TWI485388B - Surface-enhanced raman scattering substrate and a trace detection method of a biological and chemical analyte using the same - Google Patents

Surface-enhanced raman scattering substrate and a trace detection method of a biological and chemical analyte using the same Download PDF

Info

Publication number
TWI485388B
TWI485388B TW100140479A TW100140479A TWI485388B TW I485388 B TWI485388 B TW I485388B TW 100140479 A TW100140479 A TW 100140479A TW 100140479 A TW100140479 A TW 100140479A TW I485388 B TWI485388 B TW I485388B
Authority
TW
Taiwan
Prior art keywords
raman scattering
substrate
film layer
metal
periodic nanostructure
Prior art date
Application number
TW100140479A
Other languages
Chinese (zh)
Other versions
TW201307828A (en
Inventor
Ding Zheng Lin
yi ping Chen
Tsung Dar Cheng
I Ling Kao
Pin Chen Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to US13/399,953 priority Critical patent/US9019494B2/en
Publication of TW201307828A publication Critical patent/TW201307828A/en
Application granted granted Critical
Publication of TWI485388B publication Critical patent/TWI485388B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

拉曼散射增強基板、利用上述基板之微量生化感測方法Raman scattering enhancement substrate, micro biochemical sensing method using the above substrate

本發明係有關於一種基板,且特別是有關於一種拉曼散射增強基板與利用此基板之微量生化感測方法。The present invention relates to a substrate, and more particularly to a Raman scattering enhancement substrate and a method of microbiochemical sensing using the substrate.

生活中的毒化物無所不在,每一種毒化物也有其法規標準值(例如苯(5.1 ppb)、鉛(50 ppb)、鎘(5 ppb)、巴拉松(20 ppb)、1,1,1三氯乙烷(0.2 ppm)),然而,由於分析儀器檢測昂貴且費時,限制了微量分析(trace analysis)的時效性與檢驗的普及性。為此,研究單位致力於開發高靈敏度、快速且低成本的生化感測器。The poisons in life are ubiquitous, and each poison has its own regulatory standards (such as benzene (5.1 ppb), lead (50 ppb), cadmium (5 ppb), balason (20 ppb), 1,1,1 Ethyl chloride (0.2 ppm)), however, because the analytical instrumentation is expensive and time consuming, limiting the timeliness of trace analysis and the popularity of the assay. To this end, the research unit is dedicated to the development of highly sensitive, fast and low-cost biochemical sensors.

拉曼振動光譜(Raman Scattering Spectrum)具有指紋專一性(specificity)與多領域(multi-domain)應用的優點,近年來已廣泛地應用於微量分析領域中。然而,拉曼射散的強度非常微弱,為此,科學家利用金屬表面結構產生拉曼散射增強效應(surface-Enhanced Raman Scattering,SERS),以將拉曼訊號放大104 -1012 倍。Raman Scattering Spectrum has the advantages of fingerprint specificity and multi-domain applications, and has been widely used in the field of microanalysis in recent years. However, the intensity of the Raman scatter is very weak. To this end, scientists use the surface structure of the metal to generate Raman Scattering (SERS) to amplify the Raman signal by 10 4 -10 12 times.

美國專利US 7,242,470揭露一種奈米結構於基板上,此奈米結構以奈米球自組裝的形式排列於基板上,然而,奈米球與基板之黏著性較差,且奈米球並非連續膜,因此用此方法不容易做出大面積、高均勻度且拉曼訊號增加效果好的基板。US Patent No. 7,242,470 discloses a nanostructure on a substrate which is arranged on the substrate in a self-assembled manner of nanospheres. However, the adhesion of the nanosphere to the substrate is poor, and the nanosphere is not a continuous film. With this method, it is not easy to make a substrate having a large area, high uniformity, and a good Raman signal increase effect.

美國專利US 7,864,313揭露一種基板,基板包括光子晶體結構與布拉格反射多層膜,用以提升靠近此結構的待側分子的拉曼訊號。然而,此基板的表面結構需要利用黃光微影製程搭配物理或化學蝕刻方式製作,此方式費時且提高成本。U.S. Patent No. 7,864,313 discloses a substrate comprising a photonic crystal structure and a Bragg reflective multilayer film for enhancing the Raman signal of the molecules to be side adjacent to the structure. However, the surface structure of the substrate needs to be fabricated by a yellow light lithography process in combination with physical or chemical etching, which is time consuming and costly.

因此,目前需要一種可大面積生產、便宜的拉曼散射增強基板,此基板可提高拉曼散射訊號,以應用於微量分析領域。Therefore, there is a need for a large-area, inexpensive Raman scattering enhancement substrate that enhances Raman scattering signals for use in the field of microanalysis.

本發明提供一種拉曼散射增強基板,包括:一具有週期性奈米結構之基板,一反射層,形成於該具有週期性奈米結構之基板上;一介電材料層,形成於該反射層之上;以及一金屬薄膜層,形成於該介電材料層之上。The present invention provides a Raman scattering enhancement substrate comprising: a substrate having a periodic nanostructure, a reflective layer formed on the substrate having a periodic nanostructure; and a dielectric material layer formed on the reflective layer And a metal thin film layer formed on the dielectric material layer.

本發明另提供一種微量生化感測方法,包括以下步驟:提供上述之拉曼散射增強基板,用以吸附一待測分子;以及提供一雷射激發光源至該待測分子上,以產生拉曼散射訊號。The invention further provides a microbiochemical sensing method, comprising the steps of: providing the Raman scattering enhancement substrate described above for adsorbing a molecule to be tested; and providing a laser excitation source to the molecule to be detected to generate Raman Scattering signal.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:The above and other objects, features and advantages of the present invention will become more <RTIgt;

請參見本案第1圖,此圖顯示本發明之拉曼散射增強基板10之剖面圖,於基板12之上依序為反射層14、介電材料層16、金屬薄膜層18。基板12之材質包括金屬、無機材料、有機高分子材料或上述之組合。須注意的是,基板12具有週期性奈米結構12a,且基板12與週期性奈米結構12a可由相同材料或不同材料所組成,另言之,基板12與週期性奈米結構12a可以是一體成型或由兩步驟形成。Referring to FIG. 1 of the present invention, a cross-sectional view of the Raman scattering enhancement substrate 10 of the present invention is shown. The substrate 12 is sequentially provided with a reflective layer 14, a dielectric material layer 16, and a metal thin film layer 18. The material of the substrate 12 includes a metal, an inorganic material, an organic polymer material, or a combination thereof. It should be noted that the substrate 12 has a periodic nanostructure 12a, and the substrate 12 and the periodic nanostructure 12a may be composed of the same material or different materials. In other words, the substrate 12 and the periodic nanostructure 12a may be integrated. Molded or formed in two steps.

週期性奈米結構12a之形狀包括圓柱型(cylinder)、半球型(semi-sphere)、弦波型(sine wave)、三角型(triangle)、碟型(disk)或上述之組合,週期性奈米結構12a並不限於上述之形狀,本領域人士可依照實際應用之需求,改變週期性奈米結構之形狀。週期性奈米結構12a可利用奈米壓印製程(nanoimprint process)或奈米電鑄(nano electroforming)的方式形成。The shape of the periodic nanostructure 12a includes a cylinder, a semi-sphere, a sine wave, a triangle, a disk, or a combination thereof, The rice structure 12a is not limited to the above-described shape, and those skilled in the art can change the shape of the periodic nanostructure according to the needs of practical applications. The periodic nanostructure 12a can be formed by a nanoimprint process or a nano electroforming process.

週期性奈米結構12a之週期P介於10-1000 nm,較佳介於300-700 nm,其中300-700 nm為搭配可見光波長雷射的較佳選擇。若週期P過短,則會造成製程難度提高甚至無法實施。若週期P過長,則無法搭配後續量測之雷射波長。The period P of the periodic nanostructure 12a is between 10 and 1000 nm, preferably between 300 and 700 nm, and 300 to 700 nm is a preferred choice for lasers with visible wavelengths. If the period P is too short, it will make the process more difficult or impossible to implement. If the period P is too long, it cannot be matched with the laser wavelength of the subsequent measurement.

週期性奈米結構12a之結構大小L為佔整個週期P之0.1-0.9(duty cycle,L/P)。若週期性奈米結構與週期之比例(L/P)過大,則會導致結構複製困難,若週期性奈米結構與週期之比例(L/P)過小,則無法有效激發拉曼散射增強基板表面的電漿子共振條件,導致待測分子之拉曼訊號無法有效提升。The structural size L of the periodic nanostructure 12a is 0.1-0.9 (duty cycle, L/P) of the entire period P. If the ratio of the periodic nanostructure to the period (L/P) is too large, the structure replication is difficult. If the ratio of the periodic nanostructure to the period (L/P) is too small, the Raman scattering enhancement substrate cannot be effectively excited. The plasmonic resonance condition of the surface causes the Raman signal of the molecule to be tested to be effectively improved.

週期性奈米結構12a之深寬比(aspect ratio,H/L)為0.1-3,較佳為0.5-2之間。若深寬比過低,則奈米結構過於平坦而無法達到激發表面電漿子共振的效果,若深寬比過高,則會大大提高奈米壓印或奈米電鑄製程的難度。The aspect ratio (H/L) of the periodic nanostructure 12a is between 0.1 and 3, preferably between 0.5 and 2. If the aspect ratio is too low, the nanostructure is too flat to achieve the effect of exciting the surface plasmon resonance. If the aspect ratio is too high, the difficulty of the nanoimprint or nanoelectroforming process is greatly improved.

反射層14係順應性地(conformal)形成於具有週期性奈米結構12a之基板12之上,其作用在於遮蔽基板12,避免基板12的材料本質吸收與避免基板12拉曼背景訊號的影響,因此,反射層14之厚度需大於反射層14材料於操作波長下的集膚深度(skin depth)。The reflective layer 14 is conformally formed on the substrate 12 having the periodic nanostructure 12a, and functions to shield the substrate 12 from the material absorption of the substrate 12 and to avoid the influence of the Raman background signal of the substrate 12. Therefore, the thickness of the reflective layer 14 needs to be greater than the skin depth of the reflective layer 14 material at the operating wavelength.

反射層14之反射率大於約70%,較佳為大於85%,反射層14之材料包括金屬、上述之合金或介電材料,金屬例如銀(Ag)、鋁(Al)、金(Au)、銅(Cu)、銠(Rh)、鉑(Pt),金屬合金例如銅鋁合金或金鎳合金,而介電材料例如矽或鍺等。The reflectivity of the reflective layer 14 is greater than about 70%, preferably greater than 85%. The material of the reflective layer 14 comprises a metal, the above alloy or a dielectric material, such as silver (Ag), aluminum (Al), gold (Au). , copper (Cu), rhodium (Rh), platinum (Pt), metal alloys such as copper-aluminum alloy or gold-nickel alloy, and dielectric materials such as tantalum or niobium.

介電材料層16之作用在於調整Fabry-Perot共振腔(resonator)長度,亦即調整干涉共振模態(Fabry-Perot resonant mode)波長,介電材料層16由折射率1.3-5.0之材料所組成,例如二氧化矽(n=1.5)、氧化鋁(n=1.77)、氮化矽(n=2)、二氧化鈦(n=2.9)或矽(n=4)。The dielectric material layer 16 functions to adjust the length of the Fabry-Perot resonator, that is, to adjust the wavelength of the Fabry-Perot resonant mode, and the dielectric material layer 16 is composed of a material having a refractive index of 1.3-5.0. For example, cerium oxide (n = 1.5), alumina (n = 1.77), cerium nitride (n = 2), titanium dioxide (n = 2.9) or cerium (n = 4).

金屬薄膜層18之作用在於激發表面電漿共振模態。為了調整表面電漿共振波長並使表面電漿模態與干涉共振模態有機會耦合,因此金屬薄膜層18的膜厚需小於金屬薄膜層18材料於操作波長下的集膚深度(skin depth),使金屬薄膜層18的內外兩個介面的表面電漿可以互相耦合(coupling)而產生新的共振模態,用以調整表面電漿的共振波長。The role of the metal film layer 18 is to excite the surface plasma resonance mode. In order to adjust the surface plasma resonance wavelength and provide a chance coupling between the surface plasma mode and the interference resonance mode, the film thickness of the metal film layer 18 needs to be smaller than the skin depth of the metal film layer 18 material at the operating wavelength. The surface plasma of the inner and outer interfaces of the metal thin film layer 18 can be coupled to each other to generate a new resonant mode for adjusting the resonant wavelength of the surface plasma.

須注意的是,本發明金屬薄膜層18為連續或不連續之結構。於一實施例中,金屬薄膜層18較佳為連續結構,可使表面電漿透過連續金屬膜傳遞,並與相鄰結構的表面電漿相耦合以使增強拉曼散射之強度。It should be noted that the metal thin film layer 18 of the present invention has a continuous or discontinuous structure. In one embodiment, the metal film layer 18 is preferably of a continuous structure that allows surface plasma to be transmitted through the continuous metal film and coupled to the surface plasma of adjacent structures to enhance the intensity of Raman scattering.

金屬薄膜層18之厚度小於反射層14之厚度,例如厚度約小於50 nm。金屬薄膜層18包括金、銀、鉑、鐵、鈷、鎳、銅、鋁、鉻或上述之合金。The thickness of the metal film layer 18 is less than the thickness of the reflective layer 14, such as a thickness of less than about 50 nm. The metal thin film layer 18 includes gold, silver, platinum, iron, cobalt, nickel, copper, aluminum, chromium, or an alloy thereof.

綜上所述,本發明所提供之拉曼散射增強基板10藉由週期性奈米結構之基板12、反射層14、介電材料層16、金屬薄膜層18之多層設計,各層具有其特殊功效,可藉由調整週期性奈米結構之深寬比與週期,或調整各層之厚度以設計基板10之電漿子共振波長與雷射激發光源波長、拉曼散射波長一致,進而提高拉曼散射訊號。In summary, the Raman scattering enhancement substrate 10 provided by the present invention has a multi-layer design of the substrate 12, the reflective layer 14, the dielectric material layer 16, and the metal thin film layer 18 of the periodic nanostructure, and each layer has its special effect. The Raman scattering can be improved by adjusting the aspect ratio and period of the periodic nanostructure or adjusting the thickness of each layer to design the plasmon resonance wavelength of the substrate 10 to coincide with the wavelength of the laser excitation source and the Raman scattering wavelength. Signal.

此外,本發明另提供一種微量生化感測方法,方法包括提供上述之拉曼散射增強基板10,用以吸附待測分子;以及提供雷射激發光源至待測分子上,可照射波長介於400 nm-1200 nm的激發雷射,例如固態雷射(355 nm、532 nm、1064 nm)、氣體雷射(488 nm、514.5 nm、632.8 nm)、或半導體雷射(405 nm、532 nm、635 nm、670 nm、780 nm、808nm、1064 nm)等,使待測分子產生拉曼訊號。In addition, the present invention further provides a microbiochemical sensing method, the method comprising: providing the Raman scattering enhancement substrate 10 described above for adsorbing a molecule to be tested; and providing a laser excitation source to the molecule to be tested, the irradiation wavelength is 400 Excitation lasers at nm-1200 nm, such as solid-state lasers (355 nm, 532 nm, 1064 nm), gas lasers (488 nm, 514.5 nm, 632.8 nm), or semiconductor lasers (405 nm, 532 nm, 635) Nm, 670 nm, 780 nm, 808 nm, 1064 nm), etc., to generate Raman signals for the molecules to be tested.

本發明之拉曼散射增強基板10可用於測量固態、氣態或是液態的待測分子。在液態量測狀態下環境介質的pH值介於2至12之間。當待測分子之介質為水或有機溶劑時,其偵測濃度範圍介於100 ppm至0.1 ppb之間;當該待測分子之介質為空氣,其偵測濃度範圍介於100 ppm至1 ppb。The Raman scattering enhancement substrate 10 of the present invention can be used to measure molecules to be tested in solid, gaseous or liquid state. The pH of the environmental medium is between 2 and 12 in the liquid state. When the medium of the molecule to be tested is water or an organic solvent, the detection concentration ranges from 100 ppm to 0.1 ppb; when the medium of the molecule to be tested is air, the detection concentration ranges from 100 ppm to 1 ppb. .

於一實施例中,當待測分子為孔雀綠(Malachite Green)分子時,偵測極限可達10-10 M(約0.1 ppb)。In one embodiment, when the molecule to be tested is a Malachite Green molecule, the detection limit is up to 10 -10 M (about 0.1 ppb).

此外,本發明可施加一電場或一磁場至拉曼散射增強基板10,以幫助待測物吸附於基板上,進而增強拉曼訊號強度。In addition, the present invention can apply an electric field or a magnetic field to the Raman scattering enhancement substrate 10 to help the analyte to be adsorbed on the substrate, thereby enhancing the Raman signal intensity.

再者,本發明可藉由調整金屬薄膜層18或介電材料層16之厚度,使金屬薄膜層18之表面電漿子共振波長與雷射波長一樣,以進一步提高拉曼散射訊號強度。Furthermore, in the present invention, by adjusting the thickness of the metal thin film layer 18 or the dielectric material layer 16, the surface plasmon resonance wavelength of the metal thin film layer 18 is the same as the laser wavelength to further increase the Raman scattered signal intensity.

【實施例】[Examples]

實施例1-6 反射層膜厚對穿透率之影響Example 1-6 Effect of Film Thickness of Reflective Layer on Transmittance

表1顯示實施例1-6 之測試條件(塑膠基板鍍上金屬薄膜層(銀膜或金膜)在400nm、550nm、785nm的穿透率),第2圖顯示實施例1-6 之反射層厚度對應穿透度之關係圖,由圖中可知,隨著金屬薄膜層厚度增加,金屬薄膜層之穿透度會逐漸降低。以實施例6為例子,當金膜厚度大於30nm時,穿透度只剩下約7%。Table 1 shows the test conditions of Examples 1-6 (the plastic substrate was plated with a metal thin film layer (silver film or gold film) at 400 nm, 550 nm, 785 nm), and Fig. 2 shows the reflective layers of Examples 1-6 . The relationship between the thickness and the transmittance is shown in the figure. As the thickness of the metal film layer increases, the penetration of the metal film layer gradually decreases. Taking Example 6 as an example, when the thickness of the gold film is more than 30 nm, only about 7% of the transmittance is left.

第3圖顯示實施例6比較例1 (單純的塑膠基板)使用785nm雷射光量測基板的拉曼訊號。由圖中可知,實施例6 相較於比較例1 具有較為平坦的背景訊號,顯示反射層確實有遮蔽基板之效果,可避免基板背景訊號干擾待測物的量測。Fig. 3 shows a Raman signal of the substrate of Example 6 and Comparative Example 1 (simple plastic substrate) using a 785 nm laser light measurement. As can be seen from the figure, the sixth embodiment has a relatively flat background signal compared with the comparative example 1 , and the reflective layer does have the effect of shielding the substrate, so that the substrate background signal can be prevented from interfering with the measurement of the object to be tested.

實施例7-9 介電材料層之影響Example 7-9 Effect of Dielectric Material Layer

表2顯示實施例7-9 之結構(基板之上依序形成反射層、介電材料層與金屬薄膜層),第4圖顯示實施例7-9 之波長對應反射率之關係圖,用以說明介電材料層膜厚對反射光譜波谷位置(即干涉共振波長)的影響,由圖中可知,當介電材料層之厚度增加時,干涉共振波長會紅移(red shift),因此可藉由改變兩金屬反射面之間的介電材料層厚度,來調整Fabry-Perot共振腔(Fabry-Perot resonator)干涉波長。Table 2 shows the structure of Example 7-9 (the reflective layer, the dielectric material layer and the metal thin film layer are sequentially formed on the substrate), and FIG. 4 shows the relationship between the reflectances of the wavelengths of Examples 7-9 for Explain the influence of the film thickness of the dielectric material on the valley position of the reflection spectrum (ie, the interference resonance wavelength). As can be seen from the figure, when the thickness of the dielectric material layer increases, the interference resonance wavelength will be red shifted, so The Fabry-Perot resonator interference wavelength is adjusted by varying the thickness of the dielectric material layer between the two metal reflective surfaces.

實施例10-14 金屬薄膜層之影響Example 10-14 Effect of Metal Film Layer

表3顯示實施例10-14 之週期性奈米結構塑膠基板(週期300nm,結構深度100nm)鍍上不同厚度之銀膜。第5圖顯示實施例10-14 之金屬薄膜層厚度對應吸收波長(即電漿子共振波長)之關係圖,由圖中可知,當金屬薄膜層厚度小於75 nm時,金屬-介電材料層之間的兩個介面的表面電漿會互相耦合,***成對稱(symmetric mode)與反對稱(anti-asymmetric mode)的兩個新共振模態,其中對稱模態的共振波長會隨著膜厚減少而紅移(red-shift),反對稱模態的共振波長會隨著膜厚減少而藍移(blue-shift)。Table 3 shows that the periodic nanostructured plastic substrates of Examples 10-14 (period 300 nm, structure depth 100 nm) were plated with silver films of different thicknesses. Figure 5 is a graph showing the relationship between the thickness of the metal thin film layer of Examples 10-14 and the absorption wavelength (i.e., the resonant wavelength of the plasma). It can be seen from the figure that when the thickness of the metal thin film layer is less than 75 nm, the metal-dielectric material layer The surface plasma between the two interfaces is coupled to each other and split into two new resonant modes of symmetric mode and anti-asymmetric mode, in which the resonant wavelength of the symmetric mode varies with the film thickness. Reduced and red-shifted, the resonant wavelength of the anti-symmetric mode will be blue-shifted as the film thickness decreases.

實施例15Example 15

實施例15 為週期性奈米結構基板(週期P=400 nm、深度H=240 nm)之上依序形成反射層(35 nm銀膜)、介電材料層(200 nm二氧化矽)和金屬薄膜層(10 nm金膜)。 Example 15 sequentially forms a reflective layer (35 nm silver film), a dielectric material layer (200 nm cerium oxide), and a metal on a periodic nanostructure substrate (period P = 400 nm, depth H = 240 nm). Thin film layer (10 nm gold film).

比較例2 為平坦基板之上依序形成反射層(35nm銀膜)、介電材料層(200nm二氧化矽)和金屬薄膜層(10nm金膜)。 In Comparative Example 2 , a reflective layer (35 nm silver film), a dielectric material layer (200 nm cerium oxide), and a metal thin film layer (10 nm gold film) were sequentially formed on the flat substrate.

第6圖顯示實施例15比較例2 之吸收光譜關係圖,由圖中可知,比較例2 所組成的Fabry-Perot共振腔結構會在830nm與430nm附近產生共振,可分別對應兩個吸收光譜峰值(FP mode#1、FP mode#2)。而當共振腔結構製作於奈米結構基板上時(實施例15 ),由於奈米結構多了激發侷限化表面電漿模態(Localized Surface Plamson mode,LSP)的機會(LSP mode#1~#4),其吸收光譜變得更為複雜。其中860nm的吸收峰值為侷限化表面電漿模態(LSP mode)與Fabry-Perot共振腔共振模態(FP mode)相互耦合的結果,可使更多激發光源更有效被聚集在奈米結構上形成熱點(hot spot)。Fig. 6 is a graph showing the relationship between the absorption spectra of Example 15 and Comparative Example 2. As is apparent from the figure, the Fabry-Perot resonator structure composed of Comparative Example 2 resonates near 830 nm and 430 nm, and can respectively correspond to two absorption spectra. Peak (FP mode #1, FP mode #2). When the resonant cavity structure is fabricated on a nanostructure substrate ( Example 15 ), the nanostructure has more opportunities to locally localize the surface plasmon mode (LSP) (LSP mode#1~#) 4), its absorption spectrum becomes more complicated. The absorption peak at 860 nm is the result of mutual coupling between the LSP mode and the Fabry-Perot resonant cavity mode (FP mode), which allows more excitation sources to be more efficiently concentrated on the nanostructure. A hot spot is formed.

比較例3 為市售基板(Klarite substrate from Renishaw Diagnostics),比較例4 為市售基板(wavelet substrate from NIDEK Co.Ltd.),比較例5 為具有平坦金膜的基板(無結構)。 Comparative Example 3 is a commercially available substrate ( Klarite substrate from Renishaw Diagnostics), Comparative Example 4 is a commercially available substrate ( wavelet substrate from NIDEK Co. Ltd.), and Comparative Example 5 is a substrate having a flat gold film (no structure).

第7圖顯示實施例15比較例3-5 偵測苯硫醇(thiophenol)單分子層之拉曼光譜圖(使用785nm雷射光源激發)。Figure 7 shows a Raman spectrum of a thiophenol monolayer detected in Example 15 and Comparative Example 3-5 (excited using a 785 nm laser source).

由第7圖可知,本發明之拉曼散射增強基板,由於具有週期性奈米結構、反射層、介電材料層、金屬薄膜層之 多層結構,可有效提高拉曼散射訊號,相較於比較例3-5 ,本發明實施例15 之拉曼散射訊號可提高10~20倍。It can be seen from Fig. 7 that the Raman scattering-enhancing substrate of the present invention can effectively improve the Raman scattering signal due to the multi-layer structure of the periodic nanostructure, the reflective layer, the dielectric material layer and the metal thin film layer, compared with the comparison. In Example 3-5 , the Raman scattering signal of the embodiment 15 of the present invention can be increased by 10 to 20 times.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.

10‧‧‧拉曼散射增強基板10‧‧‧Raman scattering enhancement substrate

12‧‧‧基板12‧‧‧Substrate

12a‧‧‧週期性奈米結構12a‧‧‧Recurrent periodic structure

14‧‧‧反射層14‧‧‧reflective layer

16‧‧‧介電材料層16‧‧‧ dielectric material layer

18‧‧‧金屬薄膜層18‧‧‧Metal film layer

第1圖為一剖面圖,用以說明本發明之拉曼散射增強基板。Fig. 1 is a cross-sectional view for explaining a Raman scattering enhancement substrate of the present invention.

第2圖為一對應關係圖,用以說明本發明實施例之反射層厚度對應穿透度之關係圖。FIG. 2 is a correspondence diagram for explaining the relationship between the thickness of the reflective layer and the transmittance according to the embodiment of the present invention.

第3圖為一拉曼光譜圖,用以說明比較例1與具有反射層遮蔽的實施例6,對於遮蔽基板拉曼背景訊號效果的差異。Fig. 3 is a Raman spectrum diagram for explaining the difference between the effect of the Raman background signal of the masking substrate in the comparative example 1 and the embodiment 6 having the reflective layer masking.

第4圖為實施例7-9的反射光譜圖,用以說明波長對應反射率之關係圖。Fig. 4 is a reflection spectrum diagram of Examples 7-9 for explaining the relationship of the wavelength corresponding reflectance.

第5圖為一對應關係圖,用以說明金屬薄膜層厚度對應吸收波長峰值位置之關係圖。Fig. 5 is a correspondence diagram for explaining the relationship between the thickness of the metal thin film layer and the peak position of the absorption wavelength.

第6圖為基板吸收光譜模擬圖,用以說明具有週期性奈米結構的實施例與平坦結構之比較例,兩者吸收光譜的差異。Fig. 6 is a simulation diagram of the absorption spectrum of the substrate for explaining a comparative example of an embodiment having a periodic nanostructure and a flat structure, and the difference in absorption spectra of the two.

第7圖為一拉曼光譜圖,用以說明實施例與比較例偵測苯硫醇單分子層之拉曼訊號強度。Figure 7 is a Raman spectrum for illustrating the Raman signal intensity of the benzenethiol monolayer detected by the examples and comparative examples.

10...拉曼散射增強基板10. . . Raman scattering enhancement substrate

12...基板12. . . Substrate

12a...週期性奈米結構12a. . . Cyclic nanostructure

14...反射層14. . . Reflective layer

16...介電材料層16. . . Dielectric material layer

18...金屬薄膜層18. . . Metal film layer

Claims (22)

一種拉曼散射增強基板,包括:一具有週期性奈米結構之基板,其中該週期性奈米結構與該基板係為一體成型之結構;一反射層,形成於該具有週期性奈米結構之基板上;一介電材料層,形成於該反射層之上;以及一金屬薄膜層,形成於該介電材料層之上。 A Raman scattering enhancement substrate comprising: a substrate having a periodic nanostructure, wherein the periodic nanostructure and the substrate are integrally formed; and a reflective layer formed on the periodic nanostructure a substrate; a dielectric material layer formed on the reflective layer; and a metal thin film layer formed on the dielectric material layer. 如申請專利範圍第1項所述之拉曼散射增強基板,其中該具有週期性奈米結構之基板包括金屬、無機材料、有機高分子材料或上述之組合。 The Raman scattering-enhancing substrate according to claim 1, wherein the substrate having a periodic nanostructure comprises a metal, an inorganic material, an organic polymer material or a combination thereof. 如申請專利範圍第1項所述之拉曼散射增強基板,其中該週期性奈米結構與該基板由相同材料所組成。 The Raman scattering enhancement substrate of claim 1, wherein the periodic nanostructure and the substrate are composed of the same material. 如申請專利範圍第1項所述之拉曼散射增強基板,其中該週期性奈米結構之形狀包括圓柱型(cylinder)、半球型(semi-sphere)、弦波型(sine wave)、三角型(triangle)、碟型(disk)或上述之組合。 The Raman scattering enhancement substrate according to claim 1, wherein the shape of the periodic nanostructure comprises a cylinder, a semi-sphere, a sine wave, and a triangle. (triangle), disk (disk) or a combination of the above. 如申請專利範圍第1項所述之拉曼散射增強基板,其中該週期性奈米結構之週期介於10-1000nm。 The Raman scattering enhancement substrate of claim 1, wherein the periodic nanostructure has a period of from 10 to 1000 nm. 如申請專利範圍第1項所述之拉曼散射增強基板,其中該週期性奈米結構之結構大小為佔整個週期之0.1-0.9(duty cycle)。 The Raman scattering-enhancing substrate according to claim 1, wherein the periodic nanostructure has a structure size of 0.1-0.9 (duty cycle) of the entire period. 如申請專利範圍第1項所述之拉曼散射增強基板,其中該週期性奈米結構之深寬比(aspect ratio)為0.1-3。 The Raman scattering enhancement substrate according to claim 1, wherein the periodic nanostructure has an aspect ratio of 0.1 to 3. 如申請專利範圍第1項所述之拉曼散射增強基板,其中該反射層之反射率大於70%。 The Raman scattering enhancement substrate of claim 1, wherein the reflective layer has a reflectance greater than 70%. 如申請專利範圍第1項所述之拉曼散射增強基板,其中該反射層之材料包括金屬、上述金屬之合金或介電材料。 The Raman scattering enhancement substrate of claim 1, wherein the material of the reflective layer comprises a metal, an alloy of the above metal or a dielectric material. 如申請專利範圍第9項所述之拉曼散射增強基板,其中該金屬包括銀(Ag)、鋁(Al)、金(Au)、銅(Cu)、銠(Rh)、鉑(Pt)。 The Raman scattering-enhancing substrate according to claim 9, wherein the metal comprises silver (Ag), aluminum (Al), gold (Au), copper (Cu), rhodium (Rh), platinum (Pt). 如申請專利範圍第1項所述之拉曼散射增強基板,其中該介電材料層由折射率1.3-5.0之材料所組成。 The Raman scattering enhancement substrate of claim 1, wherein the dielectric material layer is composed of a material having a refractive index of 1.3 to 5.0. 如申請專利範圍第11項所述之拉曼散射增強基板,其中該介電材料層包括二氧化矽(n=1.5)、氧化鋁(n=1.77)、氮化矽(n=2)、二氧化鈦(n=2.9)或矽(n=4)。 The Raman scattering enhancement substrate according to claim 11, wherein the dielectric material layer comprises cerium oxide (n=1.5), aluminum oxide (n=1.77), cerium nitride (n=2), titanium dioxide. (n=2.9) or 矽(n=4). 如申請專利範圍第1項所述之拉曼散射增強基板,其中該金屬薄膜層之厚度為約小於50nm。 The Raman scattering enhancement substrate of claim 1, wherein the metal thin film layer has a thickness of less than about 50 nm. 如申請專利範圍第1項所述之拉曼散射增強基板,其中該金屬薄膜層之厚度小於該反射層之厚度。 The Raman scattering enhancement substrate of claim 1, wherein the thickness of the metal film layer is less than the thickness of the reflective layer. 如申請專利範圍第1項所述之拉曼散射增強基板,其中該金屬薄膜層為連續或不連續之結構。 The Raman scattering-enhancing substrate according to claim 1, wherein the metal thin film layer has a continuous or discontinuous structure. 如申請專利範圍第1項所述之拉曼散射增強基板,其中該金屬薄膜層包括金、銀、鉑、鐵、鈷、鎳、銅、鋁、鉻或上述之合金。 The Raman scattering-enhancing substrate according to claim 1, wherein the metal thin film layer comprises gold, silver, platinum, iron, cobalt, nickel, copper, aluminum, chromium or an alloy thereof. 一種微量生化感測方法,包括以下步驟:提供申請專利範圍第1項所述之拉曼散射增強基板,用以吸附一待測分子;以及提供一雷射激發光源至該待測分子上,以產生拉曼散 射訊號。 A microbiochemical sensing method comprising the steps of: providing a Raman scattering enhancement substrate according to claim 1 for adsorbing a molecule to be tested; and providing a laser excitation source to the molecule to be tested, Raman Radio number. 如申請專利範圍第17項所述之微量生化感測方法,更包括施加一電場及/或一磁場至該金屬薄膜層,以增強拉曼散射訊號。 The microbiochemical sensing method described in claim 17 further includes applying an electric field and/or a magnetic field to the metal thin film layer to enhance the Raman scattering signal. 如申請專利範圍第17項所述之微量生化感測方法,其中該待測分子之介質的pH值介於2至12之間。 The microbiochemical sensing method according to claim 17, wherein the medium of the molecule to be tested has a pH between 2 and 12. 如申請專利範圍第17項所述之微量生化感測方法,其中該待測分子之介質為水或有機溶劑,其濃度介於100ppm至0.1ppb之間。 The microbiochemical sensing method according to claim 17, wherein the medium of the molecule to be tested is water or an organic solvent, and the concentration thereof is between 100 ppm and 0.1 ppb. 如申請專利範圍第17項所述之微量生化感測方法,其中該待測分子之介質為空氣,其濃度介於100ppm至1ppb。 The microbiochemical sensing method according to claim 17, wherein the medium of the molecule to be tested is air, and the concentration thereof is between 100 ppm and 1 ppb. 如申請專利範圍第17項所述之微量生化感測方法,更包括調整該金屬薄膜層及/或該介電材料層之厚度,以增強拉曼散射訊號強度。The microbiochemical sensing method as described in claim 17 further includes adjusting the thickness of the metal thin film layer and/or the dielectric material layer to enhance the Raman scattering signal intensity.
TW100140479A 2011-08-14 2011-11-07 Surface-enhanced raman scattering substrate and a trace detection method of a biological and chemical analyte using the same TWI485388B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/399,953 US9019494B2 (en) 2011-08-14 2012-02-17 Surface-enhanced Raman scattering substrate and a trace detection method of a biological and chemical analyte using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161523398P 2011-08-14 2011-08-14

Publications (2)

Publication Number Publication Date
TW201307828A TW201307828A (en) 2013-02-16
TWI485388B true TWI485388B (en) 2015-05-21

Family

ID=48169761

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100140479A TWI485388B (en) 2011-08-14 2011-11-07 Surface-enhanced raman scattering substrate and a trace detection method of a biological and chemical analyte using the same

Country Status (1)

Country Link
TW (1) TWI485388B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582403B (en) * 2015-12-24 2017-05-11 財團法人工業技術研究院 Sensing chip
US9778183B2 (en) 2015-08-20 2017-10-03 Industrial Technology Research Institute Sensing chip
TWI657166B (en) * 2017-12-20 2019-04-21 國立成功大學 Handheld raman detection test paper and manufacture method and use thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481858B (en) * 2013-06-05 2015-04-21 Ind Tech Res Inst Surface-enhanced raman scattering substrate
CN108072640B (en) * 2016-11-14 2020-01-07 清华大学 Single-molecule detection device and single-molecule detection method
CN111474161A (en) * 2019-01-23 2020-07-31 曾繁根 Optical substrate and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020182716A1 (en) * 2000-08-21 2002-12-05 Claude Weisbuch Support for chromophoric elements
US20050123442A1 (en) * 2003-12-04 2005-06-09 Yuandong Gu Analyte detector
US7242470B2 (en) * 2004-07-23 2007-07-10 University Of Maryland At Baltimore County Multilayered surface-enhanced Raman scattering substrates
TW200728706A (en) * 2005-10-25 2007-08-01 Univ Kyushu Substrate for analysis for use in Raman spectroscopic analysis and substrate assembly for analysis
TW201111769A (en) * 2009-09-22 2011-04-01 Univ Vanung Surface-enhanced Raman spectroscopy (SERS) specimen having thermal stability and constancy and its manufacturing method thereof
US20110109902A1 (en) * 2009-11-06 2011-05-12 Industrial Technology Research Institute Trace detection device of biological and chemical analytes and detection method applying the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020182716A1 (en) * 2000-08-21 2002-12-05 Claude Weisbuch Support for chromophoric elements
US20050123442A1 (en) * 2003-12-04 2005-06-09 Yuandong Gu Analyte detector
US7242470B2 (en) * 2004-07-23 2007-07-10 University Of Maryland At Baltimore County Multilayered surface-enhanced Raman scattering substrates
TW200728706A (en) * 2005-10-25 2007-08-01 Univ Kyushu Substrate for analysis for use in Raman spectroscopic analysis and substrate assembly for analysis
TW201111769A (en) * 2009-09-22 2011-04-01 Univ Vanung Surface-enhanced Raman spectroscopy (SERS) specimen having thermal stability and constancy and its manufacturing method thereof
US20110109902A1 (en) * 2009-11-06 2011-05-12 Industrial Technology Research Institute Trace detection device of biological and chemical analytes and detection method applying the same
TW201116819A (en) * 2009-11-06 2011-05-16 Ind Tech Res Inst Trace detection device of biological and chemical analytes and diction method applying the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9778183B2 (en) 2015-08-20 2017-10-03 Industrial Technology Research Institute Sensing chip
TWI582403B (en) * 2015-12-24 2017-05-11 財團法人工業技術研究院 Sensing chip
US10012646B2 (en) 2015-12-24 2018-07-03 Industrial Technology Research Institute Sensing chip
TWI657166B (en) * 2017-12-20 2019-04-21 國立成功大學 Handheld raman detection test paper and manufacture method and use thereof

Also Published As

Publication number Publication date
TW201307828A (en) 2013-02-16

Similar Documents

Publication Publication Date Title
Kasani et al. A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications
TWI485388B (en) Surface-enhanced raman scattering substrate and a trace detection method of a biological and chemical analyte using the same
TWI410621B (en) Trace detection device of biological and chemical analytes and diction method applying the same
Li et al. Revisiting the surface sensitivity of nanoplasmonic biosensors
Brolo et al. Nanohole-enhanced Raman scattering
Li et al. Aluminum-based localized surface plasmon resonance for biosensing
US9019494B2 (en) Surface-enhanced Raman scattering substrate and a trace detection method of a biological and chemical analyte using the same
Bahramipanah et al. Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit
US8298495B2 (en) High sensitivity localized surface plasmon resonance sensor and sensor system using same
JP2008002943A (en) Sensor, sensing device, and sensing method
Sudheer et al. Ultrahigh sensitivity surface plasmon resonance–based fiber-optic sensors using metal-graphene layers with Ti 3 C 2 T x MXene overlayers
Farcau Metal-coated microsphere monolayers as surface plasmon resonance sensors operating in both transmission and reflection modes
Tu et al. A novel micromachined Fabry-Perot interferometer integrating nano-holes and dielectrophoresis for enhanced biochemical sensing
Yuan et al. Optimization of surface enhanced Raman scattering performance based on Ag nanoparticle-modified vanadium-titanium nanorods with tunable nanogaps
Tao et al. Fiber Optic SERS Sensor with Silver Nanocubes Attached Based on Evanescent Wave for Detecting Pesticide Residues
Live et al. Localized and propagating surface plasmons in gold particles of near-micron size
Karki et al. Gold, MXene, and graphene nanofilm-based surface plasmon resonance sensor for malaria detection
CN110146468B (en) Surface plasma optical fiber sensor with circular composite hole array structure
Simitha et al. Dual channel plasmonic hybrid system as potential multi-analyte and multi-parameter sensor
Liang et al. Tamm-surface plasmon resonances from nanograting-coupled plasmonic-photonic multilayer structure for an integrated fiber-optic sensing application
Wang et al. Periodic ZnO-elevated gold dimer nanostructures for surface-enhanced Raman scattering applications
Yang et al. The impact of analyte size on SERS enhancement location, enhancement factor, excitation wavelength, and spectrum
JP2005156387A (en) Optical fiber
Oo et al. Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry
Liu et al. Ag NPs/PMMA nanocomposite as an efficient platform for fluorescence regulation of riboflavin