TWI457895B - Driving method of electrophoretic display - Google Patents

Driving method of electrophoretic display Download PDF

Info

Publication number
TWI457895B
TWI457895B TW100128939A TW100128939A TWI457895B TW I457895 B TWI457895 B TW I457895B TW 100128939 A TW100128939 A TW 100128939A TW 100128939 A TW100128939 A TW 100128939A TW I457895 B TWI457895 B TW I457895B
Authority
TW
Taiwan
Prior art keywords
grayscale value
electrophoretic display
value
minimum
maximum
Prior art date
Application number
TW100128939A
Other languages
Chinese (zh)
Other versions
TW201308282A (en
Inventor
Ming Jen Chang
Jo Cheng Huang
Bo Ru Yang
Chun An Wei
Yao Jen Hsieh
Original Assignee
Sipix Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sipix Technology Inc filed Critical Sipix Technology Inc
Priority to TW100128939A priority Critical patent/TWI457895B/en
Publication of TW201308282A publication Critical patent/TW201308282A/en
Application granted granted Critical
Publication of TWI457895B publication Critical patent/TWI457895B/en

Links

Description

電泳顯示器的驅動方法Electrophoretic display driving method

本發明是有關於一種顯示器的驅動方法,且特別是有關於一種可提高顯示畫面的色度、亮度及對比度的電泳顯示器的驅動方法。The present invention relates to a method of driving a display, and more particularly to a method of driving an electrophoretic display that can improve the chromaticity, brightness, and contrast of a display screen.

近年來,由於各種顯示技術不斷地蓬勃發展,在經過持續地研究開發之後,如電泳顯示器、液晶顯示器、電漿顯示器、有機發光二極體顯示器等產品,已逐漸地商業化並應用於各種尺寸以及各種面積的顯示裝置。隨著可攜式電子產品的日益普及,可撓性顯示器(如電子紙(e-paper)、電子書(e-book)等)已逐漸受到市場的關注。一般而言,電子紙(e-paper)以及電子書(e-book)係採用電泳顯示技術來達到顯示之目的。以電子書為例,其子畫素主要是由不同顏色(例如紅色、綠色、藍色等)之電泳液以及摻雜於電泳液中的白色帶電粒子所構成,透過施加電壓的方式可以驅動白色帶電粒子移動,以使各個畫素分別顯示黑色、白色、紅色、綠色、藍色,或是不同階調之色彩。In recent years, as various display technologies continue to flourish, after continuous research and development, products such as electrophoretic displays, liquid crystal displays, plasma displays, and organic light-emitting diode displays have been gradually commercialized and applied to various sizes. And display devices of various sizes. With the increasing popularity of portable electronic products, flexible displays (such as e-paper, e-books, etc.) have gradually gained market attention. In general, e-paper and e-book use electrophoretic display technology to achieve display. Taking an e-book as an example, the sub-pixels are mainly composed of electrophoresis liquids of different colors (for example, red, green, blue, etc.) and white charged particles doped in the electrophoresis liquid, and can drive white by applying a voltage. The charged particles move so that each pixel displays black, white, red, green, blue, or a different tone.

一般而言,帶電粒子的周圍會產生電雙層,其中電雙層的極性會與帶電粒子的極性相反。若帶電粒子為負極性,則帶電粒子會向形成正電壓的電極移動,而電雙層的極性會為正極性。依據上述,電雙層與形成正電壓的電極之間的遲滯(relaxation)效應會形成排斥力,因而產生帶電粒子的反彈(bounce back)現象,進而降低畫面的色度(例如白度、黑度、彩度)及對比度。In general, an electric double layer is produced around the charged particles, wherein the polarity of the electric double layer is opposite to the polarity of the charged particles. If the charged particles are negative, the charged particles move toward the electrode forming a positive voltage, and the polarity of the electric double layer is positive. According to the above, the relaxation effect between the electric double layer and the electrode forming the positive voltage forms a repulsive force, thereby causing a bounce back phenomenon of the charged particles, thereby reducing the chromaticity of the picture (for example, whiteness and blackness). , chroma) and contrast.

本發明提供一種電泳顯示器的驅動方法,可降低帶電粒子與上電極及下電極的反彈現象,以提升電泳顯示器可顯示的最大光學效果及最小光學效果。The invention provides a driving method for an electrophoretic display, which can reduce the rebound phenomenon of the charged particles and the upper electrode and the lower electrode, so as to enhance the maximum optical effect and the minimum optical effect that the electrophoretic display can display.

本發明提出一種電泳顯示器的驅動方法,其包括下列步驟。判斷目標灰階值是否為最大灰階值或最小灰階值。當目標灰階值為最大灰階值及最小灰階值的其中之一且起始灰階值為最大灰階值及最小灰階值的其中另一時,寫入預備灰階值,其中預備灰階值位於最大灰階值與最小灰階值之間。在預備灰階值寫入後,寫入目標灰階值。The invention provides a driving method of an electrophoretic display, which comprises the following steps. Determine whether the target grayscale value is the maximum grayscale value or the minimum grayscale value. When the target grayscale value is one of the maximum grayscale value and the minimum grayscale value and the starting grayscale value is the other of the maximum grayscale value and the minimum grayscale value, the preliminary grayscale value is written, wherein the preliminary gray is prepared The order value is between the maximum gray level value and the minimum gray level value. After the preliminary grayscale value is written, the target grayscale value is written.

在本發明之一實施例中,預備灰階值寫入後經過預設期間再進行寫入目標灰階值。In an embodiment of the invention, the target gray scale value is written after a predetermined period of time after the preliminary gray scale value is written.

在本發明之一實施例中,預設期間的時間長度為5至200毫秒。In an embodiment of the invention, the length of time during the preset period is 5 to 200 milliseconds.

在本發明之一實施例中,當目標灰階值為最大灰階值時,預備灰階值僅次於目標灰階值。In an embodiment of the invention, when the target grayscale value is the maximum grayscale value, the preliminary grayscale value is second only to the target grayscale value.

在本發明之一實施例中,當目標灰階值為最小灰階值時,預備灰階值僅大於目標灰階值。In an embodiment of the invention, when the target grayscale value is the minimum grayscale value, the preliminary grayscale value is only greater than the target grayscale value.

在本發明之一實施例中,電泳顯示器的操作溫度為-35度C至80度C。In one embodiment of the invention, the operating temperature of the electrophoretic display is -35 degrees C to 80 degrees C.

在本發明之一實施例中,電泳顯示器的操作電壓為0.5~100伏特。In one embodiment of the invention, the operating voltage of the electrophoretic display is between 0.5 and 100 volts.

在本發明之一實施例中,電泳顯示器的操作頻率為1~10000 Hz。In an embodiment of the invention, the operating frequency of the electrophoretic display is from 1 to 10000 Hz.

基於上述,本發明實施例的電泳顯示器的驅動方法,當目標灰階值為最大灰階值且起始灰階值為最小灰階值以及目標灰階值為最小灰階值且起始灰階值為最大灰階值時,不會直接寫入目標灰階值,而是先寫入位於最大灰階值與最小灰階值之間的預備灰階值。藉此,可改善電泳顯示器的帶電粒子與上電極及下電極間的反彈現象,以提升電泳顯示器可顯示的最大光學效果及最小光學效果。Based on the above, the driving method of the electrophoretic display according to the embodiment of the present invention, when the target grayscale value is the maximum grayscale value and the starting grayscale value is the minimum grayscale value and the target grayscale value is the minimum grayscale value and the starting grayscale When the value is the maximum grayscale value, the target grayscale value is not directly written, but the preliminary grayscale value between the maximum grayscale value and the minimum grayscale value is written first. Thereby, the rebound phenomenon between the charged particles of the electrophoretic display and the upper electrode and the lower electrode can be improved to enhance the maximum optical effect and the minimum optical effect that the electrophoretic display can display.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1為依據本發明一實施例寫入最大灰階值的驅動波形示意圖。請參照圖1,在本實施例中,起始灰階值是以最小灰階值Gmin為例,而要寫入的目標灰階值是以最大灰階值Gmax為例,亦即在時間點T1的光學效果會對應至最小灰階值Gmin,而在時間點T4的光學效果會對應最大灰階值Gmax。其中,起始灰階值可以為電泳顯示器進行刷新(refresh)動作後所對應的灰階值。並且,在本實施例中,上電極是以電泳顯示器的共同電極為例,下電極是以電泳顯示器的資料電極為例,但本發明的其他實施例則可依據本領域通常知識者自行設定。1 is a schematic diagram of a driving waveform for writing a maximum grayscale value according to an embodiment of the invention. Referring to FIG. 1 , in the embodiment, the initial gray scale value is taken as an example of the minimum gray scale value Gmin, and the target gray scale value to be written is taken as an example of the maximum gray scale value Gmax, that is, at the time point. The optical effect of T1 will correspond to the minimum grayscale value Gmin, while the optical effect at time point T4 will correspond to the maximum grayscale value Gmax. The initial grayscale value may be a grayscale value corresponding to the refresh operation of the electrophoretic display. Moreover, in the present embodiment, the upper electrode is exemplified by a common electrode of the electrophoretic display, and the lower electrode is exemplified by a data electrode of the electrophoretic display, but other embodiments of the present invention can be set by a person having ordinary knowledge in the art.

在時間點T1至T2之間,上電極假設形成正電壓,下電極假設形成零電壓,因此上電極與下電極之間的電場會為正電場,而此正電場即是用以寫入灰階值的驅動電場。並且,在時間點T1至T2之間的驅動電場用以寫入預備灰階GP1,亦即在時間點T2的光學效果對應至預備灰階值GP1。其中,預備灰階值GP1可以是位於最大灰階值Gmax與最小灰階值Gmin之間的多個灰階值的其中之一。以16灰階(灰階值0~15)而言,預備灰階值GP1可以為灰階值1~14。並且,預備灰階值GP1越靠近最大灰階值Gmax最好,亦即較佳的預備灰階值GP1為僅次於最大灰階值Gmax(即目標灰階值)的灰階值。以16灰階(灰階值0~15)而言,較佳的預備灰階值GP1為灰階值14。在其他實施例中,電泳顯示器所採用的灰階值為1~14,因此最大灰階值為灰階值14,最小灰階值為灰階值1,而較佳的預備灰階值GP1則為灰階值13,而本發明的其他實施例可據此類推,在此則不再贅述。Between time points T1 and T2, the upper electrode is assumed to form a positive voltage, and the lower electrode is assumed to form a zero voltage, so the electric field between the upper electrode and the lower electrode will be a positive electric field, and this positive electric field is used to write gray scale The value of the driving electric field. And, the driving electric field between the time points T1 to T2 is used to write the preliminary gray scale GP1, that is, the optical effect at the time point T2 corresponds to the preliminary gray scale value GP1. The preliminary grayscale value GP1 may be one of a plurality of grayscale values between the maximum grayscale value Gmax and the minimum grayscale value Gmin. In the case of 16 gray scales (gray scale values 0 to 15), the preliminary gray scale value GP1 may be a gray scale value of 1 to 14. Further, the closer the preliminary grayscale value GP1 is to the maximum grayscale value Gmax, that is, the preferred preliminary grayscale value GP1 is the grayscale value next to the maximum grayscale value Gmax (ie, the target grayscale value). In the case of 16 gray scales (gray scale values 0 to 15), the preferred preliminary gray scale value GP1 is a gray scale value of 14. In other embodiments, the gray scale value of the electrophoretic display is 1 to 14, so the maximum gray scale value is a gray scale value of 14, the minimum gray scale value is a gray scale value of 1, and the preferred preliminary gray scale value GP1 is It is a grayscale value of 13, and other embodiments of the present invention can be deduced by analogy, and will not be described again here.

在時間點T2後,由於電泳顯示器的帶電粒子與上電極會產生反彈現象,以致於光學效果會小幅降低,亦即所顯示的灰階值會下降。在時間點T2至T3之間(亦即預設期間TP1),上電極及下電極皆會形成正電壓,因此上電極與下電極之間的電場會為零電場(即無電場產生),以使電泳顯示器的帶電粒子的帶電極性強度會由於電荷中和而自然衰弱,其中預設期間TP1的時間長度一般為5至200毫秒。After the time point T2, the charged particles and the upper electrode of the electrophoretic display will rebound, so that the optical effect will be slightly reduced, that is, the displayed gray scale value will decrease. During the time point T2 to T3 (ie, the preset period TP1), the upper electrode and the lower electrode both form a positive voltage, so the electric field between the upper electrode and the lower electrode is zero electric field (ie, no electric field is generated), The charged polarity of the charged particles of the electrophoretic display is naturally weakened by charge neutralization, wherein the predetermined period of time TP1 is generally 5 to 200 milliseconds.

在時間點T3至T4之間,上電極仍持續形成正電壓,下電極會形成零電壓,因此上電極與下電極之間的電場會再次為正電場(即驅動電場),以寫入最大灰階值Gmax(即目標灰階值)。因此,在時間點T4的光學效果對應至最大灰階值Gmax。由於在預設期間TP1中,電泳顯示器的帶電粒子與上電極會進行一次反彈,以致於電泳顯示器的帶電粒子的帶電極性強度會減弱,因此在時間點T4後電泳顯示器的帶電粒子與上電極的反彈強度會大幅減弱。此時,電泳顯示器的帶電粒子可更貼近上電極,亦即可提高電泳顯示器可顯示的最大光學效果。Between the time points T3 and T4, the upper electrode continues to form a positive voltage, and the lower electrode forms a zero voltage, so the electric field between the upper electrode and the lower electrode is again a positive electric field (ie, driving electric field) to write the maximum gray. The order value Gmax (ie the target gray level value). Therefore, the optical effect at the time point T4 corresponds to the maximum grayscale value Gmax. Since in the preset period TP1, the charged particles of the electrophoretic display and the upper electrode rebound once, so that the charged polarity of the charged particles of the electrophoretic display is weakened, the charged particles and the upper electrode of the electrophoretic display after the time point T4 The rebound strength will be greatly reduced. At this time, the charged particles of the electrophoretic display can be closer to the upper electrode, and the maximum optical effect that the electrophoretic display can display can be improved.

依據上述,在起始灰階值為最小灰階值Gmin,以及目標灰階值為最大灰階值Gmax時,本實施例的電泳顯示器會先寫入預備灰階值GP1,並且在預備灰階值GP1寫入後經過預設期間TP1再進行寫入最大灰階值Gmax(即目標灰階值)。藉此,可改善電泳顯示器的帶電粒子與上電極間的反彈現象,以提高電泳顯示器可顯示的最大光學效果。According to the above, when the initial grayscale value is the minimum grayscale value Gmin, and the target grayscale value is the maximum grayscale value Gmax, the electrophoretic display of the embodiment first writes the preliminary grayscale value GP1, and is in the preparatory grayscale. After the value GP1 is written, the maximum grayscale value Gmax (ie, the target grayscale value) is written again after the preset period TP1. Thereby, the rebound phenomenon between the charged particles and the upper electrode of the electrophoretic display can be improved to improve the maximum optical effect that the electrophoretic display can display.

此外,上述本實施例是以電泳顯示器的帶電粒子為帶負電為例,但在其他實施例中,電泳顯示器的帶電粒子可以為帶正電,而上電極的電壓、下電極的電壓及上電極與下電極之間的電場會與上述實施例相反,此可依據本領域通常知識者自行調整。並且,上述寫入預備灰階值GP1的驅動波形(即電場)為一種實現方式,而本領域通常知識者自行設計預備灰階值GP1的驅動波形,且本發明實施例不以此為限。以及,本實施例的光學效果是用以表示電泳顯示器的帶電粒子的浮現程度,但在其他實施例中光學效果可用以表示電泳顯示器的帶電粒子的隱沒程度,本發明的實施例不以此為限。In addition, the above embodiment is an example in which the charged particles of the electrophoretic display are negatively charged, but in other embodiments, the charged particles of the electrophoretic display may be positively charged, and the voltage of the upper electrode, the voltage of the lower electrode, and the upper electrode. The electric field between the lower electrode and the lower electrode may be opposite to that of the above embodiment, which may be adjusted by one of ordinary skill in the art. Moreover, the driving waveform (ie, the electric field) of the pre-set grayscale value GP1 is an implementation manner, and a driving waveform of the preliminary grayscale value GP1 is designed by a person skilled in the art, and the embodiment of the present invention is not limited thereto. Moreover, the optical effect of the present embodiment is used to indicate the degree of occurrence of charged particles of the electrophoretic display, but in other embodiments the optical effect can be used to indicate the degree of fading of charged particles of the electrophoretic display, and embodiments of the present invention do not limit.

圖2為依據本發明一實施例寫入最小灰階值的驅動波形示意圖。請參照圖2,在本實施例中,起始灰階值是以最大灰階值Gmax為例,而要寫入的目標灰階值是以最小灰階值Gmin為例,亦即在時間點T5的光學效果對應至最大灰階值Gmax,在時間點T8的光學效果對應至最大灰階值Gmax。2 is a schematic diagram of driving waveforms for writing minimum grayscale values in accordance with an embodiment of the present invention. Referring to FIG. 2, in the embodiment, the starting grayscale value is taken as an example of the maximum grayscale value Gmax, and the target grayscale value to be written is taken as an example of the minimum grayscale value Gmin, that is, at the time point. The optical effect of T5 corresponds to the maximum grayscale value Gmax, and the optical effect at time point T8 corresponds to the maximum grayscale value Gmax.

在時間點T5至T6之間,上電極假設形成零電壓,下電極假設形成正電壓,因此上電極與下電極之間的電場會為負電場,而此負電場即是用以寫入灰階值的驅動電場。並且,在時間點T5至T6間的驅動電場用以寫入預備灰階GP2,亦即在時間點T6的光學效果對應至預備灰階值GP2。其中,預備灰階值GP2會位於最大灰階值Gmax與最小灰階值Gmin之間的多個灰階值的其中之一。並且,預備灰階值GP2越靠近最小灰階值Gmin最好,亦即較佳的預備灰階值GP2為僅大於最小灰階值Gmin(即目標灰階值)。以16灰階(灰階值0~15)而言,較佳的預備灰階值GP2為灰階值1。Between the time points T5 and T6, the upper electrode is assumed to form a zero voltage, and the lower electrode is assumed to form a positive voltage, so the electric field between the upper electrode and the lower electrode will be a negative electric field, and the negative electric field is used to write the gray level. The value of the driving electric field. Further, the driving electric field between the time points T5 to T6 is used to write the preliminary gray scale GP2, that is, the optical effect at the time point T6 corresponds to the preliminary gray scale value GP2. The preliminary grayscale value GP2 is located at one of a plurality of grayscale values between the maximum grayscale value Gmax and the minimum grayscale value Gmin. Moreover, it is preferable that the preliminary grayscale value GP2 is closer to the minimum grayscale value Gmin, that is, the preferred preliminary grayscale value GP2 is only larger than the minimum grayscale value Gmin (ie, the target grayscale value). In the case of 16 gray scales (gray scale values 0 to 15), the preferred preliminary gray scale value GP2 is a gray scale value of 1.

在時間點T6後,由於電泳顯示器的帶電粒子與下電極會產生反彈現象,以致於電泳顯示器的帶電粒子與下電極的反彈現象減弱,進而使電泳顯示器可顯示的光學效果提高。並且,在時間點T6至T7之間(亦即預設期間TP2),上電極及下電極皆會形成上電壓,因此上電極與下電極之間的電場會為零電場(即無電場產生),以使電泳顯示器的帶電粒子的帶電極性強度由於電荷中和而自然衰弱,其中預設期間TP2的時間長度一般為5至200毫秒。After the time point T6, the charged particles and the lower electrode of the electrophoretic display will rebound, so that the rebound phenomenon of the charged particles and the lower electrode of the electrophoretic display is weakened, thereby improving the optical effect that the electrophoretic display can display. Moreover, between the time points T6 and T7 (ie, the preset period TP2), the upper electrode and the lower electrode form an upper voltage, so the electric field between the upper electrode and the lower electrode is zero electric field (ie, no electric field is generated). In order to make the charged polarity of the charged particles of the electrophoretic display naturally weak due to charge neutralization, wherein the preset period TP2 is generally 5 to 200 milliseconds in length.

在時間點T7至T8之間,下電極仍持續形成正電壓,上電極會形成零電壓,因此上電極與下電極之間的電場會再次為負電場(即驅動電場),以寫入最小灰階值Gmin(即目標灰階值)。因此,在時間點T8的光學效果對應至最小灰階值Gmin。由於在預設期間TP2中,電泳顯示器的帶電粒子與下電極會進行一次反彈,以致於電泳顯示器的帶電粒子的帶電極性強度會減弱,因此在時間點T8後電泳顯示器的帶電粒子與下電極的反彈強度會大幅減弱。此時,電泳顯示器的帶電粒子可更貼近下電極,亦即可降低電泳顯示器可顯示的最小光學效果。Between the time points T7 and T8, the lower electrode continues to form a positive voltage, and the upper electrode forms a zero voltage, so the electric field between the upper electrode and the lower electrode is again a negative electric field (ie, driving electric field) to write the minimum gray. The order value Gmin (ie the target gray level value). Therefore, the optical effect at the time point T8 corresponds to the minimum grayscale value Gmin. Since in the preset period TP2, the charged particles and the lower electrode of the electrophoretic display rebound once, so that the charged polarity of the charged particles of the electrophoretic display is weakened, the charged particles and the lower electrode of the electrophoretic display after the time point T8 The rebound strength will be greatly reduced. At this time, the charged particles of the electrophoretic display can be closer to the lower electrode, and the minimum optical effect that the electrophoretic display can display can be reduced.

依據上述,在起始灰階值為最大灰階值Gmax,以及目標灰階值為最小灰階值Gmin時,本實施例的電泳顯示器會先寫入預備灰階值GP2,並且在預備灰階值GP2寫入後經過預設期間TP2再進行寫入最小灰階值Gmin(即目標灰階值)。藉此,可改善電泳顯示器的帶電粒子與下電極間的反彈現象,以提升電泳顯示器可顯示的最小光學效果。According to the above, when the initial grayscale value is the maximum grayscale value Gmax, and the target grayscale value is the minimum grayscale value Gmin, the electrophoretic display of the embodiment first writes the preliminary grayscale value GP2, and is in the preparatory grayscale. After the value GP2 is written, the minimum grayscale value Gmin (ie, the target grayscale value) is written again after the preset period TP2. Thereby, the rebound phenomenon between the charged particles and the lower electrode of the electrophoretic display can be improved to enhance the minimum optical effect that the electrophoretic display can display.

此外,在本發明之一實施例中,電泳顯示器的操作溫度為-35度C至80度C,亦即電泳顯示器可操作於環境溫度為-35度C至80度C的環境中。並且,電泳顯示器的操作電壓可以為0.5~100伏特,亦即最大灰階值Gmax對應的電壓與最小灰階值Gmin對應的電壓的壓差範圍可以為0.5~100伏特。以及,電泳顯示器的操作頻率可以為1~10000 Hz,亦即電泳顯示器產生驅動波形的速度為1~10000 Hz。上述為舉例以說明,而本發明的其他實施例不以此為限。Moreover, in one embodiment of the invention, the operating temperature of the electrophoretic display is -35 degrees C to 80 degrees C, i.e., the electrophoretic display is operable in an environment having an ambient temperature of -35 degrees C to 80 degrees C. Moreover, the operating voltage of the electrophoretic display may be 0.5 to 100 volts, that is, the voltage corresponding to the voltage corresponding to the maximum grayscale value Gmax and the voltage corresponding to the minimum grayscale value Gmin may range from 0.5 to 100 volts. Moreover, the operating frequency of the electrophoretic display can be from 1 to 10000 Hz, that is, the speed at which the electrophoretic display generates the driving waveform is 1 to 10000 Hz. The above is by way of example and the other embodiments of the present invention are not limited thereto.

圖3為依據本發明一實施例的電泳顯示器的驅動方法的流程圖。請參照圖3,在本實施例中,會判斷目標灰階值是否為最大灰階值或最小灰階值。當目標灰階值為最大灰階值時,則執行步驟S320,以判斷起始灰階值是否為最小灰階值;當目標灰階值為最小灰階值時,則執行步驟S330,以判斷起始灰階值是否為最大灰階值;當目標灰階值不為最大灰階值或最小灰階值,則以正常方式驅動(步驟S340),亦即目標灰階值以一次寫入。3 is a flow chart of a method of driving an electrophoretic display according to an embodiment of the invention. Referring to FIG. 3, in this embodiment, it is determined whether the target grayscale value is the maximum grayscale value or the minimum grayscale value. When the target grayscale value is the maximum grayscale value, step S320 is performed to determine whether the initial grayscale value is the minimum grayscale value; when the target grayscale value is the minimum grayscale value, step S330 is performed to determine Whether the initial grayscale value is the maximum grayscale value; when the target grayscale value is not the maximum grayscale value or the minimum grayscale value, it is driven in a normal manner (step S340), that is, the target grayscale value is written once.

在步驟S320中,當起始灰階值為最小灰階值時,則寫入預備灰階值(步驟S350),其中預備灰階值位於最大灰階值與最小灰階值之間,並且在預備灰階值寫入後,寫入目標灰階值(步驟S360);當起始灰階值不為最小灰階值時,則以正常方式驅動(步驟S340)。在步驟S330中,當起始灰階值為最大灰階值時,同樣會寫入預備灰階值(步驟S350),以及在預備灰階值寫入後,寫入目標灰階值(步驟S360);當起始灰階值不為最大灰階值時,則以正常方式驅動(步驟S340)。In step S320, when the starting grayscale value is the minimum grayscale value, the preliminary grayscale value is written (step S350), wherein the preliminary grayscale value is located between the maximum grayscale value and the minimum grayscale value, and After the preliminary grayscale value is written, the target grayscale value is written (step S360); when the initial grayscale value is not the minimum grayscale value, it is driven in the normal manner (step S340). In step S330, when the starting grayscale value is the maximum grayscale value, the preliminary grayscale value is also written (step S350), and after the preliminary grayscale value is written, the target grayscale value is written (step S360). When the starting grayscale value is not the maximum grayscale value, it is driven in the normal manner (step S340).

在步驟S340及360執行後,會回到步驟S310,以判斷下一個驅動波形是否為最大灰階值或最小灰階值其中之一改變至最大灰階值或最小灰階值其中另一。其中,上述步驟的細節可參照上述實施例的說明,在此則不再述。After the steps S340 and 360 are executed, the process returns to step S310 to determine whether the next driving waveform is one of the maximum grayscale value or the minimum grayscale value, and the other one is changed to the maximum grayscale value or the minimum grayscale value. The details of the above steps can be referred to the description of the above embodiments, and will not be described here.

綜上所述,本發明實施例的電泳顯示器的驅動方法,當目標灰階值為最大灰階值且起始灰階值為最小灰階值以及目標灰階值為最小灰階值且起始灰階值為最大灰階值時,不會直接寫入目標灰階值,而是先寫入位於最大灰階值與最小灰階值之間的預備灰階值。藉此,可改善電泳顯示器的帶電粒子與上電極及下電極間的反彈現象,以提升電泳顯示器可顯示的最大光學效果及最小光學效果。In summary, the driving method of the electrophoretic display according to the embodiment of the present invention, when the target grayscale value is the maximum grayscale value and the starting grayscale value is the minimum grayscale value and the target grayscale value is the minimum grayscale value and the starting When the grayscale value is the maximum grayscale value, the target grayscale value is not directly written, but the preliminary grayscale value between the maximum grayscale value and the minimum grayscale value is first written. Thereby, the rebound phenomenon between the charged particles of the electrophoretic display and the upper electrode and the lower electrode can be improved to enhance the maximum optical effect and the minimum optical effect that the electrophoretic display can display.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

GP1、GP2...預備灰階值GP1, GP2. . . Prepared grayscale value

Gmax...最大灰階值Gmax. . . Maximum grayscale value

Gmin...最小灰階值Gmin. . . Minimum grayscale value

T1~T8...時間點T1~T8. . . Time point

TP1、TP2...預設期間TP1, TP2. . . Preset period

S310、S320、S330、S340、S350、S360...步驟S310, S320, S330, S340, S350, S360. . . step

圖1為依據本發明一實施例寫入最大灰階值的驅動波形示意圖。1 is a schematic diagram of a driving waveform for writing a maximum grayscale value according to an embodiment of the invention.

圖2為依據本發明一實施例寫入最小灰階值的驅動波形示意圖。2 is a schematic diagram of driving waveforms for writing minimum grayscale values in accordance with an embodiment of the present invention.

圖3為依據本發明一實施例的電泳顯示器的驅動方法的流程圖。3 is a flow chart of a method of driving an electrophoretic display according to an embodiment of the invention.

S310、S320、S330、S340、S350、S360...步驟S310, S320, S330, S340, S350, S360. . . step

Claims (8)

一種電泳顯示器的驅動方法,包括:判斷一目標灰階值是否為一最大灰階值或一最小灰階值;當該目標灰階值為該最大灰階值及該最小灰階值的其中之一且一起始灰階值為該最大灰階值及該最小灰階值的其中另一時,寫入一預備灰階值,其中該預備灰階值位於該最大灰階值與該最小灰階值之間;以及在該預備灰階值寫入後,寫入該目標灰階值。A driving method for an electrophoretic display, comprising: determining whether a target grayscale value is a maximum grayscale value or a minimum grayscale value; and when the target grayscale value is the maximum grayscale value and the minimum grayscale value When a starting gray scale value is the other of the maximum gray scale value and the minimum gray scale value, writing a preliminary gray scale value, wherein the preliminary gray scale value is located at the maximum gray scale value and the minimum gray scale value And writing the target grayscale value after the preliminary grayscale value is written. 如申請專利範圍第1項所述之電泳顯示器的驅動方法,其中該預備灰階值寫入後經過一預設期間再進行寫入該目標灰階值。The method for driving an electrophoretic display according to claim 1, wherein the preliminary grayscale value is written and the target grayscale value is written after a predetermined period of time. 如申請專利範圍第2項所述之電泳顯示器的驅動方法,其中該預設期間的時間長度為5至200毫秒。The driving method of the electrophoretic display according to claim 2, wherein the predetermined period of time is 5 to 200 milliseconds. 如申請專利範圍第1項所述之電泳顯示器的驅動方法,其中當該目標灰階值為該最大灰階值時,該預備灰階值僅次於該目標灰階值。The driving method of the electrophoretic display according to claim 1, wherein when the target grayscale value is the maximum grayscale value, the preliminary grayscale value is second only to the target grayscale value. 如申請專利範圍第1項所述之電泳顯示器的驅動方法,其中當該目標灰階值為該最小灰階值時,該預備灰階值僅大於該目標灰階值。The driving method of the electrophoretic display according to claim 1, wherein when the target grayscale value is the minimum grayscale value, the preliminary grayscale value is only greater than the target grayscale value. 如申請專利範圍第1項所述之電泳顯示器的驅動方法,其中該電泳顯示器的操作溫度為-35度C至80度C。The driving method of an electrophoretic display according to claim 1, wherein the electrophoretic display has an operating temperature of -35 degrees C to 80 degrees C. 如申請專利範圍第1項所述之電泳顯示器的驅動方法,其中該電泳顯示器的操作電壓為0.5~100伏特。The driving method of an electrophoretic display according to claim 1, wherein the electrophoretic display has an operating voltage of 0.5 to 100 volts. 如申請專利範圍第1項所述之電泳顯示器的驅動方法,其中該電泳顯示器的操作頻率為1~10000 Hz。The driving method of the electrophoretic display according to the first aspect of the invention, wherein the operating frequency of the electrophoretic display is 1 to 10000 Hz.
TW100128939A 2011-08-12 2011-08-12 Driving method of electrophoretic display TWI457895B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100128939A TWI457895B (en) 2011-08-12 2011-08-12 Driving method of electrophoretic display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100128939A TWI457895B (en) 2011-08-12 2011-08-12 Driving method of electrophoretic display

Publications (2)

Publication Number Publication Date
TW201308282A TW201308282A (en) 2013-02-16
TWI457895B true TWI457895B (en) 2014-10-21

Family

ID=48169883

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128939A TWI457895B (en) 2011-08-12 2011-08-12 Driving method of electrophoretic display

Country Status (1)

Country Link
TW (1) TWI457895B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200405107A (en) * 2002-09-23 2004-04-01 Sipix Imaging Inc Electrophoretic displays with improved high temperature performance
TW200947384A (en) * 2008-02-01 2009-11-16 Seiko Epson Corp Method of driving electrophoretic display device, electrophoretic display device, and electronic apparatus
TW201039311A (en) * 2009-04-29 2010-11-01 Chunghwa Picture Tubes Ltd Method of updating the display of electrophoretic display mechanism and the device thereof
US20110096104A1 (en) * 2009-10-26 2011-04-28 Sprague Robert A Spatially combined waveforms for electrophoretic displays
CN102053440A (en) * 2009-11-10 2011-05-11 上海天马微电子有限公司 Electrophoretic display and driving method thereof
US20110148833A1 (en) * 2009-12-17 2011-06-23 Hong Fu Jin Precision Industry (Shenzhen)Co., Ltd. Electrophoretic display and method for adjustting driving settings thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200405107A (en) * 2002-09-23 2004-04-01 Sipix Imaging Inc Electrophoretic displays with improved high temperature performance
TW200947384A (en) * 2008-02-01 2009-11-16 Seiko Epson Corp Method of driving electrophoretic display device, electrophoretic display device, and electronic apparatus
TW201039311A (en) * 2009-04-29 2010-11-01 Chunghwa Picture Tubes Ltd Method of updating the display of electrophoretic display mechanism and the device thereof
US20110096104A1 (en) * 2009-10-26 2011-04-28 Sprague Robert A Spatially combined waveforms for electrophoretic displays
CN102053440A (en) * 2009-11-10 2011-05-11 上海天马微电子有限公司 Electrophoretic display and driving method thereof
US20110148833A1 (en) * 2009-12-17 2011-06-23 Hong Fu Jin Precision Industry (Shenzhen)Co., Ltd. Electrophoretic display and method for adjustting driving settings thereof

Also Published As

Publication number Publication date
TW201308282A (en) 2013-02-16

Similar Documents

Publication Publication Date Title
TWI436337B (en) Electrophoretic display and driving method thereof
US10229641B2 (en) Driving method of electrophoretic display
TWI444975B (en) Electrophoretic display and driving method thereof
TWI419123B (en) Display device and method of driving the same
US10013922B2 (en) Control device and control device controlling method
CN109935203B (en) Display apparatus performing low gray-scale monochrome image compensation and method of operating the same
TWI691774B (en) Electro-phoretic display and driving method thereof
JP2007183545A (en) Liquid crystal display device of field sequential color type, and method for driving the same
JP2008015430A (en) Liquid crystal display device, drive control circuit and driving method used for liquid crystal display device
JP2008026851A (en) Driver for bistable display and driving method thereof
US9984633B2 (en) Display apparatus and controlling method thereof
TW200710790A (en) Liquid crystal display and driving method therefor
TWI566225B (en) Driving devices and driving methods
KR20090131039A (en) Method for driving pixel and display apparatus for performing the method
TW202016913A (en) Liquid crystal display device and driving methed thereof
TW201211973A (en) Electronic paper display drive method and apparatus thereof
US20150279333A1 (en) Display device and drive method therefor
WO2017190428A1 (en) Driving method for display panel and display device comprising display panel
KR20140008036A (en) Liquid crystal display device and method for driving the same
TW201318439A (en) Image processing method for power saving and display device thereof
TWI457895B (en) Driving method of electrophoretic display
US10262604B2 (en) Control device, display device, and control method for display device
TWI679625B (en) Method for avoiding image sticking and display system
CN103065600A (en) Method for selecting frame rate control (FRC) pattern
TWI415071B (en) Method for driving bistable display device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent