TWI456161B - An interferometric configuration based on optical balanced detection concept is proposed to measure the surface profile - Google Patents

An interferometric configuration based on optical balanced detection concept is proposed to measure the surface profile Download PDF

Info

Publication number
TWI456161B
TWI456161B TW101149133A TW101149133A TWI456161B TW I456161 B TWI456161 B TW I456161B TW 101149133 A TW101149133 A TW 101149133A TW 101149133 A TW101149133 A TW 101149133A TW I456161 B TWI456161 B TW I456161B
Authority
TW
Taiwan
Prior art keywords
sensing element
ηpin
2rprs
plane
wavelength
Prior art date
Application number
TW101149133A
Other languages
Chinese (zh)
Other versions
TW201425864A (en
Inventor
Hui Kang Teng
Kuo Chen Lang
Original Assignee
Univ Nan Kai Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nan Kai Technology filed Critical Univ Nan Kai Technology
Priority to TW101149133A priority Critical patent/TWI456161B/en
Publication of TW201425864A publication Critical patent/TW201425864A/en
Application granted granted Critical
Publication of TWI456161B publication Critical patent/TWI456161B/en

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Claims (7)

一種以光學平衡偵測為基礎之二維表面輪廓量測干涉儀架構,其包括:一第一半波長相位延遲片,用以將一入射光波的線偏振態方向調整為與水平軸向夾45度;一偏振光學分光裝置,用以將穿透該第一半波長相位延遲片入射光分為水平線偏振分量的訊號光波,和垂直線偏振分量的參考光波;一第一1/4波長相位延遲片,用以調整前述參考光波為圓偏振態,並由一參考平面反射鏡沿原路徑反射到該偏振光學分光裝置;一第二1/4波長相位延遲片,用以調整前述訊號光波為圓偏振態,並由一待測平面沿原路徑反射到該偏振光學分光裝置;一第二半波長相位延遲片,用以接受該偏振光學分光裝置穿透與反射的合成光波;及一線偏極化片,接受穿過該第二半波長相位延遲片的合成光波,並調整角度分別允許光波的水平線偏振電場分量及垂直線偏振電場分量進入一電荷耦合裝置,藉由該電荷耦合裝置轉換為二組二維電子訊號;再設置一第三1/4波長相位延遲片,其位於該第二半波長相位延遲片與該線偏極化片之間,當光波穿透該第三1/4波長相位延遲片時,若光波的線偏振態方位角與該第三1/4波長相位延遲片光軸平行,則穿透後光波將獲得額外π /2相位,若光波的線偏振態方位角與該第三1/4波長相位延遲片光軸垂直,則無任何影響,再藉該電荷耦合裝置,轉換為另二組二維電子訊號。A two-dimensional surface profile measuring interferometer architecture based on optical balance detection, comprising: a first half-wavelength phase retarder for adjusting a linear polarization state of an incident light wave to a horizontal axial clamp 45 a polarization optical splitting device for splitting the incident light that penetrates the first half-wavelength phase retarder into a horizontally linearly polarized component, and a reference optical wave of a vertically linearly polarized component; a first 1/4 wavelength phase delay a sheet for adjusting the reference light wave to be in a circular polarization state, and reflected by the reference plane mirror along the original path to the polarization optical splitting device; and a second quarter-wavelength phase retarder for adjusting the signal light wave to a circle a polarization state, and is reflected by the plane to be measured along the original path to the polarization optical splitting device; a second half-wavelength phase retarder for receiving the synthesized light wave penetrated and reflected by the polarization optical splitting device; and a linear polarization a sheet, accepting a synthetic light wave passing through the second half-wavelength phase retarder, and adjusting the angle to allow the horizontal linearly polarized electric field component and the vertical linearly polarized electric field component of the optical wave to enter The charge coupled device is converted into two sets of two-dimensional electronic signals by the charge coupled device; and a third quarter-wavelength phase retarder is disposed on the second half-wavelength phase retarder and the linear polarizer When the light wave penetrates the third quarter-wavelength phase retarder, if the linear polarization azimuth of the light wave is parallel to the optical axis of the third quarter-wavelength retarder, the light wave after the penetration will obtain an additional π. /2 phase, if the linear polarization azimuth of the light wave is perpendicular to the optical axis of the third quarter-wavelength retarder, there is no influence, and the charge coupled device is converted into another two-dimensional two-dimensional electronic signal. 如申請專利範圍第1項之二維表面輪廓量測干涉儀架構,其中,該參考平面反射鏡與待測平面互換位置,不影響量測順序與結果。For example, the two-dimensional surface profile measuring interferometer architecture of claim 1 wherein the reference plane mirror is interchanged with the plane to be tested does not affect the measurement sequence and result. 如申請專利範圍第1項之二維表面輪廓量測干涉儀架構,其中,該線偏極化片的角度調整順序,不影響量測順序與結果。For example, the two-dimensional surface profile measuring interferometer architecture of claim 1 wherein the angular adjustment order of the linear polarizing plate does not affect the measurement sequence and the result. 如申請專利範圍第1項之二維表面輪廓量測干涉儀架構,其中,當該第二半波長相位延遲片的光軸方位角為nπ+π/8或nπ-3π/8,n=0或1;該第三1/4波長相位延遲片之光軸方位角為nπ+π/4,n=0或1;該電荷耦合裝置各感測元素的輸出訊號為I1P (x ,y )=(ηPin /4){rP2 +rS2 -2rPrS cos[△(x ,y )]} I1S (x ,y )=(ηPin /4){rP2 +rS2 +2rPrS cos[△(x ,y )]} I2P (x ,y )=(ηPin /4){rP2 +rS2 -2rPrS sin[△(x ,y )]} I2S (x ,y )=(ηPin /4){rP2 +rS2 +2rPrS sin[△(x ,y )]}計算出每個感測元素的相位差△(x ,y ) 其中,(x ,y )表示電荷耦合裝置某一個感測元素的位置,η為光感測元素的響應率,假設皆相同;rP 、rS 分別代表參考平面反射鏡及待測平面表面的反射係數;△(x ,y )=4π d/λ為待測平面與參考平面在某一個感測元素的相位差,d為待測平面與參考元件之間,對應一個感測元素位置對應之微小距離差;λ為光波波長;Pin 為入射光的光功率。The two-dimensional surface profile measuring interferometer architecture of claim 1, wherein when the second half-wavelength phase retarder has an optical axis azimuth of nπ+π/8 or nπ-3π/8, n=0 Or 1; the optical axis azimuth of the third quarter-wavelength phase retarder is nπ+π/4, n=0 or 1; the output signal of each sensing element of the charge coupled device is I1P (x , y )=(ηPin /4){rP2 +rS2 -2rPrS Cos[△(x , y )]} I1S (x , y )=(ηPin /4){rP2 +rS2 +2rPrS Cos[△(x , y )]} I2P (x , y )=(ηPin /4){rP2 +rS2 -2rPrS Sin[△(x , y )]} I2S (x , y )=(ηPin /4){rP2 +rS2 +2rPrS Sin[△(x , y )]} Calculate the phase difference △ of each sense element (x , y ) Among them, (x , y ) indicates the position of a sensing element of the charge coupled device, and η is the response rate of the light sensing element, assuming the same; rP rS Representing the reflection coefficient of the reference plane mirror and the surface of the plane to be tested, respectively; △ (x , y )=4π d/λ is the phase difference between the plane to be measured and the reference plane in a certain sensing element, d is the distance between the plane to be measured and the reference component, corresponding to the position of a sensing element; λ is the wavelength of the light wave; Pin The optical power of the incident light. 如申請專利範圍第4項之二維表面輪廓量測干涉儀架構, 其中,當該第二半波長相位延遲片的光軸方位角為nπ-π/8或nπ+3π/8,n=0或1;該第三1/4波長相位延遲片之光軸方位角為nπ+π/4,n=0或1;該電荷耦合裝置各感測元素的輸出訊號為I1P (x,y)=(ηPin /4){rP2 +rS2 +2rPrS cos[△(x ,y )]} I1S (x,y)=(ηPin /4){rP2 +rS2 -2rPrS cos[△(x ,y )]} I2P (x,y)=(ηPin /4){rP2 +rS2 -2rPrS sin[△(x ,y )]} I2S (x,y)=(ηPin /4){rP2 +rS2 +2rPrS sin[△(x ,y )]}計算出每個感測元素的相位差△(x,y) 其中,(x ,y )表示電荷耦合裝置某一個感測元素的位置,η為光感測元素的響應率,假設皆相同;rP 、rS 分別代表參考平面反射鏡及待測平面表面的反射係數;△(x ,y )=4π d/λ為待測平面與參考平面在某一個感測元素的相位差,d為待測平面與參考元件之間,對應一個感測元素位置對應之微小距離差;λ為光波波長;Pin 為入射光的光功率。The two-dimensional surface profile measuring interferometer architecture of claim 4, Wherein, when the optical axis azimuth of the second half-wavelength phase retarder is nπ-π/8 or nπ+3π/8, n=0 or 1; the optical axis azimuth of the third quarter-wavelength phase retarder Is nπ+π/4, n=0 or 1; the output signal of each sensing element of the charge coupled device is I1P (x,y)=(ηPin /4){rP2 +rS2 +2rPrS Cos[△(x , y )]} I1S (x,y)=(ηPin /4){rP2 +rS2 -2rPrS Cos[△(x , y )]} I2P (x,y)=(ηPin /4){rP2 +rS2 -2rPrS Sin[△(x , y )]} I2S (x,y)=(ηPin /4){rP2 +rS2 +2rPrS Sin[△(x , y )]} Calculate the phase difference Δ(x, y) of each sensing element Among them, (x , y ) indicates the position of a sensing element of the charge coupled device, and η is the response rate of the light sensing element, assuming the same; rP rS Representing the reflection coefficient of the reference plane mirror and the surface of the plane to be tested, respectively; △ (x , y )=4π d/λ is the phase difference between the plane to be measured and the reference plane in a certain sensing element, d is the distance between the plane to be measured and the reference component, corresponding to the position of a sensing element; λ is the wavelength of the light wave; Pin The optical power of the incident light. 如申請專利範圍第1項之二維表面輪廓量測干涉儀架構,其中,當該第二半波長相位延遲片的光軸方位角為nπ+π/8或nπ-3π/8,n=0或1;該第三1/4波長相位延遲片之光軸方位角為nπ+3π/4,n=0或1;該電荷耦合裝置各感測元素的輸出訊號為I1P (x ,y )=(ηPin /4){rP2 +rS2 -2rPrS cos[△(x ,y )]} I1S (x ,y )=(ηPin /4){rP2 +rS2 +2rPrS cos[△(x ,y )]} I2P (x ,y )=(ηPin /4){rP2 +rS2 +2rPrS sin[△(x ,y )]} I2S (x ,y )=(ηPin /4){rP2 +rS2 -2rPrS sin[△(x ,y )]}計算出每個感測元素的相位差△(x ,y ) 其中,(x ,y )表示電荷耦合裝置某一個感測元素的位置,η為光感測元素的響應率,假設皆相同;rP 、rS 分別代表參考平面反射鏡及待測平面表面的反射係數;△(x ,y )=4π d/λ為待測平面與參考平面在某一個感測元素的相位差,d為待測平面與參考元件之間,對應一個感測元素位置對應之微小距離差;λ為光波波長;Pin 為入射光的光功率。The two-dimensional surface profile measuring interferometer architecture of claim 1, wherein when the second half-wavelength phase retarder has an optical axis azimuth of nπ+π/8 or nπ-3π/8, n=0 Or 1; the optical axis azimuth of the third quarter-wavelength phase retarder is nπ+3π/4, n=0 or 1; the output signal of each sensing element of the charge coupled device is I1P (x , y )=(ηPin /4){rP2 +rS2 -2rPrS Cos[△(x , y )]} I1S (x , y )=(ηPin /4){rP2 +rS2 +2rPrS Cos[△(x , y )]} I2P (x , y )=(ηPin /4){rP2 +rS2 +2rPrS Sin[△(x , y )]} I2S (x , y )=(ηPin /4){rP2 +rS2 -2rPrS Sin[△(x , y )]} Calculate the phase difference △ of each sense element (x , y ) Among them, (x , y ) indicates the position of a sensing element of the charge coupled device, and η is the response rate of the light sensing element, assuming the same; rP rS Representing the reflection coefficient of the reference plane mirror and the surface of the plane to be tested, respectively; △ (x , y )=4π d/λ is the phase difference between the plane to be measured and the reference plane in a certain sensing element, d is the distance between the plane to be measured and the reference component, corresponding to the position of a sensing element; λ is the wavelength of the light wave; Pin The optical power of the incident light. 如申請專利範圍第1項之二維表面輪廓量測干涉儀架構,其中,當該第二半波長相位延遲片的光軸方位角為nπ-π/8或nπ+3π/8,n=0或1;該第三1/4波長相位延遲片之光軸方位角為3π/4或-π/4;該電荷耦合裝置各感測元素的輸出訊號為I1P (x ,y )=(ηPin /4){rP2 +rS2 +2rPrS cos[△(x ,y )]} I1S (x ,y )=(ηPin /4){rP2 +rS2 -2rPrS cos[△(x ,y )]} I2P (x ,y )=(ηPin /4){rP2 +rS2 +2rPrS sin[△(x ,y )]} I2S (x ,y )=(ηPin /4){rP2 +rS2 -2rPrS sin[△(x ,y )]}計算出每個感測元素的相位差△(x ,y ) 其中,(x ,y )表示電荷耦合裝置某一個感測元素的位置,η為光感測元素的響應率,假設皆相同;rP 、rS 分別代表參考平面反射鏡及待測平面表面的反射係數;△(x ,y )=4π d/ λ為待測平面與參考平面在某一個感測元素的相位差,d為待測平面與參考元件之間,對應一個感測元素位置對應之微小距離差;λ為光波波長;Pin 為入射光的光功率。The two-dimensional surface profile measuring interferometer architecture of claim 1, wherein when the second half-wavelength phase retarder has an optical axis azimuth of nπ-π/8 or nπ+3π/8, n=0 Or 1; the optical axis azimuth of the third quarter-wavelength phase retarder is 3π/4 or -π/4; the output signal of each sensing element of the charge coupled device is I1P (x , y )=(ηPin /4){rP2 +rS2 +2rPrS Cos[△(x , y )]} I1S (x , y )=(ηPin /4){rP2 +rS2 -2rPrS Cos[△(x , y )]} I2P (x , y )=(ηPin /4){rP2 +rS2 +2rPrS Sin[△(x , y )]} I2S (x , y )=(ηPin /4){rP2 +rS2 -2rPrS Sin[△(x , y )]} Calculate the phase difference △ of each sense element (x , y ) Among them, (x , y ) indicates the position of a sensing element of the charge coupled device, and η is the response rate of the light sensing element, assuming the same; rP rS Representing the reflection coefficient of the reference plane mirror and the surface of the plane to be tested, respectively; △ (x , y )=4π d/ λ is the phase difference between the plane to be measured and the reference plane in a certain sensing element, d is the distance between the plane to be measured and the reference component, corresponding to the position of a sensing element; λ is the wavelength of the light wave; Pin The optical power of the incident light.
TW101149133A 2012-12-21 2012-12-21 An interferometric configuration based on optical balanced detection concept is proposed to measure the surface profile TWI456161B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101149133A TWI456161B (en) 2012-12-21 2012-12-21 An interferometric configuration based on optical balanced detection concept is proposed to measure the surface profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101149133A TWI456161B (en) 2012-12-21 2012-12-21 An interferometric configuration based on optical balanced detection concept is proposed to measure the surface profile

Publications (2)

Publication Number Publication Date
TW201425864A TW201425864A (en) 2014-07-01
TWI456161B true TWI456161B (en) 2014-10-11

Family

ID=51725382

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101149133A TWI456161B (en) 2012-12-21 2012-12-21 An interferometric configuration based on optical balanced detection concept is proposed to measure the surface profile

Country Status (1)

Country Link
TW (1) TWI456161B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW558642B (en) * 1999-08-02 2003-10-21 Zetetic Inst Scanning interferometric near-field confocal microscopy
TWI247091B (en) * 2004-11-10 2006-01-11 Ind Tech Res Inst Apparatus for measuring displacement
TWI247881B (en) * 2004-02-17 2006-01-21 Univ Nat Cheng Kung Phase shifting moire interferometry based on liquid crystal phase modulators
US20090182528A1 (en) * 2007-12-14 2009-07-16 De Groot Peter Analyzing surface structure using scanning interferometry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW558642B (en) * 1999-08-02 2003-10-21 Zetetic Inst Scanning interferometric near-field confocal microscopy
TWI247881B (en) * 2004-02-17 2006-01-21 Univ Nat Cheng Kung Phase shifting moire interferometry based on liquid crystal phase modulators
TWI247091B (en) * 2004-11-10 2006-01-11 Ind Tech Res Inst Apparatus for measuring displacement
US20090182528A1 (en) * 2007-12-14 2009-07-16 De Groot Peter Analyzing surface structure using scanning interferometry

Also Published As

Publication number Publication date
TW201425864A (en) 2014-07-01

Similar Documents

Publication Publication Date Title
KR101812608B1 (en) One-piece polarizing interferometer and snapshot spectro-polarimetry applying the same
US9587927B2 (en) High speed high resolution heterodyne interferometric method and system
CN104034257A (en) Synchronous phase shift interference measurement device and method of Fizeau quasi-common optical path structure
JP2008533447A5 (en)
CN110487173B (en) Reflection type phase orthogonal single-frequency laser interference measuring device and measuring method
WO2015085694A1 (en) Double-frequency laser displacement and angle interferometer
Zhang et al. Methods for optical phase retardation measurement: a review
CN104897273A (en) Quadrature error-free single-path circular polarization interference and double-Wollaston prism light-splitting type homodyne laser vibration meter
CN104964932A (en) Terahertz vertical transmission spectrum and reflectance spectrum measuring integral system and application thereof
JPS649565B2 (en)
CN102620907B (en) Method for measuring phase delay angles of optical device
CN106813901B (en) The measuring device and its measurement method of optical device phase-delay quantity
TWI456161B (en) An interferometric configuration based on optical balanced detection concept is proposed to measure the surface profile
KR101936792B1 (en) Optical Meter for Measuring of Film Structures based on Ellipsometry and Interferometer
TWI464387B (en) Heterodyne interferometer based on the subtraction between optical interference signals designed for measuring the ellipsometric parameters of thin films
TW201024694A (en) Method and apparatus for measuring physical parameters of an anisotropic material by phase-sensitive heterodyne interferometry
TWI274142B (en) Apparatus and method for sequentially measuring multiple optical parameters of birefringence material
CN104406914A (en) Method for measuring polarization fidelity of optical thin film by using ellipsometer
US11365989B2 (en) Method and system for contactless detection of rotational movement
CN201408016Y (en) Light path quadrupling measuring device based on Mach-Zehnder interference light path
TWI502177B (en) A heterodyne interferometric ellipsometry based on optical addition and subtraction
Teng et al. Polarization-shifting interferometry on two-dimensional linear birefringent parameters measurement
TWI452644B (en) Method and apparatus for measuring etching depth
CN104897274A (en) Anti-polarization aliasing double-path circular polarization interference and single-Wollaston prism light-splitting type homodyne laser vibration meter
CN109489939A (en) S, P polarized reflectivity and phase difference high-precision simultaneous measurement method of high-reflectivity optical element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees