪源產生裝置直接接觸於該微氣泡混合組成物與該化學物或小分子施用過的該局部區域,藉由該力學振盪源產生裝置產生之力學波,使該微氣泡混合組成物中的該些微氣泡,受力學波作用而振盪擠壓,而增進該化學物或小分子於該局部區域穿透過體表之滲透吸收。
  6. 如申請專利範圍第5項所述之強化用於美容的化學物或小分子於體表的局部區域之滲透吸收的方法,其中該些微氣泡粒徑介於0.5微米至2.5微米之間。
  7. 如申請專利範圍第5項所述之強化用於美容的化學物或小分子於體表的局部區域之滲透吸收的方法,其中該力學振盪源產生裝置包括一超音波裝置與/或一雷射光裝置。
TW102122588A 2013-06-25 2013-06-25 外用型超音波微氣泡對比劑 TWI491409B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW102122588A TWI491409B (zh) 2013-06-25 2013-06-25 外用型超音波微氣泡對比劑
JP2013161536A JP5801355B2 (ja) 2013-06-25 2013-08-02 外用微小気泡超音波造影剤
US13/961,903 US20140377186A1 (en) 2013-06-25 2013-08-08 Microbubble ultrasound contrast agent for external use
US14/526,496 US20150056273A1 (en) 2013-06-25 2014-10-28 Microbubble ultrasound contrast agent for external use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102122588A TWI491409B (zh) 2013-06-25 2013-06-25 外用型超音波微氣泡對比劑

Publications (2)

Publication Number Publication Date
TW201500056A TW201500056A (zh) 2015-01-01
TWI491409B true TWI491409B (zh) 2015-07-11

Family

ID=52111100

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102122588A TWI491409B (zh) 2013-06-25 2013-06-25 外用型超音波微氣泡對比劑

Country Status (3)

Country Link
US (1) US20140377186A1 (zh)
JP (1) JP5801355B2 (zh)
TW (1) TWI491409B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616210B (zh) 2016-01-07 2018-03-01 國立臺灣科技大學 經修飾微氣泡及其製備方法
WO2018213809A1 (en) * 2017-05-19 2018-11-22 Sarah Kathryn Patch Particle therapy aided by microbubbles and ultrasound
TWI797392B (zh) * 2019-11-05 2023-04-01 國防醫學院 微氣泡間接以力學波促進藥物傳遞的方法
CN115177748A (zh) * 2022-08-01 2022-10-14 北京大学口腔医学院 碘佛醇在制备体表造影剂中的应用和体表造影剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733572A (en) * 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
US20050271591A1 (en) * 2004-06-04 2005-12-08 Acusphere, Inc. Ultrasound contrast agent dosage formulation
TW201014607A (en) * 2008-10-13 2010-04-16 Univ Nat Taiwan Acoustically delivering methods and compositions for remote treatment of a tumor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6972901A (en) * 2000-05-31 2001-12-11 Mayo Foundation Cobalamin compounds useful as cardiovascular agents and as imaging agents
JP2006305158A (ja) * 2005-04-28 2006-11-09 Daikin Ind Ltd 経皮吸収促進方法、経皮吸収促進装置及び有用物質含有物
EP3085362B1 (en) * 2005-05-09 2021-01-13 Biosphere Medical, S.A. Compositions and methods using microspheres and non-ionic contrast agents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733572A (en) * 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
US20050271591A1 (en) * 2004-06-04 2005-12-08 Acusphere, Inc. Ultrasound contrast agent dosage formulation
TW201014607A (en) * 2008-10-13 2010-04-16 Univ Nat Taiwan Acoustically delivering methods and compositions for remote treatment of a tumor

Also Published As

Publication number Publication date
TW201500056A (zh) 2015-01-01
JP5801355B2 (ja) 2015-10-28
US20140377186A1 (en) 2014-12-25
JP2015007023A (ja) 2015-01-15

Similar Documents

Publication Publication Date Title
Mason Therapeutic ultrasound an overview
US9302124B2 (en) Systems and methods for opening a tissue
US7273458B2 (en) Method of applying acoustic energy effective to alter transport or cell viability
US20140148687A1 (en) Microbubble medical devices
TWI491409B (zh) 外用型超音波微氣泡對比劑
Bhatnagar et al. Exploitation of acoustic cavitation-induced microstreaming to enhance molecular transport
Zhou et al. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound
Hersh et al. Pulsed ultrasound expands the extracellular and perivascular spaces of the brain
Mountford et al. Fluorocarbon nanodrops as acoustic temperature probes
Kopechek et al. Synthesis of phase-shift nanoemulsions with narrow size distributions for acoustic droplet vaporization and bubble-enhanced ultrasound-mediated ablation
Aldwaikat et al. Investigating the sonophoresis effect on the permeation of diclofenac sodium using 3D skin equivalent
Zhang et al. Inverse effects of flowing phase-shift nanodroplets and lipid-shelled microbubbles on subsequent cavitation during focused ultrasound exposures
US20150056273A1 (en) Microbubble ultrasound contrast agent for external use
Small et al. Low-frequency ultrasound-induced transport across non-raft-forming ternary lipid bilayers
Vranić Sonophoresis-mechanisms and application
Smith Applications of ultrasonic skin permeation in transdermal drug delivery
US20210128457A1 (en) Method of delivering drugs to inner ear facilitated by microbubbles
Machet et al. Transdermal Transport by Sonophoresis
TWI589306B (zh) 外用型微氣泡對比劑
Chen et al. In vivo sonothrombolysis of ear marginal vein of rabbits monitored with high-frequency ultrasound needle transducer
Rodríguez et al. Opening the Blood-Brain Barrier in the Substantia Nigra of Rat Brain with Focused Ultrasound and Microbubbles
Escobar-Chávez et al. Therapeutic applications of sonophoresis and sonophoretic devices
Pellow Nonlinear nanobubble behaviour for vascular and extravascular applications
Tung et al. Identifying the inertial cavitation pressure threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles
Aldwaikat et al. Sonophoresis effect on the permeation of metronidazole using 3d skin equivalent