TWI455718B - Nano silver particle/clay composite for antibacterial and manufacturing method thereof - Google Patents

Nano silver particle/clay composite for antibacterial and manufacturing method thereof Download PDF

Info

Publication number
TWI455718B
TWI455718B TW097114515A TW97114515A TWI455718B TW I455718 B TWI455718 B TW I455718B TW 097114515 A TW097114515 A TW 097114515A TW 97114515 A TW97114515 A TW 97114515A TW I455718 B TWI455718 B TW I455718B
Authority
TW
Taiwan
Prior art keywords
inorganic clay
metal
antibacterial
particle
clay
Prior art date
Application number
TW097114515A
Other languages
Chinese (zh)
Other versions
TW200944212A (en
Inventor
Jiang Jen Lin
Chih Cheng Chou
hong lin Su
Ta Jen Hung
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW097114515A priority Critical patent/TWI455718B/en
Priority to US12/253,037 priority patent/US20090148484A1/en
Publication of TW200944212A publication Critical patent/TW200944212A/en
Application granted granted Critical
Publication of TWI455718B publication Critical patent/TWI455718B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Claims (21)

一種用於抗菌之奈米銀粒子/無機黏土複合物,其係為一粉體,包括金屬粒子及片狀無機黏土,其中該片狀無機黏土之長徑比為100~1000,並作為該金屬粒子之載體,以使該金屬粒子達到奈米級之分散,該抗菌之奈米金屬粒子/無機黏土複合物之大小為5~100nm;其中該片狀無機黏土為皂土或奈米矽片,且該片狀無機黏土為皂土時,奈米金屬粒子與黏土重量比為1:100~1:13.83或1:6.944~100:1;該片狀無機黏土為奈米矽片時,奈米金屬粒子與黏土重量比為1:13.43~100:1;該金屬係選自銀所組之群。 A nano silver particle/inorganic clay composite for antibacterial, which is a powder comprising metal particles and flaky inorganic clay, wherein the flaky inorganic clay has an aspect ratio of 100 to 1000 and serves as the metal The carrier of the particles is such that the metal particles reach a nanometer-scale dispersion, and the size of the antibacterial nano metal particles/inorganic clay composite is 5 to 100 nm; wherein the flaky inorganic clay is bentonite or nano-ply, When the flaky inorganic clay is bentonite, the weight ratio of the nano metal particles to the clay is 1:100~1:13.83 or 1:6.944~100:1; when the flaky inorganic clay is a nano slab, the nanometer The weight ratio of metal particles to clay is 1:13.43~100:1; the metal is selected from the group of silver. 如申請專利範圍第1項所述之用於抗菌之奈米金屬粒子/無機黏土複合物,其中該金屬粒子具有球狀結構。 The antibacterial nano metal particle/inorganic clay composite according to claim 1, wherein the metal particle has a spherical structure. 如申請專利範圍第1項所述之用於抗菌之奈米金屬粒子/無機黏土複合物,其中該片狀無機黏土之陽離子交換容量範圍為0.1mequiv/g~5.0mequiv/g。 The antibacterial nano metal particle/inorganic clay composite according to claim 1, wherein the flaky inorganic clay has a cation exchange capacity ranging from 0.1 mequiv/g to 5.0 mequiv/g. 如申請專利範圍第1項所述之用於抗菌之奈米金屬粒子/無機黏土複合物,其中該金屬粒子之離子態當量與該片狀無機黏土之陽離子交換當量之比值為0.1~200。 The antibacterial nano metal particle/inorganic clay composite according to claim 1, wherein a ratio of an ionic equivalent of the metal particle to a cation exchange equivalent of the flake inorganic clay is 0.1 to 200. 如申請專利範圍第1項所述之用於抗菌之奈米金屬粒子/無機黏土複合物,其係用於抑制格蘭氏陽性菌、格蘭氏陰性菌或真菌之生長。 The antibacterial nano metal particle/inorganic clay composite according to claim 1, which is used for inhibiting the growth of a Gram-positive bacteria, a Gram-negative bacteria or a fungus. 如申請專利範圍第1項所述之用於抗菌之奈米金屬粒子/無機黏土複合物,其係用於抑制金黃色葡萄球菌、化膿性鏈球菌、綠膿桿菌、沙門氏菌、大腸桿菌、包氏不動桿菌、多重抗藥性金黃色葡萄球菌、真菌之生長。 The antibacterial nano metal particle/inorganic clay composite according to claim 1, which is used for inhibiting Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, Salmonella, Escherichia coli, and Pae. Acinetobacter, multi-drug resistant Staphylococcus aureus, fungus growth. 如申請專利範圍第1項所述之用於抗菌之奈米金屬粒子/無機黏土複合物,其中奈米金屬粒子與該片狀無機黏土重量比為約7/93。 The antibacterial nano metal particle/inorganic clay composite according to claim 1, wherein the weight ratio of the nano metal particles to the flake inorganic clay is about 7/93. 一種製造用於抗菌之奈米銀粒子/無機黏土複合物之方法,係將銀離子化合物、片狀無機黏土及還原劑於水中混合,在聲波攪拌的環境下進行還原反應而得,其大小為5-100nm,其中該無機黏土之長徑比為100~1000,係作為該金屬之載體、分散劑或保護劑,以使該金屬達到奈米級之分散;該金屬係選自銀所組之群;該片狀無機黏土為奈米矽片時,奈米金屬粒子與黏土重量比為1:13.43~100:1;該還原劑係選自乙醇、丙醇、丁醇、甲醛、乙二醇、丙二醇、丁二醇、丙三醇、PVA(polyvinyl alcohol)、PEG(polyethylene glycol)、PPG(polypropylene glycol)十二醇及硼氫化鈉(NaBH4)所組之群。 A method for producing an antibacterial nano silver particle/inorganic clay composite, wherein a silver ion compound, a flake inorganic clay and a reducing agent are mixed in water and subjected to a reduction reaction in a sonic stirring environment, and the size thereof is 5-100 nm, wherein the inorganic clay has an aspect ratio of 100 to 1000, which serves as a carrier, dispersant or protective agent for the metal to achieve nanometer dispersion of the metal; the metal is selected from the group consisting of silver. The weight ratio of the nano metal particles to the clay is 1:13.43~100:1; the reducing agent is selected from the group consisting of ethanol, propanol, butanol, formaldehyde, and ethylene glycol. , a group of propylene glycol, butanediol, glycerol, PVA (polyvinyl alcohol), PEG (polyethylene glycol), PPG (polypropylene glycol) dodecyl alcohol and sodium borohydride (NaBH4). 如申請專利範圍第8項所述之方法,其中該金屬化合物為AgNO3 、AgCl、或AgBr。The method of claim 8, wherein the metal compound is AgNO3 , AgCl, or AgBr. 如申請專利範圍第8項所述之方法,其中該片狀無機黏土之陽離子交換容量範圍為0.1mequiv/g~5.0mequiv/g。 The method of claim 8, wherein the flaky inorganic clay has a cation exchange capacity ranging from 0.1 mequiv/g to 5.0 mequiv/g. 如申請專利範圍第8項所述之方法,其中該金屬離子化合物之當量與該片狀無機黏土之陽離子交換當量之比值為0.1~200。 The method of claim 8, wherein the ratio of the equivalent of the metal ion compound to the cation exchange equivalent of the flake inorganic clay is from 0.1 to 200. 如申請專利範圍第8項所述之方法,其中該還原劑為乙二醇。 The method of claim 8, wherein the reducing agent is ethylene glycol. 如申請專利範圍第8項所述之方法,其中該還原反應係於25~100℃下進行,反應時間為1~20小時。 The method of claim 8, wherein the reduction reaction is carried out at 25 to 100 ° C, and the reaction time is 1 to 20 hours. 如申請專利範圍第8項所述之方法,其中該還原反應後並包括一乾燥步驟,以得到粉末形態產物。 The method of claim 8, wherein the reducing reaction comprises a drying step to obtain a powder form product. 如申請專利範圍第8項所述之方法,其中該用於抗菌之奈米金屬粒子/無機黏土複合物係用於抑制格蘭氏陽性菌、格蘭氏陰性菌或真菌之生長。 The method of claim 8, wherein the antibacterial nano metal particle/inorganic clay complex is used to inhibit growth of a Gram-positive, Gram-negative or fungus. 如申請專利範圍第8項所述之方法,其中該用於抗菌之奈米金屬 粒子/無機黏土複合物係用於抑制金黃色葡萄球菌、化膿性鏈球菌、綠膿桿菌、沙門氏菌、大腸桿菌、包氏不動桿菌、多重抗藥性金黃色葡萄球菌、真菌之生長。 The method of claim 8, wherein the nano metal for antibacterial use The particle/inorganic clay complex is used to inhibit the growth of Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, Salmonella, Escherichia coli, Acinetobacter baumannii, multi-drug resistant Staphylococcus aureus, and fungi. 一種製造用於抗菌之奈米金屬粒子/無機黏土複合物之方法,係將金屬離子化合物、片狀無機黏土及還原劑於水中混合,在聲波攪拌的環境下進行還原反應而得;其中:該金屬係選自銀所組之群;該片狀無機黏土係選自皂土、鋰皂土、蒙脫土、人工合成雲母、高嶺土、滑石、凹凸棒土、蛭石及層狀雙氫氧化物(LDH)所組之群,長徑比為100~1,000,係作為該金屬之載體、分散劑或保護劑,以使該金屬達到奈米級之分散;該奈米金屬粒子與該片狀無機黏土之重量比為1:100~1:13.83或1:6.944~100:1。 The invention relates to a method for manufacturing an antibacterial nano metal particle/inorganic clay composite, which comprises mixing a metal ion compound, a flake inorganic clay and a reducing agent in water, and performing a reduction reaction in a sonic stirring environment; wherein: The metal is selected from the group of silver; the flaky inorganic clay is selected from the group consisting of bentonite, lithium bentonite, montmorillonite, synthetic mica, kaolin, talc, attapulgite, vermiculite and layered double hydroxide. The group (LDH) has a length to diameter ratio of 100 to 1,000 as a carrier, dispersant or protective agent for the metal to achieve nanometer dispersion of the metal; the nano metal particles and the flake inorganic The weight ratio of clay is 1:100~1:13.83 or 1:6.944~100:1. 如申請專利範圍第17項所述之方法,其中該還原反應後並包括一乾燥步驟,以得到粉末形態產物。 The method of claim 17, wherein the reducing reaction comprises a drying step to obtain a powder form product. 如申請專利範圍第17項所述之方法,其中奈米金屬粒子與該片狀無機黏土重量比為約7/93。 The method of claim 17, wherein the weight ratio of the nano metal particles to the flaky inorganic clay is about 7/93. 如申請專利範圍第17項所述之方法,其中該金屬為銀,且該金屬離子化合物為AgNO3、AgCl、AgBr。 The method of claim 17, wherein the metal is silver, and the metal ion compound is AgNO3, AgCl, AgBr. 如申請專利範圍第17項所述之方法,其中該用於抗菌之奈米金屬粒子/無機黏土複合物係用於抑制格蘭氏陽性菌、格蘭氏陰性菌或真菌之生長。 The method of claim 17, wherein the antibacterial nano metal particle/inorganic clay complex is used to inhibit growth of a Gram-positive, Gram-negative or fungus.
TW097114515A 2007-12-07 2008-04-21 Nano silver particle/clay composite for antibacterial and manufacturing method thereof TWI455718B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW097114515A TWI455718B (en) 2008-04-21 2008-04-21 Nano silver particle/clay composite for antibacterial and manufacturing method thereof
US12/253,037 US20090148484A1 (en) 2007-12-07 2008-10-16 Stably-dispersing composite of metal nanoparticle and inorganic clay and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097114515A TWI455718B (en) 2008-04-21 2008-04-21 Nano silver particle/clay composite for antibacterial and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200944212A TW200944212A (en) 2009-11-01
TWI455718B true TWI455718B (en) 2014-10-11

Family

ID=44869231

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097114515A TWI455718B (en) 2007-12-07 2008-04-21 Nano silver particle/clay composite for antibacterial and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI455718B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9777125B2 (en) 2015-10-27 2017-10-03 Nerd Skincare Inc. Method for producing polymer latex particle coated with silver nanoparticles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496194B (en) * 2012-10-30 2015-08-11 Univ Nat Taiwan Flexible surface enhanced raman substrate
TWI716185B (en) * 2019-11-07 2021-01-11 多鏈科技股份有限公司 Method for stably dispersing nsp in water
CN117986902B (en) * 2024-01-11 2024-07-26 佛山市中瑞工业材料有限公司 Long-acting antibacterial antiviral formaldehyde-removing powder and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
2007年公開之國立中興大學生命科學系博碩士論文之摘要及第5-22頁:蘇鴻麟、洪達任,"含高濃度奈米銀粒子的脫層黏土之抗菌能力分析")揭示揭示AgNP/NSP與AgNP/SWN是以黏土做為銀粒子的分散劑,具有抑制細菌生長、真菌孢子發芽的能力,製造方法係將1%AgNO3加入1%黏土(NSP、SWN)及95%甲醇於水中混合進行還原反應而得奈米銀粒子 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9777125B2 (en) 2015-10-27 2017-10-03 Nerd Skincare Inc. Method for producing polymer latex particle coated with silver nanoparticles

Also Published As

Publication number Publication date
TW200944212A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
Bruna et al. Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging
De Silva et al. ZnO deposited/encapsulated halloysite–poly (lactic acid)(PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties
Savas et al. Montmorillonite reinforced polymer nanocomposite antibacterial film
Roy et al. Synthesis, characterization and antibacterial properties of novel nano-silver loaded acid activated montmorillonite
Karthik et al. Synthesis of copper precursor, copper and its oxide nanoparticles by green chemical reduction method and its antimicrobial activity
Martynková et al. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays
Nabipour et al. Synthesis, characterisation and sustained release properties of layered zinc hydroxide intercalated with amoxicillin trihydrate
Zhang et al. Antimicrobial nanocomposites prepared from montmorillonite/Ag+/quaternary ammonium nitrate
TWI455718B (en) Nano silver particle/clay composite for antibacterial and manufacturing method thereof
Mokhtar et al. CuNPs-magadiite/chitosan nanocomposite beads as advanced antibacterial agent: Synthetic path and characterization
Hundakova et al. Silver and/or copper vermiculites and their antibacterial effect
Haq et al. Green synthesis of silver oxide nanostructures and investigation of their synergistic effect with moxifloxacin against selected microorganisms
Cruces et al. Copper/silver bimetallic nanoparticles supported on aluminosilicate geomaterials as antibacterial agents
Wu et al. Long-term and controlled release of chlorhexidine–copper (II) from organically modified montmorillonite (OMMT) nanocomposites
Negi et al. Comparative antibacterial efficacy of metal oxide nanoparticles against Gram negative bacteria
Krishnan et al. Facile synthesis and antimicrobial activity of manganese oxide/bentonite nanocomposites
Ponnuvelu et al. Enhanced cell-wall damage mediated, antibacterial activity of core–shell ZnO@ Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa
El-Gendi et al. Synergistic role of Ag nanoparticles and Cu nanorods dispersed on graphene on membrane desalination and biofouling
Esmailzadeh et al. CuO/LDPE nanocomposite for active food packaging application: a comparative study of its antibacterial activities with ZnO/LDPE nanocomposite
Chen et al. Highly dispersed amorphous ZnO on a petal-like porous silica-clay composite with enhanced antimicrobial properties
Wei et al. Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated clay nanoplatelets
El-Subeyhi et al. Biogenic synthesis and characterisation of novel potassium nanoparticles by Capparis spinosa flower extract and evaluation of their potential antibacterial, anti-biofilm and antibiotic development
Zhan et al. Essential oil-loaded chitosan/zinc (II) montmorillonite synergistic sustained-release system as antibacterial material
Krishnan et al. Synthesis and characterization of Mn 3 O 4/BC nanocomposite and its antimicrobial activity
Soleymani et al. In situ bio-inspired fabrication of Ag nanoparticles on Matricaria chamomilla extract modified Cu-Al-Zn LDH as a beneficial antimicrobial agent