TWI489802B - 超音波即時功率監控系統 - Google Patents

超音波即時功率監控系統 Download PDF

Info

Publication number
TWI489802B
TWI489802B TW099114765A TW99114765A TWI489802B TW I489802 B TWI489802 B TW I489802B TW 099114765 A TW099114765 A TW 099114765A TW 99114765 A TW99114765 A TW 99114765A TW I489802 B TWI489802 B TW I489802B
Authority
TW
Taiwan
Prior art keywords
micro
power
ultrasonic
directional coupler
input signal
Prior art date
Application number
TW099114765A
Other languages
English (en)
Other versions
TW201141100A (en
Inventor
Hao Li Liu
Jyun An Lin
Original Assignee
Univ Chang Gung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chang Gung filed Critical Univ Chang Gung
Priority to TW099114765A priority Critical patent/TWI489802B/zh
Publication of TW201141100A publication Critical patent/TW201141100A/zh
Application granted granted Critical
Publication of TWI489802B publication Critical patent/TWI489802B/zh

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

超音波即時功率監控系統
本發明係有關於一種即時功率監控系統及其使用的方法,特別是一種超音波即時功率監控系統及其使用的方法。
目前利用「超音波」原理所製成的器械設備,已廣泛應用於機械、電子、電機、醫療、化學等各式主要產業領域。而應用於傳統之超音波市場大約可分為三類,包括了:「高輸出超音波」市場,「低輸出超音波」市場以及「醫療用超音波」市場。
在「高輸出超音波」產業領域上,超音波可應用於超音波洗淨,即利用超音波傳入液體中時所產生的無數微細氣泡,瞬間***及再生以衝擊附著在清洗物上的污漬。或是利用於超音波裝配(包括熔接及焊接),超音波加工(包括切削及開鑿),以及其他工業上的運用等。
而在「低輸出超音波」市場上,超音波可應用在非破壞檢測,即以低能量高頻率的超音波,對物件內部的瑕疵加以檢測,或是利用於空氣感應操縱控制,流量計及操縱機器,外洩探測等以及其他新開發之應用上。
超音波更廣泛應用於醫療領域,例如超音波成像,超音波藥物導入,超音波美容以及聚焦式超音波於腫瘤燒灼之應用等領域。通常醫用超音波(medical ultrasound)係使用機械壓力波可於人體內傳播的性質以解析人體軟組織型態。例如超音波影像檢測儀由超音波在人體組織傳播後的回音特徵,依照聲波傳遞的基本原理,剖析推測回音位置與組織動態結構,以展現人體軟組織型態,故臨床超音波影像檢測儀可以動態檢查生理軟組織形狀,監測血管血流流速,同時顯示異常的骨骼肌肉系統。
而在前述各種超音波器械設備的應用上,一個重要的考量關鍵便是能否穩定地控制超音波的輸出功率。例如在一般的電路產品中,所提供的大多為固定式的功率輸出,且通常都是純電阻性的負載,因此輸出負載功率相對穩定。又如在超音波器械設備內所使用的電路上,包括如各式之超音波熔接機、超音波洗淨機等,各式超音波器械設備的驅動電路所推動之負載(包含了電容性及電感性相互諧振的壓電片元件),其阻抗特性會隨著因環境因素飄移(如熱變化以及負載變動)所產生的頻率而具有變化。故而當驅動電路與負載端的阻抗無法互相匹配時,造成輸入訊號會反射回驅動端,以至於超音波淨輸出功率無法恆定,且無法保障超音波之輸出效率。
此外,由於無法觀測超音波的反射功率,故在長久使用超音波器械設備後,很容易造成內部的電路損耗甚至壞損,故而造成傳送至負載端的能量衰減,進而影響產品的整體效能。
倘若將超音波藥物導入應用於與皮膚接觸以及其他美容保養上,由於超音波之功率輸出牽涉人體的超音波能量輻射安全,因此應會有更高的標準安全規範限制,故在超音波應用領域上,超音波功率監控更成為不可或缺的必要設計。
故而能夠穩定地控制超音波的輸出功率,且為了能夠進行監控超音波功率,進而產生更有效率的超音波系統及其器械設備,極需要開發新式之超音波技術,藉以提高超音波效率且能夠降低研發的時間與相關製造成本。
本發明的目的在於提供一種超音波即時功率監控系統及其使用的方法,藉以改善現有裝置而提高性能。
本發明之超音波即時功率監控系統,主要元件包括了訊號產生器,功率放大器,雙定向耦合器,匹配電路,壓電片;而其中的雙定向耦合器包括了穩壓電路,微單晶片,以及液晶螢幕顯示裝置。
本發明由訊號產生器連接功率放大器,再連接雙定向耦合器,續連接匹配電路,最後連接壓電片。雙定向耦合器則連接微單晶片,而微單晶片則分別連接穩壓電路,以及液晶螢幕顯示裝置。
本發明使用訊號產生器產生一輸入訊號,再透過功率放大器以加強該輸入訊號,再將該輸入訊號連接至雙定向耦合器,經過雙定向耦合器的量測後,傳至匹配電路,最後連接至壓電片。其中雙定向耦合器於收到輸入訊號後,將輸入訊號傳入微單晶片,穩壓電路亦傳送電壓至微單晶片,經微單晶片處理輸入訊號後,傳送輸入訊號至液晶螢幕顯示裝置。
本發明所使用之雙定向耦合器技術,主要係用於量測超音波以及一般電路系統上之輸出、反射功率,並得到系統的反射功率,避免反射功率過大而造成超音波系統的損害。
本發明所使用之雙定向耦合器技術,除了在測量超音波系統時不會影響超音波系統的輸出功率,同時本發明於超音波系統運轉時,可隨時監控超音波系統的功率變化。
本發明之電源裝設有穩壓電路,故可直接接通交流電路,以提供雙定向耦合器和微晶片電壓等裝置的穩定電源,故可以達到可攜式之優點。
故而,關於本發明之優點與精神可以藉由以下發明詳述及附圖式解說來得到進一步的瞭解。
本發明為一種超音波即時功率監控系統及其使用的方法,係採用雙定向耦合器技術以進行即時功率監控,故可提高監控效率,進而可提昇超音波的輸出效能。
第1圖所示為本發明之超音波即時功率監控系統,主要元件包括了訊號產生器(functional generator)101,該訊號產生器101可產生一訊號;功率放大器(power amplifier)102,該功率放大器可放大功率;雙定向耦合器(directional coupler)115,該雙定向耦合器115可量測功率;匹配電路103,壓電片104;而其中的雙定向耦合器115更組合包括了穩壓電路116,該穩壓電路116可進行降低電壓;微單晶片117將功率量測訊號轉換成類比式訊號,進行量測交流/直流電流的轉換,以及液晶螢幕(LCD)顯示裝置118可顯示量測結果。
仍如第1圖所示,由訊號產生器101連接功率放大器102,再連接雙定向耦合器115,續連接匹配電路103,最後連接壓電片104。而雙定向耦合器115則連接微單晶片117,微單晶片117則分別連接穩壓電路116,以及液晶螢幕顯示裝置118。
本發明超音波即時功率監控系統之使用方法,包括了首先使用訊號產生器101產生一輸入訊號,再透過功率放大器102以加強該輸入訊號,再將該輸入訊號傳送至雙定向耦合器115,經過雙定向耦合器115的量測後,傳送至匹配電路103,最後傳送至壓電片104。其中使用雙定向耦合器115於接收到輸入訊號後,將輸入訊號傳送入微單晶片117,亦使用穩壓電路116傳送電壓至微單晶片117,經使用微單晶片117處理輸入訊號後,傳送輸入訊號至液晶螢幕顯示裝置118。
如第2圖所示之一般定向耦合器之操作原理,定向耦合器是一種能量傳遞的耦合電路,且並不會影響超音波放大器和探頭的輸出效果,而其理論基礎稱之為傳輸線理論(transmission line theorem),如第2圖所示,即是透過兩條相鄰且平行之導線,導線長度為λ/4,當能量流過其中一條導線時,便會在另一條導線上耦合出能量。此時定向耦合器具有一個四埠網絡,主要的線路分為兩個部份,包括了第2圖中P1 的輸入埠(Input Port)與P2 的傳送埠(Transmitted Port);而耦合線路為P3 的耦合埠(Coupled Port)與P4 的隔離埠(Isolated Port)。定向耦合器為一種線性系統,其輸入位置可以任意變換,每一個埠(Port)都可以是輸入(Input)端,只要確定了輸入訊號的位置後,再根據相對位置所示,便可以定出其他埠所對應的輸出訊號。例如在理想狀況下,當信號功率從輸入埠輸入時,輸出功率只會出現在傳送埠和耦合埠,而隔離埠是完全隔離的,沒有功率輸出。但是在實際情況下,總有一些功率會洩漏到隔離埠。當設定輸入埠的輸入功率為P1時,則傳送埠的輸出功率為P2、耦合埠的輸出功率為P3,和隔離埠的輸出功率為P4,故可以定義出定向耦合器的特性,包括定義出耦合度,***損耗,隔離度和方向性等四項指標,其單位均為dB。
耦合度(Coupling factor)表示從輸入埠輸入的功率以及被耦合到耦合埠部分的比值,表示為:
Coupling factor(dB)=-10log(P3/P1)
***損耗(Insertion Loss)表示從輸入埠到傳送埠的能量損耗,表示為:
Insertion Loss(dB)=10log[1-(P3/P1)]
在理想的定向耦合器中,隔離埠是沒有功率輸出的,而實際上會有一些功率從隔離埠洩漏,而為隔離度(Isolation)的指標,經以下表示為:
Isolation(dB)=-10log(P4/P1)=-10log(P3/P2)
耦合埠的輸出功率和隔離埠輸出功率之間的比值可定義為方向性(Directivity),經以下表示為:
Directivity(dB)=-10log(P4/P3)
特別說明的是耦合度,隔離度和方向性之間的關係為:
隔離度(I)=耦合度(C)+方向性(D)
定向耦合器可以由同軸、波導、微帶和帶狀線電路構成。通常,定向耦合器用於信號取樣以進行測量和監測,信號分配及合成。
此外,定向耦合器可以作為網路分析儀,天線分析儀和通過式(Thru line)功率計等測試儀器的核心部件,定向耦合器可進行正向信號和反射信號的取樣。而定向耦合器的方向性是一項重要的指標,尤其運用在信號合成和反射測量的領域時。通常定向耦合器的使用頻率大多在百萬赫茲(MHz)等級以上或更高頻的區域,其頻率的上限根據導線的長度所決定,長度大約是在最高操作頻率波長的四分之一。
而如第3圖所示,有關本發明所使用之雙定向耦合器(Dual directional coupler)的電路圖,其中使用了兩組變壓器以耦合訊號,由一組變壓器負責耦合電流訊號,並且透過電阻以計算理想上的輸出電壓(Vf),另一組變壓器負責耦合實際輸出電壓(Vo),透過電路的設計以達到理想電壓減去實際輸出電壓,獲得反射電壓(Vr)。最終所量測得到的輸出電壓與反射電壓可轉換得到輸出功率(Pf)與反射功率(Pr),並且可以計算出電壓駐波比(Voltage Standing Wave Radio,VSWR)。而電壓駐波比指的是電壓在駐波的狀態下,最高的電壓振幅與最低的電壓振幅的比例,也可以用來表示能量傳遞的效率高低,其值介於1至無限大(∞),即愈小其傳送效率越高。此外,配合微晶片A/D轉換,可即時將反射電壓值、輸出電壓值等顯示在液晶螢幕(LCD)上,以讓使用者調節外部功率。
如第4圖所示之穩壓電路116圖,當220伏特(V)的電源401輸入電時,為了不讓瞬間突波衝擊內部,因此於前端裝上突波吸收器402(TNR Q417A),再經變壓器403將220伏特轉至9伏特,經過整流器404將交流電轉至直流電,之後再由穩壓晶體405(MOS)提供5伏特的電壓。
如第5圖所示之液晶螢幕顯示裝置118的電路圖,由微單晶片(PIC18F652)117將功率量測訊號轉換成類比式訊號,進行量測交流/直流電流的轉換;其中16MHz振盪器116做為微單晶片117內部的工作頻率,再將由雙定向耦合器115所得到的輸出電壓值、反射電壓值等傳入微單晶片117進行交流/直流電流轉換,之後再傳入液晶螢幕顯示裝置118以顯示結果。
如第6圖所示為微單晶片117的使用方法:如步驟601,首先將反射電壓、輸出電壓轉換為數位訊號;次如步驟602,進行交流/直流電流的轉換;再如步驟603,再將液晶螢幕進行初始化的動作;之後如步驟604,在微單晶片117內部進行查表,分別表示千分位、百分位、十分位及個位;最後如步驟605,將轉換完畢的結果使用液晶螢幕顯示裝置118以顯示結果。
第7A圖與7B圖所示為本發明於354KHz下的試驗結果,其中第7A圖為順向功率,第7B圖為反射功率之試驗結果。
第8A圖與8B圖所示為本發明於652KHz下的試驗結果,其中第8A圖為順向功率,第8B圖為反射功率之試驗結果。
第9A圖與9B圖所示為本發明於20KHz下的試驗結果,其中第9A圖為順向功率、第9B圖為反射功率之試驗結果。
故由以上數據所顯示,當輸入電壓提高,功率隨之上升,而負載因都有良好的匹配,所以反射的功率都很低,測試所得的輸入與輸出電壓,經過計算後,所得的功率與電壓駐波比都與量測的值接近,因此可以確定雙定向耦合器確實能夠準確的量測出功率及電壓駐波比的變化。
本發明開發出低成本、精確度高、以及可應用頻率範圍廣之超音波功率監控電路系統,並導入現行超音波產品上。在成本小幅增加下,具即時功率監控之超音波產品除可大幅提高產品本身附加價值外,更可保障超音波功率輸出之精確度,以提升產業應用之效能提升。
本發明能夠加速改良電路的時間,降低過大的反射功率,以延長產品的壽命,並且改善電路傳輸的效率,減少耗電且可以降低成本。
以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。
101...訊號產生器
102...功率放大器
103...匹配電路
104...壓電片
115...雙定向耦合器
116...穩壓電路
117...微單晶片
118...液晶螢幕顯示裝置
401...電源
402...突波吸收器
403...變壓器
404...整流器
405...穩壓晶體
第1圖所示為本發明之超音波即時功率監控系統。
第2圖所示為定向耦合器之操作原理。
第3圖所示為本發明所使用之雙定向耦合器的電路圖。
第4圖所示之穩壓電路圖。
第5圖所示為液晶螢幕顯示裝置之電路圖。
第6圖所示為微單晶片的使用方法。
第7A圖與7B圖所示為本發明於354KHz下的試驗結果,其中第7A圖為順向功率,第7B圖為反射功率之試驗結果。
第8A圖與8B圖所示為本發明於652KHz下的試驗結果,其中第8A圖為順向功率,第8B圖為反射功率之試驗結果。
第9A圖與9B圖所示為本發明於20KHz下的試驗結果,其中第9A圖為順向功率、第9B圖為反射功率之試驗結果。
101...訊號產生器
102...功率放大器
103...匹配電路
104...壓電片
115...雙定向耦合器
116...穩壓電路
117...微單晶片
118...液晶螢幕顯示裝置

Claims (3)

  1. 一種具有雙定向耦合器的超音波即時功率監控系統,至少包含:一訊號產生器,該訊號產生器可產生一訊號;一功率放大器,該功率放大器可放大一功率;一匹配電路;一壓電片;一雙定向耦合器,該雙定向耦合器具有量測該功率以監控該超音波即時功率監控系統的一功率變化;一穩壓電路,該穩壓電路降低一電壓,其中該穩壓電路包含一突波吸收器;一微單晶片,該微單晶片具有轉換一功率量測訊號成一類比式訊號,進行量測一交流/直流電流的轉換的功能,其中該微單晶片的使用方法包含:轉換一反射電壓與一輸出電壓為一數位訊號;進行轉換一交流/直流電流;進行初始化液晶螢幕;在該微單晶片內部進行查表,分別表示成千分位,百分位,十分位及個位表示成一轉換結果;以及使用一液晶螢幕顯示裝置顯示該轉換結果,藉以形成該微單晶片的使用方法;以及一液晶螢幕顯示裝置顯示一量測結果;其中該訊號產生器連接該功率放大器,連接該雙定向耦合器,連接該匹配電路,連接該壓電片,該雙定向耦合器連接該微單晶片,該微單晶片分別連接該穩壓電路,以及連接該液晶螢幕顯 示裝置,藉以形成該超音波即時功率監控系統。
  2. 如申請專利範圍第1項所述之系統,其中該系統之使用方法至少包含:使用一訊號產生器產生一輸入訊號;透過一功率放大器以加強該輸入訊號;傳送該輸入訊號至一雙定向耦合器以進行量測;傳送該輸入訊號至一匹配電路;以及傳送至一壓電片,藉以形成該超音波即時功率監控系統之使用方法。
  3. 如申請專利範圍第2項所述之系統,其中該系統之使用方法至少包含:使用一雙定向耦合器接收一輸入訊號;傳送該輸入訊號至一微單晶片;使用一穩壓電路傳送一電壓至一微單晶片;使用一微單晶片處理該輸入訊號;以及傳送該輸入訊號至一液晶螢幕顯示裝置,藉以形成該超音波即時功率監控系統之使用方法。
TW099114765A 2010-05-10 2010-05-10 超音波即時功率監控系統 TWI489802B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099114765A TWI489802B (zh) 2010-05-10 2010-05-10 超音波即時功率監控系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099114765A TWI489802B (zh) 2010-05-10 2010-05-10 超音波即時功率監控系統

Publications (2)

Publication Number Publication Date
TW201141100A TW201141100A (en) 2011-11-16
TWI489802B true TWI489802B (zh) 2015-06-21

Family

ID=46760461

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099114765A TWI489802B (zh) 2010-05-10 2010-05-10 超音波即時功率監控系統

Country Status (1)

Country Link
TW (1) TWI489802B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108210063A (zh) * 2017-12-28 2018-06-29 上海交通大学 超声驱动功率监测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073878A (en) * 1990-10-31 1991-12-17 Cyber Scientific Circuit for driving an acoustic transducer
US20050043608A1 (en) * 2003-08-18 2005-02-24 Haj-Yousef Yousri Mohammed Taher Method and apparatus for non-contact monitoring of cellular bioactivity
US20090299360A1 (en) * 2008-05-28 2009-12-03 Medwaves, Inc. Tissue ablation apparatus and method using ultrasonic imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073878A (en) * 1990-10-31 1991-12-17 Cyber Scientific Circuit for driving an acoustic transducer
US20050043608A1 (en) * 2003-08-18 2005-02-24 Haj-Yousef Yousri Mohammed Taher Method and apparatus for non-contact monitoring of cellular bioactivity
US20090299360A1 (en) * 2008-05-28 2009-12-03 Medwaves, Inc. Tissue ablation apparatus and method using ultrasonic imaging

Also Published As

Publication number Publication date
TW201141100A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
CN103575806B (zh) 低功耗超声相控阵收发装置
CN110470744A (zh) 多模式曲面相控阵超声层析成像装置
US20160374645A1 (en) Method for performing low power mode in portable ultrasonic diagnostic apparatus and portable ultrasonic diagnostic apparatus for applying same
CN106772170A (zh) 一种uhf局部放电测量装置的校准方法
TWI489802B (zh) 超音波即時功率監控系統
Reid Self‐reciprocity calibration of echo‐ranging transducers
EP3971537A1 (en) Ultrasonic transducer health status monitor
CN109143245A (zh) 一种基于超声波的非接触式振动信号测量***及其测量方法
CN210277209U (zh) 一种超声血流检测探头及检测装置
CN101461724B (zh) 一种多普勒超声成像***发射电源监测装置
KR20090121739A (ko) 초음파 시스템 및 신호 필터링 방법
CN210990370U (zh) 一种超声波驱动电路及超声肺功能仪
CN209295927U (zh) 喷漆厚度测量装置
Boyle et al. Non-contact thermoacoustic imaging of tissue with airborne ultrasound detection
CN219250226U (zh) 换能器的自动匹配电路及医用设备
CN104814736A (zh) 实时监测人体组织介电特性的设备及获得人体组织介电特性参数的方法
Zakaria et al. Simulation of the two-phase liquid-gas flow through ultrasonic transceivers application in ultrasonic tomography
CN102247159A (zh) 具有骨质密度检测功能的测试装置及***
CN104198015A (zh) 一种两线制外贴式液位计
CN113219246B (zh) 一种用于测试功率放大器谐波强度检测装置的检测方法
CN114696923A (zh) 一种微波衰减测量仪
JP2009295573A (ja) インピーダンス測定装置
JP5570785B2 (ja) 超音波診断装置
Zhu et al. Design of power monitor for power measurement in HIFU systems
KR20090036175A (ko) 도플러효과를 이용한 초음파 혈류측정장치