TWI488327B - Thin film solar cell structure and process - Google Patents

Thin film solar cell structure and process Download PDF

Info

Publication number
TWI488327B
TWI488327B TW102146054A TW102146054A TWI488327B TW I488327 B TWI488327 B TW I488327B TW 102146054 A TW102146054 A TW 102146054A TW 102146054 A TW102146054 A TW 102146054A TW I488327 B TWI488327 B TW I488327B
Authority
TW
Taiwan
Prior art keywords
layer
copper
film
metal layer
gallium
Prior art date
Application number
TW102146054A
Other languages
Chinese (zh)
Other versions
TW201440244A (en
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW102146054A priority Critical patent/TWI488327B/en
Publication of TW201440244A publication Critical patent/TW201440244A/en
Application granted granted Critical
Publication of TWI488327B publication Critical patent/TWI488327B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

薄膜太陽能電池結構及製程 Thin film solar cell structure and process

本發明總體上涉及一種薄膜光伏模組(薄膜光伏元件,thin-film photovoltaic module)以及製造其的方法。更具體地,本發明提供了一種用於製造高效薄膜光伏模組的結構和方法。本發明提供了大尺寸且具有電路光伏效率(circuit photovoltaic efficiency)為8-16%以上的單結銅銦鎵二硒化物(CIGS)電池的高效薄膜光伏面板。 The present invention generally relates to a thin film photovoltaic module (thin-film photovoltaic module) and a method of fabricating the same. More specifically, the present invention provides a structure and method for fabricating a high efficiency thin film photovoltaic module. The present invention provides a high efficiency thin film photovoltaic panel of a single-junction copper indium gallium diselenide (CIGS) cell having a large size and a circuit photovoltaic efficiency of 8-16% or more.

為了解決能源問題帶給社會發展的壓力,各國政府紛紛出資支持綠色能源的開發,同時也鼓勵民眾使用綠色能源。其中以太陽能電池最為優勢,其特色為可將太陽光直接轉換為電能,在無維護的情況下可以連續使用20多年,因此被大力推崇且得到了迅速的發展。 In order to solve the pressure of energy development brought about by social problems, governments have invested in supporting the development of green energy, and also encouraged people to use green energy. Among them, solar cells are the most advantageous, and their characteristics are that they can directly convert sunlight into electric energy. They can be used continuously for more than 20 years without maintenance, so they are highly praised and developed rapidly.

薄膜電池技術中所使用的材料量相當稀少,材料供給短缺導致價格暴漲的現象發生機率較低,因此薄膜電池非常有機會實現高效能又低價的目標。其中,銅銦鎵硒(CuIn1-XGaXSe2或者CIGS)薄膜被看作是所有薄膜太陽能電池技術中最有希望實現此目標的光電材料。原因主要有以下幾點:(1)CIGS的帶隙可以調控,達到與太陽光譜相匹配的數值(1.1~1.7eV);(2)CIGS薄膜太陽能電池的性能相當穩定,沒有非晶矽薄膜太陽能所具有的S-W效應,它還具有很強的抗輻射能力,非常適合作為太空衛星的發電機制;(3)CIGS薄膜式一種直接帶隙化合物半 導體材料,對太陽光的吸收細數很高(大於105cm-1),因此只需要1~2微米的厚度就可以吸收90%以上的太陽光;(4)更重要的是,在各種材料的薄膜電池和薄膜光電組件中,CIGS薄膜太陽能電池都取得了最高的轉換效率。 The amount of materials used in thin-film battery technology is rather scarce, and the shortage of materials leads to a low probability of price spikes, so thin-film batteries have a very high chance of achieving high efficiency and low price. Among them, copper indium gallium selenide (CuIn 1-X Ga X Se 2 or CIGS) film is regarded as the most promising photoelectric material in all thin film solar cell technologies. The main reasons are as follows: (1) The band gap of CIGS can be adjusted to match the value of the solar spectrum (1.1~1.7eV); (2) The performance of CIGS thin film solar cell is quite stable, no amorphous germanium film solar energy It has the SW effect, it also has strong radiation resistance, and is very suitable as a space satellite generator system; (3) CIGS film type a direct bandgap compound semiconductor material, the absorption of sunlight is very high (more than 10 5 cm -1 ), so it only needs 1~2 microns thickness to absorb more than 90% of sunlight; (4) More importantly, CIGS thin film solar cells in thin film batteries and thin film photovoltaic modules of various materials Both achieved the highest conversion efficiency.

銅銦鎵硒(CIGS)薄膜太陽能電池中的光吸收層為銅銦鎵硒薄膜。一般而言,製作銅銦鎵硒(CIGS)薄膜的方法有共蒸鍍(Co-evaporation)法以及二階段硒化(sequential method)法。在共蒸鍍法中,是以高溫同時蒸鍍銅、銦、鎵以及硒等元素於鍍鉬(Mo)基板上,而形成銅銦鎵硒薄膜。在二階段硒化法中,是先在鍍鉬基板上濺鍍鎵化銅(CuGa)以及銦(In)等金屬前驅疊層,再藉由爐管或快速熱製程(Rapid Thermal Process,RTP)進行高溫硒化製程以於鍍鉬基板上形成銅銦鎵硒薄膜。 The light absorbing layer in the copper indium gallium selenide (CIGS) thin film solar cell is a copper indium gallium selenide film. In general, a method of producing a copper indium gallium selenide (CIGS) film is a co-evaporation method and a two-stage sequential method. In the co-evaporation method, elements such as copper, indium, gallium, and selenium are simultaneously vapor-deposited on a molybdenum-plated (Mo) substrate at a high temperature to form a copper indium gallium selenide film. In the two-stage selenization method, a metal precursor stack such as gallium arsenide (CuGa) and indium (In) is first sputtered on a molybdenum-plated substrate, and then a furnace tube or a Rapid Thermal Process (RTP) is used. A high temperature selenization process is performed to form a copper indium gallium selenide film on the molybdenum plated substrate.

然而,以共蒸鍍法形成之銅銦鎵硒薄膜雖其品質較佳,但其製程費時。以二階段硒化法形成之銅銦鎵硒薄膜,其製程時間較短,但其所形成之銅銦鎵硒薄膜中易有缺陷(defect),導致電子電洞復合(recombination)機率提高,而降低其光電轉換效率。承上述,如何在較短之製程時間內製作出一高品質的銅銦鎵硒薄膜,實為目前研發者亟欲達成之目標之一。 However, the copper indium gallium selenide film formed by the co-evaporation method has a better quality, but the process is time consuming. The copper indium gallium selenide film formed by the two-stage selenization method has a short processing time, but the copper indium gallium selenide film formed by the method is susceptible to defects, resulting in an increase in the probability of electron hole recombination. Reduce its photoelectric conversion efficiency. In view of the above, how to produce a high-quality copper indium gallium selenide film in a short process time is one of the goals that current developers are eager to achieve.

本發明提供一種銅銦鎵硒薄膜的製造方法,其藉由一前驅層結構的設計使銅銦鎵硒薄膜可以較短之製程時間製作完成,並且具有良好的品質(晶向排列)。 The invention provides a method for manufacturing a copper indium gallium selenide film, which can make a copper indium gallium selenide film can be completed in a short process time by a design of a precursor layer structure, and has good quality (crystal orientation).

依據一實施例,本發明提供了一種銅銦鎵硒化合物薄膜之製 造方法,包括:提供一基板;形成一金屬黏著層於該基板上;形成一前驅物堆疊膜層於該金屬黏著層上,其中該前驅物堆疊膜層包括銅銦鎵合金層;以及施行一硒化程序,以轉化該銅銦鎵合金層為一銅銦鎵硒化合物層。 According to an embodiment, the present invention provides a copper indium gallium selenide compound film The method includes the steps of: providing a substrate; forming a metal adhesion layer on the substrate; forming a precursor stacked film layer on the metal adhesion layer, wherein the precursor stacked film layer comprises a copper indium gallium alloy layer; and performing one A selenization process is performed to transform the copper indium gallium alloy layer into a copper indium gallium selenide compound layer.

第1圖所示,首先提供一基板100,例如為玻璃、金屬箔與高分子材料等材質之基板。在此,基板100係為經過清洗潔淨之基板,以去除其表面上殘存如油漬或微顆粒等不潔物。接著於基板100上依序形成黏著層200與一金屬電極層300。黏著層200係用於改善金屬電極層300與基板100間之熱膨脹係數差異並增強金屬電極層300與基板間之附著情形。於一實施例中,黏著層200例如為採用濺鍍方法於高於3mtorr之一壓力下而形成金屬電極層300上之一鉬金屬層,而金屬電極層200例如為採用濺鍍方法於低於3mtorr之一壓力下而形成於黏著層200上之一鉬金屬層。於本實施例中,作為黏著層200之鉬金屬層較佳地是於介於3~5mtorr之一壓力下而形成金屬電極層300上之一鉬金屬層。於一實施例中,黏著層200之厚度約介於10~500奈米,而金屬電極層300之厚度約介於50~1000nm,黏著層200與金屬電極層300則具有不大於1500奈米之一結合厚度,例如是約1400奈米之一厚度。於其他實施例中,黏著層202則可含鈦、鉭、鈷、鉻、鎳、鎢或其合金之一金屬層,藉以改善後續形成之金屬電極層與基板100間之熱膨脹係數差異,而金屬電極層則可為含鉬之一金屬層。其中金屬黏著層與金屬電極層係為一具有不同電阻值與黏著性之三層鉬金屬層,透過濺鍍製程製作 As shown in Fig . 1 , first, a substrate 100 such as a substrate made of a material such as glass, metal foil or polymer material is provided. Here, the substrate 100 is a cleaned substrate to remove impurities such as oil or fine particles remaining on the surface thereof. Then, an adhesive layer 200 and a metal electrode layer 300 are sequentially formed on the substrate 100. The adhesive layer 200 is used to improve the difference in thermal expansion coefficient between the metal electrode layer 300 and the substrate 100 and to enhance the adhesion between the metal electrode layer 300 and the substrate. In one embodiment, the adhesive layer 200 is formed by sputtering, for example, at a pressure higher than 3 mtorr to form a molybdenum metal layer on the metal electrode layer 300, and the metal electrode layer 200 is, for example, below a sputtering method. One of the molybdenum metal layers formed on the adhesive layer 200 under a pressure of 3mtorr. In the present embodiment, the molybdenum metal layer as the adhesive layer 200 is preferably one of the molybdenum metal layers on the metal electrode layer 300 under a pressure of 3 to 5 mtorr. In one embodiment, the thickness of the adhesive layer 200 is about 10 to 500 nm, and the thickness of the metal electrode layer 300 is about 50 to 1000 nm, and the adhesive layer 200 and the metal electrode layer 300 have a thickness of not more than 1500 nm. A combined thickness is, for example, a thickness of about 1400 nm. In other embodiments, the adhesive layer 202 may comprise a metal layer of titanium, tantalum, cobalt, chromium, nickel, tungsten or an alloy thereof to improve the difference in thermal expansion coefficient between the subsequently formed metal electrode layer and the substrate 100, and the metal The electrode layer may be a metal layer containing molybdenum. The metal adhesive layer and the metal electrode layer are three layers of molybdenum metal layers having different resistance values and adhesions, which are produced through a sputtering process.

接著,於金屬電極層300之表面上形成一前驅物堆疊膜層 401/402/403,其包括兩銅鎵合金層401與403以及夾置於此些銅鎵合金層401與403間之一銅銦合金層402。在此,前驅物堆疊膜層內之銅鎵合金層401與403以及銅銦合金層402可採用如濺鍍、蒸鍍、電鍍等方法或上述方法之組合而形成於金屬電極層300之上。於一實施例中,當採用濺鍍方法形成前驅物堆疊膜層內之銅鎵合金層401與403以及銅銦合金層402時,可採用Cu y Ga 1-y與Cu x In 1-x等靶材作為此些膜層之材料來源,其中Cu y Ga 1-y合金靶材內之鎵含量需小於80%(y>0.20)以及Cu x In 1-x靶材內銅含量需高於5%(x>0.05),方能在濺鍍程序中維持靶材與濺鍍於金屬電極層300上的合金膜層在固態,以利前驅物堆疊膜層的厚度與組成分佈平均。因此於本實施例中,採用濺鍍方法所得到之前驅物堆疊膜層內之銅鎵合金層401與403將具有一化學式Cu y Ga 1-y,其中0.2<y<0.9,而其內銅銦合金層402則具有一化學式Cu x In 1-x,其中0.05<x<0.85。於另一實施例中,銅鎵合金層401與403具有介於10~700nm之一厚度而銅銦合金層402則具有介於10~750nm之一厚度。 Next, a precursor stacked film layer 401/402/403 is formed on the surface of the metal electrode layer 300, which comprises two copper-gallium alloy layers 401 and 403 and a copper interposed between the copper-gallium alloy layers 401 and 403. Indium alloy layer 402. Here, the copper gallium alloy layers 401 and 403 and the copper indium alloy layer 402 in the precursor stacked film layer may be formed on the metal electrode layer 300 by a method such as sputtering, evaporation, plating, or the like. In one embodiment, when the copper gallium alloy layers 401 and 403 and the copper indium alloy layer 402 in the precursor stacked film layer are formed by a sputtering method, Cu y Ga 1-y and Cu x In 1-x may be used. The target is used as a material source of the film layer, wherein the gallium content in the Cu y Ga 1-y alloy target needs to be less than 80% (y>0.20) and the copper content in the Cu x In 1-x target needs to be higher than 5 % (x>0.05), in the sputtering process, the target film and the alloy film layer sputtered on the metal electrode layer 300 are maintained in a solid state to facilitate the average thickness and composition distribution of the precursor stacked film layer. Therefore, in this embodiment, the copper gallium alloy layers 401 and 403 in the precursor stacked film layer obtained by the sputtering method will have a chemical formula Cu y Ga 1-y, wherein 0.2<y<0.9, and the copper therein The indium alloy layer 402 has a chemical formula Cu x In 1-x, where 0.05 < x < 0.85. In another embodiment, the copper gallium alloy layers 401 and 403 have a thickness between 10 and 700 nm and the copper indium alloy layer 402 has a thickness between 10 and 750 nm.

另外參考第2圖,於金屬電極層300之表面上形成一前驅物堆疊膜層501/502/503,其包括兩銅銦合金層501與503以及夾置於此些銅銦合金層501與503間之一銅鎵合金層502。在此,前驅物堆疊膜層內之銅銦合金層501與503以及銅鎵合金層502可採用如濺鍍、蒸鍍、電鍍等方法或上述方法之組合而形成於金屬電極層300之上。於一實施例中,當採用濺鍍方法形成前驅物堆疊膜層內之銅銦合金層501與503以及銅鎵合金層502時,可採用Cu y Ga 1-y與Cu x In 1-x等靶材作為此些膜層之材料來源,其中Cu y Ga 1-y合金靶材內之鎵含量需小於80%(y>0.20)以及Cu x In 1-x靶材內銅含量需高於5%(x>0.05),方能在濺鍍程序中維持靶材與濺鍍於金屬電極層300上的合金膜層在固態,以利前驅物堆疊膜層的厚度與組成分佈平均。因此於本實施例中,採用濺鍍方法所得到之前驅物堆疊膜層內之銅銦合金層501與503將具有一化學式Cu y Ga 1-y,其中0.2<y<0.9,而其內銅鎵合金層502則具有一化學式Cu x In 1-x,其中0.05<x<0.5。於另一實施例中,銅銦合金層501與503具有介於10~700nm之一厚度而銅鎵合金層502則具有介於_10~750nm之一厚度。 Referring additionally to FIG. 2, a precursor stacked film layer 501/502/503 is formed on the surface of the metal electrode layer 300, which includes two copper indium alloy layers 501 and 503 and is sandwiched between the copper indium alloy layers 501 and 503. One of the copper gallium alloy layers 502. Here, the copper indium alloy layers 501 and 503 and the copper gallium alloy layer 502 in the precursor stacked film layer may be formed on the metal electrode layer 300 by a method such as sputtering, evaporation, plating, or the like. In one embodiment, when the copper indium alloy layers 501 and 503 and the copper gallium alloy layer 502 in the precursor stacked film layer are formed by a sputtering method, Cu y Ga 1-y and Cu x In 1-x may be used. Target as a source of material for these layers, where Cu y Ga The gallium content in the 1-y alloy target should be less than 80% (y>0.20) and the copper content in the Cu x In 1-x target should be higher than 5% (x>0.05) to maintain the sputtering process. The target and the alloy film layer sputtered on the metal electrode layer 300 are in a solid state to facilitate the average thickness and composition distribution of the precursor stacked film layer. Therefore, in this embodiment, the copper indium alloy layers 501 and 503 in the precursor stacked film layer obtained by the sputtering method will have a chemical formula Cu y Ga 1-y, wherein 0.2<y<0.9, and the copper therein The gallium alloy layer 502 has a chemical formula Cu x In 1-x where 0.05 < x < 0.5. In another embodiment, the copper indium alloy layers 501 and 503 have a thickness between 10 and 700 nm and the copper gallium alloy layer 502 has a thickness between 10 and 750 nm.

另外參考第3圖,亦可於金屬電極層300之表面上形成一前驅物堆疊膜層600,其包括銅鎵銦合金層。 Referring additionally to FIG. 3, a precursor stacked film layer 600 including a copper gallium indium alloy layer may also be formed on the surface of the metal electrode layer 300.

接著針對第1圖所示結構施行一硒化程序以將銅銦鎵合金層轉化成為一銅銦鎵硒化合物層。先將固態硒化層404直接接觸銅銦鎵硒化合物層4000進行一硒化程序。同樣的目的下第2~3圖亦分別沉積上一層固態硒化層504/604。 Next, a selenization procedure is performed on the structure shown in FIG. 1 to convert the copper indium gallium alloy layer into a copper indium gallium selenide compound layer. The solid selenization layer 404 is first contacted directly with the copper indium gallium selenide compound layer 4000 for a selenization process. For the same purpose, layers 2 to 3 are also deposited with a solid selenide layer 504/604.

請參照第4圖,第1升溫製程係將包括第一前驅金屬層與非金屬層以40℃/min的升溫速度升溫至200~300℃並持溫80~160分鐘;第2升溫製程係將包括第一前驅金屬層與非金屬層以20℃/min的升溫速度升溫至320~380℃並持溫60~90分鐘;第3升溫製程係將包括第一前驅金屬層與非金屬層以10℃/min的升溫速度升溫至500~600℃並持溫約60~120分鐘,第1~3升溫製程中加熱的壓力均維持於1MPa以下範圍內。上述硒化程序216內可採用硒蒸氣或經電漿解離得到之如Se+及Se++之離子態硒與銅銦鎵合金層 (見於第1~3圖)進行反應,進而得到銅銦鎵硒化合物層220。 Referring to FIG. 4, the first heating process system includes heating the first precursor metal layer and the non-metal layer to a temperature of 40 ° C / min to 200 to 300 ° C and holding the temperature for 80 to 160 minutes; the second heating process will be The first precursor metal layer and the non-metal layer are heated to 320-380 ° C at a temperature increase rate of 20 ° C / min and held for 60-90 minutes; the third heating process system includes a first precursor metal layer and a non-metal layer 10 The heating rate of °C/min is raised to 500-600 °C and the temperature is maintained for about 60-120 minutes. The heating pressure in the first to third heating processes is maintained within the range of 1 MPa or less. The above selenization process 216 may employ selenium vapor or ionized selenium and copper indium gallium alloy layers such as Se+ and Se++ which are obtained by plasma dissociation. (See Figures 1 to 3) The reaction was carried out to obtain a copper indium gallium selenide compound layer 220.

如第5圖所示,此形成於金屬電極層300上之銅銦鎵硒化合物層600此時具有平整表面且其膜厚相當均勻。在此,由於銅銦鎵硒化合物層600係為四元化合物材料,故於其厚度方向上,鎵、銦、銅元素係呈現不同且非均勻的組成分佈,但在銅銦鎵硒化合物層220表面組成分佈上,鎵、銦、銅元素則可呈現出高程度的均勻性。 As shown in Fig. 5, the copper indium gallium selenide compound layer 600 formed on the metal electrode layer 300 has a flat surface at this time and its film thickness is relatively uniform. Here, since the copper indium gallium selenide compound layer 600 is a quaternary compound material, gallium, indium, and copper elements exhibit different and non-uniform composition distributions in the thickness direction thereof, but in the copper indium gallium selenide compound layer 220 On the surface composition distribution, gallium, indium and copper can exhibit a high degree of uniformity.

請參照第6(a)~6(f)圖所示,係代表銅銦鎵合金層在不同壓力下硒化程序的SEM變化。CIGS表面形貌可以發現晶粒尺寸隨著氣體壓力的增加,晶粒有逐漸增大的趨勢;然而在壓力0.18MPa的狀態下,由於壓力過大,導致薄膜產生破斷。 Refer to Figures 6(a) to 6(f) for SEM changes in the selenization procedure for copper indium gallium alloy layers at different pressures. The surface morphology of CIGS can be found that the grain size increases with the increase of gas pressure. However, under the condition of pressure of 0.18 MPa, the film is broken due to excessive pressure.

請參照第7圖,銅銦鎵硒化合物層表面形成一包括缺陷化合物之一銅銦鎵硒薄膜。此缺陷化合物經過XRD鑑定後發現為具有CuIn3Se5之晶體結構。請參照第8圖,經本實驗所得之一銅銦鎵硒薄膜XRD鑑定。 Referring to FIG. 7, a copper indium gallium selenide film comprising a defect compound is formed on the surface of the copper indium gallium selenide compound layer. This defective compound was found to have a crystal structure of CuIn3Se5 after being identified by XRD. Please refer to Figure 8, which is identified by XRD of one of the copper indium gallium selenide films obtained in this experiment.

實施例1:將一玻璃基板置入於玻璃清洗劑中,再利用超音波震盪器加速玻璃清潔效果,隨後將玻璃放入去離子水(DI water)中,並以DI water沖洗直至玻璃無清潔液殘留為止,接著,將玻璃放入烘箱內在150℃的溫度下烘乾玻璃,清潔完成的玻璃基板立即置入濺鍍機真空腔體內,以真空泵浦抽除空氣並使真空腔體氣壓值低於1 x 10-6torr,當真空腔體壓力值達背景壓力後,通入流量為5sccm的氬氣,使濺鍍腔體真空值回升至 8mtorr,此時利用DC濺鍍法,在8mtorr的壓力下濺鍍一層厚度500nm的第一鉬薄膜,在此第一鉬薄膜與玻璃基板有較佳的附著性,故此第一鉬薄膜係作為一黏著層,然而此第一鉬薄膜導電性較差,片電阻值常高於1ohms/square。接著,提高抽氣效率以維持濺鍍腔體的真空值在0.5mtorr,再利用DC濺鍍方式,在第一鉬薄膜上方濺鍍一第二鉬薄膜,此第二鉬薄膜厚度為800nm,且第二鉬薄膜與玻璃基板附著性較差,因此無法作為黏著層使用。藉由濺鍍壓力變化可控制所濺鍍的鉬薄膜含氧量,以調節第一與第二鉬薄膜的物性,在較高的工作壓力下可獲得含氧量較高與附著性較佳的鉬薄膜,較低的工作壓力下則形成含氧量較低的鉬薄膜,且具有較佳的導電性(<0.2ohms/square)。完成製作的鉬薄膜/玻璃基板結構仍留在濺鍍腔體內,再以DC濺鍍方式製作如第1圖所示Cu y Ga 1-y/Cu x In 1-x/Cu y Ga 1-y堆疊膜層。其係利用Cu 0.70 Ga 0.30與Cu 0.5 In 0.50合金靶材為前驅物材料,先在鉬薄膜/玻璃基板結構基板上以160W功率濺鍍一層200nm的Cu 0.70 Ga 0.30合金薄膜,隨後降低功率至60W,並濺鍍一層450nm的Cu 0.50 In 0.50合金薄膜於Cu 0.70 Ga 0.30合金薄膜表面,接著在濺鍍一層100nm的Cu 0.70 Ga 0.30合金薄膜,此3層交互堆疊的合金薄膜構成Cu 0.50 In 0.50/Cu 0.70 Ga 0.30堆疊式結構,為製作銅銦鎵硒化合物層的前驅物。製作完成的3層交互堆疊Cu 0.50 In 0.50/Cu 0.70 Ga 0.30結構,可獲得膜厚均勻的Cu 0.50 In 0.50/Cu 0.70 Ga 0.30前驅物堆疊膜層,其厚度約在1150nm左右。隨後將此3層交互堆疊之Cu 0.50 In 0.50/Cu 0.73 Ga 0.2堆疊膜層取出,並立即移入硒化爐內,接著通入150cc/min的氬氣,此惰性氣體保護3層交互 堆疊Cu 0.50 In 0.50/Cu 0.73 Ga 0.2前驅物堆疊膜層不被氧化,並以40℃/min升溫速度對Cu 0.50 In 0.50/Cu 0.73 Ga 0.2前驅物堆疊膜層加熱,當溫度到達200℃時,持溫80min,藉以將前驅物堆疊膜層轉化成銅鎵銦合金層。接著再以20℃/min的升溫速度加熱銅鎵銦合金層至350℃,並持溫60min,當進行上述升溫時,同於硒化爐內產生硒蒸氣並維持硒蒸氣於過飽和蒸汽壓以上,進而針對銅鎵銦合金層施行硒化程序並將銅鎵銦合金層與硒元素反應並轉化成為銅鎵銦硒化合物層,最後接著再以10℃/min的升溫速度加熱銅鎵銦合金層至550℃,並持溫60min。此銅鎵銦硒化合物層於形成後在硒化爐內降溫,即可完成銅鎵銦硒化合物層的製作。接著將此銅鎵銦硒化合物層以X光繞射分析(XRD)後,可得到如第9圖所示之光譜圖及相關元素分析結果。如第8圖所示,所形成之銅鎵銦硒化合物層具有高度結晶性而屬多晶結構,其具有(112)、(220/204)、及(312/116)結晶面,代表此法可產生CuIn 1-x Ga x Se 2薄膜,特別是(220/204)面之優選結晶相也產生,因此,本發明可利用一Cu 0.50 In 0.50/Cu 0.73 Ga 0.2前驅物堆疊膜層於硒化後得到銅鎵銦硒化合物層,此銅銦鎵硒薄膜為多晶相,由XRD分析的結果顯示結晶性佳,可做為銅鎵銦硒化合物薄膜太陽能電池之吸收層使用。 Example 1: A glass substrate was placed in a glass cleaner, and an ultrasonic oscillator was used to accelerate the glass cleaning effect, and then the glass was placed in DI water and rinsed with DI water until the glass was not cleaned. After the liquid remains, then, the glass is placed in an oven to dry the glass at a temperature of 150 ° C, and the cleaned glass substrate is immediately placed in a vacuum chamber of the sputtering machine to evacuate the air by vacuum pumping and to lower the pressure of the vacuum chamber. At 1 x 10 -6 torr, when the pressure of the vacuum chamber reaches the background pressure, argon gas with a flow rate of 5 sccm is introduced, and the vacuum value of the sputtering chamber is raised back to 8 mtorr. At this time, the DC sputtering method is used at 8 mtorr. A first molybdenum film having a thickness of 500 nm is sputtered under pressure, and the first molybdenum film has good adhesion to the glass substrate. Therefore, the first molybdenum film serves as an adhesive layer, but the first molybdenum film has poor conductivity. The sheet resistance is often higher than 1 ohms/square. Next, increasing the pumping efficiency to maintain the vacuum value of the sputtering chamber at 0.5 mtorr, and then sputtering a second molybdenum film over the first molybdenum film by using a DC sputtering method, the second molybdenum film having a thickness of 800 nm, and Since the second molybdenum film has poor adhesion to the glass substrate, it cannot be used as an adhesive layer. The oxygen content of the sputtered molybdenum film can be controlled by the change of the sputtering pressure to adjust the physical properties of the first and second molybdenum films, and the higher oxygen content and the better adhesion can be obtained at a higher working pressure. The molybdenum film forms a molybdenum film with a lower oxygen content at a lower working pressure and has better conductivity (<0.2 ohms/square). The completed molybdenum film/glass substrate structure remains in the sputtering chamber, and is then formed by DC sputtering as shown in Fig. 1 as Cu y Ga 1-y/Cu x In 1-x/Cu y Ga 1-y Stack the layers. The Cu 0.70 Ga 0.30 and Cu 0.5 In 0.50 alloy targets were used as precursor materials. A 200 nm Cu 0.70 Ga 0.30 alloy film was sputtered on a molybdenum film/glass substrate structure substrate at a power of 160 W, and then the power was reduced to 60 W. And a 450nm Cu 0.50 In 0.50 alloy film is sputtered on the surface of the Cu 0.70 Ga 0.30 alloy film, followed by sputtering a 100 nm Cu 0.70 Ga 0.30 alloy film, and the three layers of the alternately stacked alloy film constitute Cu 0.50 In 0.50 / The Cu 0.70 Ga 0.30 stacked structure is a precursor for the copper indium gallium selenide compound layer. The completed 3-layer alternately stacked Cu 0.50 In 0.50/Cu 0.70 Ga 0.30 structure can obtain a Cu 0.50 In 0.50/Cu 0.70 Ga 0.30 precursor stacked film layer having a uniform film thickness of about 1150 nm. Subsequently, the three layers of Cu 0.50 In 0.50/Cu 0.73 Ga 0.2 stacked film layers which were alternately stacked were taken out and immediately transferred into a selenization furnace, followed by 150 cc/min of argon gas, and the inert gas was protected by three layers of alternating stacked Cu 0.50. The In 0.50/Cu 0.73 Ga 0.2 precursor stacked film layer is not oxidized, and the Cu 0.50 In 0.50/Cu 0.73 Ga 0.2 precursor stacked film layer is heated at a heating rate of 40 ° C / min. When the temperature reaches 200 ° C, the temperature is maintained. 80 min, thereby converting the precursor stacked film layer into a copper gallium indium alloy layer. Then, the copper gallium indium alloy layer is heated to a temperature of 20 ° C / min to 350 ° C, and held at a temperature of 60 min, when the above temperature rise, the selenium vapor is generated in the selenide furnace and the selenium vapor is maintained above the supersaturated vapor pressure. Further, a selenization process is performed on the copper gallium indium alloy layer, and the copper gallium indium alloy layer is reacted with selenium element and converted into a copper gallium indium selenide compound layer, and finally the copper gallium indium alloy layer is heated at a temperature increase rate of 10 ° C / min to 550 ° C, and held at 60 min. The copper gallium indium selenide compound layer is cooled in the selenization furnace after formation, and the copper gallium indium selenide compound layer can be completed. Then, the copper gallium indium selenide compound layer was subjected to X-ray diffraction analysis (XRD) to obtain a spectrum image and related element analysis results as shown in FIG. As shown in FIG. 8, the formed copper gallium indium selenide compound layer is highly crystalline and has a polycrystalline structure, and has (112), (220/204), and (312/116) crystal faces, representing the method. A CuIn 1-x Ga x Se 2 film can be produced, and in particular, a preferred crystal phase of the (220/204) plane is also produced. Therefore, the present invention can utilize a Cu 0.50 In 0.50/Cu 0.73 Ga 0.2 precursor stacked film layer on selenium. After the copper gallium indium selenide compound layer is obtained, the copper indium gallium selenide film is a polycrystalline phase, and the result of XRD analysis shows that the crystallinity is good, and it can be used as an absorption layer of a copper gallium indium selenide thin film solar cell.

實施例2:將玻璃基板置入玻璃清洗劑中,並利用超音波震盪器加強玻璃清潔效果,清潔後的玻璃基板,立即放入去離子水(DI water)中,並以DI water沖洗直至玻璃無清潔液殘留為止,接著,將玻璃放入烘箱內在150℃的溫度下烘乾玻璃,再將清潔完成的玻璃基板置入濺鍍機真空腔 體內,以泵浦抽除空氣,使真空腔體氣壓值低於1 x 10-6torr,當真空腔體壓力值達背景壓力後,通入流量為10sccm的氬氣,使濺鍍腔體真空值回升至5mtorr,並維持濺鍍腔體真空在5mtorr,此時利用DC濺鍍法,將鈦金屬濺鍍於玻璃基板表面,鈦因屬薄膜厚度為100nm,此層鈦金屬為黏著層,因鈦與玻璃有較佳的附著性;隨後在2mtorr工作壓力下進行鉬薄膜製作,鉬薄膜厚度為800nm,此時鉬薄膜片電阻值低於0.2ohms/square。以濺鍍法製作鈦金屬薄膜於玻璃基板時,因後續會再濺鍍一鉬薄膜及Cu y Ga 1-y/Cu x In 1-x/Cu y Ga 1-y堆疊式結構,故為了維持鈦金屬與玻璃間的穩定性,鈦金屬厚度應大於50nm,在此實施例中最佳的厚度為100nm。另外與鈦金屬有相似的功能者,還有Ta,Cr,Co,Ni,W等金屬或其合金都是與玻璃有較佳的附著性,可做為玻璃基板與Mo電極的黏著層。完成製作的鈦與鉬薄膜/玻璃基板結構仍留在濺鍍腔體內,再以DC濺鍍方式製作如第2圖所示Cu x In 1-x/Cu y Ga 1-y/Cu x In 1-x堆疊膜層。其係利用Cu 0.70 Ga 0.30與Cu 0.50 In 0.50合金靶材為前驅物材料,先在鈦與鉬薄膜/玻璃基板結構基板上以60W,並濺鍍一層400nm的Cu 0.50 In 0.50合金薄膜,接著在濺鍍一層500nm的Cu 0.70 Ga 0.30合金薄膜及400nm的Cu 0.50 In 0.50合金薄膜,此3層交互堆疊的合金薄膜構成Cu 0.50 In 0.50/Cu 0.70 Ga 0.30堆疊式結構,為製作銅銦鎵硒化合物層的前驅物。製作完成的3層交互堆疊Cu 0.50 In 0.50/Cu 0.70 Ga 0.30結構,可獲得膜厚均勻的Cu 0.50 In 0.50/Cu 0.70 Ga 0.30前驅物堆疊膜層,其厚度約在1300nm左右。隨後將此3層交互堆疊之Cu 0.50 In 0.50/Cu 0.73 Ga 0.2堆疊膜層取出,並立即移入硒化爐內,接著通入150cc/min的氬 氣,此惰性氣體保護3層交互堆疊Cu 0.50 In 0.50/Cu 0.73 Ga 0.2前驅物堆疊膜層不被氧化,並以40℃/min升溫速度對Cu 0.50 In 0.50/Cu 0.73 Ga 0.2前驅物堆疊膜層加熱,當溫度到達200℃時,持溫80min,藉以將前驅物堆疊膜層轉化成銅鎵銦合金層。接著再以20℃/min的升溫速度加熱銅鎵銦合金層至350℃,並持溫60min,當進行上述升溫時,同於硒化爐內產生硒蒸氣並維持硒蒸氣於過飽和蒸汽壓以上,最後接著再以10℃/min的升溫速度加熱銅鎵銦合金層至550℃,並持溫60min,進而針對銅鎵銦合金層施行硒化程序並將銅鎵銦合金層與硒元素反應並轉化成為銅鎵銦硒化合物層。此銅鎵銦硒化合物層於形成後在硒化爐內降溫,即可完成銅鎵銦硒化合物層的製作。 Example 2: The glass substrate was placed in a glass cleaning agent, and the glass cleaning effect was enhanced by an ultrasonic oscillator. The cleaned glass substrate was immediately placed in DI water and rinsed with DI water until the glass. No cleaning liquid remains. Then, the glass is placed in an oven to dry the glass at a temperature of 150 ° C, and the cleaned glass substrate is placed in a vacuum chamber of the sputtering machine to pump air to evacuate the vacuum chamber. The pressure value is lower than 1 x 10 -6 torr. When the pressure of the vacuum chamber reaches the background pressure, argon gas with a flow rate of 10sccm is introduced, so that the vacuum value of the sputtering chamber rises to 5mtorr, and the vacuum of the sputtering chamber is maintained. 5mtorr, at this time using the DC sputtering method, the titanium metal is sputtered on the surface of the glass substrate, the titanium film thickness is 100nm, the titanium metal is the adhesive layer, because titanium and glass have better adhesion; then in 2mtorr The molybdenum film was fabricated under working pressure, and the thickness of the molybdenum film was 800 nm. At this time, the resistance value of the molybdenum film was less than 0.2 ohms/square. When a titanium metal film is formed by sputtering on a glass substrate, a molybdenum thin film and a Cu y Ga 1-y/Cu x In 1-x/Cu y Ga 1-y stacked structure are subsequently sputtered, so that in order to maintain The stability between titanium metal and glass, the thickness of titanium metal should be greater than 50 nm, and the optimum thickness in this embodiment is 100 nm. In addition, similar functions to titanium metal, as well as metals such as Ta, Cr, Co, Ni, W or alloys thereof, have good adhesion to glass, and can be used as an adhesion layer between a glass substrate and a Mo electrode. The finished titanium and molybdenum film/glass substrate structure remains in the sputtering chamber and is then DC-sputtered as shown in Figure 2 Cu x In 1-x/Cu y Ga 1-y/Cu x In 1 -x stacked film layers. It uses Cu 0.70 Ga 0.30 and Cu 0.50 In 0.50 alloy target as the precursor material, first 60W on the titanium and molybdenum film/glass substrate structure substrate, and sputters a 400nm Cu 0.50 In 0.50 alloy film, then A 500 nm Cu 0.70 Ga 0.30 alloy film and a 400 nm Cu 0.50 In 0.50 alloy film were sputtered. The three layers of the alternately stacked alloy film formed a Cu 0.50 In 0.50/Cu 0.70 Ga 0.30 stacked structure for the preparation of copper indium gallium selenide compound. The precursor of the layer. The completed 3-layer alternately stacked Cu 0.50 In 0.50/Cu 0.70 Ga 0.30 structure can obtain a Cu 0.50 In 0.50/Cu 0.70 Ga 0.30 precursor stacked film layer having a uniform film thickness of about 1300 nm. Subsequently, the three layers of Cu 0.50 In 0.50/Cu 0.73 Ga 0.2 stacked film layers which were alternately stacked were taken out and immediately transferred into a selenization furnace, followed by 150 cc/min of argon gas, and the inert gas was protected by three layers of alternating stacked Cu 0.50. The In 0.50/Cu 0.73 Ga 0.2 precursor stacked film layer is not oxidized, and the Cu 0.50 In 0.50/Cu 0.73 Ga 0.2 precursor stacked film layer is heated at a heating rate of 40 ° C / min. When the temperature reaches 200 ° C, the temperature is maintained. 80 min, thereby converting the precursor stacked film layer into a copper gallium indium alloy layer. Then, the copper gallium indium alloy layer is heated to a temperature of 20 ° C / min to 350 ° C, and held at a temperature of 60 min, when the above temperature rise, the selenium vapor is generated in the selenide furnace and the selenium vapor is maintained above the supersaturated vapor pressure. Finally, the copper gallium indium alloy layer is heated to 550 ° C at a heating rate of 10 ° C / min, and the temperature is maintained for 60 min, and then the selenization process is performed on the copper gallium indium alloy layer and the copper gallium indium alloy layer is reacted with selenium element and converted. Become a copper gallium indium selenide compound layer. The copper gallium indium selenide compound layer is cooled in the selenization furnace after formation, and the copper gallium indium selenide compound layer can be completed.

實施例3:將含有一層黏著層的玻璃基板,以濺鍍方式將鉬薄膜濺鍍於黏著層上,此鉬薄膜厚度為800nm,而黏著層可為如實施例1內之第一鉬薄膜、Ti、Ta、Cr、Co、Ni及W等金屬或其合金薄膜。接著,再以DC濺鍍方式製作如第3圖所示之Cu In0.2Ga 0.8前驅物堆疊膜層於鉬薄膜上,此前驅物堆疊膜係利用CuInGa合金靶材為前驅物材料,先在包括鉬薄膜與玻璃基板上之堆疊膜層上以160W功率濺鍍一層1200nm的Cu In0.2Ga 0.8合金薄膜。隨後,將包括此製作完成的Cu In0.2Ga 0.8前驅物堆疊膜層之玻璃基板置入真空硒化爐內,此時先以真空泵浦抽除空氣,使得真空硒化爐壓力值至1 x 10-6torr,在抽除空氣的過程中,對含有Cu In0.2Ga 0.8前驅物堆疊薄膜的玻璃基板進行加熱,加熱速度為20℃/min,當玻璃基板與Cu In0.2Ga 0.8前驅物堆疊薄膜被加熱至350℃時,合金薄膜產生交互擴散促使三元合金產生轉化成為一銅鎵銦合金層,此時,再將銅鎵銦合金層加 熱至550℃,加熱速度為10℃/min,當進行加熱時,通入5sccm的氬氣為攜帶氣體,並利用氬氣將硒蒸氣帶出硒元素加熱區,以使硒蒸氣被導入硒化腔體內,而在進入硒化腔體前須先通過一電漿區,利用電漿高結離率的特性,對硒蒸氣進行裂解以產生離子態硒,此離子態硒可快速藉由擴散到達銅鎵銦合金層表面,再由合金層表面擴散進入合金層內部,此離子態硒與銅鎵銦合金層反應於鉬電極上生成銅鎵銦硒化合物層,在520℃持溫60分鐘之後可獲得完整的銅鎵銦硒化合物層。於本實施中所得到之銅鎵銦硒化合物層同樣具有高結晶性,並為黃銅礦(chalcopyrite)結構。利用真空硒化處理製程所製作的銅鎵銦硒化合物層,當硒化溫度在480℃以上時即可產生銅鎵銦硒化合物結構。以本實施例而言硒化溫度應高於540℃,在硒化持溫時間上應大於60min以確保硒化完成,較佳的硒化時間是70min。另外在合金化過程中。於本實施例中,參照掃瞄式電子顯微鏡的觀察,整體膜厚約為800奈米之Cu 0.70 Ga 0.30/Cu 0.50 In 0.50/Cu 0.70 Ga 0.30前驅物堆疊薄膜的表面粗糙度Ra約為150nm。 Embodiment 3: a glass substrate containing an adhesive layer is sputter-plated onto the adhesive layer. The thickness of the molybdenum film is 800 nm, and the adhesive layer may be the first molybdenum film as in the first embodiment. A metal such as Ti, Ta, Cr, Co, Ni, or W or an alloy film thereof. Then, a Cu In0.2Ga 0.8 precursor stacked film layer as shown in FIG. 3 is formed on the molybdenum film by DC sputtering, and the precursor stacked film system uses the CuInGa alloy target as a precursor material, first including A 1200 nm Cu In0.2Ga 0.8 alloy film was sputtered on the stacked film layer on the molybdenum film and the glass substrate at a power of 160 W. Subsequently, the glass substrate including the completed Cu In0.2Ga 0.8 precursor stacked film layer is placed in a vacuum selenization furnace, at which time the air is first evacuated by vacuum pumping, so that the pressure of the vacuum selenizer is 1 x 10 -6 torr, in the process of removing air, the glass substrate containing the Cu In0.2Ga 0.8 precursor stacked film is heated at a heating rate of 20 ° C / min, when the glass substrate and the Cu In0.2Ga 0.8 precursor stacked film When heated to 350 ° C, the alloy film is interactively diffused to promote the conversion of the ternary alloy into a copper gallium indium alloy layer. At this time, the copper gallium indium alloy layer is heated to 550 ° C, and the heating rate is 10 ° C / min. When heating, 5 sccm of argon is introduced into the carrier gas, and the selenium vapor is taken out of the selenium heating zone by argon gas, so that the selenium vapor is introduced into the selenization chamber, and must pass through a selenization chamber before entering the selenization chamber. In the plasma region, the selenium vapor is cracked to produce ionic selenium by utilizing the characteristics of high plasma separation rate. The ionized selenium can rapidly reach the surface of the copper gallium indium alloy layer by diffusion, and then diffuse into the alloy from the surface of the alloy layer. Inside the layer, this ion The selenium and copper gallium indium alloy layer reacted on the molybdenum electrode to form a copper gallium indium selenide compound layer, and a complete copper gallium indium selenide compound layer was obtained after holding at 520 ° C for 60 minutes. The copper gallium indium selenide compound layer obtained in the present embodiment also has high crystallinity and is a chalcopyrite structure. The copper gallium indium selenide compound layer produced by the vacuum selenization process can produce a copper gallium indium selenide compound structure when the selenization temperature is above 480 °C. In this embodiment, the selenization temperature should be higher than 540 ° C, and should be greater than 60 min during the selenization holding temperature to ensure selenization is completed, and the preferred selenization time is 70 min. Also in the alloying process. In the present embodiment, with reference to a scanning electron microscope, the surface roughness Ra of the Cu 0.70 Ga 0.30/Cu 0.50 In 0.50/Cu 0.70 Ga 0.30 precursor stacked film having an overall film thickness of about 800 nm is about 150 nm. .

下表是將目前實驗的各種參數與結果做出一綜合性整理。 The following table is a comprehensive compilation of the various parameters and results of the current experiment.

100‧‧‧基板 100 ‧‧‧Substrate

200‧‧‧黏著層 200 ‧‧‧Adhesive layer

300‧‧‧金屬電極層 300 ‧‧‧metal electrode layer

400‧‧‧銅銦鎵硒化合物層 400 ‧‧‧ copper indium gallium selenide compound layer

401‧‧‧銅鎵合金層 401 ‧‧‧copper gallium alloy layer

402‧‧‧銅銦合金層 402 ‧‧‧ copper indium alloy layer

403‧‧‧銅鎵合金層 403 ‧‧‧copper gallium alloy layer

404‧‧‧固態硒化層 404 ‧‧‧Solid selenide

500‧‧‧銅銦鎵硒化合物層 500 ‧‧‧ copper indium gallium selenide compound layer

501‧‧‧銅銦合金層 501 ‧‧‧ copper indium alloy layer

502‧‧‧銅鎵合金層 502 ‧‧‧copper gallium alloy layer

503‧‧‧銅銦合金層 503 ‧‧‧ copper indium alloy layer

504‧‧‧固態硒化層 504 ‧‧‧Solid selenide

600‧‧‧前驅物堆疊膜層 600 ‧‧‧Precursor stacking film

604‧‧‧銅銦鎵硒化合物層 604 ‧‧‧ copper indium gallium selenide compound layer

圖1 銅銦鎵硒化合物薄膜太陽能電池示意圖 Figure 1 Schematic diagram of a copper indium gallium selenide compound thin film solar cell

圖2 銅銦鎵硒化合物薄膜太陽能電池示意圖 Figure 2 Schematic diagram of a copper indium gallium selenide compound thin film solar cell

圖3 銅銦鎵硒化合物薄膜太陽能電池示意圖 Figure 3 Schematic diagram of a copper indium gallium selenide compound thin film solar cell

圖4 銅銦鎵硒化合物薄膜太陽能電池熱處理示意圖 Figure 4 Schematic diagram of heat treatment of copper indium gallium selenide thin film solar cell

圖5 銅銦鎵硒化合物薄膜太陽能電池示意圖 Figure 5 Schematic diagram of a copper indium gallium selenide compound thin film solar cell

圖6(a)~6(f) 銅銦鎵合金層在不同壓力下硒化程序的表面型態變化 Figure 6(a)~6(f) Surface in-situ changes of the selenization procedure of copper indium gallium alloy layers under different pressures

圖7 CuIn3Se5化合物XRD繞射圖 Fig. 7 XRD diffraction pattern of CuIn3Se5 compound

圖8 銅銦鎵硒薄膜缺陷化合物XRD繞射圖 Fig. 8 XRD diffraction pattern of copper indium gallium selenide thin film defect compound

100‧‧‧基板 100 ‧‧‧Substrate

200‧‧‧黏著層 200 ‧‧‧Adhesive layer

300‧‧‧金屬電極層 300 ‧‧‧metal electrode layer

400‧‧‧銅銦鎵硒化合物層 400 ‧‧‧ copper indium gallium selenide compound layer

401‧‧‧銅鎵合金層 401 ‧‧‧copper gallium alloy layer

402‧‧‧銅銦合金層 402 ‧‧‧ copper indium alloy layer

403‧‧‧銅鎵合金層 403 ‧‧‧copper gallium alloy layer

404‧‧‧固態硒化層 404 ‧‧‧Solid selenide

Claims (1)

一種銅銦鎵硒薄膜太陽能電池的製造方法,包括:於一基板上形成一金屬黏著層;於該金屬黏著層上形成一第一前驅金屬層,該第一前驅金屬層之材質包括銅、銦以及鎵;於該第一前驅金屬層上形成一非金屬層,該非金屬層之材質包括硒或硫;以及透過3個不同升溫製程使該非金屬層與該第一前驅金屬層產生硒化成為具有規則缺陷化合物之一銅銦鎵硒薄膜,其中第1升溫製程係將包括第一前驅金屬層與非金屬層以40℃/min的升溫速度升溫至200~300℃並持溫80~160分鐘;第2升溫製程係將包括第一前驅金屬層與非金屬層以20℃/min的升溫速度升溫至320~380℃並持溫60~90分鐘;第3升溫製程係將包括第一前驅金屬層與非金屬層以10℃/min的升溫速度升溫至500~600℃並持溫約60~120分鐘,;第1~3升溫製程中加熱的壓力均維持於1MPa以下範圍內。 A method for manufacturing a copper indium gallium selenide thin film solar cell, comprising: forming a metal adhesion layer on a substrate; forming a first precursor metal layer on the metal adhesion layer, wherein the material of the first precursor metal layer comprises copper and indium And a gallium; forming a non-metal layer on the first precursor metal layer, the non-metal layer material comprises selenium or sulfur; and selenizing the non-metal layer and the first precursor metal layer through three different heating processes to have a copper indium gallium selenide film, wherein the first heating process comprises heating the first precursor metal layer and the non-metal layer to a temperature of 40 to 300 ° C at a temperature increase rate of 40 ° C / min and maintaining the temperature for 80 to 160 minutes; The second heating process system includes heating the first precursor metal layer and the non-metal layer to a temperature of 320 ° C to 380 ° C at a temperature increase rate of 20 ° C / min and holding the temperature for 60 to 90 minutes; the third heating process system includes a first precursor metal layer The temperature of the non-metal layer is raised to 500 to 600 ° C at a temperature increase rate of 10 ° C / min and the temperature is maintained for about 60 to 120 minutes. The heating pressure in the first to third temperature rising processes is maintained within a range of 1 MPa or less.
TW102146054A 2013-12-13 2013-12-13 Thin film solar cell structure and process TWI488327B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102146054A TWI488327B (en) 2013-12-13 2013-12-13 Thin film solar cell structure and process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102146054A TWI488327B (en) 2013-12-13 2013-12-13 Thin film solar cell structure and process

Publications (2)

Publication Number Publication Date
TW201440244A TW201440244A (en) 2014-10-16
TWI488327B true TWI488327B (en) 2015-06-11

Family

ID=52113927

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102146054A TWI488327B (en) 2013-12-13 2013-12-13 Thin film solar cell structure and process

Country Status (1)

Country Link
TW (1) TWI488327B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201042065A (en) * 2009-05-22 2010-12-01 Ind Tech Res Inst Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films
TW201201394A (en) * 2010-06-25 2012-01-01 Taiwan Semiconductor Mfg Method for manufacturing a photovoltaic device and a thin film solar cell
TW201205840A (en) * 2010-06-18 2012-02-01 Asahi Glass Co Ltd Cigs-type solar cell, and electrode-attached glass substrate for use in the solar cell
TW201216486A (en) * 2010-05-31 2012-04-16 Asahi Glass Co Ltd Cigs solar cell and substrate for cigs solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201042065A (en) * 2009-05-22 2010-12-01 Ind Tech Res Inst Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films
TW201216486A (en) * 2010-05-31 2012-04-16 Asahi Glass Co Ltd Cigs solar cell and substrate for cigs solar cell
TW201205840A (en) * 2010-06-18 2012-02-01 Asahi Glass Co Ltd Cigs-type solar cell, and electrode-attached glass substrate for use in the solar cell
TW201201394A (en) * 2010-06-25 2012-01-01 Taiwan Semiconductor Mfg Method for manufacturing a photovoltaic device and a thin film solar cell

Also Published As

Publication number Publication date
TW201440244A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
US20100297835A1 (en) Methods for fabricating copper indium gallium diselenide (cigs) compound thin films
CN104813482B (en) Molybdenum base material for CIGS photovoltaic devices
JP2014096569A (en) Copper/indium/gallium/selenium(cigs)-based or copper/zinc/tin/sulfur(czts)-based thin film solar cell and manufacturing method therefor
CN103165748A (en) Method of preparing copper-zinc tin-sulphur solar cell absorbed layer thin film
WO2013185506A1 (en) Method for preparing copper indium gallium diselenide thin-film solar cell
KR101582200B1 (en) A method for preparing CZTS thin film for solar cell
Cheng et al. Chalcogenide solar cells fabricated by co-sputtering of quaternary CuIn0. 75Ga0. 25Se2 and In targets: Another promising sputtering route for mass production
CN113745359A (en) Preparation method of cadmium telluride gradient absorption layer and solar cell
JP6316877B2 (en) Method for forming ACIGS thin film at low temperature and method for manufacturing solar cell using the same
JP5764016B2 (en) CIGS film manufacturing method and CIGS solar cell manufacturing method using the same
JP2014154762A (en) Method for producing cigs film, and method for manufacturing cigs solar cell using the same
TWI488327B (en) Thin film solar cell structure and process
CN101924162A (en) Method for preparing copper-indium-gallium-selenium compound membrane
CN114203842A (en) Wide-bandgap copper-gallium-selenium light absorption layer, preparation method thereof and solar cell
KR101388458B1 (en) Preparation method for cigs thin film using rapid thermal processing
KR101501742B1 (en) Method for fabricating a thin film solar cell with diffusion barrier and Thin film solar cell produced by the same
TWI399861B (en) Structure of solar host organic and manufacturing method thereof
CN105932093A (en) High-quality CIGS thin-film solar cell absorption layer preparation method
KR20110001820A (en) Solar cell and method of fabricating the same
Wi et al. Synthesis and Crystallization of CuIn1–x Ga x Se2 Compounds Formed via Co-Sputtering with Se Vapor
Jung et al. Effect of KCN treatment on Cu-Se secondary phase of one-step sputter-deposited CIGS thin films using quaternary target
KR20150136721A (en) Solar cell comprising high quality cigs absorber layer and method of fabricating the same
Zhang et al. Mechanism investigation of Sb-doping induced large-grain Cu (InGa) Se 2 films processed from quaternary targets
TWI515317B (en) I-III-VI compound of the I-III precursor film
CN116454148A (en) High-gallium-component CIGS flexible thin-film solar cell and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees