TWI466159B - 決定用以控制工件離子植入的相對掃描速度 - Google Patents

決定用以控制工件離子植入的相對掃描速度 Download PDF

Info

Publication number
TWI466159B
TWI466159B TW101102150A TW101102150A TWI466159B TW I466159 B TWI466159 B TW I466159B TW 101102150 A TW101102150 A TW 101102150A TW 101102150 A TW101102150 A TW 101102150A TW I466159 B TWI466159 B TW I466159B
Authority
TW
Taiwan
Prior art keywords
workpiece
ion beam
distribution
new
relative velocity
Prior art date
Application number
TW101102150A
Other languages
English (en)
Other versions
TW201232597A (en
Inventor
Cheng Hui Shen
Zhimin Wan
Original Assignee
Advanced Ion Beam Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Ion Beam Tech Inc filed Critical Advanced Ion Beam Tech Inc
Publication of TW201232597A publication Critical patent/TW201232597A/zh
Application granted granted Critical
Publication of TWI466159B publication Critical patent/TWI466159B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • H01J2237/31703Dosimetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

決定用以控制工件離子植入的相對掃描速度
本發明是有關於一種工件之離子植入,特別是藉由模擬工件上的劑量分佈與修改隨後植入所使用之相對掃描速度分佈特性,控制工件上的劑量分佈。
植入製程是將可改變導電率的雜質,例如,離子,植入工件,例如,矽晶圓、半導體板或玻璃板。用以植入的雜質材料可在離子源被離子化,然後在質量分析器被分離,而形成具有特定荷質比離子之離子束。然後,在轉向工件之前,該離子束可被加速或以其他方式修改。帶電離子撞擊工件表面,然後,穿透至工件內,而形成所需導電區域。由於工件表面區域通常顯著大於離子束的截面區域,工件、離子束或者其兩者,對另一個相對移動,有時以光柵掃描方法移動,使得整個工件表面可藉由離子束進行植入,而在工件表面上形成劑量濃度可能不同的劑量分佈。劑量濃度可用atoms/cm2(每平方厘米的原子)進行測量。劑量分佈通常是離子束分佈特性(或離子束電流分 佈)、工件相對於離子束掃描方式以及工件相對於離子束掃描速度的函數。
對於大量生產而言,最好是整個工件上有接近相同植入劑量濃度的均勻劑量分佈。由於劑量分佈是離子束分佈特性、工件相對於離子束掃描方式以及工件相對於離子束掃描速度的函數,必需仔細控制與調整,藉以確保在每一工件上產生所需的劑量分佈。
確保均勻劑量分佈的方法之一是在使用離子束掃描工件前,仔細調整離子束。離子束通常會進行調整,藉以得到預定離子束形狀與沿著離子束截面的離子束電流分佈,進而增進具有所需劑量分佈之適當植入工件之產能,並且簡化掃描步驟。例如,類似高斯曲線之離子束形狀與電流分佈較佳,因此,離子束可進行調整,直到離子束形狀與電流分佈符合類似高斯曲線之形狀與分佈之預定門檻值。然而,上述調整受到離子源、質量分析器、加速器、離子植入設備的其他組件的實際能力所限制。因此,有時候難以藉由調整離子束,而得到所需形狀與電流分佈,而且調整離子束所花費的時間不但浪費植入時間也浪費離子植入設備的操作費用。
在某些狀況下,離子束被調整為延長之橢圓形或帶狀,其較長截面尺寸至少是工件之直徑,使得整個工件可在離子束之單次掃描植入。然而,這種做法浪費部分離子束,上述部分離子束在圓形工件的範圍之外著陸,而沒有被植入。因此,降低離子束電流密度,藉以避免顯著的離子損失,結果造成植入所需時間增加。
在其他狀況下,工件在掃描期間旋轉,藉以減少掃描之前所需之離子束調整量。在這些狀況下,離子束可能在掃描前完全不進行調整,或者可能只是部分調整。然後,工件以固定或不同速度連續旋轉,或者工件逐步地不連續旋轉,使得工件旋轉而且被離子束多次掃描,其中,工件在每次不連續旋轉之後與掃描之前停止旋轉。例如,離子束可進行調整,直到離子束具有平滑形狀與電流分佈,但不一定是類似高斯曲線之形狀與分佈。然後,工件可以在掃描過程中連續旋轉,或者工件可以在數次掃描過程中逐步地旋轉,藉以在工件上更均勻地植入離子。然而,並不清楚如何有效地決定工件相對於離子束之掃描速度之最佳相對掃描速度分佈特性,藉以得到所需劑量分佈。
在一範例實施例中,模擬植入一虛擬工件,該虛擬工件模擬要使用離子束植入之實際工件,藉以選定使用離子植入設備之離子束,掃描實際工件的相對速度分佈特性。首先,基於一離子植入設備之一離子束分佈特性以及離子束與虛擬工件之間的一初始相對速度分佈特性,計算虛擬工件上的劑量分佈。然後,基於所計算之劑量分佈與用於計算該劑量分佈之相對速度分佈特性,決定離子束與虛擬工件之間的一新相對速度分佈特性。然後,基於離子束分佈特性與新相對速度分佈特性,計算一新劑量分佈。然後,分析新劑量分佈,決定該新劑量分佈是否符合一個或多個預定標準,例如,劑量均勻性或最低劑量濃度。如果新計算之劑量分佈不符合標準,基於最後計算之劑 量分佈與相對速度分佈特性,決定一新相對速度分佈特性。然後,基於該新相對速度分佈特性,計算新劑量分佈。使用前次計算結果,反覆進行決定新相對速度分佈特性與計算相應的新劑量分佈之程序。當得到可產生符合一個或多個預定標準之虛擬工件上的劑量分佈之新相對速度分佈特性時,停止該程序。然後,儲存該新相對速度分佈特性作為選定相對速度分佈特性。在一實施例中,該新相對速度分佈特性可被用來植入一實際工件,使用離子植入設備之離子束掃描工件一次或多次,其中,使用該新相對速度分佈特性控制離子束掃描工件之速度。
100‧‧‧決定選定相對速度分佈特性的程序
102‧‧‧計算劑量分佈
104‧‧‧決定新相對速度分佈特性
106‧‧‧計算新劑量分佈
108‧‧‧符合標準
110‧‧‧儲存新相對速度分佈特性
1002‧‧‧晶圓
1200‧‧‧離子植入設備
1202‧‧‧離子源
1204‧‧‧萃取光學裝置
1206‧‧‧分析磁鐵
1208‧‧‧對焦系統
1210‧‧‧控制器
1212‧‧‧目標室
1214‧‧‧機器手臂
1216‧‧‧機器手臂
1218‧‧‧負載端口
1300‧‧‧掃描系統
1304‧‧‧軸
1306‧‧‧滑塊
1308‧‧‧植入離子束
1314‧‧‧機器手臂
第一圖顯示用以決定選定相對速度分佈特性的程序。
第二圖顯示工件上的劑量分佈圖。
第三圖顯示藉由模擬,基於一次疊代決定新相對速度分佈特性之工件上的劑量分佈圖。
第四圖顯示藉由模擬,基於二次疊代決定新相對速度分佈特性之工件上的劑量分佈圖。
第五圖顯示藉由模擬,基於三次疊代決定新相對速度分佈特性之工件上的劑量分佈圖。
第六圖顯示藉由模擬,基於四次疊代決定新相對速度分佈特性之工件上的劑量分佈圖。
第七圖顯示藉由模擬,基於五次疊代決定新相對速度分佈特性之工件上的劑量分佈圖。
第八圖顯示藉由模擬,基於六次疊代決定新相對速度分佈特性之工件上的劑量分佈圖。
第九圖顯示藉由模擬,基於七次疊代決定新相對速度分佈特性之工件上的劑量分佈圖。
第十圖顯示藉由模擬,基於八次疊代決定新相對速度分佈特性之工件上的劑量分佈圖。
第十一圖顯示初始相對速度分佈特性與藉由模擬,基於疊代決定之相對速度分佈特性。
第十二圖顯示一範例離子植入設備。
第十三圖顯示一範例掃描系統。
下面敘述用以使該技術領域之普通技術人員能製作與使用各種實施例。特定裝置、技術以及應用僅作為範例。所敘述範例的各種修改對於該技術領域之普通技術人員將是顯而易見的,其它未脫離本發明所揭示之精神所完成之等效改變或修飾都涵蓋在本發明所揭露的範圍內。因此,本發明之實施例並非限定於所敘述範例,而是與本發明之專利範圍一致。
決定速度分佈特性程序的概述
為詳細說明下面程序,第一圖顯示用以決定選定相對速度分佈特性的程序100,該選定相對速度分佈特性應用於使用離子束掃描一工件。作為一概述,程序100參照第一圖進行簡要說明。
在步驟102中,使用一離子束分佈特性與一初始相對速度分佈特性,藉由模擬計算虛擬工件上的劑量分佈,其中,該虛擬工件模擬要使用離子束進行植入之實際工件。該離子束分佈特性可以由離子植入設備之離子束進行測量,或者也可以不進行測量,影響因子,例如,傾斜角、旋轉曲線、旋轉速度分佈特性或其他影響因子可以應用於步驟102中的劑量分佈計算,或者該等影響因子也可以不應用於步驟102中的劑量分佈計算。
在步驟104中,基於至少由步驟102所計算之劑量分佈與用於計算該劑量分佈之相對速度分佈特性,決定離子束與虛擬工件之間的新相對速度分佈特性。在步驟106中,如同步驟102,計算新劑量分佈,但使用步驟104決定之新相對速度分佈特性與用於計算新劑量分佈之離子束分佈特性。
在步驟106中,計算新劑量分佈,然後,在步驟108中,進行分析,藉以確定新劑量分佈是否符合一個或多個預定標準,例如,劑量均勻性或與其他與所需劑量分佈相關的標準。反覆進行步驟104與步驟106,直到新劑量分佈符合一個或多個預定標準。在一實施例中,反覆進行步驟104與步驟106時,使用步驟106所計算之劑量分佈與步驟104之前次計算之相應新相對速度分佈特性,決定步驟104之新相對速度分佈特性。
當步驟106所計算之新劑量分佈符合一個或多個預定標準時,在步驟110中,儲存藉由步驟104之計算所決定之新相對速度分佈特性。如同步驟108應用於虛擬工件之模擬,使用步驟110所儲存之新相對速度分佈特性,進行實際工件之植入時,可在實際工件上生成符合一個或多個預定標準之劑量分佈。因此,在步驟110所儲存之相對速度分佈特性,可被用來植入實際工件,使用所儲存之相對速度分佈特性作為離子束掃描該工件之速度。
決定速度分佈特性的詳細過程
如上所述,第一圖顯示決定應用於使用離子束掃描工件之選定相對速度分佈特性之範例程序100。參照第一圖,後續範例程序100之詳細描述將進一步說明該範例程序。
在步驟102中,使用一離子束分佈特性與一初始相對速度分佈特性,藉由模擬計算虛擬工件上的劑量分佈,該離子束分佈特性可以由離子植入設備之離子束進行測量,或者也可以不進行測量,影響因子,例如傾斜角、旋轉曲線、旋轉速度分佈特性或其他影響因子可以應用於步驟102中的劑量分佈計算,或者該等影響因子也可以不應用於步驟102中的劑量分佈計算。
第二圖顯示工件上的範例劑量分佈圖。如圖所示,一範例工件可以是圓形且該工件表面之直徑為300mm。一範例工件之厚度可以是775um。該技術領域之普通技術人員能認知還可以有多種不同工件可用摻雜材料進行植入。例如,可被摻雜材料植入之工件可包含矽晶圓、半導體板、玻璃板。此外,工件可以有不同大小與形狀,例 如常見的薄圓盤或晶圓,其直徑可以是小於100mm、100mm、200mm、300mm、450mm或更大。工件的厚度也可以不同,例如,小於275um、275um、375um、525um、625um、675um、725um、775um、925um或更大。植入摻雜材料至一工件上,需要使用具有帶電離子或其他摻雜材料的離子束掃描該工件。由於離子源、質量分析器、加速器以及其他離子植入設備組件之限制,工件上的劑量分佈可以有很大的變化。如第二圖所示,第二圖顯示劑量濃度之三維視圖,如圖所示,在某些情況下,植入摻雜物的常用方法可能導致高摻雜濃度區域與低摻雜濃度之其他區域,在第二圖中,高摻雜濃度區域以最黑最厚的陰影表示,低摻雜濃度之其他區域以最薄的陰影表示。
摻雜劑量分佈,如顯示於第二圖之範例,通常是離子束分佈特性(或離子束電流分佈)、工件相對於離子束掃描方式以及工件相對於離子束掃描速度的函數。在一範例實施例中,量測離子植入設備之離子束,藉以決定離子束分佈特性。離子束分佈特性可包含一個或多個離子束之特點,例如,離子束截面寬度、離子束截面高度、離子束強度、離子束功率、離子束形狀、離子束電流或其他該技術領域已知可能影響植入結果的特點。
在一實施例中,在使用摻雜材料植入工件之前,進行模擬,藉以控制工件所產生的劑量分佈。在模擬中,基於至少一離子束分佈特性以及離子束與虛擬工件之間的一相對速度分佈特性,計算虛擬工件上的劑量分佈(第一圖之步驟102)。虛擬工件上的劑量分佈可使用下列公式進行計算。
D(xi,yi)=B(xi1,yi1)/V(xi1,yi1)+B(xi2,yi2)/V(xi2,yi2)+B(xi3,yi3)/V(xi3,yi3)+...+B(xi(n-1),yi(n-1))/V(xi(n-1),yi(n-1))+B(xin,yin)/V(xin,yin) (1)
其中,D(xi,yi)是工件在座標(x,y)的劑量濃度。B(xin,yin)是離子束電流,V(xin,yin)是相對速度分佈特性,n是掃描次數,i是晶圓數據點號碼。如上所述,離子束分佈特性由離子植入設備之離子束量測,相對速度分佈特性是離子束掃描虛擬工件的速度。該相對速度分佈特性可以是固定速度、隨時間變化的速度、隨位置變化的速度或其他顯示工件如何相對於離子束掃描之速度分佈特性。對於初始劑量分佈之計算,在計算中使用的相對速度分佈特性可以是一預定相對速度分佈特性,例如,用以掃描工件之一般相對速度分佈特性。另外,用於初始計算的相對速度分佈特性可以是一預定固定速度分佈特性或其他模擬工件如何植入之初始速度分佈特性。
一範例初始劑量分佈計算結果以圖形顯示於第二圖。然而,該技術領域之普通技術人員應該認知用以控制劑量分佈之模擬並不需要以視覺化方式顯示,而且初始劑量分佈計算結果可以用任何有用的方式儲存。在一實施例中,接著對初始劑量分佈進行分析,藉以確定初始劑量分佈是否符合一個或多個預定標準。例如,虛擬工件上的初始劑量分佈可以和所需劑量分佈進行比較,藉以確定使用離子束分佈特性與相對速度分佈特性植入一實際工件時,是否會產生滿意的劑量分佈。在決定劑量分佈是否達到滿意的標準時,可使用許多不同標準分析。例如,可計算初始劑量分佈的均勻性,藉以確定工件上的 劑量濃度存在多少差異。所需的均勻性可基於特定工件的要求而決定,然後所計算的初始劑量分佈的均勻性和所需的均勻度進行比較,藉以確定是否符合標準。在一實施例中,所需的均勻性可以是工件上劑量濃度允許的範圍,也可以是由所需的劑量濃度計算之工件之百分比均勻性偏差。
其他可用於決定初始劑量分佈是否令人滿意之標準包含預定劑量濃度或工件上的一個或多個點之劑量濃度範圍、工件上的一個或多個點之最小劑量濃度、工件上的一個或多個點之最大劑量濃度或任何其他該技術領域之普通技術人員認知對於特定應用可確保工件上的所需劑量分佈之有用標準。在某些情況下,所需劑量分佈可以是工件上不同點之不同劑量濃度。該技術領域之普通技術人員知道如何決定適當標準以及如何分析初始劑量分佈,藉以確定初始劑量分佈是否符合預定標準。該技術領域之普通技術人員應該認知單一標準可用於決定初始劑量分佈是否是令人滿意的,或者二個、三個、四個、五個、六個、七個、八個、九個或更多個標準的組合可用於決定是否初始劑量分佈滿足特定應用。
在一實施例中,如果初始計算之虛擬工件上的劑量分佈對於特定應用被認定是令人滿意的,初始計算所使用之相對速度分佈特性可被儲存作為用於植入一實際工件之選定相對速度分佈特性,並且停止模擬。所儲存的相對速度分佈特性可被用來植入一實際工件,使用離子束以所儲存的相對速度分佈特性掃描工件。
再次參考第一圖。如果初步計算之劑量分佈之分析被認定是不令人滿意的,在步驟104中,基於初始計算之劑量分佈與用於計算該初始劑量分佈之相對速度分佈特性,決定離子束與虛擬工件之間的一新相對速度分佈特性。在另一實施例中,初始計算之劑量分佈可能沒有進行分析,但在步驟104中,仍然可以使用初始計算之劑量分佈,藉以決定離子束與虛擬工件之間的一新相對速度分佈特性。該新相對速度分佈特性用以增進虛擬工件上的劑量分佈,藉以達到或接近符合一個或多個預定標準。該新相對速度分佈特性可通過多種方式決定。例如,該新相對速度分佈特性可以根據下列公式決定。
V(x)=Vi(x)*(2-Ji(x)/Jo) (2)
其中,V(x)是新相對速度分佈特性,Ji(x)是初始計算之劑量分佈,Vi(x)是用來計算初始劑量分佈Ji(x)之相對速度分佈特性,Jo是所需的固定劑量濃度,其中,x是工件上的位置,而且對於任何x,(2 * JO)>Ji(x)>0。該新相對速度分佈特性也可以根據下列公式決定。
V(x)=Vi(x)* Jo/Ji(x) (3)
其中,V(x)是新相對速度分佈特性,Ji(x)是初始計算之劑量分佈,Vi(x)是用來計算初始劑量分佈Ji(x)之相對速度分佈特性,Jo是所需的固定劑量濃度,其中,x是工件上的位置,而且對於任何x,(2 * JO)>Ji(x)>0。雖然公式(2)與公式(3)用以計算可得到所需固定劑量濃度Jo之新相對速度分佈特性,但僅是作為範例,應該認 知可以計算新相對速度分佈特性,而得到隨工件上的位置變化之劑量濃度或者得到其他所需的劑量分佈。
再次參考第一圖。在步驟104決定新相對速度分佈特性之後,在步驟106中,基於離子束分佈特性與前述用於計算初始劑量分佈之相同程序之新相對速度分佈特性,計算新劑量分佈。決定新相對速度分佈特性之範例劑量分佈計算結果顯示於第三圖。應該認知第三圖所顯示之劑量分佈比第二圖所顯示之劑量分佈更均勻,其中,第三圖所顯示之劑量分佈是基於新決定的相對速度分佈特性,第二圖所顯示之劑量分佈沒有修改相對速度分佈特性。值得注意的是,雖然第三圖的垂直刻度大於第二圖的垂直刻度,由第二圖至第三圖劑量均勻性有明顯改善(第二圖的垂直刻度被加大,用以強調有問題的劑量濃度變化,可使用此處的程序,通過決定與使用新相對速度分佈特性,最小化有問題的劑量濃度變化)。
再次參考第一圖。在步驟106基於新相對速度分佈特性,計算新劑量分佈之後,在步驟108中,分析新劑量分佈,藉以決定是否符合如上所述之一個或多個預定的標準。在虛擬工件上的新計算劑量分佈可和所需劑量分佈進行比較,藉以決定使用該離子束分佈特性與該相對速度分佈特性植入一實際工件時,是否會產生令人滿意的劑量分佈。如前所述,進行上述決定時,可用許多不同的標準分析。不同的標準包含劑量均勻性、劑量濃度範圍、由所需均勻性之偏差百分比、預定劑量濃度或工件上的一個或多個點之劑量濃度範圍、工件上的一個或多個點之最小劑量濃度、工件上的一個或多個點之最大劑 量濃度或任何其他該技術領域之普通技術人員認知對於特定應用可確保工件上的所需劑量分佈之有用標準。在某些情況下,所需劑量分佈可以是工件上不同點的不同劑量濃度。該技術領域之普通技術人員知道如何決定適當標準以及如何分析新計算之劑量分佈,藉以決定新計算之劑量分佈是否符合預定標準。該技術領域之普通技術人員應該認知單一標準可用於決定新計算之劑量分佈是否是令人滿意的,或者二個、三個、四個、五個、六個、七個、八個、九個或更多個標準的組合可用於決定是否新計算之劑量分佈滿足特定應用。
再次參考第一圖。在步驟108中,如果新計算之虛擬工件上的劑量分佈對於特定應用被認定是令人滿意的,在步驟110中,最近劑量分佈計算所使用之新相對速度分佈特性可被儲存作為用於植入一實際工件之選定相對速度分佈特性,並且停止模擬。所儲存的相對速度分佈特性可被用來植入一實際工件,使用離子束以所儲存的相對速度分佈特性掃描工件。
如果新計算之虛擬工件的劑量分佈不符合如上所述之一個或多個預定的標準,而且在步驟108中,被認定是不令人滿意的,可使用一疊代程序,藉以決定新相對速度分佈特性,而得到虛擬工件上的所需劑量分佈。基於先前計算與分析之劑量分佈與用於先前計算劑量分佈之相對速度分佈特性,決定離子束與虛擬工件之間的每一新相對速度分佈特性。如上所述,在步驟104中決定之每一新相對速度分佈特性用以進一步增進虛擬工件上的劑量分佈,藉以達到或接近符 合一個或多個預定標準。每一新相對速度分佈特性可通過多種方式決定。例如,新相對速度分佈特性可以根據下列公式之一決定。
Vm(x)=Vn(x)*(2-Jn(x)/Jo), (4) Vm(x)=Vn(x)* Jo/Jn(x), (5) 其中,在任一公式中,Vm(x)是待決定之新相對速度分佈特性,Jn(x)是最近計算的劑量分佈,Vn(x)是用來計算劑量分佈Jn(x)之相對速度分佈特性,Jo是所需的固定劑量濃度,其中,x是工件上的位置,而且對於任何x,(2 * JO)>Jn(x)>0,m與n代表計算次數,而且m>n,n=(m-1),代表目前計算使用最近計算的數據。新相對速度分佈特性也可以根據下列公式之一決定。
Vm(x)=Vi(x)*(2-Jn(x)/Jo), (6) Vm(x)=Vi(x)* Jo/Jn(x), (7) 其中,在任一公式中,Vm(x)是待決定之新相對速度分佈特性,Jn(x)是最近計算的劑量分佈,Vi(x)是用來計算初始劑量分佈之相對速度分佈特性,Jo是所需的固定劑量濃度,其中,x是工件上的位置,而且對於任何x,(2 * JO)>Jn(x)>0,m與n代表計算次數,而且m>n,代表目前計算使用最近疊代的數據。新相對速度分佈特性也可以根據下列公式之一決定。
Vm(x)=Vn(x)*(2-Ji(x)/Jo), (8) Vm(x)=Vn(x)* Jo/Ji(x), (9) 其中,在任一公式中,Vm(x)是待決定之新相對速度分佈特性,Ji(x)是初始計算的劑量分佈,Vn(x)是用於前次疊代之相對速度分佈特性,Jo是所需的固定劑量濃度,其中,x是工件上的位置, 而且對於任何x,(2 * JO)>Jn(x)>0,m與n代表計算次數,而且m>n,代表目前計算使用最近疊代的數據。新相對速度分佈特性也可以根據下列公式之一決定。
Vm(x)=Vn(x)*(2-Jp(x)/Jo), (10) Vm(x)=Vn(x)* Jo/Jp(x), (11) 其中,在任一公式中,Vm(x)是待決定之新相對速度分佈特性,Jp(x)是前次疊代的劑量分佈,Vn(x)是用於前次疊代之相對速度分佈特性,Jo是所需的固定劑量濃度,其中,x是工件上的位置,而且對於任何x,(2 * JO)>Jn(x)>0,m、n以及p代表計算次數,而且m>n,m>p代表目前疊代使用前次疊代的數據。
公式(1)-(11)可單獨使用或結合一個或多個其他公式,藉以決定新相對速度分佈特性。雖然公式(1)-(11)用以計算可得到所需的固定劑量濃度Jo之新相對速度分佈特性,但僅是作為範例,應該認知可以計算新相對速度分佈特性,而得到隨工件上的位置變化之劑量濃度或者得到其他所需的劑量分佈。
在疊代的過程中,在步驟104決定每一新相對速度分佈特性之後,在步驟106中,基於離子束分佈特性與前述用於計算初始劑量分佈之相同程序之新相對速度分佈特性,計算新劑量分佈。第二次疊代決定新相對速度分佈特性之範例劑量分佈計算結果顯示於第四圖。第四圖顯示使用相對速度分佈特性計算之範例劑量分佈,相對速度分佈特性使用前次疊代的數據決定(前次疊代結果顯示於第三圖)。應該認知第四圖(第二次疊代)所顯示之劑量分佈比第三圖(第一次疊 代)所顯示之劑量分佈更均勻,顯示由疊代決定新相對速度分佈特性之結果改善。
在步驟106基於步驟104所計算之新相對速度分佈特性,計算新劑量分佈之後,在步驟108中,分析新劑量分佈,藉以決定是否符合如上所述之一個或多個預定的標準,如前所述。在一實施例中,如果新計算之虛擬工件的劑量分佈對於特定應用被認為是令人滿意的,在步驟110中,最近劑量分佈計算所使用之新相對速度分佈特性可被儲存作為用於植入一實際工件之選定相對速度分佈特性,並且停止疊代與模擬。然後,所儲存的相對速度分佈特性可被用來植入一實際工件,使用離子束以所儲存的相對速度分佈特性掃描工件。
如果新計算之虛擬工件的劑量分佈不符合一個或多個預定的標準,而且在步驟108中,被認定是不令人滿意的,可繼續疊代程序,藉以得到虛擬工件上的所需劑量分佈。步驟104中決定新相對速度分佈特性、步驟106中計算新劑量分佈、步驟108中分析新劑量分佈之步驟可以依據需要重複數次。例如,在一實施例中,可進行單次疊代決定新相對速度分佈特性與相應的新劑量分佈。在另一實施例中,可進行二次、三次、四次、五次、六次、七次、八次、九次、十次或更多次疊代,在每次疊代中,決定新相對速度分佈特性與相應的新劑量分佈。第三圖至第十圖顯示新相對速度分佈特性與相應的新劑量分佈之連續疊代結果。應該認知在本範例中,每一次疊代增進虛擬工件上的劑量均勻性。第十圖顯示範例之第八次與最終疊代的結果,其中,劑量分佈符合一個或多個預定的標準,停止疊代過程與模擬, 並使得新相對速度分佈特性儲存為選定相對速度分佈特性。所儲存的相對速度分佈特性可被用來植入一實際工件,使用離子束以所儲存的相對速度分佈特性掃描工件。
第十一圖顯示初始相對速度分佈特性與經由八次疊代模擬所決定的相對速度分佈特性。圖示下方之兩個部分放大圖顯示範例曲線之細節以及每次疊代的差異。如圖所示,速度分佈特性顯示範例300mm的工件可以該相對速度掃描。速度分佈特性可延伸至工件邊界之外,藉以得到工件相對於離子束的加速與減速,顯示於x軸上左側-150mm與右側150mm之區域。
接著,藉由比較第十一圖所顯示之範例速度分佈特性與第二圖至第十圖顯示之相應的範例劑量分佈,進一步說明上述之模擬與疊代程序。例如,第二圖顯示之初始劑量分佈以第十一圖所顯示之ORIGINAL速度分佈特性進行計算。每一後續範例劑量分佈對應每一後續速度分佈特性疊代至第十圖顯示之第八次疊代與最終劑量分佈,其對應至第十一圖顯示之ITERATION_8速度分佈特性。如第二圖所示,在工件中心的最初劑量濃度高於工件其他部份的劑量濃度。在藉由前述程序,決定新相對速度分佈特性之八次疊代之後,如第十圖所示,在虛擬工件上的劑量濃度變得更加均勻。特別是在速度分佈特性之部分放大圖,0mm附近的位置,應該認知相較於初始速度分佈特性,第八與最終速度分佈特性在工件中心附近有較高相對速度。參照虛擬工件的中心,相較於初始劑量分佈,這種較高速度分佈特性導致劑量濃度下降。增加工件之相對速度會降低摻雜物質沈積於工件上一 位置的數量。相對地,降低工件之相對速度會增加摻雜物質沈積於工件上一位置的數量。因此,通過如上所述之範例模擬與疊代程序,可決定改善之速度分佈特性,當用來植入實際的工件時,可會產生更均勻之劑量分佈。應當認知,第二圖至第十一圖是作為範例,劑量分佈與速度分佈特性可以與第二圖至第十一圖所顯示不同。
雖然已提供計算虛擬工件上的劑量分佈之參考,然而應當認知簡化與近似可應用於上述模擬,而仍然可以通過調整相對速度分佈特性,得到所需的劑量分佈。例如,16模式掃描可用於近似連續旋轉掃描:假設工件使用離子束掃描16次,計算虛擬工件上的劑量,工件在每次掃描之間,旋轉一離散量,雖然實際工件植入時可能連續旋轉掃描。有些近似可以簡化計算、減少處理時間或兩者兼具,而仍然可以產生足夠精確結果。在一實施例中,四模式掃描可足夠準確近似連續旋轉掃描:工件模擬使用離子束掃描4次,雖然實際工件植入時可能連續旋轉掃描。值得注意的是,第二圖至第十圖顯示之劑量分佈使用16模式掃描計算。然而,範例中的速度分佈特性可被用來植入實際工作,使用16模式掃描、連續旋轉掃描或某些組合,只要對於特定應用來說,近似是足夠準確的。該技術領域之普通技術人員可以認知其他簡化與近似可以應用於進行虛擬工件之模擬,而可以簡化計算、減少處理時間、簡化執行或者改善模擬過程而不致於失去要得到所需實際工件上的劑量分佈之準確性。
應該認知前述植入工件的過程可以用各種方式修改,該技術領域之普通技術人員能夠為特定的應用選擇與實施適當的修改。 例如,由於工件,例如,矽晶圓的晶體結構,通常需要相對於離子束傾斜工件進行掃描,使得摻雜材料之穿透深度得到更好的控制。因此,工件可被傾斜,使得離子束以非垂直角度撞擊工件表面,傾斜角度可以進行調整,藉以改善工件上的劑量分佈。在一實施例中,作為上述模擬的一部分,傾斜角度可以進行調整,藉以改善工件上的劑量分佈。在另一實施例中,一傾斜曲線可被應用作為上述模擬的一部分,其中,傾斜曲線是兩個或多個要進行掃描工件之不同傾斜角度,無論是在單一掃描中改變傾斜角度,或是在連續掃描之間改變傾斜角度。在模擬中,決定新相對速度分佈特性時,也可修改傾斜曲線。修改後的傾斜曲線可被應用於後續的劑量分佈計算。在此實施例中,當劑量分佈符合一個或多個標準時,最近計算所使用之傾斜曲線可被儲存,並用來掃描一實際工件。
在另一實施例中,旋轉速度分佈特性可以進行調整,藉以改善劑量分佈。對於在掃描過程中連續旋轉的工件,旋轉速度分佈特性是工件在掃描過程中,在垂直或接近垂直離子束之平面旋轉的速度。旋轉平面取決於工件如何傾斜,這可能會隨著離子束而不同。例如,旋轉平面可以是接近垂直離子束,其角度小於30°、30°、35°、40°、45°、50°、55°、60°、65°、70°、75°、80°、85°或任何其他相對於離子束之角度,或者垂直於離子束。在一實施例中,旋轉速度分佈特性可以是一固定的速度,使得工件在掃描過程中以相同速度連續旋轉。在另一實施例中,旋轉速度分佈特性可以是不同的非零速度,使得工件連續旋轉且不停止,但在掃描過程中,速度可隨時間、位置 或兩者而變化。在一實施例中,作為上述模擬的一部分,旋轉速度分佈特性可以進行調整,藉以改善工件上的劑量分佈。在模擬中,決定新相對速度分佈特性時,也可修改旋轉速度分佈特性。修改後的旋轉速度分佈特性可被應用於後續的劑量分佈計算。在此實施例中,當劑量分佈符合一個或多個標準時,最近計算所使用之旋轉速度分佈特性可被儲存,並用來掃描一實際工件。
在另一實施例中,當工件要以離子束掃描兩次或兩次以上時,旋轉曲線可以進行調整。在某些實施例中,工件可以被掃描多次,當摻雜材料植入工件時,工件不旋轉。然而,在兩次連續掃描之間,工件可旋轉一離散量。例如,工件可被掃描而不旋轉,然後,停止掃描且工件可旋轉一離散量,然後,當摻雜材料植入工件時,工件可再度被掃描而不旋轉。工件可被掃描多次,例如,2次、3次、4次、5次、6次、7次、8次、9次、10次、11次、12次、13次、14次、15次、16次、17次、18次、19次、20次或更多次,在每次連續掃描之間旋轉或不旋轉。在每次連續掃描之間的旋轉量可能會有所不同。旋轉曲線是每次連續掃描之間,工件要旋轉的離散量或數量。在一實施例中,作為上述模擬的一部分,旋轉曲線可以進行調整,藉以改善工件上的劑量分佈。在模擬中,決定新相對速度分佈特性時,也可修改旋轉曲線。修改後的旋轉曲線可被應用於後續的劑量分佈計算。在此實施例中,當劑量分佈符合一個或多個標準時,最近計算所使用之旋轉曲線可被儲存,並用來掃描一實際工件。
在另一實施例中,上述模擬與疊代過程可能因為多種原因停止或暫停。例如,如果超過一個或更多預定門檻值,疊代可停止或暫停,最近計算之數據可被儲存或者可能不會被儲存,而實際工件可被摻雜材料植入,或者可能不會被摻雜材料植入。設定門檻值可有助於避免模擬程序中過度的時間延遲、最佳化操作效能、避免超過機械限制,例如,最大或最小速度,或者有助於該技術領域之普通技術人員能夠認知在植入過程中可確保較佳效能之任何其他限制。例如,在一實施例中,一門檻值可設定為限制劑量分佈計算最大數量。當達到或超過門檻值,疊代程序與模擬可被終止,而且門檻值狀況可被報告至系統操作者或者可引發其他操作,例如,進行新離子束分佈特性測量、調整離子束或修改任何植入設定,例如,前述之旋轉曲線、旋轉速度分佈特性以及傾斜曲線。
有許多潛在預定門檻值,對於該技術領域之普通技術人員是顯而易見的。預定門檻值可包含其中一項或多項,例如,最大掃描速度、最低掃描速度、最大劑量濃度、最小劑量濃度、劑量分佈計算的最大數量、用以計算劑量分佈之最大時間分配、相對速度分佈特性的最大變化、兩次疊代之間的劑量分佈最小改善或者其他該技術領域之普通技術人員顯而易見之停止疊代或模擬的門檻值。此外,某些有用的預定門檻值可能會隨著用於特殊應用之離子植入設備而有所不同,該技術領域之普通技術人員能夠針對特殊應用選擇合適的門檻值。
在一實施例中,如果超過一個或更多預定門檻值,模擬與疊代程序可停止或暫停,而且離子束可進一步調整,藉以得到更理 想的離子束分佈特性。然後,可以測量新離子束分佈特性,並且可以使用新離子束分佈特性開始一個新的模擬,藉以最佳化劑量分佈。另外,調整離子束之後,先前暫停之模擬可繼續進行。在一實施例中,當門檻值超過時,與一個或多個門檻值狀況的可能原因相關的模擬數據可以被用來調整離子束,避免後續疊代過程之門檻值狀況。在另一實施例中,當一個或更多門檻值超過時,該等門檻值可被報告至系統操作者或儲存,而且模擬與疊代程序可繼續進行。而且雖然符合門檻值狀況,仍然可植入實際工件。在又一實施例中,當門檻值超過時,模擬數據可以被用於修改任何其他離子植入設備的設定,並且可植入實際工件,或者,模擬可用更新之離子植入設備的設定繼續進行。這些門檻值的例子不應該被視為限制,該技術領域之普通技術人員能夠認知特殊應用中改良植入狀況之其他的門檻值與反應。
在另一實施例中,如果在模擬程序中之任一點或兩不同步驟之間可得到離子植入設備之離子束之新離子束分佈特性,可以在得到新離子束分佈特性之後,使用新離子束分佈特性開始上述模擬。可以得到新離子束分佈特性,例如,離子束形狀隨時間變化,或者,在模擬開始時,離子束仍在調整。另外,離子束可能有熱身或初始期間,在此期間離子束容易會有變化。當新離子束分佈特性在任何時間可以得到時,模擬程序可暫停並且使用新離子束分佈特性再度開始。
在一實施例中,當測量離子植入設備之離子束分佈特性與進行上述模擬時,在模擬過程中,離子束保持不變,藉以避免改變離子束分佈特性。此外,模擬完成後,新相對速度分佈特性可被用來 以不變的離子束分佈特性植入實際工件。離子束可以在測量離子束分佈特性之前進行調整。另外,離子束可以在測量離子束分佈特性之前進行部份調整。在一實施例中,離子束可以針對特定時間量進行調整,或者離子束可以進行調整直到符合某些離子束分佈特性門檻值,然後,可以測量離子束分佈特性,並且數據可用來模擬植入虛擬工件,藉以得到所需的劑量分佈之選定相對速度分佈特性。然後,可以使用選定的相對速度分佈特性,以調整後的離子束植入實際工件。
關於參考此處之使用離子束植入實際工件,應該認知當工件移動時,離子束保持靜止,當離子束移動時,工件保持靜止或者移動工件與移動離子束的組合也可以用於掃描工件。這些變化也可用於模擬植入虛擬工件。
離子植入設備
第十二圖顯示使用前述之範例程序,植入摻雜材料至一個或多個工件,例如,晶圓1002之範例離子植入設備1200。離子植入設備1200包含離子源1202、萃取光學裝置1204、分析磁鐵1206、對焦系統1208、控制器1210以及目標室1212。使用機器手臂1214在目標室1212內,夾持、定位、傳送單一晶圓1002。晶圓1002使用機器手臂1216在目標室1212與一個或多個負載端口1218之間傳輸。控制器1210可執行上述過程。對於離子植入設備1200之詳細說明,請參閱美國專利7326941號,其內容併入本發明之參考。
掃描系統
第十三圖顯示應用於離子植入設備1200之範例掃描系統1300。掃描系統1300包含可繞軸1304旋轉之機器手臂1314。機器手臂1314也可以沿著滑塊1306移動。因此,結合機器手臂1314之旋轉與移動,使得離子束1308可掃描晶圓1002。對於掃描系統之詳細說明,請參閱美國專利7057192號,其內容併入本發明之參考。
系統變化
應當認知,可以用移動離子束1308代替移動晶圓1002,或者不但移動晶圓1002,也移動離子束1308。晶圓1002也可以繞著軸1304以外的軸旋轉。此外,晶圓1002僅作為範例,也可以是任何其他要被植入摻雜材料的工件。雖然以範例離子植入設備1200與範例掃描系統1300進行說明,應認知上述程序可以使用多種形式之離子植入設備與掃描系統實施。
雖然本發明已經說明和描述特定實施例,熟悉此技藝之人士可認知本發明可以有各種改變或修飾而沒有脫離本發明所揭示之精神。即凡其它未脫離本發明所揭示之精神所完成之等效的各種改變或修飾都涵蓋在本發明所揭露的範圍內
100‧‧‧決定選定相對速度分佈特性的程序
102‧‧‧計算劑量分佈
104‧‧‧決定新相對速度分佈特性
106‧‧‧計算新劑量分佈
108‧‧‧符合標準
110‧‧‧儲存新相對速度分佈

Claims (27)

  1. 一種使用一離子植入設備之一離子束,離子植入一實際工件之方法,該方法包含:在該實際工件出現在該離子植入設備中之前,模擬一虛擬工件的離子植入,藉以決定一選定相對速度分佈特性,該選定相對速度分佈特性應用於使用該離子植入設備之該離子束掃描該實際工件,其中,模擬包含:(a)基於至少一離子束分佈特性以及該離子束與該虛擬工件之間的一相對速度分佈特性,計算該虛擬工件上的一劑量分佈;(b)基於至少所計算之該劑量分佈與用於計算該劑量分佈之該相對速度分佈特性,決定該離子束與該虛擬工件之間的一新相對速度分佈特性;(c)基於至少該離子束分佈特性與步驟(b)所決定之該新相對速度分佈特性,計算該虛擬工件上的一新劑量分佈;(d)如果步驟(c)之該新劑量分佈不符合一個或多個預定標準時,重複步驟(b)與步驟(c);以及(e)當所計算之該虛擬工件上的該新劑量分佈符合該一個或多個預定標準時,儲存步驟(b)所決定之該新相對速度分佈特性作為該選定相對速度分佈特性;於步驟(e)中儲存該新相對速度分佈特性之後,將該實際工件載入該離子植入設備中;以及 應用步驟(e)所儲存的該新相對速度分佈特性,藉由使用該離子植入設備之該離子束掃描載入的該實際工件一次或多次,植入該實際工件。
  2. 如申請專利範圍第1項所述之方法,更包含:在步驟(a)-(c)之前,測量該離子植入設備之該離子束,藉以得到要用於步驟(a)-(c)之該離子束分佈特性,其中,該離子束分佈特性包含離子束寬度、離子束高度、離子束強度、離子束功率、離子束形狀、離子束電流之至少其中之一。
  3. 如申請專利範圍第2項所述之方法,其中,該離子植入設備之該離子束分佈特性在決定該新相對速度分佈特性之模擬期間與掃描該實際工件之植入期間維持固定,沒有進行進一步調整。
  4. 如申請專利範圍第1項所述之方法,其中,植入該實際工件包含傾斜該實際工件至相對於該離子束之一非垂直角度。
  5. 如申請專利範圍第4項所述之方法,其中,一傾斜曲線應用於步驟(a)與步驟(c)之計算該劑量分佈,其中,該傾斜曲線是兩個或多個該實際工件要被傾斜之不同角度。
  6. 如申請專利範圍第1項所述之方法,其中,植入該實際工件包含在大致垂直該離子束之一平面,連續旋轉該實際工件,其中,一旋轉速度分佈特性應用於步驟(a)與步驟(c)之計算該劑量分佈,其中,該旋轉速度分佈特性是該實際工件要被旋轉的速度。
  7. 如申請專利範圍第6項所述之方法,其中,該實際工件以一固定速度被連續旋轉,其中,該旋轉速度分佈特性是該固定速度。
  8. 如申請專利範圍第6項所述之方法,其中,該實際工件以一變化非零速度被連續旋轉,其中,該旋轉速度分佈特性是該變化非零速度。
  9. 如申請專利範圍第6項所述之方法決定於步驟(a)中用於計算該劑量分佈之該旋轉速度分佈特性;及在步驟(b),基於至少所計算之該劑量分佈與用於計算該劑量分佈之已決定之該旋轉速度分佈特性,決定一新旋轉速度分佈特性,其中,該新旋轉速度分佈特性用於步驟(c)之計算該劑量分佈,其中,該新旋轉速度分佈特性在步驟(e)儲存。
  10. 如申請專利範圍第9項所述之方法,其中,在植入過程中,使用在步驟(e)所儲存的該新相對速度分佈特性與該新旋轉速度分佈特性,使用該離子植入設備之該離子束掃描該實際工件一次或多次。
  11. 如申請專利範圍第1項所述之方法,其中,植入包含使用該離子束掃描該實際工件二次或多次。
  12. 如申請專利範圍第11項所述之方法,其中,植入包含旋轉該實際工件一或更多離散量,其中,在每次離子束掃描之前,該工件旋轉該一或更多離散量,然後,該工件停止旋轉,其中,一旋轉曲線應用於步驟(a)與步驟(c)之計算該劑量分佈,其中,該旋轉曲線是該實際工件要被旋轉的該一或更多離散量。
  13. 如申請專利範圍第12項所述之方法更包含決定於步驟(a)中用於計算該劑量分佈之該旋轉曲線;及在步驟(b),基於至少所計算之該劑量分佈與用於計算該劑量分佈之已決定之該旋 轉曲線,決定一新旋轉曲線,其中,該新旋轉曲線用於步驟(c)之計算該劑量分佈,其中,該新旋轉曲線在步驟(e)儲存。
  14. 如申請專利範圍第13項所述之方法,其中,在植入過程中,使用在步驟(e)所儲存的該新相對速度分佈特性與該新旋轉曲線,使用該離子植入設備之該離子束掃描該實際工件一次或多次。
  15. 如申請專利範圍第1項所述之方法,其中,在植入過程中,當該實際工件移動時,該離子束保持靜止,使用該離子束掃描該實際工件。
  16. 如申請專利範圍第1項所述之方法,其中,在植入過程中,當該離子束移動時,該實際工件保持靜止,使用該離子束掃描該實際工件。
  17. 如申請專利範圍第1項所述之方法,其中,該一個或多個預定標準包含該虛擬工件上的劑量分佈均勻性、該虛擬工件上的一個或多個點之預定劑量濃度、該虛擬工件上的一個或多個點之最小劑量濃度、該虛擬工件上的一個或多個點之最大劑量濃度之至少其中之一。
  18. 如申請專利範圍第1項所述之方法,更包含:在步驟(c)之後與步驟(d)之前,如果超過一個或更多預定門檻值,省略步驟(d),該一個或更多預定門檻值包含最大掃描速度、最低掃描速度、最大劑量濃度、最小劑量濃度、劑量分佈計算的最大數量、用以計算劑量分佈之最大時間分配、相對速度分佈特性的最大變化、兩次疊代之間的劑量分佈最小改善之至少其中之一。
  19. 如申請專利範圍第18項所述之方法,更包含:當超過一個或更多預定門檻值,調整離子束,得到一新離子束分佈特性,使用該新離子束分佈特性開始步驟(a)。
  20. 如申請專利範圍第1項所述之方法,更包含:在步驟(a)-(e)中,當可得到該離子植入設備之該離子束之一新離子束分佈特性時,取得該新離子束分佈特性,使用該新離子束分佈特性開始步驟(a)。
  21. 如申請專利範圍第1項所述之方法,更包含:在步驟(a)之後與步驟(b)之前,當步驟(a)所計算之該新劑量分佈符合該一個或多個預定標準時,省略步驟(b)-(e),儲存步驟(a)所使用之該相對速度分佈特性作為該選定相對速度分佈特性。
  22. 如申請專利範圍第1項所述之方法,其中,於步驟(c)計算之該新劑量分佈用於重複步驟(b),其中,在重複步驟(b)與步驟(c)中,決定一新旋轉曲線與計算一新劑量分佈。
  23. 一種在該實際工件出現在該離子植入設備中之前,藉由模擬決定一選定相對速度分佈特性,該選定相對速度分佈特性應用於使用一離子植入設備之一離子束掃描一實際工件之方法,該方法包含:(a)基於至少一離子束分佈特性以及該離子束與該虛擬工件之間的一相對速度分佈特性,計算該虛擬工件上的一劑量分佈;(b)基於至少所計算之該劑量分佈與用於計算該劑量分佈之該相對速度分佈特性,決定該離子束與該虛擬工件之間的一新相對速度分佈特性; (c)基於至少該離子束分佈特性與步驟(b)所決定之該新相對速度分佈特性,計算該虛擬工件上的一新劑量分佈;(d)如果步驟(c)之該新劑量分佈不符合一個或多個預定標準時,重複步驟(b)與步驟(c);(e)當所計算之該虛擬工件上的該新劑量分佈符合該一個或多個預定標準時,儲存步驟(b)所決定之該新相對速度分佈特性作為該選定相對速度分佈特性;以及於步驟(e)中儲存該新相對速度分佈特性之後,將該實際工件載入該離子植入設備中。
  24. 如申請專利範圍第23項所述之方法,其中,於步驟(c)計算之該新劑量分佈用於重複步驟(b),其中,在重複步驟(b)與步驟(c)中,決定一新旋轉曲線與計算一新劑量分佈。
  25. 一種電腦可讀取儲存媒體,包含電腦可執行指令,應用於在該實際工件出現在該離子植入設備中之前,藉由模擬決定一選定相對速度分佈特性,該選定相對速度分佈特性應用於使用一離子植入設備之一離子束掃描一實際工件之方法,包含指令應用於:(a)基於至少一離子束分佈特性以及該離子束與該虛擬工件之間的一相對速度分佈特性,計算該虛擬工件上的一劑量分佈;(b)基於至少所計算之該劑量分佈與用於計算該劑量分佈之該相對速度分佈特性,決定該離子束與該虛擬工件之間的一新相對速度分佈特性;(c)基於至少該離子束分佈特性與步驟(b)所決定之該新相對速度分佈 特性,計算該虛擬工件上的一新劑量分佈;(d)如果步驟(c)之該新劑量分佈不符合一個或多個預定標準時,重複步驟(b)與步驟(c);(e)當所計算之該虛擬工件上的該新劑量分佈符合該一個或多個預定標準時,儲存步驟(b)所決定之該新相對速度分佈特性作為該選定相對速度分佈特性;以及於步驟(e)中儲存該新相對速度分佈特性之後,將該實際工件載入該離子植入設備中。
  26. 如申請專利範圍第25項所述之電腦可讀取儲存媒體,其中,於步驟(c)計算之該新劑量分佈用於重複步驟(b),其中,在重複步驟(b)與步驟(c)中,決定一新旋轉曲線與計算一新劑量分佈。
  27. 一種用以植入摻雜物質至一實際工件之離子植入設備,包含:一離子源,用以產生一離子束;一對焦系統,用以聚焦該離子束;一目標室,用以定位該實際工件;以及一控制器,使用一選定相對速度分佈特性,在目標室內,以該離子束掃描該實際工件,其中,在該實際工件出現在該離子植入設備中之前,該選定相對速度分佈特性藉由模擬決定,其中,該模擬包含:(a)基於至少一離子束分佈特性以及該離子束與該虛擬工件之間的一相對速度分佈特性,計算該虛擬工件上的一劑量分佈;(b)基於至少所計算之該劑量分佈與用於計算該劑量分佈之該相對速 度分佈特性,決定該離子束與該虛擬工件之間的一新相對速度分佈特性;(c)基於至少該離子束分佈特性與步驟(b)所決定之該新相對速度分佈特性,計算該虛擬工件上的一新劑量分佈;(d)如果步驟(c)之該新劑量分佈不符合一個或多個預定標準時,重複步驟(b)與步驟(c);(e)當所計算之該虛擬工件上的該新劑量分佈符合該一個或多個預定標準時,儲存步驟(b)所決定之該新相對速度分佈特性作為該選定相對速度分佈特性;以及於步驟(e)中儲存該新相對速度分佈特性之後,將該實際工件載入該離子植入設備中。
TW101102150A 2011-01-28 2012-01-19 決定用以控制工件離子植入的相對掃描速度 TWI466159B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/016,912 US20120196047A1 (en) 2011-01-28 2011-01-28 Determining relative scan velocity to control ion implantation of work piece

Publications (2)

Publication Number Publication Date
TW201232597A TW201232597A (en) 2012-08-01
TWI466159B true TWI466159B (zh) 2014-12-21

Family

ID=46563137

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101102150A TWI466159B (zh) 2011-01-28 2012-01-19 決定用以控制工件離子植入的相對掃描速度

Country Status (3)

Country Link
US (1) US20120196047A1 (zh)
CN (1) CN102623289B (zh)
TW (1) TWI466159B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9870896B2 (en) * 2013-12-06 2018-01-16 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for controlling ion implanter
US20170005013A1 (en) * 2015-06-30 2017-01-05 Varian Semiconductor Equipment Associates, Inc. Workpiece Processing Technique
JP6638479B2 (ja) * 2015-08-05 2020-01-29 日新電機株式会社 イオンビーム照射方法およびイオンビーム照射装置
JP6517163B2 (ja) * 2016-03-18 2019-05-22 住友重機械イオンテクノロジー株式会社 イオン注入装置及びスキャン波形作成方法
US10395889B2 (en) * 2016-09-07 2019-08-27 Axcelis Technologies, Inc. In situ beam current monitoring and control in scanned ion implantation systems
CN113495402B (zh) * 2021-07-06 2022-06-14 宁波胤瑞生物医学仪器有限责任公司 自动对焦装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166854B2 (en) * 2003-12-09 2007-01-23 Varian Semiconductor Equipment Associates, Inc. Uniformity control multiple tilt axes, rotating wafer and variable scan velocity
US20080078953A1 (en) * 2006-09-29 2008-04-03 Varian Semiconductor Equipment Associates, Inc. Technique for improving ion implantation throughput and dose uniformity
TWI308354B (en) * 2004-02-23 2009-04-01 Nissin Ion Equipment Co Ltd Ion implantation method and apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677599B2 (en) * 2000-03-27 2004-01-13 Applied Materials, Inc. System and method for uniformly implanting a wafer with an ion beam
US7161161B2 (en) * 2003-12-09 2007-01-09 Varian Semiconductor Equipment Associates, Inc. Uniformity control using multiple fixed wafer orientations and variable scan velocity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166854B2 (en) * 2003-12-09 2007-01-23 Varian Semiconductor Equipment Associates, Inc. Uniformity control multiple tilt axes, rotating wafer and variable scan velocity
TWI308354B (en) * 2004-02-23 2009-04-01 Nissin Ion Equipment Co Ltd Ion implantation method and apparatus
US20080078953A1 (en) * 2006-09-29 2008-04-03 Varian Semiconductor Equipment Associates, Inc. Technique for improving ion implantation throughput and dose uniformity

Also Published As

Publication number Publication date
CN102623289A (zh) 2012-08-01
CN102623289B (zh) 2015-09-23
US20120196047A1 (en) 2012-08-02
TW201232597A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
TWI466159B (zh) 決定用以控制工件離子植入的相對掃描速度
TWI441232B (zh) 離子束均勻度調整的方法以及系統
KR101203834B1 (ko) 이온 빔 주입 전류, 빔 스팟 폭 및 위치 조정 방법
KR101210835B1 (ko) 이온 빔 각 처리 제어를 위한 기술
US7253423B2 (en) Technique for uniformity tuning in an ion implanter system
US20060284114A1 (en) Technique for uniformity tuning in an ion implanter system
JP2000039478A (ja) 荷電粒子ビームの分布測定方法およびそれに関連する方法
KR101394086B1 (ko) 스캔 비임 이온 주입기용 생산성 개선
CN107068527B (zh) 离子注入装置
US7189980B2 (en) Methods and systems for optimizing ion implantation uniformity control
US10847372B2 (en) Workpiece processing technique
TWI815024B (zh) 離子植入裝置及離子植入方法
US7161161B2 (en) Uniformity control using multiple fixed wafer orientations and variable scan velocity
JP7037126B2 (ja) ビームプロファイルの判定方法およびイオンビーム照射装置
TWI824166B (zh) 離子植入裝置及離子植入方法
WO2023166551A1 (ja) イオンミリング装置及び検査システム
KR101416775B1 (ko) 가속 이온빔의 밀도 분포 균일화를 위한 라인 스캐닝 장치 및 방법