TWI464996B - Method for stabilizing voltage of photovoltaic system - Google Patents

Method for stabilizing voltage of photovoltaic system Download PDF

Info

Publication number
TWI464996B
TWI464996B TW102100364A TW102100364A TWI464996B TW I464996 B TWI464996 B TW I464996B TW 102100364 A TW102100364 A TW 102100364A TW 102100364 A TW102100364 A TW 102100364A TW I464996 B TWI464996 B TW I464996B
Authority
TW
Taiwan
Prior art keywords
voltage
power control
inverters
virtual
solar energy
Prior art date
Application number
TW102100364A
Other languages
Chinese (zh)
Other versions
TW201429113A (en
Inventor
Tzung Lin Lee
Shang Hung Hu
Shih Sian Yang
Chao Shun Chen
Chia Hung Lin
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW102100364A priority Critical patent/TWI464996B/en
Publication of TW201429113A publication Critical patent/TW201429113A/en
Application granted granted Critical
Publication of TWI464996B publication Critical patent/TWI464996B/en

Links

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

太陽能系統之電壓穩定方法 Solar system voltage stabilization method

本發明係關於一種太陽能系統之電壓穩定方法,特別是關於一種藉由匯流排上之電壓與阻抗類型以分別控制實功率及虛功率輸出的太陽能電力分散式系統之電壓穩定方法。 The present invention relates to a voltage stabilization method for a solar energy system, and more particularly to a voltage stabilization method for a solar power distributed system that controls the real power and the virtual power output by the voltage and impedance types on the bus bar.

近年來,由於全球暖化以及石油價格上漲,使能源議題再次受到關注,並加速再生能源的發展。小型風力發電、太陽能電池等再生能源,因為具備體積小、對環境衝擊小等優點,可直接大量安裝在社區或住戶屋頂,與原有的電力系統併聯運轉形成分散式電力系統。 In recent years, due to global warming and rising oil prices, energy issues have once again received attention and accelerated the development of renewable energy. Renewable energy sources such as small-scale wind power generation and solar cells have the advantages of small size and small impact on the environment, and can be directly installed in the roof of a community or a household, and operate in parallel with the original power system to form a distributed power system.

傳統的電力系統,發電、輸電與配電有相當明顯的區隔;而分散式電力系統則將分散式電源(Distributed Generation Unit,DGU)安裝在負載端,使用低電壓的傳輸線與傳統的電力系統(Utility)併聯運轉。因此,分散式電力系統具有以下數個優點,如:因為併連多個電源,故可減少跳電風險,提高系統可靠度;當負載增加時,只要安裝新的電源於配線端,不需擴充原有電力系統的傳輸線容量;以及電源使用電力電子為介面的反流器(inverter),除了將直流電源轉換為交流電,更可以使用反流器改善電力品質,如:穩定電壓、改善諧波、負相序電壓等。 Traditional power systems have considerable separation between power generation, transmission, and distribution; while distributed power systems install distributed generation units (DGUs) on the load side, using low-voltage transmission lines and traditional power systems ( Utility) operates in parallel. Therefore, the distributed power system has several advantages, such as: because multiple power supplies are connected in parallel, the risk of power jump can be reduced, and the reliability of the system can be improved; when the load is increased, only a new power supply is installed on the wiring end, and no expansion is required. The transmission line capacity of the original power system; and the inverter that uses the power electronics as the interface, in addition to converting the DC power to AC, it is also possible to use a inverter to improve the power quality, such as: stabilizing the voltage, improving the harmonics, Negative phase sequence voltage, etc.

關於反流器的各種控制方法已經被大量的研究,這些控制方法除了基本的電壓電流控制,還可以讓反流器之間在沒有任何通信的狀況下,完成實功、虛功與負 序虛功的分配。 Various control methods for the inverter have been extensively studied. In addition to the basic voltage and current control, these control methods can also perform real power, virtual work and negative without any communication between the inverters. The distribution of the virtual work.

傳統上,在進行電力潮流計算時,發電機與負載之間使用超高壓傳輸線,因此傳輸線可視為純電感性阻抗,只要將電源加上實/虛功控制器,預先設好額定容量、下降斜率等參數,可使多個電源在沒有任何通信界面的狀況下,依照各電源的額定容量大小完成平均功率分配。 Traditionally, in the calculation of power flow, an ultra-high voltage transmission line is used between the generator and the load. Therefore, the transmission line can be regarded as a purely inductive impedance. As long as the power supply is added to the real/virtual power controller, the rated capacity and the falling slope are preset. Such parameters can enable multiple power supplies to achieve average power distribution according to the rated capacity of each power supply without any communication interface.

然而,分散式電力系統的線間電壓都相當低(<10kV),反流器之間使用低壓電纜併聯供電,此時傳輸線的電阻性阻抗將嚴重的影響傳輸線特性而無法忽略,因此,傳統的實/虛功控制器僅考慮電感性阻抗而造成調節後電壓效果並不佳,且會造成傳輸線上較大的損失,經濟效益也不合期待。 However, the line-to-line voltage of the distributed power system is quite low (<10kV), and the low-voltage cables are used in parallel between the inverters. At this time, the resistive impedance of the transmission line will seriously affect the characteristics of the transmission line and cannot be ignored. Therefore, the traditional The real/virtual power controller only considers the inductive impedance and the voltage after adjustment is not good, and it will cause a large loss on the transmission line, and the economic benefits are not expected.

故,有必要提供一種太陽能系統之電壓穩定方法,以解決習用技術所存在的問題。 Therefore, it is necessary to provide a voltage stabilization method for a solar energy system to solve the problems of the conventional technology.

本發明之主要目的在於提供一種太陽能系統之電壓穩定方法,其係利用偵測傳輸線匯流排上的電抗及電阻,以便分別控制實功率輸出及虛功率輸出,進而提升輸出電壓的穩定性及增加總輸出功率。 The main object of the present invention is to provide a voltage stabilization method for a solar energy system, which utilizes the reactance and resistance of the transmission line bus to detect the real power output and the virtual power output, thereby improving the stability of the output voltage and increasing the total. Output Power.

為達上述之目的,本發明一實施例提供一種太陽能系統之電壓穩定方法,其包含步驟:(a)提供一分散式太陽能電力系統,其包含一市電、具有多個匯流排的一饋線,及多個太陽能模組通過數個反流器連接於該饋線之多個匯流排上;(b)提供至少二相關參數,其對應位於該些匯流排的該多個太陽能模組的設置端點;(c)偵測該些設置端點的端電壓;及(d)根據該二相關參數及該些端電壓,分別決定該些反流器的實功率輸出值及虛功率輸出值;其中該二相關參數分別是該些匯流排的電阻值及電抗值。 To achieve the above objective, an embodiment of the present invention provides a voltage stabilization method for a solar energy system, comprising the steps of: (a) providing a distributed solar power system including a mains, a feeder having a plurality of bus bars, and a plurality of solar modules are connected to the plurality of bus bars of the feeder through a plurality of inverters; (b) providing at least two related parameters corresponding to the set end points of the plurality of solar modules located in the bus bars; (c) detecting terminal voltages of the set terminals; and (d) determining real power output values and virtual power output values of the inverters according to the two related parameters and the terminal voltages; The relevant parameters are the resistance value and the reactance value of the bus bars.

在本發明之一實施例中,該些匯流排具有一規 範最大電壓。 In an embodiment of the invention, the bus bars have a gauge Fan maximum voltage.

在本發明之一實施例中,該些反流器各包含:一實功率輸出模組,具有一實功率控制模式及一最大功率追蹤模式;及一虛功率輸出模組,具有一虛功率控制模式。 In an embodiment of the present invention, the inverters each include: a real power output module having a real power control mode and a maximum power tracking mode; and a virtual power output module having a virtual power control mode.

在本發明之一實施例中,該實功率控制模式設定有一實功率控制啟動電壓;及該虛功率控制模式設定有一虛功率控制啟動電壓。 In an embodiment of the invention, the real power control mode is set to have a real power control starting voltage; and the virtual power control mode is set to have a virtual power control starting voltage.

在本發明之一實施例中,該實功率控制啟動電壓與該些匯流排的電阻值成一反比例關係。 In an embodiment of the invention, the real power control starting voltage is inversely proportional to the resistance values of the bus bars.

在本發明之一實施例中,該虛功率控制啟動電壓與該些匯流排的電抗值成一反比例關係。 In an embodiment of the invention, the virtual power control starting voltage is inversely proportional to the reactance values of the bus bars.

在本發明之一實施例中,在步驟(d)決定該些反流器的實功率輸出值時,還包含步驟:(d1)當該些端電壓小於或等於該實功率控制啟動電壓時,啟動該最大功率追蹤模式以決定該些反流器的實功率輸出值;或(d2)當該些端電壓大於該實功率控制啟動電壓時,啟動該實功率控制模式以減少該些反流器的實功率輸出值。 In an embodiment of the present invention, when determining the real power output values of the inverters in step (d), the method further includes the steps of: (d1) when the terminal voltages are less than or equal to the real power control starting voltage, Activating the maximum power tracking mode to determine a real power output value of the inverters; or (d2) when the terminal voltages are greater than the real power control starting voltage, starting the real power control mode to reduce the inverters Real power output value.

在本發明之一實施例中,在步驟(d2)之後,還包含步驟:(d3)當該些端電壓大於該些匯流排的規範最大電壓時,該實功率控制模式使得該些反流器之輸出實功率為0。 In an embodiment of the present invention, after the step (d2), the method further includes the following steps: (d3) when the terminal voltages are greater than a specification maximum voltage of the busbars, the real power control mode causes the inverters The output real power is zero.

在本發明之一實施例中,在步驟(d)決定該些反流器的虛功率輸出值時,還包含步驟:(d4)當該些端電壓大於該虛功率控制啟動電壓時,啟動該虛功率控制模式以增加該些反流器的虛功率輸出值。 In an embodiment of the present invention, when determining the virtual power output value of the inverters in step (d), the method further includes the step of: (d4) when the terminal voltages are greater than the virtual power control startup voltage, starting the The virtual power control mode increases the virtual power output values of the inverters.

在本發明之一實施例中,在步驟(d4)之後,還包含步驟:(d5)當該些端電壓大於該些匯流排的規範最大電壓,該虛功率控制模式維持該虛功率輸出值為一虛功率輸出最大值。 In an embodiment of the present invention, after the step (d4), the method further includes the following steps: (d5) when the terminal voltages are greater than a specification maximum voltage of the bus bars, the virtual power control mode maintains the virtual power output value A virtual power output maximum.

10‧‧‧市電 10‧‧‧Power

20‧‧‧饋線 20‧‧‧ feeder

30‧‧‧太陽能模組 30‧‧‧Solar modules

40‧‧‧反流器 40‧‧‧Reflux

41‧‧‧實功率輸出模組 41‧‧‧ Real power output module

42‧‧‧虛功率輸出模組 42‧‧‧Virtual power output module

B-i‧‧‧設置端點 B-i‧‧‧Set the endpoint

S01、S02、S03、S04‧‧‧步驟 S01, S02, S03, S04‧‧ steps

S041、S043、S045‧‧‧步驟 S041, S043, S045‧‧‧ steps

S042、S044、S046、S048‧‧‧步驟 S042, S044, S046, S048‧‧ steps

第1圖:本發明較佳實施例之太陽能系統之電壓穩定方法的步驟流程圖。 Figure 1 is a flow chart showing the steps of a voltage stabilization method for a solar energy system in accordance with a preferred embodiment of the present invention.

第2圖:本發明較佳實施例之太陽能系統電路架構圖。 Figure 2 is a circuit diagram of a solar system in accordance with a preferred embodiment of the present invention.

第3圖:本發明較佳實施例之方法步驟(d)的細部步驟流程圖。 Figure 3 is a flow chart showing the detailed steps of step (d) of the method of the preferred embodiment of the present invention.

第4圖:本發明較佳實施例之太陽能系統之設置端電壓Vin與功率關係圖。 Figure 4 is a graph showing the relationship between the set terminal voltage Vin and the power of the solar energy system of the preferred embodiment of the present invention.

第5圖:本發明較佳實施例之太陽能系統之虛功率控制啟動電壓(DQ)對電抗(X)關係圖。 Figure 5 is a graph showing the relationship between the virtual power control starting voltage (D Q ) and the reactance (X) of the solar energy system of the preferred embodiment of the present invention.

第6圖:本發明較佳實施例之太陽能系統之實功率控制啟動電壓(DP)對電阻(R)關係圖。 Figure 6 is a graph showing the relationship between the real power control starting voltage (D P ) versus the resistance (R) of a solar energy system in accordance with a preferred embodiment of the present invention.

為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。再者,本發明所提到的方向用語,例如上、下、頂、底、前、後、左、右、內、外、側面、周圍、中央、水平、橫向、垂直、縱向、軸向、徑向、最上層或最下層等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。 The above and other objects, features and advantages of the present invention will become more <RTIgt; Furthermore, the directional terms mentioned in the present invention, such as upper, lower, top, bottom, front, rear, left, right, inner, outer, side, surrounding, central, horizontal, horizontal, vertical, longitudinal, axial, Radial, uppermost or lowermost, etc., only refer to the direction of the additional schema. Therefore, the directional terminology used is for the purpose of illustration and understanding of the invention.

請參照第1、2圖所示,本發明較佳實施例之太陽能系統之電壓穩定方法首先包含步驟(S01):(a)提供一分散式太陽能電力系統,如第2圖所示,其包含一市電10(grid)、具有多個匯流排的一饋線20(power line),及多個太陽能模組30(photovoltaic module,PV)通過數個反流器40連接於該饋線之多個匯流排上;通常,該些反流器40的輸出端會另加上一低通濾波器以濾除切換頻率,該低通 濾波器可包含電感、電容與阻尼電阻,該電阻提供阻尼,以避免該些匯流排的電感與該低通濾波器的電容產生共振,影響輸出電壓的品質。 Referring to FIGS. 1 and 2, the voltage stabilization method for the solar energy system according to the preferred embodiment of the present invention first includes the step (S01): (a) providing a distributed solar power system, as shown in FIG. 2, which includes a power grid 10, a power line having a plurality of bus bars, and a plurality of photovoltaic modules 30 (PV) connected to the bus bars of the feeder through a plurality of inverters 40 Above; usually, a low-pass filter is added to the output of the inverters 40 to filter the switching frequency, the low pass The filter can include an inductor, a capacitor, and a damping resistor that provides damping to prevent the inductance of the busbars from resonating with the capacitance of the lowpass filter, affecting the quality of the output voltage.

接著,請再參考第1圖,本發明較佳實施例之太陽能系統之電壓穩定方法包含步驟(S02):(b)提供至少二相關參數,其對應位於該饋線20的該多個太陽能模組30的設置端點B-i,i=1…n,nN;其中該二相關參數分別是數個端電壓Vin的電阻R及電抗X;在本步驟中,因該饋線20的電壓層級以及種類均可以預知,故每一該些設置端點的二相關參數R、X均由電力公司,如台電公司,主動提供,並不另由一偵測設備所偵測。 Next, referring to FIG. 1 , a voltage stabilization method for a solar energy system according to a preferred embodiment of the present invention includes a step (S02): (b) providing at least two correlation parameters corresponding to the plurality of solar modules located in the feeder 20 Setting end point 30 of 30, i=1...n, n N; wherein the two related parameters are the resistance R and the reactance X of the plurality of terminal voltages V in respectively; in this step, since the voltage level and the type of the feeder 20 are predictable, each of the set end points The relevant parameters R and X are provided by the power company, such as Taipower Company, and are not detected by a detection device.

接著,本發明較佳實施例之太陽能系統之電壓穩定方法包含步驟(S03):(c)偵測該些設置端點B-i的端電壓Vin。然而,該饋線20上各匯流排對應之該些設置端點B-i的電壓具有一規範最大電壓的限制,故,一旦其上電壓Vin超出該規範最大電壓時,一般習知技術會將該些太陽能模組30作解聯以停止運轉的動作,而本發明是根據該二相關參數R、X及該些端電壓Vin,以降低部分該些反流器40的實功率輸出值P與補償虛功率輸出Q而達到太陽能持續併網運轉且該些匯流排的電壓不超出規範之目的,故需由一偵測裝置取得該些設置端點B-i的端電壓Vin,並在後面的步驟中進而調節該些匯流排上之電壓維持在規範內。 Next, the voltage stabilization method of the solar energy system according to the preferred embodiment of the present invention includes the step (S03): (c) detecting the terminal voltage V in of the set terminal Bi. However, the voltages of the set terminals Bi corresponding to the bus bars on the feeder 20 have a specification maximum voltage limit, so that once the voltage V in exceeds the specification maximum voltage, the conventional technology will The solar module 30 is decoupled to stop the operation, and the present invention is based on the two correlation parameters R, X and the terminal voltages V in to reduce the real power output value P and compensation of some of the inverters 40. reactive power Q output duration reaches a solar grid and the plurality of bus operation does not exceed the voltage specification of object, it is required to obtain the plurality of endpoint Bi setting terminal voltage V in by a detection apparatus, and in the subsequent step The voltage on the busbars is then adjusted to remain within the specification.

最後,本發明較佳實施例之太陽能系統之電壓穩定方法還包含步驟(S04):(d)根據該二相關參數R、X及該些端電壓Vin,分別決定該些反流器40的實功率輸出值P及虛功率輸出值Q。根據前面步驟所提供的該些端電壓Vin及該二相關參數R、X,為了避免因著該些匯流排上的阻抗增加所造成的過電壓問題,故,本發明利用該些參數分別調整實功率及虛功率的輸出值,使得該些匯流排上的 電壓變化可以被控制在一安全的規範內,以確保電路電壓的穩定性及總輸出功率達到最高輸出效益。 Finally, the voltage stabilization method of the solar energy system according to the preferred embodiment of the present invention further includes the step (S04): (d) determining the inverters 40 according to the two correlation parameters R, X and the terminal voltages V in respectively Real power output value P and virtual power output value Q. According to the terminal voltage V in and the two related parameters R and X provided in the previous steps, in order to avoid the overvoltage problem caused by the increase of the impedance on the bus bars, the present invention separately adjusts the parameters by using the parameters. The output values of real power and virtual power allow the voltage variations on the busbars to be controlled within a safe specification to ensure circuit voltage stability and total output power for maximum output efficiency.

請參照第3圖所示,在本實施例中,該些反流器40各包含:一實功率輸出模組41及一虛功率輸出模組42。該實功率輸出模組41具有一實功率控制模式及一最大功率追蹤模式;及該虛功率輸出模組42具有一虛功率控制模式,其中該實功率控制模式設定有一實功率控制啟動電壓1+DP,該電壓1+DP決定該實功率控制模式的啟動點;及該虛功率控制模式設定有一虛功率控制啟動電壓1+DQ,該電壓1+DQ決定該虛功率控制模式的啟動點。 Referring to FIG. 3 , in the embodiment, the inverters 40 each include: a real power output module 41 and a virtual power output module 42 . The real power output module 41 has a real power control mode and a maximum power tracking mode; and the virtual power output module 42 has a virtual power control mode, wherein the real power control mode is set with a real power control starting voltage 1+ D P , the voltage 1+D P determines a starting point of the real power control mode; and the virtual power control mode is set to have a virtual power control starting voltage 1+D Q , the voltage 1+D Q determining the virtual power control mode Start point.

接著,請繼續參考第3圖,將更詳細介紹本發明在步驟(d)中決定實功率輸出值P及虛功率輸出值Q的細部步驟設計流程。 Next, referring to FIG. 3, the detailed design process of determining the real power output value P and the virtual power output value Q in the step (d) of the present invention will be described in more detail.

如第3圖所示,在本發明較佳實施例之太陽能系統之電壓穩定方法之步驟(d)決定該些反流器40的實功率輸出值P時,還包含步驟(S042):首先判斷該些端電壓Vin是否大於該實功率控制啟動電壓1+DPAs shown in FIG. 3, in step (d) of the voltage stabilization method of the solar energy system according to the preferred embodiment of the present invention, when the real power output value P of the inverters 40 is determined, the method further includes the step (S042): first determining Whether the terminal voltage V in is greater than the real power control starting voltage 1+D P .

接著,在步驟(S042)之後,本發明較佳實施例之太陽能系統之電壓穩定方法還包含步驟(S044):(d1)當該些端電壓Vin小於或等於該實功率控制啟動電壓1+DP時,啟動該最大功率追蹤模式以決定該些反流器40的實功率輸出值PMAX,其中該實功率輸出值PMAX為該些反流器40的一實功率最大可輸出值。 Next, after the step (S042), the voltage stabilization method of the solar energy system according to the preferred embodiment of the present invention further includes the step (S044): (d1) when the terminal voltages V in are less than or equal to the real power control starting voltage 1+ When D P , the maximum power tracking mode is activated to determine the real power output value P MAX of the inverters 40 , wherein the real power output value P MAX is a real power maximum output value of the inverters 40 .

或者,本發明較佳實施例之太陽能系統之電壓穩定方法還包含步驟(S046):(d2)當該些端電壓Vin大於該實功率控制啟動電壓1+DP時,啟動該實功率控制模式以減少該些反流器40的實功率輸出值P。 Alternatively, the voltage stabilization method of the solar energy system according to the preferred embodiment of the present invention further includes the step (S046): (d2) starting the real power control when the terminal voltages V in are greater than the real power control starting voltage 1+D P The mode is to reduce the real power output value P of the inverters 40.

最後,本發明較佳實施例之太陽能系統之電壓穩定方法,為決定該些反流器40的實功率輸出值P,還包 含步驟(S048):(d3)當該些端電壓Vin大於該些匯流排的規範最大電壓時,該實功率控制模式使得該些反流器之輸出實功率P為0。 Finally, the voltage stabilization method of the solar energy system according to the preferred embodiment of the present invention determines the real power output value P of the inverters 40, and further includes a step (S048): (d3) when the terminal voltages V in are greater than the The real power control mode causes the output real power P of the inverters to be zero when the maximum voltage of the bus bars is specified.

請繼續參照第3圖,在本發明較佳實施例之太陽能系統之電壓穩定方法之步驟(d)決定該些反流器40的虛功率輸出值Q時,還包含步驟(S041):首先判斷該些端電壓Vin是否大於該虛功率控制啟動電壓1+DQReferring to FIG. 3, in step (d) of the voltage stabilization method of the solar energy system according to the preferred embodiment of the present invention, when determining the virtual power output value Q of the inverters 40, the method further includes the step (S041): first determining Whether the terminal voltage V in is greater than the virtual power control starting voltage 1+D Q .

接著,在步驟(S041)之後,本發明較佳實施例之太陽能系統之電壓穩定方法還包含步驟(S043):(d4)當該些端電壓Vin大於該虛功率控制啟動電壓1+DQ時,啟動該虛功率控制模式以增加該些反流器40的虛功率輸出值Q。 Next, after the step (S041), the voltage stabilization method of the solar energy system according to the preferred embodiment of the present invention further includes the step (S043): (d4) when the terminal voltages V in are greater than the virtual power control starting voltage 1+D Q The virtual power control mode is activated to increase the virtual power output value Q of the inverters 40.

最後,本發明較佳實施例之太陽能系統之電壓穩定方法,為決定該些反流器40的虛功率輸出值Q,還包含步驟(S045):(d5)當該些端電壓Vin大於該些匯流排的規範最大電壓,該虛功率控制模式維持該虛功率輸出值Q為一虛功率輸出最大值QMAXFinally, the voltage stabilization method of the solar energy system according to the preferred embodiment of the present invention determines the virtual power output value Q of the inverters 40, and further includes a step (S045): (d5) when the terminal voltages V in are greater than the The normal maximum voltage of the bus bars maintains the virtual power output value Q as a virtual power output maximum value Q MAX .

請參照第4圖所示,其揭示該些端電壓Vin分別與實功率輸出P及虛功率輸出Q的關係圖。其中,該些端電壓Vin以標準值(pu)為單位,從圖中可知,當該些端電壓Vin超過1+DP時,則實功率輸出P即開始從該實功率最大可輸出值PMAX遞減,當該些端電壓Vin大於該些匯流排的規範最大電壓VHP時,該實功率控制模式使得該些反流器40之輸出實功率P為0,即停止輸出實功率。同時,當該些端電壓超過1+DQ時,則虛功率輸出Q開始遞增,直到虛功率輸出Q為0時,虛功率達到一虛功率輸出最大值QMAX,此時,虛功率也不再增加。虛線表示根據各匯流排阻抗的不同,DP、DQ都會隨之改變,並功率與該些啟動電壓的相對關係也會隨之調整及改變。 Referring to FIG. 4, it is shown that the terminal voltages V in are respectively related to the real power output P and the virtual power output Q. Wherein, the terminal voltages V in are in units of standard values (pu). As can be seen from the figure, when the terminal voltages V in exceed 1+D P , the real power output P starts to be output from the real power. The value P MAX is decremented. When the terminal voltages V in are greater than the normal maximum voltage V HP of the bus bars, the real power control mode is such that the output real power P of the inverters 40 is 0, that is, the output real power is stopped. . At the same time, when the terminal voltage exceeds 1+D Q , the virtual power output Q starts to increase until the virtual power output Q is 0, and the virtual power reaches a virtual power output maximum value Q MAX , at this time, the virtual power is not Increase again. The dotted line indicates that D P and D Q will change according to the impedance of each bus, and the relative relationship between power and the starting voltage will be adjusted and changed accordingly.

請參照第5圖所示,其揭示該虛功率控制啟動 電壓DQ與該些端電壓Vin的電抗值X係成一反比例關係。因為端電壓Vin會根據匯流排阻抗之不同而對不同功率產生敏感,本發明分開決定虛功率Q與實功率P的調節,並未以傳統方式,例如單純以一實/虛功比例或是完全由阻抗大小Z來決定調節,反而是根據一般在電抗值X為主的傳輸線,線上電壓對於虛功率Q較為敏感;故,虛功率Q的調節及開啟點必須由電抗值X來做決定。如第5圖所示,在電抗最大值XMAX及最小值XMIN間,該虛功率控制啟動電壓DQ也會相對應有一啟動電壓最大值DMAX及最小值DMIN,並根據該些匯流排阻抗之電抗值X大小決定該虛功率控制啟動電壓DQReferring to FIG. 5, it is disclosed that the virtual power control starting voltage D Q is inversely proportional to the reactance value X of the terminal voltages V in . Because the terminal voltage V in is sensitive to different powers according to the difference of the bus bar impedance, the present invention separately determines the adjustment of the virtual power Q and the real power P, which is not in a conventional manner, such as simply using a real/virtual power ratio or The adjustment is determined entirely by the impedance magnitude Z. Instead, the line voltage is generally sensitive to the virtual power Q. Therefore, the adjustment and the opening point of the virtual power Q must be determined by the reactance value X. As shown in FIG. 5, between the reactance maximum value X MAX and the minimum value X MIN , the virtual power control starting voltage D Q also corresponds to a starting voltage maximum value D MAX and a minimum value D MIN , and according to the convergence The magnitude of the reactance value X of the row impedance determines the virtual power control starting voltage D Q .

請參照第6圖所示,其揭示該實功率控制啟動電壓DP與該些端電壓Vin的電阻值R成一反比例關係。同上所述,由於在分散式電力系統的電壓等級較低,反流器之間使用低壓電纜併聯供電,此時該些傳輸線的電阻值R將嚴重的影響傳輸線特性而無法忽略,並且,根據一般在電阻值R為主的傳輸線,線上電壓對於實功率P較為敏感,故,實功率P的調節及開啟點必須由電阻性阻抗R來做決定。如第6圖所示,在電阻性阻抗最大值RMAX及最小值RMIN間,該實功率控制啟動電壓DP也會相對應有一啟動電壓最大值DMAX及最小值DMIN,並根據該些匯流排阻抗之電阻R大小決定該實功率控制啟動電壓DPReferring to FIG. 6, it is disclosed that the real power control starting voltage D P is inversely proportional to the resistance value R of the terminal voltages V in . As described above, since the voltage level of the distributed power system is low and the low-voltage cables are used in parallel between the inverters, the resistance value R of the transmission lines will seriously affect the characteristics of the transmission line and cannot be ignored, and, according to the general In the transmission line with the resistance value R as the main line, the line voltage is sensitive to the real power P. Therefore, the adjustment and the opening point of the real power P must be determined by the resistive impedance R. As shown in FIG. 6, between the resistive impedance maximum value R MAX and a minimum value R MIN, the real power control of a promoter will be relatively voltage D P should be a maximum starting voltage and the minimum value D MAX D MIN, and based on the The magnitude of the resistance R of the busbar impedance determines the real power control starting voltage Dp .

藉由上述步驟,本發明較佳實施例即可利用偵測傳輸線匯流排上的電抗X及電阻R,以便分別控制實功率輸出及虛功率輸出,進而提升輸出電壓的穩定性及增加總輸出功率。 Through the above steps, the preferred embodiment of the present invention can utilize the reactance X and the resistance R on the bus line of the transmission line to respectively control the real power output and the virtual power output, thereby improving the stability of the output voltage and increasing the total output power. .

雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 The present invention has been disclosed in its preferred embodiments, and is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

S01、S02、S03、S04‧‧‧步驟 S01, S02, S03, S04‧‧ steps

Claims (10)

一種太陽能系統之電壓穩定方法,其包含步驟:(a)一分散式太陽能電力系統,其包含一市電、具有多個匯流排的一饋線,及多個太陽能模組通過數個反流器連接於該饋線之多個匯流排上;(b)提供至少二相關參數,其對應位於該些匯流排的該多個太陽能模組的設置端點;(c)偵測該些設置端點的端電壓;及(d)根據該二相關參數及該些端電壓,分別決定該些反流器的實功率輸出值及虛功率輸出值;其中該二相關參數分別是該些匯流排的電阻值及電抗值。 A voltage stabilization method for a solar energy system, comprising the steps of: (a) a decentralized solar power system comprising a mains, a feeder having a plurality of bus bars, and a plurality of solar modules connected by a plurality of inverters (b) providing at least two related parameters corresponding to the set end points of the plurality of solar modules located in the bus bars; (c) detecting terminal voltages of the set end points And (d) determining the real power output value and the virtual power output value of the inverters according to the two related parameters and the terminal voltages; wherein the two related parameters are resistance values and reactances of the bus bars respectively value. 如申請專利範圍第1項所述之太陽能系統之電壓穩定方法,其中該些匯流排具有一規範最大電壓。 The method for voltage stabilization of a solar energy system according to claim 1, wherein the bus bars have a specification maximum voltage. 如申請專利範圍第2項所述之太陽能系統之電壓穩定方法,其中該些反流器各包含:一實功率輸出模組,具有一實功率控制模式及一最大功率追蹤模式;及一虛功率輸出模組,具有一虛功率控制模式。 The method for voltage stabilization of a solar energy system according to claim 2, wherein the inverters each comprise: a real power output module having a real power control mode and a maximum power tracking mode; and a virtual power The output module has a virtual power control mode. 如申請專利範圍第3項所述之太陽能系統之電壓穩定方法,其中該實功率控制模式設定有一實功率控制啟動電壓;及該虛功率控制模式設定有一虛功率控制啟動電壓。 The method for voltage stabilization of a solar energy system according to claim 3, wherein the real power control mode is set to have a real power control starting voltage; and the virtual power control mode is set to have a virtual power control starting voltage. 如申請專利範圍第4項所述之太陽能系統之電壓穩定方法,其中該實功率控制啟動電壓與該些匯流排的電阻值成一反比例關係。 The method for voltage stabilization of a solar energy system according to claim 4, wherein the real power control starting voltage is inversely proportional to the resistance values of the bus bars. 如申請專利範圍第4項所述之太陽能系統之電壓穩定方法,其中該虛功率控制啟動電壓與該些匯流排的電抗值成一反比例關係。 The method for voltage stabilization of a solar energy system according to claim 4, wherein the virtual power control starting voltage is inversely proportional to the reactance values of the bus bars. 如申請專利範圍第4項所述之太陽能系統之電壓穩定方法,其中在步驟(d)決定該些反流器的實功率輸出值時,還包含步驟:(d1)該些端電壓小於或等於該實功率控制啟動電壓時,啟動該最大功率追蹤模式以決定該些反流器的實功率輸出值;或(d2)該些端電壓大於該實功率控制啟動電壓時,啟動該實功率控制模式以減少該些反流器的實功率輸出值。 The voltage stabilization method of the solar energy system of claim 4, wherein when the real power output value of the inverters is determined in step (d), the method further comprises the step of: (d1) the terminal voltages are less than or equal to When the real power controls the startup voltage, the maximum power tracking mode is activated to determine the real power output values of the inverters; or (d2) when the terminal voltages are greater than the real power control startup voltage, the real power control mode is activated. To reduce the real power output value of the inverters. 如申請專利範圍第7項所述之太陽能系統之電壓穩定方法,其中在步驟(d2)之後,還包含步驟:(d3)該些端電壓大於該些匯流排的規範最大電壓時,該實功率控制模式使得該些反流器之輸出實功率為0。 The method for voltage stabilization of a solar energy system according to claim 7, wherein after the step (d2), the method further comprises the step of: (d3) the terminal voltage is greater than a specification maximum voltage of the busbars, the real power The control mode causes the output power of the inverters to be zero. 如申請專利範圍第4項所述之太陽能系統之電壓穩定方法,其中在步驟(d)決定該些反流器的虛功率輸出值時,還包含步驟:(d4)該些端電壓大於該虛功率控制啟動電壓時,啟動該虛功率控制模式以增加該些反流器的虛功率輸出值。 The voltage stabilization method of the solar energy system of claim 4, wherein when the virtual power output value of the inverters is determined in step (d), the method further comprises the step of: (d4) the terminal voltages are greater than the virtual When the power control starts voltage, the virtual power control mode is activated to increase the virtual power output values of the inverters. 如申請專利範圍第9項所述之太陽能系統之電壓穩定方法,其中在步驟(d4)之後,還包含步驟:(d5)該些端電壓大於該些匯流排的規範最大電壓,該虛功率控制模式維持該虛功率輸出值為一虛功率輸出最大值。 The method for voltage stabilization of a solar energy system according to claim 9, wherein after the step (d4), the method further comprises the step of: (d5) the terminal voltages being greater than a specification maximum voltage of the bus bars, the virtual power control The mode maintains the virtual power output value as a virtual power output maximum.
TW102100364A 2013-01-04 2013-01-04 Method for stabilizing voltage of photovoltaic system TWI464996B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102100364A TWI464996B (en) 2013-01-04 2013-01-04 Method for stabilizing voltage of photovoltaic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102100364A TWI464996B (en) 2013-01-04 2013-01-04 Method for stabilizing voltage of photovoltaic system

Publications (2)

Publication Number Publication Date
TW201429113A TW201429113A (en) 2014-07-16
TWI464996B true TWI464996B (en) 2014-12-11

Family

ID=51726220

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102100364A TWI464996B (en) 2013-01-04 2013-01-04 Method for stabilizing voltage of photovoltaic system

Country Status (1)

Country Link
TW (1) TWI464996B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI611646B (en) * 2016-10-17 2018-01-11 Hybrid renewable energy power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420826B2 (en) * 2005-05-27 2008-09-02 Delta Electronics, Inc. Parallel inverters and controlling method thereof
CN102082443A (en) * 2009-11-27 2011-06-01 通用电气公司 Direct current (DC)-alternating current (AC) converting system and method
US20120205981A1 (en) * 2009-09-15 2012-08-16 The University Of Western Ontario Utilization of distributed generator inverters as statcom
US20120320641A1 (en) * 2011-06-16 2012-12-20 Solarbridge Technologies, Inc. Power converter bus control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420826B2 (en) * 2005-05-27 2008-09-02 Delta Electronics, Inc. Parallel inverters and controlling method thereof
US20120205981A1 (en) * 2009-09-15 2012-08-16 The University Of Western Ontario Utilization of distributed generator inverters as statcom
CN102082443A (en) * 2009-11-27 2011-06-01 通用电气公司 Direct current (DC)-alternating current (AC) converting system and method
US20120320641A1 (en) * 2011-06-16 2012-12-20 Solarbridge Technologies, Inc. Power converter bus control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI611646B (en) * 2016-10-17 2018-01-11 Hybrid renewable energy power generation system

Also Published As

Publication number Publication date
TW201429113A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
CN105191046B (en) For the method by feed electric power into power supply network
US10790769B2 (en) Control method and control system for enhancing endurance to anomalous voltage for doubly-fed induction generator
CN103414205A (en) Wind farm super capacitor energy storage type unified power quality conditioner
CN103718414B (en) Photovoltaic voltage regulates
TWI522767B (en) Photovoltaic power generation system
CN103972904A (en) Symmetrical drop-off low voltage ride through reactive power control method of photovoltaic power generation system
EP3324509A1 (en) Power supply system and power supply method
CN104868766A (en) Inversion device and AC power supply system applying same
DK2463980T3 (en) OPERATION OF A POWER GENERATOR IN A POWER SUPPLY NETWORK
KR101178393B1 (en) Utility interactive inverter of three phase-indirect current control type and control method
CN103812115A (en) Feedforward voltage series compensation device based on wind-solar-electricity complementation
CN104158218A (en) Photovoltaic inverter starting control method and system and photovoltaic power generation system
US20150260161A1 (en) Control device for voltage source converter and operating method thereof
Zhang et al. Hierarchical coordinated control of DC microgrid with wind turbines
CN103441504A (en) Series compensation low-voltage ride-through device with self-charging function and control method thereof
CN105515052A (en) Fault ride-through implementation method and system for direct-driven draught fan
JP2014534794A (en) Photovoltaic generator with safety device for supply to public power grid
CN103812113A (en) Front feed type voltage drop dynamic compensating device based on complementation of wind electricity and solar electricity
JP6101523B2 (en) Power supply system
CN105024402A (en) High voltage ride-through method of doubly-fed wind turbine generator set
TWI464996B (en) Method for stabilizing voltage of photovoltaic system
CN108879783A (en) A kind of electric power spring energy source consumption system
TWI622243B (en) Device for stabilizing grid voltage by controlling real and reactive powers of energy storage
CN103326601B (en) Current-impact-free grid-connecting control method of PWM rectifier
CN107681687B (en) Energy storage-based bus overvoltage suppression control method and system for distributed system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees