TWI453161B - Hydrophilic modified II-VI quantum dots and preparation method thereof - Google Patents

Hydrophilic modified II-VI quantum dots and preparation method thereof Download PDF

Info

Publication number
TWI453161B
TWI453161B TW098138224A TW98138224A TWI453161B TW I453161 B TWI453161 B TW I453161B TW 098138224 A TW098138224 A TW 098138224A TW 98138224 A TW98138224 A TW 98138224A TW I453161 B TWI453161 B TW I453161B
Authority
TW
Taiwan
Prior art keywords
group
quantum dot
hydrophilic modified
dot according
hydrophilic
Prior art date
Application number
TW098138224A
Other languages
Chinese (zh)
Other versions
TW201116479A (en
Original Assignee
Univ Nat Chunghsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing filed Critical Univ Nat Chunghsing
Priority to TW098138224A priority Critical patent/TWI453161B/en
Publication of TW201116479A publication Critical patent/TW201116479A/en
Application granted granted Critical
Publication of TWI453161B publication Critical patent/TWI453161B/en

Links

Description

具親水性之經修飾II-VI族量子點及其製法Hydrophilic modified II-VI quantum dots and preparation method thereof

本發明是有關於一種量子點及其製法,特別是指一種具親水性之經修飾II-VI族量子點及其製法。The invention relates to a quantum dot and a preparation method thereof, in particular to a hydrophilic modified II-VI quantum dot and a preparation method thereof.

量子點多數為II-VI族或III-V族所形成的半導體奈米粒子,由於其尺寸的特性而具有顯著的量子侷限效應(quantum confinement effect),在同一激光激發下,會因粒徑不同而發出不同顏色的光,此外,相較於傳統的有機螢光染色,量子點具有螢光亮度強,光化學穩定性較高、較寬的激發光譜、高的螢光量子效率、用單一波長雷射能夠激發不同粒徑的量子點發出多種波長的發射波、發射波狹窄而對稱,及可重複激發等特性,使量子點在生醫及光電元件的應用上極具潛力與發展價值。Most of the quantum dots are semiconductor nanoparticles formed by II-VI or III-V. Due to their size characteristics, they have a significant quantum confinement effect. Under the same laser excitation, the particle size will be different. Different colors of light are emitted. In addition, compared to conventional organic fluorescent dyeing, quantum dots have strong fluorescence brightness, high photochemical stability, wide excitation spectrum, high fluorescence quantum efficiency, and single wavelength ray. The ability to excite quantum dots of different particle sizes to emit waves of various wavelengths, narrow and symmetrical emission waves, and reproducible excitation make quantum dots have great potential and development value in the application of biomedical and optoelectronic components.

由於量子點在合成時大多採用疏水性溶劑,故所製得之量子點表面大多為疏水性(如圖1之箭頭左側所示),無法直接與生物分子作用。因此進行生醫應用前,須將量子點表面修飾成親水性,以便能直接進入細胞或吸附在細胞表面。而修飾於奈米粒子表面的基團亦可具備與奈米生醫材料結合之能力,讓量子點可進一步運用於生醫檢驗、診斷與治療。Since quantum dots are mostly hydrophobic solvents during synthesis, the surface of the quantum dots produced is mostly hydrophobic (as shown on the left side of the arrow in Figure 1) and cannot directly interact with biomolecules. Therefore, before the biomedical application, the surface of the quantum dot must be modified to be hydrophilic so that it can directly enter the cell or adsorb on the cell surface. The group modified on the surface of the nanoparticle can also have the ability to combine with the biomedical materials of the nanometer, so that the quantum dot can be further used for biomedical examination, diagnosis and treatment.

目前來說,要合成穩定的親水性量子點(或稱水相量子點)一直是一個棘手的問題,但大致上來說,可藉由在疏水性的量子點表面修飾一層親水性的物質,如硫醇類化合物(thiol)、聚合物(polymers)和磷脂質(phospholipids)等達到。參閱圖1,現有合成水相量子點的方式主要有下列三種:At present, it is always a difficult problem to synthesize stable hydrophilic quantum dots (or aqueous phase quantum dots), but in general, a hydrophilic substance can be modified on the surface of hydrophobic quantum dots, such as Mercaptan compounds (thiols), polymers and phospholipids are achieved. Referring to Figure 1, there are three main ways to synthesize aqueous quantum dots:

(I)配位基交換(Ligand exchange):主要是利用含巰基化合物的巰基端(-SH)置換量子點表面的疏水性物質並與量子點表面鍵結,另一端的羧基(-COOH)則為親水性配位基,並提供量子點表面電荷,進而使量子點能穩定地分散在水溶液中。(I) Ligand exchange: mainly replaces the hydrophobic substance on the surface of the quantum dot with the sulfhydryl group (-SH) containing a mercapto compound and bonds with the surface of the quantum dot, and the carboxyl group at the other end (-COOH) It is a hydrophilic ligand and provides a surface charge of the quantum dots, so that the quantum dots can be stably dispersed in the aqueous solution.

(II)二氧化矽包埋(Silica encapsulation):在具有巰基之量子點表面再披覆一層以二氧化矽為主的類似玻璃的結構,以增加量子點的親水性。(II) Silica encapsulation: The surface of a quantum dot having a fluorenyl group is further coated with a cerium-doped glass-like structure to increase the hydrophilicity of the quantum dot.

(III)疏水性作用力(Hydrophobic interaction):利用具有二性端的高分子聚合物或磷脂質,緊緊地嵌入奈米量子點外層,並利用具有親水性的外端達到改善量子點的親水性的功效。(III) Hydrophobic interaction: using a polymer or phospholipid with a disaccharide end, tightly embedded in the outer layer of the nano quantum dot, and using the hydrophilic outer end to improve the hydrophilicity of the quantum dot The effect.

雖然可透過前述方式合成水相的量子點,但方法(I)以巰基化合物修飾量子點表面會明顯降低量子點發出螢光(photoluminescence,簡稱為PL)的量子效率(quantum yield),方法(II)所形成的外層分子間是呈樹枝狀交聯的結構,使粒子粒徑變大而容易產生粒子間反應,為了避免粒子間相互反應,須將量子點控制在極低的濃度,方法(III)藉由在量子點表面修飾聚合物(polymers)或磷脂質雖然可預防PL的量子效率降低,但會使粒子變大而不易進行以螢光共振能量轉移(fluorescence resonance energy transfer)為基礎的研究,且不易發展其應用性。Although the quantum dots of the aqueous phase can be synthesized by the foregoing method, the method (I) modifying the surface of the quantum dots with the mercapto compound can significantly reduce the quantum yield of photoluminescence (PL), the method (II) The formed outer layer molecules are dendritic cross-linked structures, which make the particle size larger and easily generate interparticle reactions. In order to avoid mutual reaction between the particles, the quantum dots must be controlled at extremely low concentrations. Modifying the quantum efficiency of PL by modifying the polymer or phospholipid on the surface of the quantum dot, but making the particle larger and not easy to conduct research based on fluorescence resonance energy transfer And it is not easy to develop its applicability.

除了上述缺點外,由於現有合成親水性量子點的方式是先合成疏水性的量子點,再對該疏水性量子點進行表面修飾使其轉變為親水性量子點,在製造上相對需要較多的步驟且耗費較多的時間,而具有製造效率不佳的缺失。In addition to the above disadvantages, since the existing method of synthesizing hydrophilic quantum dots is to first synthesize hydrophobic quantum dots, and then surface-modifying the hydrophobic quantum dots to convert them into hydrophilic quantum dots, relatively more is required in manufacturing. The steps take more time and have a lack of manufacturing efficiency.

因此,本發明的目的,是在提供一種能夠在水相中穩定分散,並有較佳的光穩定性,且可直接合成的具親水性之經修飾II-VI族量子點。Accordingly, it is an object of the present invention to provide a hydrophilic modified Group II-VI quantum dot which is capable of stable dispersion in an aqueous phase and which has better photostability and which can be directly synthesized.

於是,本發明經改質II-VI族量子點包含一芯核、多數個與該芯核結合之第一基團及至少一個與該芯核結合之第二基團。該芯核是一含有II-VI族化合物的奈米粒子。每一個第一基團是由-S-X1 -Y1 所示,X1 表示二價連結基以及Y1 表示親水基。該第二基團是由-O3 PH2 -X2 -Y2 所示,X2 表示二價連結基以及Y2 表示可與生物相容性分子結合之官能基,其條件是該第一基團的數量大於該第二基團的數量。Thus, the modified Group II-VI quantum dots of the present invention comprise a core, a plurality of first groups bonded to the core, and at least one second group bonded to the core. The core is a nanoparticle containing a Group II-VI compound. Each of the first groups is represented by -SX 1 -Y 1 , X 1 represents a divalent linking group, and Y 1 represents a hydrophilic group. The second group is represented by -O 3 PH 2 -X 2 -Y 2 , X 2 represents a divalent linking group, and Y 2 represents a functional group capable of binding to a biocompatible molecule, provided that the first The number of groups is greater than the number of the second groups.

本發明具親水性之經修飾II-VI族量子點是透過在含有II-VI族化合物之芯核表面修飾上多數個第一基團及至少一個第二基團,該等第一基團的末端Y1 為親水基,有利於使量子點具有極佳的親水性而可穩定分散在水相中;第二基團之P=O鍵可有效保護芯核,使得量子效率不會因外在環境改變而衰減。此外,更值得一提的是,該等第一基團之親水基以及該第二基團的末端Y2 皆為可與生物相容性分子(如蛋白質、抗體、胺基酸與DNA)結合之官能基,因而更利於應用在生醫領域。The hydrophilic modified II-VI quantum dots of the present invention are modified by a plurality of first groups and at least one second group on the surface of the core containing the II-VI compound, the first groups The terminal Y 1 is a hydrophilic group, which is advantageous for making the quantum dots have excellent hydrophilicity and can be stably dispersed in the aqueous phase; the P=O bond of the second group can effectively protect the core, so that the quantum efficiency is not externally The environment changes and decays. In addition, it is worth mentioning that the hydrophilic groups of the first groups and the terminal Y 2 of the second group are compatible with biocompatible molecules (such as proteins, antibodies, amino acids and DNA). The functional group is thus more suitable for application in the field of biomedicine.

本發明還提供上述具親水性之經修飾II-VI族量子點的製法,並包含下列步驟:(i)於惰性氣體環境下,將一II族離子源、一含巰基(mercapto group)化合物、一膦酸(phosphonic acid)化合物及水予以混合,而獲得一第一反應液;(ii)配製一第二反應液,該第二反應液含有一VI族離子源及水;(iii)將該第一反應液與該第二反應液予以混合而獲得一混合物,使此混合物於低於100℃的溫度中進行成核反應;及(iv)使該反應後之混合物進行純化,以製得該具親水性之經修飾II-VI族量子點。The invention also provides a method for preparing the hydrophilic modified II-VI quantum dots described above, and comprising the steps of: (i) using a source II ion source, a mercapto group compound, and an inert gas atmosphere; a phosphonic acid compound and water are mixed to obtain a first reaction liquid; (ii) a second reaction liquid is prepared, the second reaction liquid contains a Group VI ion source and water; (iii) The first reaction liquid and the second reaction liquid are mixed to obtain a mixture, and the mixture is subjected to a nucleation reaction at a temperature lower than 100 ° C; and (iv) the mixture after the reaction is purified to obtain the same Hydrophilic modified II-VI quantum dots.

本發明具親水性之經修飾II-VI族量子點的製法可以直接在水相中合成II-VI族量子點,更可有效提昇製程效率。The method for preparing the hydrophilic modified II-VI quantum dots of the invention can directly synthesize II-VI quantum dots in the aqueous phase, and can effectively improve the process efficiency.

上述之「第一基團的數量大於第二基團的數量」表示每個量子點中所含之第一基團的數量大於第二基團之數量。第一基團及第二基團之數量主要是透過第一反應液之含巰基化合物及膦酸化合物的莫耳比例進行調整。較佳地,該第一基團與第二基團之數量比例範圍約為5:1~8:1。The above "the number of the first groups is larger than the number of the second groups" means that the number of the first groups contained in each quantum dot is larger than the number of the second groups. The amount of the first group and the second group is mainly adjusted by the molar ratio of the mercapto group-containing compound and the phosphonic acid compound of the first reaction liquid. Preferably, the ratio of the number of the first group to the second group ranges from about 5:1 to 8:1.

在第一基團中,-S-X1 -Y1 之X1 可為任何適當之二價連結基。較佳地,X1 是選自於未經取代之伸烷基(alkylene)、經取代之伸烷基、-CO-、-(C=O)O-、-O(C=O)-、-O-、伸苯基(phenylene)、伸聯苯基(biphenylenyl)或此等之一組合;更佳地,X1 是未經取代之伸烷基。未經取代之伸烷基例如但不限於C1 ~C10 伸烷基,且較佳為C2 ~C10 之伸烷基。經取代之伸烷基例如但不限於經苯基取代之C1 ~C10 伸烷基、經胺基取代之C1 ~C10 伸烷基等。上述之「此等一組合」表示前述所列之各個取代基可以任意組合為一個二價連結基。In the first group, -SX X 1 -Y 1 1 may be of any suitable linking group of divalent. Preferably, X 1 is selected from the group consisting of unsubstituted alkylene, substituted alkylene, -CO-, -(C=O)O-, -O(C=O)-, -O-, phenylene, biphenylenyl or a combination thereof; more preferably, X 1 is an unsubstituted alkylene group. The unsubstituted alkylene group is, for example, but not limited to, a C 1 -C 10 alkylene group, and is preferably a C 2 -C 10 alkylene group. The alkylene group substituted by, for example, but not limited by the substituted phenyl C 1 ~ C 10 alkylene, a substituted amino group of C 1 ~ C 10 alkylene group and the like. The above "one combination" means that each of the substituents listed above may be arbitrarily combined into one divalent linking group.

Y1 可為任何適當之親水基,且較佳可為具有與生物相容性分子結合能力之親水基。較佳地,Y1 是選自於羧基、羥基或胺基;於本發明之一具體例中,Y1 是羧基。Y 1 may be any suitable hydrophilic group, and preferably may be a hydrophilic group having a binding ability to a biocompatible molecule. Preferably, Y 1 is selected from a carboxyl group, a hydroxyl group or an amine group; in one embodiment of the invention, Y 1 is a carboxyl group.

較佳地,每一第一基團是由-S(CH2 )m COOH所示,m=2~10。於本發明之一具體例中,每一個第一基團為-S(CH2 )2 COOH。Preferably, each first group is represented by -S(CH 2 ) m COOH, m=2~10. In one embodiment of the invention, each of the first groups is -S(CH 2 ) 2 COOH.

在第二基團中,-O3 PH2 -X2 -Y2 之X2 可為任何適當之二價連結基。較佳地,X2 是選自於未經取代之伸烷基、經取代之伸烷基、-CO-、-(C=O)O-、-O(C=O)-、-O-、伸苯基、伸聯苯基或此等之一組合;更佳地,X2 是C1 ~C3 伸烷基、-CO-、-O-、伸苯基、伸聯苯基、-CH(NH2 )-或伸(苯二甲基)(xylylene)。In the second group, -O 3 PH 2 -X 2 -Y X 2 linking group of 2 can be of any suitable divalent. Preferably, X 2 is selected from the group consisting of unsubstituted alkylene, substituted alkyl, -CO-, -(C=O)O-, -O(C=O)-, -O- , phenyl, phenyl or a combination thereof; more preferably, X 2 is C 1 -C 3 alkyl, -CO-, -O-, phenyl, phenyl, - CH(NH 2 )- or xylylene.

Y2 為可與生物相容性分子結合之官能基,較佳地,Y2 是選自於胺基或膦醯基(phosphono,-H2 PO3 )。Y 2 is a functional group capable of binding to a biocompatible molecule, and preferably Y 2 is selected from an amine group or a phosphono group (-H 2 PO 3 ).

較佳地,該第二基團是選自於-O3 PH2 (CH2 )x H2 PO3 、-O3 PH2 C6 H4 C6 H4 H2 PO3 、-O3 PH2 OH2 PO3 、-O3 PH2 CHNH2 H2 PO3 、-O3 PH2 CH2 CH2 NH2 、-O3 PH2 CH2 C6 H4 CH2 H2 PO3 或-O3 PH2 (C=O)NH2 ,x=1~3;於本發明之一具體例中,該第二基團為-O3 PH2 (CH2 )2 H2 PO3Preferably, the second group is selected from the group consisting of -O 3 PH 2 (CH 2 ) x H 2 PO 3 , -O 3 PH 2 C 6 H 4 C 6 H 4 H 2 PO 3 , -O 3 PH 2 OH 2 PO 3 , -O 3 PH 2 CHNH 2 H 2 PO 3 , -O 3 PH 2 CH 2 CH 2 NH 2 , -O 3 PH 2 CH 2 C 6 H 4 CH 2 H 2 PO 3 or -O 3 PH 2 (C=O)NH 2 , x=1~3; in one embodiment of the invention, the second group is -O 3 PH 2 (CH 2 ) 2 H 2 PO 3 .

較佳地,該II-VI族化合物為硒化鎘。Preferably, the Group II-VI compound is cadmium selenide.

較佳地,該量子點的平均粒徑為3nm~5nm。Preferably, the quantum dots have an average particle diameter of 3 nm to 5 nm.

較佳地,該具親水性之經修飾II-VI族量子點是藉由將一II族離子源、將一II族離子源、一含巰基化合物與一膦酸化合物予以混合而獲得一第一反應液,再使該第一反應液與VI族離子源進行反應所製得,其中,該含巰基化合物是由HS-X1 -Y1 所示,該膦酸化合物是由O3 PH2 -X2 -Y2 所示,X1 、X2 、Y1 及Y2 的定義分別如上所述。Preferably, the hydrophilic modified II-VI quantum dot is obtained by mixing a Group II ion source, a Group II ion source, a thiol-containing compound and a phosphonic acid compound. The reaction solution is prepared by reacting the first reaction solution with a Group VI ion source, wherein the mercapto group-containing compound is represented by HS-X 1 -Y 1 , and the phosphonic acid compound is O 3 PH 2 - As indicated by X 2 -Y 2 , the definitions of X 1 , X 2 , Y 1 and Y 2 are as described above, respectively.

本發明具親水性之經修飾II-VI族量子點的結構推測如圖2所示,係包含一個芯核1、多數個與該芯核1結合之第一基團2及至少一個與該芯核1結合之第二基團3。值得說明的是,圖2所示之第一基團2及第二基團3之數量僅為例示,不可依此限制本發明之範圍,且第一基團2與第二基團3之數量只要符合第一基團的數量大於該第二基團的數量即可,但最佳是可讓該等第一基團2及第二基團3分布在該芯核1之外圍。The structure of the hydrophilic modified II-VI quantum dot of the present invention is presumed to be as shown in FIG. 2, comprising a core 1, a plurality of first groups 2 combined with the core 1 and at least one and the core Core 1 binds to the second group 3. It should be noted that the number of the first group 2 and the second group 3 shown in FIG. 2 is merely an example, and the scope of the invention cannot be limited thereto, and the number of the first group 2 and the second group 3 is not limited thereto. It suffices that the number of the first groups is greater than the number of the second groups, but it is preferable to distribute the first groups 2 and the second groups 3 on the periphery of the core 1.

本發明具親水性之經修飾II-VI族量子點是屬於水相量子點,通常可保存在鹼性的環境中。較佳地,該量子點可保存在pH8~pH10的水溶液中。The hydrophilic modified II-VI quantum dots of the present invention are aqueous phase quantum dots and are usually stored in an alkaline environment. Preferably, the quantum dots can be stored in an aqueous solution of pH 8 to pH 10.

在本發明之製法中,可依據實際需要進行步驟的調整及變化。In the manufacturing method of the present invention, adjustments and changes of steps can be performed according to actual needs.

較佳地,在步驟(i)中,該II族離子源、含巰基化合物及膦酸化合物的混合莫耳比例為5:5:1~8:8:1。於本發明之一具體例中,該II族離子源、含巰基化合物及膦酸化合物的混合莫耳比例為8:8:1。Preferably, in the step (i), the mixed molar ratio of the Group II ion source, the mercapto group-containing compound and the phosphonic acid compound is 5:5:1 to 8:8:1. In one embodiment of the present invention, the mixed molar ratio of the Group II ion source, the mercapto group-containing compound, and the phosphonic acid compound is 8:8:1.

該II族離子源是選用可提供IIB族離子之元素或化合物。較佳地,該II族離子源是鎘離子源;更佳地,該II族離子源是氯化鎘(CdCl2 )。The Group II ion source is an element or compound selected to provide a Group IIB ion. Preferably, the Group II ion source is a source of cadmium ions; more preferably, the Group II ion source is cadmium chloride (CdCl 2 ).

較佳地,該含巰基化合物是由HS-X1 -Y1 所示,X1 表示二價連結基以及Y1 表示親水基。更佳地,該含巰基化合物為HS(CH2 )m COOH,m=2~10。於本發明之一具體例中,該含巰基化合物為HS(CH2 )2 COOH,即巰基丙酸(mercaptopropionic acid)。Preferably, the mercapto group-containing compound is represented by HS-X 1 -Y 1 , X 1 represents a divalent linking group, and Y 1 represents a hydrophilic group. More preferably, the mercapto group-containing compound is HS(CH 2 ) m COOH, m = 2 to 10. In one embodiment of the invention, the mercapto group-containing compound is HS(CH 2 ) 2 COOH, that is, mercaptopropionic acid.

較佳地,該膦酸化合物是由O3 PH2 -X2 -Y2 所示,X2 表示二價連結基以及Y2 表示可與生物相容性分子結合之官能基。更佳地,該膦酸化合物是選自於OP(OH)2 (CH2 )x H2 PO3 、OP(OH)2 C6 H4 C6 H4 H2 PO3 、OP(OH)2 OH2 PO3 、OP(OH)2 CHNH2 H2 PO3 、OP(OH)2 CH2 CH2 NH2 、OP(OH)2 CH2 C6 H4 CH2 H2 PO3 ,及OP(OH)2 (C=O)NH2 ,x=1~3。Preferably, the phosphonic acid compound is represented by O 3 PH 2 -X 2 -Y 2 , X 2 represents a divalent linking group, and Y 2 represents a functional group capable of binding to a biocompatible molecule. More preferably, the phosphonic acid compound is selected from the group consisting of OP(OH) 2 (CH 2 ) x H 2 PO 3 , OP(OH) 2 C 6 H 4 C 6 H 4 H 2 PO 3 , OP(OH) 2 OH 2 PO 3 , OP(OH) 2 CHNH 2 H 2 PO 3 , OP(OH) 2 CH 2 CH 2 NH 2 , OP(OH) 2 CH 2 C 6 H 4 CH 2 H 2 PO 3 , and OP ( OH) 2 (C=O)NH 2 , x=1~3.

較佳地,該步驟(i)之惰性氣體為氮氣。Preferably, the inert gas of the step (i) is nitrogen.

該步驟(ii)之VI族離子源是選用可提供VIB族離子之元素或化合物,需注意的是,當使用離子源為VIB族元素時,需先進行還原反應,方可做為VI族離子源。較佳地,該步驟(ii)之VI族離子源是透過將一VI族元素與一還原劑進行還原反應所製得。在此還原反應中,該VI族元素與該還原劑的莫耳比例建議為1:2,且該VI族元素與該II族離子源的莫耳比例範圍建議為1:5~1:8。於本發明之一具體例中,該VI族元素為硒,及該還原劑為硼氫化鈉,該VI族離子源為硒氫化鈉。The group VI ion source of the step (ii) is an element or a compound which can provide a group VIB ion. It should be noted that when the ion source is a group VIB element, the reduction reaction is first performed to be a group VI ion. source. Preferably, the Group VI ion source of the step (ii) is obtained by a reduction reaction of a Group VI element with a reducing agent. In this reduction reaction, the molar ratio of the Group VI element to the reducing agent is recommended to be 1:2, and the molar ratio range of the Group VI element to the Group II ion source is recommended to be 1:5 to 1:8. In a specific embodiment of the present invention, the group VI element is selenium, and the reducing agent is sodium borohydride, and the group VI ion source is sodium selenide hydride.

較佳地,該步驟(i)之II族離子源與該步驟(ii)之VI族離子源的莫耳比例範圍為5:1~8:1。Preferably, the molar ratio of the Group II ion source of the step (i) to the Group VI ion source of the step (ii) ranges from 5:1 to 8:1.

較佳地,該步驟(iii)是將該第二反應液倒入該第一反應液中形成一混合物,讓該混合物在常壓及低於100℃的溫度中持續加熱一段時間後,降溫至室溫。更佳地,該反應溫度範圍為40~95℃;於本發明之一具體例中,該反應溫度為90℃。Preferably, in the step (iii), the second reaction liquid is poured into the first reaction liquid to form a mixture, and the mixture is heated for a period of time under normal pressure and below 100 ° C, and then cooled to Room temperature. More preferably, the reaction temperature ranges from 40 to 95 ° C; in one embodiment of the invention, the reaction temperature is 90 ° C.

該步驟(iv)之純化步驟可依據實際需要進行調整及變化,較佳地,該步驟(iv)之純化步驟是藉由將混合物加入一析出液中,再進行離心、過濾及乾燥而完成。The purification step of the step (iv) can be adjusted and changed according to actual needs. Preferably, the purification step of the step (iv) is carried out by adding the mixture to a precipitate, followed by centrifugation, filtration and drying.

較佳地,該製法還包含一在步驟(iv)後的步驟(v),步驟(v)是將該具親水性之經修飾II-VI族量子點放置在一pH值8至10的水溶液中。在本發明之一具體例中,該等量子點是保存在pH 8.8的參(羥甲基)胺基甲烷-鹽酸[Tris(Hydroxymethyl)aminomethane-HCl,Tris-HCl]溶液中。Preferably, the process further comprises a step (v) after the step (iv), wherein the hydrophilic modified II-VI quantum dot is placed in an aqueous solution having a pH of 8 to 10. in. In one embodiment of the invention, the quantum dots are stored in a solution of (Tris(Hydroxymethyl)aminomethane-HCl, Tris-HCl) at pH 8.8.

本發明將就以下實施例來作進一步說明,但應瞭解的是,該實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。The present invention will be further illustrated by the following examples, but it should be understood that this embodiment is intended to be illustrative only and not to be construed as limiting.

<實施例>經MPAEDPA 修飾之CdSe 量子點的製備<Example> Preparation of CdSe Quantum Dots Modified by MPA and EDPA

(i) 分別秤取0.046g(0.2mmol)之氯化鎘(CdCl2 ‧H2 O),17μL(0.2mmol)之巰基丙酸(Mercaptopropionic acid,簡稱為MPA),0.00475g(0.025mmol)之乙基雙膦酸(ethylenediphosphonic acid,簡稱為EDPA),及20mL之水,將其置於50ml的三頸瓶內,並使該三頸瓶充滿氮氣,攪拌30分鐘,使前述試劑混合均勻而配製得該第一反應液。(i) Weigh 0.046 g (0.2 mmol) of cadmium chloride (CdCl 2 ‧H 2 O), 17 μL (0.2 mmol) of Mercaptopropionic acid (MPA), 0.00475 g (0.025 mmol) Ethyldiphosphonic acid (EDPA), and 20 mL of water, placed in a 50 ml three-necked flask, and the three-necked flask was filled with nitrogen and stirred for 30 minutes to prepare the above reagents uniformly. The first reaction liquid was obtained.

(ii)取0.0079g(0.1mmol)之元素態的硒(Se)及0.0123g(0.2mmol)之硼氫化鈉(NaBH4 ),並將其置於10mL的雙頸瓶內,以真空系統將水氣抽掉後,再開啟氮氣系統而後注入1mL的水使Se變成無色NaHSe溶液,並配製出澄清的該第二反應液。(ii) Take 0.0079 g (0.1 mmol) of elemental selenium (Se) and 0.0123 g (0.2 mmol) of sodium borohydride (NaBH 4 ), and place them in a 10 mL double-necked flask, using a vacuum system. After the water vapor was removed, the nitrogen system was turned on and then 1 mL of water was injected to make Se a colorless NaHSe solution, and a clear second reaction liquid was prepared.

(iii)在常壓環境下,取0.25ml的第二反應液快速注入第一反應液中以形成一混合物,此時該三頸瓶內的混合物會由澄清變成黃而後橘黃色,讓反應繼續進行並在溫度90℃中持續加熱270分鐘後,再降溫至室溫。(iii) Under normal pressure, 0.25 ml of the second reaction liquid is rapidly injected into the first reaction liquid to form a mixture, and the mixture in the three-necked flask will change from clear to yellow and then orange, allowing the reaction to continue. After heating and heating at a temperature of 90 ° C for 270 minutes, the temperature was lowered to room temperature.

(iv)將經反應後的混合物加入丙酮/乙醇的混合液中,以進行純化,此時可觀察到有微小固體物質析出的現象,析出的物質應為量子點,接著,以4000r.p.m的轉速離心,使所析出的物質沉澱而方便集中收集。離心完畢後,將上層液倒掉,再加入丙酮溶液清洗沉澱的量子點,並再次離心。再次離心完畢後,再倒掉上層液,以氮氣吹乾殘餘在量子點上的丙酮。最後便製得實施例之經MPA及EDPA修飾之CdSe量子點。(iv) adding the reacted mixture to a mixture of acetone/ethanol for purification, in which case a phenomenon of precipitation of minute solid matter is observed, and the precipitated substance should be a quantum dot, and then, at 4000 r. The centrifugal speed is centrifuged to precipitate the precipitated material for centralized collection. After centrifugation, the supernatant was poured off, and the precipitated quantum dots were washed with acetone solution and centrifuged again. After the centrifugation was completed again, the supernatant liquid was poured off, and acetone remaining on the quantum dots was blown off with nitrogen. Finally, the MPA and EDPA modified CdSe quantum dots of the examples were prepared.

(v)將實施例之量子點溶於pH8.8的Tris-HCl溶液中保存,以獲得一經MPA及EDPA修飾之CdSe量子點溶液。(v) The quantum dots of the examples were dissolved in a Tris-HCl solution at pH 8.8 to obtain a CdSe quantum dot solution modified with MPA and EDPA.

<比較例>經MPA修飾之CdSe量子點溶液<Comparative Example> CdSe quantum dot solution modified by MPA

以8:8:1之莫耳比例,將MPA、CdCl2 ‧H2 O與NaHSe予以混合而獲得一反應液。利用1M之氫氧化鈉水溶液,將此反應液的pH值調整為11,接著使反應液在150℃下進行反應,以獲得經MPA修飾之CdSe量子點溶液。MPA, CdCl 2 ‧H 2 O and NaHSe were mixed at a molar ratio of 8:8:1 to obtain a reaction liquid. The pH of the reaction mixture was adjusted to 11 using a 1 M aqueous sodium hydroxide solution, and then the reaction mixture was allowed to react at 150 ° C to obtain a MPA-modified CdSe quantum dot solution.

[測試][test] 1. 光吸收度及螢光光譜量測1. Light absorption and fluorescence spectrum measurement

以紫外光-可見光光譜儀及螢光光譜儀(型號:Thermo Spectronic,AmincoSeries 2 Luminescence Spectrometer)分別量測實施例及比較例所製得之量子點溶液,結果分別如圖3及4所示,其中曲線A1及A2顯示光吸收率之測試結果及曲線B1及B2顯示螢光強度之測試結果。Ultraviolet-visible spectrometer and fluorescence spectrometer (Model: Thermo Spectronic, Aminco Series 2 Luminescence Spectrometer) The quantum dot solutions prepared in the examples and comparative examples were respectively measured, and the results are shown in Figures 3 and 4, respectively, wherein curves A1 and A2 show the test results of light absorptivity and curves B1 and B2 show Test results of light intensity.

(結果)(result)

如圖3所示,曲線A1顯示實施例之量子點溶液在400nm~550nm都有良好的吸光情形,例如在波長500nm下約具有0.1 a.u.之光吸收率,顯示該量子點具有寬的激發光譜。另外,當以單一波長(波長值為365nm)的Xenon燈照射實施例之量子點溶液,曲線B1顯示受激發的量子點所發射出的螢光光譜半高寬(Full-Width Half-Maximum,簡寫為FWHM)僅為47nm,其波峰位置約在522nm,且光譜呈狹窄且對稱的形狀,說明本發明製法所製出的量子點可表現穩定而容易判別的發射光譜而適於進行作為追蹤標記,並有作為生物分子標定與檢測的應用潛力。As shown in FIG. 3, the curve A1 shows that the quantum dot solution of the embodiment has a good light absorption at 400 nm to 550 nm, for example, a light absorption rate of about 0.1 a.u at a wavelength of 500 nm, indicating that the quantum dot has a broad excitation spectrum. In addition, when the quantum dot solution of the example is irradiated with a Xenon lamp of a single wavelength (wavelength value of 365 nm), curve B1 shows the full-width half-maximum of the fluorescence spectrum emitted by the excited quantum dot (Full-Width Half-Maximum, abbreviated FWHM) is only 47 nm, its peak position is about 522 nm, and the spectrum is narrow and symmetrical, indicating that the quantum dots produced by the method of the present invention can exhibit stable and easily discernable emission spectra and are suitable for use as tracking marks. It also has potential applications as biomolecule calibration and detection.

相較於比較例,由圖4之曲線A2來看,比較例之量子點溶液的光吸收率明顯較低,例如在波長500nm下約具有0.02a.u.之光吸收率,如此證明實施例之量子點溶液具有較佳之光吸收度。再看圖4之曲線B2,螢光強度的最高波峰位置在555nm,很明顯地與實施例有所區別,顯示本發明之量子點與經MPA修飾之CdSe量子點有所不同。Compared with the comparative example, the light absorption rate of the quantum dot solution of the comparative example is significantly lower than that of the curve A2 of FIG. 4, for example, having a light absorption rate of about 0.02 au at a wavelength of 500 nm, thus demonstrating the quantum dots of the examples. The solution has a preferred light absorbance. Referring again to curve B2 of Figure 4, the highest peak position of the fluorescence intensity is at 555 nm, which is clearly different from the examples, showing that the quantum dots of the present invention differ from the MPA-modified CdSe quantum dots.

2. 保存溶液之pH值探討2. Discussion on the pH value of the preservation solution

依據實施例之步驟(i)~(iv)製備量子點,再將所製出的經MPA及EDPA修飾之CdSe量子點分別保存在pH7.73、pH8.2及pH8.8的Tris-HCl溶液中,再以波長為365nm的雷射光分別照射保存在前述三種溶液中的量子點以量測其發射的螢光光譜,結果如圖5所示。Quantum dots were prepared according to steps (i) to (iv) of the examples, and the prepared MPASe and EDPA-modified CdSe quantum dots were respectively stored in Tris-HCl solution at pH 7.73, pH 8.2 and pH 8.8. Then, the quantum dots stored in the above three solutions were respectively irradiated with laser light having a wavelength of 365 nm to measure the fluorescence spectrum of the emitted light, and the results are shown in FIG. 5.

(結果)(result)

於圖5中,顯示pH值越高的溶液可量測到較高且明顯的螢光強度,實驗過程中也嘗試將量子點保存在pH值低於5的溶液中,所量測到的螢光光譜強度較低且不明顯,並有沉澱現象產生,顯示量子點在酸性條件下不穩定,因此在酸性溶液中會造成其螢光減弱甚至消失。In Figure 5, the higher pH value of the solution can be measured for higher and significant fluorescence intensity. During the experiment, the quantum dots are also tried to be stored in a solution with a pH below 5, and the measured fluorescence is measured. The intensity of the light spectrum is low and inconspicuous, and precipitation occurs, indicating that the quantum dots are unstable under acidic conditions, so that the fluorescence is weakened or even disappeared in the acidic solution.

3. 量子點粒徑量測3. Quantum dot particle size measurement

以高解析度穿透式電子顯微鏡(日本製,型號:JEOL JEM-2010)觀察實施例及比較例所製得的量子點溶液,結果分別如圖6及7所示。The quantum dot solution prepared in the examples and the comparative examples was observed with a high-resolution transmission electron microscope (manufactured by Nippon Co., Ltd., model: JEOL JEM-2010), and the results are shown in Figs. 6 and 7, respectively.

(結果)(result)

由圖6可看出該等量子點的顆粒大小相當一致且沒有聚集成團的情形,顯示該等量子點可穩定分散於水中,另外,針對一預定區域範圍內的量子點分別量測其粒徑並計算後,顯示本發明量子點的平均粒徑為3nm~5nm。It can be seen from Fig. 6 that the particle sizes of the quantum dots are fairly uniform and there is no aggregation group, indicating that the quantum dots can be stably dispersed in water, and the quantum dots in a predetermined region are respectively measured for the particles. After the calculation of the diameter, the average particle diameter of the quantum dots of the present invention is shown to be 3 nm to 5 nm.

相較於比較例,如圖7所示,比較例的量子點有明顯的聚集成團情形,且無法均勻分散在水中。由此更證明本發明的量子點具有可穩定分散於水中的優點。Compared with the comparative example, as shown in FIG. 7, the quantum dots of the comparative examples have a remarkable aggregation state and are not uniformly dispersed in water. This further demonstrates that the quantum dots of the present invention have the advantage of being stably dispersed in water.

4. 光穩定性量測4. Light stability measurement

以365nm的雷射光為激發光源,持續照射實施例所製得的量子點溶液,並每隔1小時量測其放射出的螢光(波峰位置在522nm)強度,持續6小時,以剛開始時放射的螢光強度作為標準值,其他時間點測得的螢光強度是分別與開始的標準值相除,其量測結果如圖8所示。The 238 nm laser light was used as the excitation light source, and the quantum dot solution prepared in the example was continuously irradiated, and the intensity of the emitted fluorescence (peak position at 522 nm) was measured every hour for 6 hours, at the beginning. The fluorescence intensity of the radiation is taken as a standard value, and the fluorescence intensity measured at other time points is separately divided from the initial standard value, and the measurement result is shown in FIG.

(結果)(result)

如圖8所示,顯示6小時後,該量子點溶液的照光後受激發而放射出的螢光強度衰減率只有20%,而具有較佳的光穩定性,當進一步將該量子點溶液應用於檢驗分析上時,若需要較長的檢驗分析時間,仍能獲得較穩定且容易判別的量測結果。As shown in FIG. 8 , after 6 hours of display, the quantum dot solution is excited to emit a fluorescence intensity decay rate of only 20%, and has better photostability, when the quantum dot solution is further applied. In the inspection analysis, if a longer inspection analysis time is required, a stable and easily discriminable measurement result can be obtained.

5. 量子效率(quantum yield)量測5. Quantum efficiency measurement

以溶於乙醇的香豆素-1(coumarin-1(in EtOH))為標準品,且已知該標準品的量子效率值為73%,以乙醇將該標準品稀釋為5種不同濃度的試樣C-1、C-2、C-3、C-4及C-5,並分別以365nm光源照射試樣C-1~C-5,以量測該等試樣中的coumarin-1在365nm的吸收率,及試樣C-1~C-5中的coumarin-1照射365nm光源後所放出的螢光光譜(波峰為443nm)曲線下的積分面積,其結果如表1。以表1的吸收率為橫座標y1 ,螢光光譜積分面積為縱座標x1 作圖,可得到如圖9所示的結果,經線性迴歸作出的直線之關係式為y1 =1218.2x1 ,斜率值為1218.2,該直線的R2 為0.9874。The coumarin-1 (in EtOH) dissolved in ethanol is used as a standard, and the standard efficiency of the standard is known to be 73%, and the standard is diluted with ethanol to 5 different concentrations. Samples C-1, C-2, C-3, C-4, and C-5, and irradiated samples C-1 to C-5 with a 365 nm light source, respectively, to measure coumarin-1 in the samples. The integral area under the curve of the fluorescence spectrum (peak: 443 nm) emitted by the 365 nm source after the 365 nm absorption rate and the coumarin-1 in the samples C-1 to C-5 were irradiated with a 365 nm light source, and the results are shown in Table 1. Taking the absorptance of Table 1 as the abscissa y 1 and the integral area of the fluorescence spectrum as the ordinate x 1 , the result shown in Figure 9 can be obtained, and the relationship of the straight line by linear regression is y 1 =1218.2x 1 , the slope value is 1218.2, and the R 2 of the straight line is 0.9874.

另外,以水將實施例所製得的量子點溶液稀釋為5種不同濃度的試樣CdSe-1、CdSe-2、CdSe-3、CdSe-4及CdSe-5,並分別以365nm光源照射試樣CdSe-1~CdSe-5,以量測該等試樣中的量子點在365nm的吸收率,及其照射365nm光源後所放出的螢光光譜(波峰為522nm)曲線下的積分面積,其結果如表2。以表2的吸收率為橫座標,螢光光譜積分面積為縱座標作圖,可得到如圖10所示的結果,經線性迴歸作出的直線之關係式為y2 =987.43x2 ,斜率值為987.43,該直線的R2 為0.9732。In addition, the quantum dot solution prepared in the examples was diluted with water into five different concentrations of samples CdSe-1, CdSe-2, CdSe-3, CdSe-4 and CdSe-5, and irradiated with a 365 nm light source. CdSe-1~CdSe-5, for measuring the absorption at 365 nm of the quantum dots in the samples, and the integral area under the curve of the fluorescence spectrum (peak 522 nm) emitted after 365 nm illumination. The results are shown in Table 2. Taking the absorption rate of Table 2 as the abscissa and the integral area of the fluorescence spectrum as the ordinate plot, the results shown in Fig. 10 can be obtained, and the relationship of the straight line by linear regression is y 2 =987.43x 2 , the slope value For 987.43, the R 2 of the line is 0.9732.

實施例所製得之量子點的量子效率可以下列公式計算(參照Joseph R. Lakowicz,J. Phys. Chem. B1999,103,7613-7620):The quantum efficiency of the quantum dots prepared in the examples can be calculated by the following formula (refer to Joseph R. Lakowicz, J. Phys. Chem. B1999, 103, 7613-7620):

ΦCdSeST (GradCdSe /GradST )(η2 H2O2 EtOH )Φ CdSeST (Grad CdSe /Grad ST )(η 2 H2O2 EtOH )

其中,ΦCdSe 為量子點之量子效率,ΦST 為coumarin-1標準品之量子效率(即73%),GradCdSe 為圖10之直線的斜率值,GradST 為圖9之直線的斜率值,ηH2O =1.3330,為用於稀釋量子點溶液的水的折射率,ηEtOH =1.3618,為用於稀釋coumarin-1標準品的乙醇的折射率。Where Φ CdSe is the quantum efficiency of the quantum dot, Φ ST is the quantum efficiency of the coumarin-1 standard (ie 73%), Grad CdSe is the slope value of the line of FIG. 10, and Grad ST is the slope value of the line of FIG. η H2O = 1.3330, which is the refractive index of water used to dilute the quantum dot solution, η EtOH = 1.3618, which is the refractive index of ethanol used to dilute the coumarin-1 standard.

將所有已知數值代入上述公式後,計算得該等量子點的量子效率(quantum yield)為68.94%。After all the known values were substituted into the above formula, the quantum yield of the quantum dots was calculated to be 68.94%.

將實施例之經MPA及EDPA修飾之CdSe量子點與其他以相同方式及公式所計算之文獻進行比較,結果如表-3所示(文獻A為Anal.Chem. 2006 ,78,321;文獻B為Nanotechnolog. ,2008 ,19,475401;文獻C為J.Phys.Chem.C. ,2008,112,1744):The MPA and EDPA modified CdSe quantum dots of the examples were compared with other literatures calculated in the same manner and formula, and the results are shown in Table-3 (document A is Anal. Chem. 2006 , 78, 321; and literature B is Nanotechnolog). . , 2008 , 19, 475401; Document C is J. Phys . Chem . C., 2008 , 112, 1744):

(結果)(result)

由上述表-3結果可知,實施例之經MPA及EDPA修飾之CdSe量子點確實具有較佳之量子效率,證明本發明具親水性之經修飾II-VI族量子點透過多數個第一基團及至少一個第二基團之修飾,確實可有效提昇量子效率。It can be seen from the results of Table 3 above that the MPA and EDPA-modified CdSe quantum dots of the examples have better quantum efficiency, and prove that the hydrophilic II-VI quantum dots of the present invention pass through a plurality of first groups and The modification of at least one second group does increase the quantum efficiency effectively.

綜上所述,本發明具親水性之經修飾II-VI族量子點透過多數個第一基團及至少一個第二基團之修飾,使得本發明之量子點具有極佳的親水性而不易聚集,更具備較佳的光穩定性、螢光強度及量子效率,且由於第一基團及第二基團之末端屬於可與生物相容性分子結合之官能基,因此更能有效應用於生醫領域。本發明製法具有簡單、製備成本低等優點,更可依照實際需要調整量子點之性質,因而有效擴大應用範圍。In summary, the modified hydrophilic group II-VI quantum dots of the present invention are modified by a plurality of first groups and at least one second group, so that the quantum dots of the present invention have excellent hydrophilicity and are not easy. Aggregation, more excellent light stability, fluorescence intensity and quantum efficiency, and because the end of the first group and the second group belong to a functional group capable of binding to a biocompatible molecule, it is more effectively applied The field of biomedical science. The preparation method of the invention has the advantages of simpleness, low preparation cost, and the like, and the properties of the quantum dots can be adjusted according to actual needs, thereby effectively expanding the application range.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.

1...芯核1. . . Core

2...第一基團2. . . First group

3...第二基團3. . . Second group

圖1是一示意圖,說明現有合成水相量子點的方式,(I)表示配位基交換方法、(II)表示二氧化矽包埋方法及(III)表示疏水性作用力方法;1 is a schematic view showing the manner of synthesizing aqueous phase quantum dots, (I) indicating a ligand exchange method, (II) indicating a ruthenium dioxide embedding method, and (III) indicating a hydrophobic force method;

圖2是一示意圖,說明本發明具親水性之經修飾II-VI族量子點之推測結構;Figure 2 is a schematic view showing the estimated structure of the hydrophilic modified II-VI quantum dots of the present invention;

圖3是一吸收與螢光光譜圖,說明本發明實施例之經MPA及EDPA修飾之CdSe量子點溶液的吸收光譜與螢光光譜;3 is an absorption and fluorescence spectrum showing the absorption spectrum and fluorescence spectrum of a CdSe quantum dot solution modified by MPA and EDPA according to an embodiment of the present invention;

圖4是一吸收與螢光光譜圖,說明比較例之經MPA修飾之CdSe量子點溶液的吸收光譜與螢光光譜;4 is an absorption and fluorescence spectrum showing the absorption spectrum and fluorescence spectrum of the MPA-modified CdSe quantum dot solution of the comparative example;

圖5是一螢光光譜圖,說明本發明實施例之經MPA及EDPA修飾之CdSe量子點溶液在不同pH值溶液中所量測到的螢光光譜;5 is a fluorescence spectrum diagram illustrating the fluorescence spectrum measured by different MPA and EDPA modified CdSe quantum dot solutions in different pH solutions according to an embodiment of the present invention;

圖6是一穿透式電子顯微鏡照片,說明本發明實施例之經MPA及EDPA修飾之CdSe量子點溶液的外觀;Figure 6 is a transmission electron micrograph showing the appearance of an MPA and EDPA modified CdSe quantum dot solution according to an embodiment of the present invention;

圖7是一穿透式電子顯微鏡照片,說明比較例之經MPA修飾之CdSe量子點溶液的外觀;Figure 7 is a transmission electron micrograph showing the appearance of a MPA-modified CdSe quantum dot solution of a comparative example;

圖8是一曲線圖,說明本發明實施例之經MPA及EDPA修飾之CdSe量子點溶液所發射出的螢光強度隨時間衰減的情形;Figure 8 is a graph showing the case where the fluorescence intensity emitted by the MPA and EDPA-modified CdSe quantum dot solution of the embodiment of the present invention decays with time;

圖9是一直線關係圖,說明不同濃度之coumarin-1的吸收率與其放射螢光光譜積分面積的關係;及Figure 9 is a line diagram showing the relationship between the absorption rate of coumarin-1 at different concentrations and the integrated area of the radiation spectrum; and

圖10是一直線關係圖,說明本發明實施例之量子點配製為不同濃度後的吸收率與其發射螢光光譜積分面積的關係。FIG. 10 is a line diagram showing the relationship between the absorption rate of the quantum dots prepared in the embodiment of the present invention at different concentrations and the integrated area of the emitted fluorescence spectrum.

1...芯核1. . . Core

2...第一基團2. . . First group

3...第二基團3. . . Second group

Claims (22)

一種具親水性之經修飾II-VI族量子點,包含:一芯核,是一含有II-VI族化合物的奈米粒子;多數個與該芯核表面結合之第一基團,每一個第一基團是由-S-X1 -Y1 所示,X1 表示二價連結基以及Y1 表示親水基;及至少一個與該芯核表面結合之第二基團,該第二基團是由-O3 PH2 -X2 -Y2 所示,X2 表示二價連結基以及Y2 表示可與生物相容性分子結合之官能基,其條件是該第一基團的數量大於該第二基團的數量。A hydrophilic modified II-VI quantum dot comprising: a core, a nanoparticle containing a II-VI compound; and a plurality of first groups bonded to the surface of the core, each a group is represented by -SX 1 -Y 1 , X 1 represents a divalent linking group, and Y 1 represents a hydrophilic group; and at least one second group bonded to the surface of the core, the second group is -O 3 PH 2 -X 2 -Y 2 , X 2 represents a divalent linking group and Y 2 represents a functional group capable of binding to a biocompatible molecule, provided that the number of the first group is greater than the number The number of two groups. 根據申請專利範圍第1項所述的具親水性之經修飾II-VI族量子點,其中,X1 及X2 分別選自於未經取代之伸烷基、經取代之伸烷基、-CO-、-(C=O)O-、-O(C=O)-、-O-、伸苯基、伸聯苯基或此等之一組合。The hydrophilic modified II-VI quantum dot according to claim 1, wherein X 1 and X 2 are respectively selected from an unsubstituted alkylene group, a substituted alkylene group, CO-, -(C=O)O-, -O(C=O)-, -O-, phenylene, phenylene or a combination thereof. 根據申請專利範圍第2項所述的具親水性之經修飾II-VI族量子點,其中,Y1 是選自於羧基或羥基。The hydrophilic modified II-VI quantum dot according to the second aspect of the invention, wherein Y 1 is selected from a carboxyl group or a hydroxyl group. 根據申請專利範圍第3項所述的具親水性之經修飾II-VI族量子點,其中,每一第一基團是由-S(CH2 )m COOH所示,m=2~10。The hydrophilic modified II-VI quantum dot according to claim 3, wherein each first group is represented by -S(CH 2 ) m COOH, m=2~10. 根據申請專利範圍第2項所述的具親水性之經修飾II-VI族量子點,其中,Y2 是選自於胺基或膦醯基。The hydrophilic modified group II-VI quantum dot according to claim 2, wherein Y 2 is selected from an amine group or a phosphonium group. 根據申請專利範圍第5項所述的具親水性之經修飾II-VI族量子點,其中,該第二基團是選自於-O3 PH2 (CH2 )x H2 PO3 、-O3 PH2 C6 H4 C6 H4 H2 PO3 、 -O3 PH2 OH2 PO3 、-O3 PH2 CHNH2 H2 PO3 、-O3 PH2 CH2 CH2 NH2 、-O3 PH2 CH2 C6 H4 CH2 H2 PO3 或-O3 PH2 (C=O)NH2 ,x=1~3。The hydrophilic modified II-VI quantum dot according to claim 5, wherein the second group is selected from -O 3 PH 2 (CH 2 ) x H 2 PO 3 , O 3 PH 2 C 6 H 4 C 6 H 4 H 2 PO 3 , -O 3 PH 2 OH 2 PO 3 , -O 3 PH 2 CHNH 2 H 2 PO 3 , -O 3 PH 2 CH 2 CH 2 NH 2 -O 3 PH 2 CH 2 C 6 H 4 CH 2 H 2 PO 3 or -O 3 PH 2 (C=O)NH 2 , x=1~3. 根據申請專利範圍第1項所述的具親水性之經修飾II-VI族量子點,其中,該II-VI族化合物是硒化鎘。 The hydrophilic modified II-VI quantum dot according to claim 1, wherein the II-VI compound is cadmium selenide. 根據申請專利範圍第1項所述的具親水性之經修飾II-VI族量子點,其中,該量子點的平均粒徑為3nm~5nm。 The hydrophilic modified II-VI quantum dot according to the first aspect of the invention, wherein the quantum dot has an average particle diameter of 3 nm to 5 nm. 根據申請專利範圍第1項所述的具親水性之經修飾II-VI族量子點,係藉由將一II族離子源、一含巰基化合物與一膦酸化合物予以混合而獲得一第一反應液,再使該第一反應液與VI族離子源進行反應所製得,其中,該含巰基化合物是由HS-X1 -Y1 所示,X1 表示二價連結基以及Y1 表示親水基,該膦酸化合物是由O3 PH2 -X2 -Y2 所示,X2 表示二價連結基以及Y2 表示可與生物相容性分子結合之官能基。According to the hydrophilic modified modified group II-VI quantum dot according to claim 1, the first reaction is obtained by mixing a group II ion source, a mercapto group-containing compound and a monophosphonic acid compound. And reacting the first reaction solution with a Group VI ion source, wherein the mercapto group-containing compound is represented by HS-X 1 -Y 1 , X 1 represents a divalent linking group, and Y 1 represents a hydrophilic group. The phosphonic acid compound is represented by O 3 PH 2 -X 2 -Y 2 , X 2 represents a divalent linking group, and Y 2 represents a functional group capable of binding to a biocompatible molecule. 一種具親水性之經修飾II-VI族量子點的製法,包含下列步驟:(i)於惰性氣體環境下,將一II族離子源、一含巰基化合物、一膦酸化合物及水予以混合,而獲得一第一反應液,其中,該含巰基化合物是由HS-X1 -Y1 所示,X1 表示二價連結基以及Y1 表示親水基,及該膦酸化合物是由O3 PH2 -X2 -Y2 所示,X2 表示二價連結基以及Y2 表示可與生物相容性分子結合之官能基;(ii)配製一第二反應液,該第二反應液含有一VI族 離子源及水;(iii)將該第一反應液與該第二反應液予以混合而獲得一混合物,再使該混合物於低於100℃的溫度下進行成核反應;及(iv)使該反應後之混合物進行純化,以製得該具親水性之經修飾II-VI族量子點。A method for preparing a hydrophilic modified II-VI quantum dot comprises the steps of: (i) mixing a Group II ion source, a mercapto group-containing compound, a phosphonic acid compound and water under an inert gas atmosphere; And obtaining a first reaction liquid, wherein the mercapto group-containing compound is represented by HS-X 1 -Y 1 , X 1 represents a divalent linking group, and Y 1 represents a hydrophilic group, and the phosphonic acid compound is O 3 PH 2 -X 2 -Y 2 , X 2 represents a divalent linking group, and Y 2 represents a functional group capable of binding to a biocompatible molecule; (ii) a second reaction liquid is prepared, and the second reaction liquid contains a a group VI ion source and water; (iii) mixing the first reaction solution with the second reaction solution to obtain a mixture, and then subjecting the mixture to a nucleation reaction at a temperature lower than 100 ° C; and (iv) The mixture after the reaction is purified to obtain the hydrophilic modified II-VI quantum dot. 根據申請專利範圍第10項所述的具親水性之經修飾II-VI族量子點的製法,其中,在步驟(i)中,該II族離子源、該含巰基化合物及該膦酸化合物的混合莫耳比例為8:8:1。 The method for preparing a hydrophilic modified II-VI quantum dot according to claim 10, wherein in the step (i), the group II ion source, the mercapto group-containing compound, and the phosphonic acid compound The molar ratio of the molars is 8:8:1. 根據申請專利範圍第10項所述的具親水性之經修飾II-VI族量子點的製法,其中,該II族離子源為鎘離子源。 The method for producing a hydrophilic modified II-VI quantum dot according to claim 10, wherein the Group II ion source is a cadmium ion source. 根據申請專利範圍第10項所述的具親水性之經修飾II-VI族量子點的製法,其中,該含巰基化合物為HS(CH2 )m COOH,m=2~10。The method for producing a hydrophilic modified II-VI quantum dot according to claim 10, wherein the mercapto group-containing compound is HS(CH 2 ) m COOH, m=2 to 10. 根據申請專利範圍第10項所述的具親水性之經修飾II-VI族量子點的製法,其中,該膦酸化合物是選自於OP(OH)2 (CH2 )x H2 PO3 、OP(OH)2 C6 H4 C6 H4 H2 PO3 、OP(OH)2 OH2 PO3 、OP(OH)2 CHNH2 H2 PO3 、OP(OH)2 CH2 CH2 NH2 、OP(OH)2 CH2 C6 H4 CH2 H2 PO3 ,及OP(OH)2 (C=O)NH2 ,x=1~3。The method for producing a hydrophilic modified II-VI quantum dot according to claim 10, wherein the phosphonic acid compound is selected from the group consisting of OP(OH) 2 (CH 2 ) x H 2 PO 3 , OP(OH) 2 C 6 H 4 C 6 H 4 H 2 PO 3 , OP(OH) 2 OH 2 PO 3 , OP(OH) 2 CHNH 2 H 2 PO 3 , OP(OH) 2 CH 2 CH 2 NH 2 , OP(OH) 2 CH 2 C 6 H 4 CH 2 H 2 PO 3 , and OP(OH) 2 (C=O)NH 2 , x=1~3. 根據申請專利範圍第10項所述的具親水性之經修飾II-VI族量子點的製法,其中,該步驟(ii)之VI族離子源是透過將一VI族元素與一還原劑進行還原反應所製得。 The method for preparing a hydrophilic modified II-VI quantum dot according to claim 10, wherein the group VI ion source of the step (ii) is reduced by a group VI element and a reducing agent. The reaction was prepared. 根據申請專利範圍第15項所述的具親水性之經修飾II-VI族量子點的製法,其中,該VI族元素與該還原劑使用量的莫耳比例為1:2。 The method for producing a hydrophilic modified II-VI quantum dot according to the fifteenth aspect of the invention, wherein the ratio of the amount of the group VI element to the reducing agent used is 1:2. 根據申請專利範圍第10項所述的具親水性之經修飾II-VI族量子點的製法,其中,該II族離子源與該VI族離子源的莫耳比例範圍為5:1~8:1。 The method for preparing a hydrophilic modified II-VI quantum dot according to claim 10, wherein the molar ratio of the Group II ion source to the Group VI ion source ranges from 5:1 to 8: 1. 根據申請專利範圍第15項所述的具親水性之經修飾II-VI族量子點的製法,其中,該VI族元素為硒,及該還原劑為硼氫化鈉,該VI族離子源為硒氫化鈉。 The method for preparing a hydrophilic modified II-VI quantum dot according to claim 15, wherein the group VI element is selenium, and the reducing agent is sodium borohydride, and the group VI ion source is selenium. Sodium hydride. 根據申請專利範圍第10項所述的具親水性之經修飾II-VI族量子點的製法,其中,該步驟(iv)之純化步驟是藉由將該混合物加入一析出液中,再進行離心、過濾及乾燥而完成。 The method for preparing a hydrophilic modified II-VI quantum dot according to claim 10, wherein the purifying step of the step (iv) is performed by adding the mixture to a precipitate and then performing centrifugation. , filtered and dried to complete. 根據申請專利範圍第10項所述的具親水性之經修飾II-VI族量子點的製法,還包含一在步驟(iv)後的步驟(v),步驟(v)是將該具親水性之經修飾II-VI族量子點放置在一pH值8至10的水溶液中。 The method for preparing a hydrophilic modified II-VI quantum dot according to claim 10, further comprising a step (v) after the step (iv), wherein the step (v) is the hydrophilicity The modified Group II-VI quantum dots are placed in an aqueous solution having a pH of 8 to 10. 根據申請專利範圍第20項所述的具親水性之經修飾II-VI族量子點的製法,其中,該溶液為Tris-HCl溶液。 The method for producing a hydrophilic modified II-VI quantum dot according to claim 20, wherein the solution is a Tris-HCl solution. 根據申請專利範圍第10項所述的具親水性之經修飾II-VI族量子點的製法,其中,在步驟(iii)之反應溫度範圍為40℃~95℃。The method for producing a hydrophilic modified II-VI quantum dot according to claim 10, wherein the reaction temperature in the step (iii) is in the range of 40 ° C to 95 ° C.
TW098138224A 2009-11-11 2009-11-11 Hydrophilic modified II-VI quantum dots and preparation method thereof TWI453161B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098138224A TWI453161B (en) 2009-11-11 2009-11-11 Hydrophilic modified II-VI quantum dots and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098138224A TWI453161B (en) 2009-11-11 2009-11-11 Hydrophilic modified II-VI quantum dots and preparation method thereof

Publications (2)

Publication Number Publication Date
TW201116479A TW201116479A (en) 2011-05-16
TWI453161B true TWI453161B (en) 2014-09-21

Family

ID=44934852

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098138224A TWI453161B (en) 2009-11-11 2009-11-11 Hydrophilic modified II-VI quantum dots and preparation method thereof

Country Status (1)

Country Link
TW (1) TWI453161B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081986A (en) * 2001-09-07 2003-03-19 Kansai Tlo Kk Rare earth complex, optically functional material using the same and emission device
CN1927994A (en) * 2006-09-07 2007-03-14 南开大学 Aqueous phase preparation method of water-soluble core/shell-type CdTe/Cd(OH)2 nano-crystal
JP2007178239A (en) * 2005-12-27 2007-07-12 Kenji Yamamoto Hydrophylic quantum dot
KR20080062907A (en) * 2006-12-29 2008-07-03 엘지디스플레이 주식회사 Fabricating methode of electroluminescent device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081986A (en) * 2001-09-07 2003-03-19 Kansai Tlo Kk Rare earth complex, optically functional material using the same and emission device
JP2007178239A (en) * 2005-12-27 2007-07-12 Kenji Yamamoto Hydrophylic quantum dot
CN1927994A (en) * 2006-09-07 2007-03-14 南开大学 Aqueous phase preparation method of water-soluble core/shell-type CdTe/Cd(OH)2 nano-crystal
KR20080062907A (en) * 2006-12-29 2008-07-03 엘지디스플레이 주식회사 Fabricating methode of electroluminescent device

Also Published As

Publication number Publication date
TW201116479A (en) 2011-05-16

Similar Documents

Publication Publication Date Title
Goswami et al. Highly luminescent thiolated gold nanoclusters impregnated in nanogel
Chen et al. Recent advances in quantum dot-based electrochemiluminescence sensors
Dimos Carbon quantum dots: surface passivation and functionalization
Ali et al. Red fluorescent carbon nanoparticle-based cell imaging probe
Muhammed et al. Growth of in situ functionalized luminescent silver nanoclusters by direct reduction and size focusing
JP4854678B2 (en) Novel water-soluble nanocrystals and methods for their preparation
US7151047B2 (en) Stable, water-soluble quantum dot, method of preparation and conjugates thereof
KR101651798B1 (en) Preparation of particles with quantum dots
CN105199716B (en) 3 mercaptopropionic acid bovine serum albumin(BSA) gold nano clusters and preparation method thereof
JP5686096B2 (en) Quantum dot-encapsulating silica nanoparticles, method for producing the same, and biological material labeling agent using the same
Wu et al. Hybrid silica-nanocrystal-organic dye superstructures as post-encoding fluorescent probes
Alizadeh‐Ghodsi et al. State‐of‐the‐Art and Trends in Synthesis, Properties, and Application of Quantum Dots‐Based Nanomaterials
JP2009520207A (en) Switchable radiation detection of nanocrystals
Mishra et al. Aqueous growth of gold clusters with tunable fluorescence using photochemically modified lipoic acid-based ligands
Zhang et al. L‐Cysteine capped CdTe–CdS core–shell quantum dots: preparation, characterization and immuno‐labeling of HeLa cells
Wang et al. Microwave-assisted synthesis of high-quality CdTe/CdS@ ZnS–SiO2 near-infrared-emitting quantum dots and their applications in Hg2+ sensing and imaging
CN116731704B (en) Luminescent composite nano material, preparation method and application thereof in pH measurement
Pinto et al. An overview of luminescent bio‐based composites
JP2008534424A (en) CDTE / GSH core-shell quantum dots
TWI453161B (en) Hydrophilic modified II-VI quantum dots and preparation method thereof
KR20090066096A (en) Nano fluorescent material for targeting cell
JPWO2003060037A1 (en) Silica spheres containing fluorescent dye molecules
Liu et al. Structure, luminescence, and bioimaging of bimetallic CuAu nanoclusters
CN108414486A (en) A kind of preparation method and application of water soluble fluorescence palladium nanocluster
Zhang et al. One-pot synthesis of stable water soluble Mn: ZnSe/ZnS core/shell quantum dots

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees