TWI444083B - Wireless communication system and relay station and wireless communication device thereof - Google Patents

Wireless communication system and relay station and wireless communication device thereof Download PDF

Info

Publication number
TWI444083B
TWI444083B TW99132434A TW99132434A TWI444083B TW I444083 B TWI444083 B TW I444083B TW 99132434 A TW99132434 A TW 99132434A TW 99132434 A TW99132434 A TW 99132434A TW I444083 B TWI444083 B TW I444083B
Authority
TW
Taiwan
Prior art keywords
communication device
wireless communication
base station
downlink
data
Prior art date
Application number
TW99132434A
Other languages
Chinese (zh)
Other versions
TW201130368A (en
Inventor
Yan Xiu Zheng
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to US12/907,040 priority Critical patent/US20110103269A1/en
Publication of TW201130368A publication Critical patent/TW201130368A/en
Application granted granted Critical
Publication of TWI444083B publication Critical patent/TWI444083B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

無線通訊系統及其中繼通訊裝置與無線通訊裝置 Wireless communication system, relay communication device and wireless communication device

本揭露是有關於一種無線通訊系統及其中繼通訊裝置與無線通訊裝置。 The disclosure relates to a wireless communication system, a relay communication device thereof and a wireless communication device.

目前無線通訊技術逐漸採用中繼轉傳(relay)技術來改善高傳輸速率的無線通訊涵蓋面積、群體移動性(group mobility)、基地台邊際傳輸量(cell-edge throughput)以及提供臨時的網路佈建方式。中繼通訊裝置(relay station)通常藉由無線傳輸方式連接至基地台,進而連接至無線接取網路(radio access network)。中繼通訊裝置所採用的連接方式可以分為:同頻段(inband)與異頻段(outband)。所述的同頻段連接方式即為在無線接取網路至中繼通訊裝置的鏈結(link)與無線接取網路至無線通訊裝置(或無線終端通訊裝置)的鏈結都使用相同的頻段或相同的載波。相反地,異頻段連接方式則為在無線接取網路至中繼通訊裝置的鏈結(link),並沒有與無線接取網路直接至無線通訊裝置(或無線終端通訊裝置)的鏈結相同的頻段或相同的載波。 At present, wireless communication technology gradually adopts relay relay technology to improve high transmission rate wireless communication coverage area, group mobility, cell-edge throughput, and provision of temporary networks. Construction method. The relay station is usually connected to the base station by wireless transmission, and then connected to a radio access network. The connection methods used by the relay communication device can be divided into: inband and outband. The same-band connection mode is the same as the link between the wireless access network to the relay communication device link and the wireless access network to the wireless communication device (or the wireless terminal communication device). Band or the same carrier. Conversely, the inter-band connection method is a link between the wireless access network and the relay communication device, and there is no link between the wireless access network and the wireless communication device (or the wireless terminal communication device). The same frequency band or the same carrier.

另外,中繼通訊裝置的鏈結又可分為透明的(transparent)以及非透明的(non-transparent)。透明的中繼轉傳方式中,無線通訊裝置(或稱為UE)並不知道其與無線接取網路之間的溝通是否藉由中繼通訊裝置所進行的。相反的,非透明的中繼轉傳方式中,無線通訊裝置(UE)知道其 與無線接取網路之間的溝通是否藉由中繼通訊裝置所進行的。目前有IEEE 802.16j為主要採用中繼轉傳的無線通訊系統標準,但仍有其他通訊系統標準可使用中繼通訊裝置,例如:IEEE 802.16m標準與第三代通訊系統夥伴專案的先進長程演進(Third Generation Partnership Project Long Term Evolution Advanded,簡稱為3GPP LTE-Advanced)標準。 In addition, the links of the relay communication device can be further divided into transparent and non-transparent. In the transparent relay transfer mode, the wireless communication device (or UE) does not know whether the communication between the wireless communication device and the wireless access network is performed by the relay communication device. Conversely, in a non-transparent relay transfer mode, the wireless communication device (UE) knows its Whether communication with the wireless access network is performed by the relay communication device. Currently, IEEE 802.16j is a wireless communication system standard that mainly uses relay transfer, but there are still other communication system standards that can use relay communication devices, such as the advanced long-range evolution of the IEEE 802.16m standard and the third generation communication system partner project. (Third Generation Partnership Project Long Term Evolution Advanded, abbreviated as 3GPP LTE-Advanced) standard.

圖1A是一種習知的具有第一類中繼通訊裝置(Type 1 relay)的無線通訊系統10的示意圖。無線通訊系統10包括基地台101、第一類中繼通訊裝置102與無線通訊裝置103。第一類中繼通訊裝置102運作非透明的中繼轉傳方式,其控制本身所涵蓋的細胞範圍,還可控制一或多個細胞,並且具有一獨特的實體層細胞身份(physical layer cell identity)。從無線通訊裝置103看來,第一類中繼通訊裝置102與基地台101的無線資源管理(radio resource management,簡稱為RRM)方式是相同的。第3層中繼(layer 3 relay)通訊裝置,例如:實現自我回傳(self-backhauling)功能的第一類中繼通訊節點即類似於第一類中繼通訊裝置102。 1A is a schematic diagram of a conventional wireless communication system 10 having a first type of relay communication device (Type 1 relay). The wireless communication system 10 includes a base station 101, a first type of relay communication device 102, and a wireless communication device 103. The first type of relay communication device 102 operates a non-transparent relay transfer mode that controls the range of cells covered by itself, can also control one or more cells, and has a unique physical layer cell identity (physical layer cell identity). ). From the perspective of the wireless communication device 103, the first type of relay communication device 102 and the base station 101 have the same radio resource management (RRM) method. A layer 3 relay communication device, such as a first type of relay communication node that implements a self-backhauling function, is similar to the first type of relay communication device 102.

3GPP LTE-Advanced標準支援第一類中繼通訊裝置。例如,在3GPP第8版(Release 8)標準中,定義第一類中繼通訊裝置可傳送自己的一或多個同步通道(synchronization channel)與一或多個參考符號(reference symbols)。在單一細胞運作狀況下,無線通訊裝置103會 接收到由第一類中繼通訊裝置102發出的排程資訊與混合行自動重傳(HARQ)回授信號,並且無線通訊裝置103會傳送自己的控制信號資料或控制通道(例如:SR/CQI/ACK)回覆給第一類中繼通訊裝置102。在運作上,假若無線通訊裝置103是一個符合3GPP Release 8的使用者裝置(簡稱為UE),第一類中繼通訊裝置102就像是一個符合3GPP Release 8的先進基地台(簡稱為eNodeB)。 The 3GPP LTE-Advanced standard supports the first type of relay communication device. For example, in the 3GPP Release 8 standard, a first type of relay communication device is defined to transmit one or more of its own synchronization channel and one or more reference symbols. In a single cell operating condition, the wireless communication device 103 will Receiving schedule information and hybrid line automatic retransmission (HARQ) feedback signals sent by the first type of relay communication device 102, and the wireless communication device 103 transmits its own control signal data or control channel (for example: SR/CQI) /ACK) Reply to the first type of relay communication device 102. In operation, if the wireless communication device 103 is a user device (referred to as UE) conforming to 3GPP Release 8, the first type of relay communication device 102 is like an advanced base station (referred to as eNodeB) conforming to 3GPP Release 8. .

圖1B是圖1A的無線通訊系統的下行鏈結從基地台101經過中繼裝置102到無線通訊裝置103傳送接收方式的示意圖。請同時參照圖1A與圖1B,在無線通訊系統10的下行鏈結(包括第一類中繼通訊裝置102下行至無線通訊裝置103,以及基地台101下行至第一類中繼通訊裝置102),皆採用分時多工(time division multiplexing,簡稱為TDM)模式。圖1B將時間分成兩區,時間槽1與時間槽2,時間槽1為第一類中繼通訊裝置102的下行鏈結而時間槽2為無線通訊裝置103的下行鏈結。因為採用TDM模式來結合兩個鏈結於同一載波上或者第一類中繼通訊裝置102為同頻中繼通訊裝置,因此最高傳輸率由於分時多工的關係而降低。 FIG. 1B is a schematic diagram showing the manner in which the downlink link of the wireless communication system of FIG. 1A is transmitted from the base station 101 through the relay device 102 to the wireless communication device 103. Referring to FIG. 1A and FIG. 1B simultaneously, the downlink link of the wireless communication system 10 (including the first type of relay communication device 102 descending to the wireless communication device 103, and the base station 101 descending to the first type of relay communication device 102) Both use time division multiplexing (TDM) mode. 1B divides the time into two zones, time slot 1 and time slot 2, time slot 1 is the downlink link of the first type of relay communication device 102 and time slot 2 is the downlink link of the wireless communication device 103. Since the TDM mode is used to combine the two links on the same carrier or the first type of relay communication device 102 is a co-frequency relay communication device, the highest transmission rate is reduced due to the time division multiplexing relationship.

上行鏈結的部分也可能為第一類中繼通訊裝置102上行至基地台101的鏈結與無線通訊裝置103上行至第一類中繼通訊裝置102使用相同載波。如果是分頻雙工(frequency division duplex,簡稱為FDD),上行鏈結亦會類似下行鏈結以TDM的方式分時使用此載波。如果是分時 雙工(time division duplex,簡稱為TDD),此載波會再切割出兩個時槽給各自的上行鏈結。 The portion of the uplink link may also be that the first type of relay communication device 102 uplinks to the base station 101 and the wireless communication device 103 uplinks to the first type of relay communication device 102 using the same carrier. If it is frequency division duplex (FDD), the uplink link will use this carrier in a TDM manner similar to the downlink link. If it is time sharing For time division duplex (TDD), this carrier will cut two time slots for their respective uplinks.

圖2A是一種習知的具有第二類中繼通訊裝置(Type 2 relay)的無線通訊系統20的示意圖。無線通訊系統20包括基地台201、第二類中繼通訊裝置202與無線通訊裝置(或無線終端通訊裝置)203。第二類中繼通訊裝置202運作透明的與同頻段的中繼轉傳方式,其並不具獨特的實體層細胞身份(但仍可有一中繼身份)。從無線通訊裝置203看來,基地台201為無線通訊系統20的細胞施予者(donor cell)具有主控權,且具有至少部份無線資源管理(簡稱為RRM)並直接控制無線通訊裝置203。但仍有一部份無線資源管理是在第二類中繼通訊裝置202上運作的。例如,智慧型中繼(smart repeater)通訊裝置、解碼與轉傳(decode-and-forward)通訊裝置以及第2層中繼(layer 3 relay)通訊裝置即類似於第二類中繼通訊裝置202。 2A is a schematic diagram of a conventional wireless communication system 20 having a second type of relay communication device (Type 2 relay). The wireless communication system 20 includes a base station 201, a second type of relay communication device 202, and a wireless communication device (or wireless terminal communication device) 203. The second type of relay communication device 202 operates a transparent and same-band relay transfer mode, which does not have a unique physical layer cell identity (but can still have a relay identity). From the perspective of the wireless communication device 203, the base station 201 has master control for the donor cell of the wireless communication system 20, and has at least partial radio resource management (abbreviated as RRM) and directly controls the wireless communication device 203. . However, some of the radio resource management still operates on the second type of relay communication device 202. For example, a smart repeater communication device, a decode-and-forward communication device, and a layer 3 relay communication device are similar to the second type relay communication device 202. .

圖2B是圖2A的無線通訊系統的傳送接收方式的示意圖。請同時參照圖2A與圖2B,在無線通訊系統20的下行鏈結(包括第二類中繼通訊裝置202下行至無線通訊裝置203,以及基地台201下行至第二類中繼通訊裝置202,以及基地台201下行至無線通訊裝置203),皆採用TDM模式。無線通訊裝置203的下行鏈結與第二類中繼通訊裝置202的下行鏈結由於共用一個載波。因此,無線通訊裝置203僅能使用時間槽2去接收,導致於無線通訊裝置203無法達到最高傳輸率。 2B is a schematic diagram of a transmission and reception mode of the wireless communication system of FIG. 2A. Please refer to FIG. 2A and FIG. 2B simultaneously, in the downlink link of the wireless communication system 20 (including the second type of relay communication device 202 descending to the wireless communication device 203, and the base station 201 descending to the second type of relay communication device 202, And the base station 201 goes down to the wireless communication device 203), and both adopt the TDM mode. The downlink link of the wireless communication device 203 and the downlink link of the second type of relay communication device 202 share one carrier. Therefore, the wireless communication device 203 can only receive using the time slot 2, resulting in the wireless communication device 203 failing to reach the highest transmission rate.

上行鏈結的部分也可能為第二類中繼通訊裝置202上行至基地台201的鏈結與無線通訊裝置203上行至第二類中繼通訊裝置202使用相同載波。如果是分頻雙工(frequency division duplex,簡稱為FDD),上行鏈結亦會類似下行鏈結以TDM的方式分時使用此載波。如果是分時雙工(time division duplex,簡稱為TDD),此載波會額外再被分出兩個時槽給上行鏈結。 The portion of the uplink link may also be the same carrier used by the second type of relay communication device 202 to uplink to the base station 201 and the wireless communication device 203 to the second type of relay communication device 202. If it is frequency division duplex (FDD), the uplink link will use this carrier in a TDM manner similar to the downlink link. In the case of time division duplex (TDD), this carrier will be additionally divided into two time slots for the uplink link.

3GPP LTE-Advanced標準支援第二類中繼通訊裝置。例如,在3GPP Release 8標準中,一個細胞中的基地台201至第二類中繼通訊裝置202的介面為Un介面,而第二類中繼通訊裝置202至無線通訊裝置203的介面為Uu介面,且Un介面與Uu介面為同頻段運作。在單一細胞運作狀況下,因為第二類中繼通訊裝置202沒有實體層細胞身份,不會產生新的細胞。對於無線通訊裝置203來說,其並不知道第二類中繼通訊裝置202運作在細胞中。然而,在3GPP Release 8標準中,第二類中繼通訊裝置202可傳送實體層下行共用通道(Physical Downlink Shared Channel,簡稱為PDSCH),不過至少不會發送共同參考信號(Common Reference Signal,簡稱為CRS)與實體層下行控制通道(Physical Downlink Control Channel,簡稱為PDCCH)。 The 3GPP LTE-Advanced standard supports a second type of relay communication device. For example, in the 3GPP Release 8 standard, the interface of the base station 201 to the second type relay communication device 202 in one cell is the Un interface, and the interface of the second type relay communication device 202 to the wireless communication device 203 is the Uu interface. And the Un interface and the Uu interface operate in the same frequency band. In a single cell operating condition, since the second type of relay communication device 202 has no physical layer cell identity, no new cells are produced. For the wireless communication device 203, it is not known that the second type of relay communication device 202 operates in the cell. However, in the 3GPP Release 8 standard, the second type of relay communication device 202 can transmit a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH for short), but at least does not transmit a common reference signal (Common Reference Signal, referred to as The CRS is associated with a physical downlink control channel (Physical Downlink Control Channel, PDCCH for short).

圖3是一種因中繼通訊裝置造成轉換時間間隔的示意圖。所述的轉換時間間隔,例如為:傳送轉換間隔(transmit transition gap,簡稱為TTG)以及接收轉換間隔(receive transition gap,簡稱為RTG)。由圖3可知,中繼通訊裝置在時間槽1接收資料或控制信號之後,並無法直接中繼轉傳此資料或控制信號至無線通訊裝置。在時間槽1與時間槽2之間,需要有一個接收至傳送的轉換時間間隔,這樣無線通訊裝置才能在時間槽2由中繼通訊裝置接收資料或控制信號。相類似地,在上行鏈結中也會有一個傳送至接收的轉換時間間隔。這些轉換時間間隔會造成無線資源的浪費。 Figure 3 is a schematic illustration of the transition time interval due to the relay communication device. The conversion time interval is, for example, a transmit transition gap (TTG) and a receive transition interval (receive). Transition gap, referred to as RTG). As can be seen from FIG. 3, after receiving the data or control signal in the time slot 1, the relay communication device cannot directly relay the data or control signal to the wireless communication device. Between time slot 1 and time slot 2, a receive time interval for reception to transmission is required so that the wireless communication device can receive data or control signals from the relay communication device in time slot 2. Similarly, there will also be a transition time interval for transmission to reception in the uplink link. These conversion time intervals can cause waste of wireless resources.

另外中繼通訊裝置在傳送流程與接收流程皆使用相同頻段,因此無線通訊裝置無法在傳送流程與接收流程使用全部的時間。由圖1B與圖2B的對應描述可知,在時間槽1的階段,無線通訊裝置並沒有接收任何資料或控制信號,因此使用者會覺得傳輸速率變慢。即使無線通訊裝置可以處理大的頻寬(例如:20MHz),由於在部份時間內無法接收資料,無線通訊裝置將無法達到最高傳輸速率。進一步說明,由上述圖1A至圖2B的對應描述可知,無線通訊裝置的接收傳輸量(reception throughput)是受限於下行鏈結的載波數目與下行鏈結的運作時間。因此,如何降低使用中繼通訊裝置的無線通訊系統的轉換時間間隔與無線資源浪費,以提高運用中繼通訊方式的資料傳輸效率是一個重要的課題。 In addition, the relay communication device uses the same frequency band in both the transmission process and the receiving process, so the wireless communication device cannot use the entire time in the transmission process and the receiving process. As can be seen from the corresponding description of FIG. 1B and FIG. 2B, during the phase slot 1, the wireless communication device does not receive any data or control signals, so the user may feel that the transmission rate is slow. Even if the wireless communication device can handle a large bandwidth (for example, 20 MHz), the wireless communication device cannot reach the highest transmission rate because the data cannot be received for a part of the time. Further, it can be seen from the corresponding description of FIG. 1A to FIG. 2B that the reception throughput of the wireless communication device is limited by the number of carriers of the downlink node and the operation time of the downlink link. Therefore, how to reduce the conversion time interval and wireless resource waste of the wireless communication system using the relay communication device to improve the data transmission efficiency using the relay communication method is an important issue.

本揭露的一示範實施例提出一種無線通訊系統。所述 的無線通訊系統包括至少一基地台、至少一中繼通訊裝置及至少一無線通訊裝置。至少一中繼通訊裝置,無線連接於至少一基地台。至少一無線通訊裝置,無線連接至所述的中繼通訊裝置,而所述的無線通訊系統的至少二上行鏈結為同頻段,且所述的無線通訊系統的至少二下行鏈結為異頻段。 An exemplary embodiment of the present disclosure proposes a wireless communication system. Said The wireless communication system includes at least one base station, at least one relay communication device, and at least one wireless communication device. At least one relay communication device is wirelessly connected to at least one base station. At least one wireless communication device is wirelessly connected to the relay communication device, and at least two uplink links of the wireless communication system are in the same frequency band, and at least two downlink links of the wireless communication system are different frequency bands .

本揭露的一示範實施例提出一種無線通訊系統。此無線通訊系統,包括至少一基地台、至少一中繼通訊裝置及至少一無線通訊裝置。至少一中繼通訊裝置,無線連接至至少一基地台,其中至少一基地台與至少一中繼通訊裝置的一第一傳輸模式採用一分頻雙工模式。至少一無線通訊裝置,無線連接至至少一中繼通訊裝置,其中至少一中繼通訊裝置與至少一無線通訊裝置的一第二傳輸模式採用一分時雙工模式。 An exemplary embodiment of the present disclosure proposes a wireless communication system. The wireless communication system includes at least one base station, at least one relay communication device, and at least one wireless communication device. The at least one relay communication device is wirelessly connected to the at least one base station, wherein a first transmission mode of the at least one base station and the at least one relay communication device adopts a frequency division duplex mode. The at least one wireless communication device is wirelessly connected to the at least one relay communication device, wherein a second transmission mode of the at least one relay communication device and the at least one wireless communication device adopts a time division duplex mode.

本揭露的一示範實施例提出一種中繼通訊裝置。此中繼通訊裝置,適用於在至少一基地台與至少一無線通訊裝置之間中繼轉傳一資料或一控制信號資料。所述的中繼通訊裝置的一第一上行鏈結與至少一無線通訊裝置的一第二上行鏈結為同頻段,而所述的中繼通訊裝置的一第一下行鏈結與至少一無線通訊裝置的一第二下行鏈結為相異載波。 An exemplary embodiment of the present disclosure provides a relay communication device. The relay communication device is adapted to relay a data or a control signal data between the at least one base station and the at least one wireless communication device. A first uplink link of the relay communication device is in the same frequency band as a second uplink link of the at least one wireless communication device, and a first downlink link and at least one of the relay communication device A second downlink link of the wireless communication device is a different carrier.

本揭露的一示範實施例提出一種中繼通訊裝置。此中繼通訊裝置,適用於在至少一基地台與至少一無線通訊裝置之間中繼轉傳一資料或一控制信號資料。所述的中繼通 訊裝置與至少一基地台的一第一傳輸模式採用一分頻雙工模式,而所述的中繼通訊裝置與至少一無線通訊裝置的一第二傳輸模式採用一分時雙工模式。 An exemplary embodiment of the present disclosure provides a relay communication device. The relay communication device is adapted to relay a data or a control signal data between the at least one base station and the at least one wireless communication device. Relay The first transmission mode of the at least one base station and the at least one base station adopts a frequency division duplex mode, and the second communication mode of the relay communication device and the at least one wireless communication device adopts a time division duplex mode.

本揭露的一示範實施例提出一種無線通訊裝置。此無線通訊裝置,適用於藉由至少一中繼通訊裝置與至少一基地台溝通。所述的無線通訊裝置與至少一中繼通訊裝置的一傳輸模式為一分頻雙工模式。所述的無線通訊裝置的第一下行鏈結與至少一中繼通訊裝置的第二下行鏈結採用一分頻多工(frequency division multiplexing,簡稱為FDM)模式。所述的無線通訊裝置的一第一上行鏈結與至少一中繼通訊裝置的第二上行鏈使用相同的載波。 An exemplary embodiment of the present disclosure provides a wireless communication device. The wireless communication device is adapted to communicate with at least one base station by using at least one relay communication device. A transmission mode of the wireless communication device and the at least one relay communication device is a frequency division duplex mode. The first downlink link of the wireless communication device and the second downlink link of the at least one relay communication device adopt a frequency division multiplexing (FDM) mode. A first uplink link of the wireless communication device uses the same carrier as a second uplink of at least one relay communication device.

為讓本揭露之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.

本揭露的多個示範實施例的基本原理主要將基地台到中繼通訊裝置的一下行鏈結與中繼通訊裝置到無線通訊裝置(UE)的另一下行鏈結分開到不同的載波,以致於中繼通訊裝置到無線通訊裝置(UE)的介面不與基地台到中繼通訊裝置的介面共用載波。如此一來,無線通訊裝置在部份狀況下可以完全使用中繼通訊裝置到無線通訊裝置的介面的載波,並同時可不需要傳送與接收流程之間的轉換時間間隔。另外,中繼通訊裝置到基地台的一上行鏈結,則與無線通訊裝置到中繼通訊裝置的另一上行鏈結共用相同的 載波或無線資源。根據上述對上行鏈結與下行鏈結不同的載波配置與運作方式,相對於圖1A與圖2A的傳統做法,如要避免降低下行最高傳輸速率與降低無線通訊裝置之使用者的經驗,則需要至少4個載波,本揭露的多個示範實施例可減少至僅須3個載波,並可有效地維持中繼通訊裝置與無線通訊裝置的最高傳輸速率。本揭露的多個示範實施例中的無線通訊裝置可以為例如:數位電視、數位機上盒、筆記型電腦、平板電腦、行動電話以及智慧型手機。 The basic principle of the exemplary embodiments of the present disclosure mainly separates the downlink link of the base station to the relay communication device and another downlink link of the relay communication device to the wireless communication device (UE) to different carriers, so that The interface between the relay communication device and the wireless communication device (UE) does not share a carrier with the interface of the base station to the relay communication device. In this way, the wireless communication device can completely use the carrier of the relay communication device to the interface of the wireless communication device under some conditions, and at the same time, the conversion time interval between the transmission and reception processes is not required. In addition, an uplink link of the relay communication device to the base station shares the same as another uplink link of the wireless communication device to the relay communication device. Carrier or wireless resource. According to the traditional carrier configuration and operation mode of the uplink link and the downlink link, compared with the conventional practice of FIG. 1A and FIG. 2A, if it is necessary to avoid reducing the downlink maximum transmission rate and reducing the experience of the user of the wireless communication device, it is required. With at least 4 carriers, the exemplary embodiments of the present disclosure can be reduced to only 3 carriers and can effectively maintain the highest transmission rate of the relay communication device and the wireless communication device. The wireless communication devices in the various exemplary embodiments of the present disclosure may be, for example, a digital television, a digital set-top box, a notebook computer, a tablet computer, a mobile phone, and a smart phone.

圖4A是根據第一示範實施例所繪示一種具有第二類中繼通訊裝置的無線通訊系統40的示意圖。無線通訊系統40包括基地台401(例如為一eNodeB)、第二類中繼通訊裝置402與無線通訊裝置403。圖4B是圖4A的無線通訊系統40的傳送接收方式的載波與時序的示意圖。請同時參照圖4A與圖4B,在無線通訊系統40中,基地台401與第二類中繼通訊裝置402之間的傳輸方式採用FDD模式。此即,如圖4A所示,第二類中繼通訊裝置402與基地台401之間的下行鏈結使用第一頻段f1,而上行鏈結使用第三頻段f3。另外,第二類中繼通訊裝置402與無線通訊裝置403之間的傳輸方式也採用FDD模式。此即,如圖4A所示,第二類中繼通訊裝置402與無線通訊裝置403之間的下行鏈結使用第二頻段f2。此外,基地台401與無線通訊裝置403之間的傳輸方式也採用FDD模式。此即,如圖4A所示,基地台401與無線通訊裝置403之間的下行鏈結使用第二頻段f2,而上行鏈結使用第三頻段f3FIG. 4A is a schematic diagram of a wireless communication system 40 having a second type of relay communication device according to the first exemplary embodiment. The wireless communication system 40 includes a base station 401 (e.g., an eNodeB), a second type of relay communication device 402, and a wireless communication device 403. 4B is a schematic diagram of a carrier and timing of a transmission and reception mode of the wireless communication system 40 of FIG. 4A. Referring to FIG. 4A and FIG. 4B simultaneously, in the wireless communication system 40, the transmission mode between the base station 401 and the second type of relay communication device 402 adopts the FDD mode. Namely, as shown in FIG. 4A, the second communication device 402 and a downlink relay link between the base station 401 using the first frequency band f 1, and the up link using a third frequency band f 3. In addition, the transmission mode between the second type of relay communication device 402 and the wireless communication device 403 also adopts the FDD mode. That is, as shown in FIG. 4A, the downlink link between the second type of relay communication device 402 and the wireless communication device 403 uses the second frequency band f 2 . In addition, the transmission mode between the base station 401 and the wireless communication device 403 also adopts the FDD mode. That is, as shown in FIG. 4A, the downlink link between the base station 401 and the wireless communication device 403 uses the second frequency band f 2 , and the uplink link uses the third frequency band f 3 .

第二類中繼通訊裝置402可能僅提供資料通道(data channel)至無線通訊裝置403,而由基地台401提供控制通道(control channel)給無線通訊裝置403。更進一步來看,在下行鏈結的運作方式中,基地台401藉由第一頻段f1傳送下行資料給第二類中繼通訊裝置402,第二類中繼通訊裝置402從第一頻段f1接收下行資料。另外,第二類中繼通訊裝置402藉由第二頻段f2來傳送下行資料給無線通訊裝置403。第二類中繼通訊裝置402可同時接收下行資料與傳送下行資料,所以不需要分成兩個時間槽來分別進行接收與傳送資料的流程。 The second type of relay communication device 402 may only provide a data channel to the wireless communication device 403, and the base station 401 provides a control channel to the wireless communication device 403. Further, in the operation mode of the downlink link, the base station 401 transmits the downlink data to the second type of relay communication device 402 through the first frequency band f 1 , and the second type relay communication device 402 from the first frequency band f 1 Receive downlink data. In addition, the second type of relay communication device 402 transmits the downlink data to the wireless communication device 403 by using the second frequency band f 2 . The second type of relay communication device 402 can simultaneously receive downlink data and transmit downlink data, so there is no need to divide into two time slots to separately receive and transmit data.

再者,下行鏈結的運作方式中,基地台401藉由第二頻段f2來傳送控制信號資料(control signaling data)給無線通訊裝置403,以協調管理(coordinate)無線通訊裝置403。例如,基地台401可藉由3GPP LTE標準中的實體層下行控制通道(Physical Downlink Control Channel,簡稱為PDCCH)、實體層混合式自動傳送指標通道(Physical hybrid-ARQ indicator,簡稱為PHICH)以及實體層控制格式指標通道(Physical control format indicator,簡稱為PCFICH),來傳送下行控制信號資料給無線通訊裝置403。此外,基地台401還可藉由例如:IEEE 802.16m標準中的先進媒體存取通訊協定(Advanced Media Access Protocol,簡稱為A-MAP)以及超訊框標頭(Super Frame Header,簡稱為SFH),來傳送下行控制信號資料給無線通訊裝置403。 Furthermore, in the operation mode of the downlink link, the base station 401 transmits control signal data to the wireless communication device 403 via the second frequency band f2 to coordinate the wireless communication device 403. For example, the base station 401 can use the physical downlink control channel (Physical Downlink Control Channel, hereinafter referred to as PDCCH) in the 3GPP LTE standard, and the physical hybrid-ARQ indicator (PHICH) and the entity. The physical control format indicator (PCFICH) is used to transmit downlink control signal data to the wireless communication device 403. In addition, the base station 401 can also be, for example, an Advanced Media Access Protocol (A-MAP) and a Super Frame Header (SFH) in the IEEE 802.16m standard. And transmitting the downlink control signal data to the wireless communication device 403.

在下行鏈結的運作方式中,第二類中繼通訊裝置402 與基地台401協同地(collaboratively)或共同地(cooperatively)藉由第二頻段f2來傳送資料給無線通訊裝置403。例如,第二類中繼通訊裝置402可藉由3GPP LTE標準中的實體層下行共用通道(Physical Downlink Shared Channel,簡稱為PDSCH)傳送下行資料給無線通訊裝置403。無線通訊裝置403則從第二頻段f2接收下行資料。 In the operation of the downlink link, the second type of relay communication device 402 and the base station 401 collaborate or cooperatively transmit data to the wireless communication device 403 via the second frequency band f2. For example, the second type of relay communication device 402 can transmit downlink data to the wireless communication device 403 by using a physical downlink shared channel (PDSCH) in the 3GPP LTE standard. The wireless communication device 403 receives the downlink data from the second frequency band f 2 .

在上行鏈結的運作方式中,基地台401藉由第三頻段f3來同時協調管理第二類中繼通訊裝置402與無線通訊裝置403的上行鏈結。更進一步說明,基地台401藉由第三頻段f3在相同的一上行資料通道或一上行控制通道協調管理第二類中繼通訊裝置402與無線通訊裝置403。第二類中繼通訊裝置402與無線通訊裝置403共用相同的上行無線資源以及上行控制通道。第二類中繼通訊裝置402與無線通訊裝置403的上行鏈結可同時傳送上行資料與上行控制信號。例如,無線通訊裝置403或第二類中繼通訊裝置402,可利用3GPP LTE標準中的實體層上行控制通道(Physical Uplink Control Channel,簡稱為PUCCH)、實體層上行共用通道(Physical Uplink Shared Channel,簡稱為PUSCH)以及隨機存取通道(Random Access Channel,簡稱為RACH),來直接傳送上行資料或上行控制信號給基地台401。另外,無線通訊裝置403或第二類中繼通訊裝置402,還可利用例如:IEEE 802.16m標準中的主要回授通道(Primary Feedback Channel,簡稱為PFBCH)以及次要回授通道(Secondary Feedback Channel,簡稱為SFBCH),來直 接傳送上行資料或上行控制信號給基地台401。 In the operation mode of the uplink link, the base station 401 simultaneously coordinates and manages the uplink links of the second type of relay communication device 402 and the wireless communication device 403 by the third frequency band f3. Still further described, the base station 401 by a third frequency band f 3 403 in the same uplink data channel or a second type of communication relay apparatus 402 and the wireless communication device a coordinated management of the uplink control channel. The second type of relay communication device 402 and the wireless communication device 403 share the same uplink radio resource and uplink control channel. The uplink link of the second type of relay communication device 402 and the wireless communication device 403 can simultaneously transmit uplink data and uplink control signals. For example, the wireless communication device 403 or the second type of relay communication device 402 can utilize the Physical Uplink Control Channel (PUCCH) and the Physical Uplink Shared Channel (Physical Uplink Shared Channel) in the 3GPP LTE standard. Referred to as PUSCH and Random Access Channel (RACH), the uplink data or uplink control signal is directly transmitted to the base station 401. In addition, the wireless communication device 403 or the second type relay communication device 402 can also utilize, for example, a primary feedback channel (PFBCH) and a secondary feedback channel (Secondary Feedback Channel) in the IEEE 802.16m standard. , referred to as SFBCH), to directly transmit uplink data or uplink control signals to the base station 401.

第一示範實施例中的基地台401、第二類中繼通訊裝置402與無線通訊裝置403僅為解說的示範例。在本揭露的其他實施例中,無線通訊系統還可包括超過一基地台,每一基地台可涵蓋超過一第二類中繼通訊裝置與超過一無線通訊裝置。上述原則也應用於以下第三示範實施例與第五示範實施例。 The base station 401, the second type of relay communication device 402, and the wireless communication device 403 in the first exemplary embodiment are merely illustrative examples. In other embodiments of the present disclosure, the wireless communication system may further include more than one base station, and each base station may cover more than one second type of relay communication device and more than one wireless communication device. The above principles are also applied to the following third exemplary embodiment and fifth exemplary embodiment.

圖5A是根據第二示範實施例所繪示一種具有第一類中繼通訊裝置的無線通訊系統的示意圖。無線通訊系統50包括基地台501、第一類中繼通訊裝置502與無線通訊裝置503。圖5B是圖5A的無線通訊系統50的傳送接收方式的示意圖。請同時參照圖5A與圖5B,基地台501與第一類中繼通訊裝置502之間的傳輸模式採用FDD模式,第一類中繼通訊裝置502與無線通訊裝置503之間的傳輸模式也採用FDD模式。此即,如圖5A所示,基地台501與第一類中繼通訊裝置502之間的下行鏈結使用第一頻段f1,而上行鏈結使用第三頻段f3。另外,第一類中繼通訊裝置502與無線通訊裝置503之間的下行鏈結使用第二頻段f2,而上行鏈結使用第三頻段f3。由於第一類中繼通訊裝置502與無線通訊裝置503的上行鏈結都使用第三頻段f3,無線通訊系統50的整體傳送與接收流程可能以TDM模式運作而分為至少2個時間槽來進行。 FIG. 5A is a schematic diagram of a wireless communication system having a first type of relay communication device according to a second exemplary embodiment. The wireless communication system 50 includes a base station 501, a first type of relay communication device 502, and a wireless communication device 503. FIG. 5B is a schematic diagram of the transmission and reception mode of the wireless communication system 50 of FIG. 5A. Referring to FIG. 5A and FIG. 5B simultaneously, the transmission mode between the base station 501 and the first type of relay communication device 502 adopts the FDD mode, and the transmission mode between the first type of relay communication device 502 and the wireless communication device 503 is also adopted. FDD mode. That is, as shown in FIG. 5A, the downlink link between the base station 501 and the first type of relay communication device 502 uses the first frequency band f 1 , and the uplink link uses the third frequency band f 3 . In addition, the downlink link between the first type of relay communication device 502 and the wireless communication device 503 uses the second frequency band f 2 , and the uplink link uses the third frequency band f 3 . Since the uplink of the first type of relay communication device 502 and the wireless communication device 503 both use the third frequency band f 3 , the overall transmission and reception process of the wireless communication system 50 may be divided into at least two time slots by operating in the TDM mode. get on.

更進一步來看,在下行鏈結的運作方式中,基地台501藉由第一頻段f1傳送下行資料或下行控制信號資料給第一 類中繼通訊裝置502,而第一類中繼通訊裝置502從第一頻段f1接收下行資料。例如,基地台501可利用3GPP LTE標準中的PDCCH、PHICH、PCFICH、PDSCH、廣播通道(Broadcast Channel,簡稱為BCH)以及同步通道(Synchronization Channel,簡稱為SCH),來傳送下行控制信號資料給無線通訊裝置503。又例如,基地台501還可利用IEEE 802.16m標準中的A-MAP以及超訊框標頭SFH,來傳送下行資料或下行控制信號資料給無線通訊裝置503。 Further, in the operation mode of the downlink link, the base station 501 transmits downlink data or downlink control signal data to the first type of relay communication device 502 by using the first frequency band f 1 , and the first type of relay communication device 502 receives downlink data from the first frequency band f 1 . For example, the base station 501 can use the PDCCH, PHICH, PCFICH, PDSCH, Broadcast Channel (BCH), and Synchronization Channel (SCH) in the 3GPP LTE standard to transmit downlink control signal data to the wireless device. Communication device 503. For another example, the base station 501 can also transmit downlink data or downlink control signal data to the wireless communication device 503 by using the A-MAP and the hyperframe header SFH in the IEEE 802.16m standard.

在下行鏈結的運作方式中,第一類中繼通訊裝置502藉由第二頻段f2傳送下行資料或下行控制信號資料給無線通訊裝置503,而無線通訊裝置503從第二頻段f2接收下行資料。例如,第一類中繼通訊裝置502可利用3GPP LTE標準中的PDCCH、PHICH、PCFICH、PDSCH、BCH以及SCH,來傳送下行資料或下行控制信號資料給無線通訊裝置503。又例如,第一類中繼通訊裝置502還可利用IEEE 802.16m標準中的A-MAP以及SFH,來傳送下行資料或下行控制信號資料給無線通訊裝置503。 In the downlink mode of operation of the link, the first type of relay communication device 502 by a second frequency f 2 transmit downlink data or downlink control data signals to the radio communication device 503 and the wireless communication device 503 receives the second frequency band f 2 from Downstream information. For example, the first type of relay communication device 502 can transmit downlink data or downlink control signal data to the wireless communication device 503 by using PDCCH, PHICH, PCFICH, PDSCH, BCH, and SCH in the 3GPP LTE standard. For another example, the first type of relay communication device 502 can also transmit downlink data or downlink control signal data to the wireless communication device 503 by using A-MAP and SFH in the IEEE 802.16m standard.

在上行鏈結的運作方式中,第一類中繼通訊裝置502與無線通訊裝置503可以藉由分碼多工(code division multiplexing,CDM)模式、TDM模式、FDM模式或此三者的任意的混合模式共用連接到基地台501的上行鏈結。換句話說,第一類中繼通訊裝置502至基地台501的一第一上行鏈結與至少一無線通訊裝置的一第二上行鏈結可藉 由CDM模式、TDM模式、FDM模式或此三者的任意的混合模式來共用第三頻段f3,以藉由此第三頻段f3傳送上行資料或上行控制信號資料。 In the operation mode of the uplink link, the first type of relay communication device 502 and the wireless communication device 503 can be multiplexed by code division multiplexing (CDM) mode, TDM mode, FDM mode, or any of the three. The hybrid mode shares the uplink link connected to the base station 501. In other words, a first uplink link of the first type of relay communication device 502 to the base station 501 and a second uplink link of the at least one wireless communication device may be in CDM mode, TDM mode, FDM mode, or the like. by mixing arbitrary pattern common third frequency band f 3, in this third frequency band f 3 by transmitting an uplink data signal or uplink control information.

以下舉例說明藉由TDM模式共用連接到基地台501的上行鏈結。基地台501藉由第三頻段f3來同時協調管理第一類中繼通訊裝置502與無線通訊裝置503的上行鏈結。此上行鏈結可同時傳送上行資料與上行控制信號資料,而第一類中繼通訊裝置502與無線通訊裝置503共用此上行鏈結。換句話說,基地台501藉由在相同的一上行資料通道或一上行控制通道,協調管理第一類中繼通訊裝置502與無線通訊裝置503,而此上行資料通道或此上行控制通道運作在第三頻段f3。例如,無線通訊裝置503可利用3GPP LTE標準中的PUCCH、PUSCH以及RACH,來直接傳送上行資料或上行控制信號資料給第一類中繼通訊裝置502。 The following illustrates an example of an uplink link that is connected to the base station 501 by the TDM mode. The base station 501 by a third frequency band f 3 to manage and coordinate the first type of uplink relay link communication device 502 and the wireless communication device 503. The uplink link can transmit uplink data and uplink control signal data at the same time, and the first type of relay communication device 502 shares the uplink link with the wireless communication device 503. In other words, the base station 501 coordinates and manages the first type of relay communication device 502 and the wireless communication device 503 by using the same uplink data channel or an uplink control channel, and the uplink data channel or the uplink control channel operates at The third frequency band f 3 . For example, the wireless communication device 503 can directly transmit uplink data or uplink control signal data to the first type of relay communication device 502 by using PUCCH, PUSCH, and RACH in the 3GPP LTE standard.

另外,無線通訊裝置503還可利用例如:IEEE 802.16m標準中的PFBCH以及SFBCH,來直接傳送上行資料或上行控制信號資料給第一類中繼通訊裝置502。相類似地,第一類中繼通訊裝置502可利用3GPP LTE標準中的PUCCH、PUSCH以及RACH,來直接傳送上行資料或上行控制信號資料給基地台501。另外,第一類中繼通訊裝置502還可利用例如:IEEE 802.16m標準中的PFBCH以及SFBCH,來直接傳送上行資料或上行控制信號資料給基地台501。 In addition, the wireless communication device 503 can directly transmit the uplink data or the uplink control signal data to the first type of relay communication device 502 by using, for example, the PFBCH and the SFBCH in the IEEE 802.16m standard. Similarly, the first type of relay communication device 502 can directly transmit uplink data or uplink control signal data to the base station 501 by using PUCCH, PUSCH, and RACH in the 3GPP LTE standard. In addition, the first type of relay communication device 502 can also directly transmit uplink data or uplink control signal data to the base station 501 by using, for example, the PFBCH and the SFBCH in the IEEE 802.16m standard.

請參照圖5B,在時間槽1中,第一類中繼通訊裝置502藉由第三頻段f3傳送上行資料或上行控制信號資料至基地台501,而基地台501由第三頻段f3接收上行資料或上行控制信號資料。在時間槽2中,無線通訊裝置503藉由第三頻段f3傳送上行資料或上行控制信號資料至第一類中繼通訊裝置502,而第一類中繼通訊裝置502由第三頻段f3接收上行資料或上行控制信號資料。 Referring to FIG 5B, in time slot 1, 502 by a third frequency band f 3 of the first type relay communication device transmits an uplink data signal or uplink control data to the base station 501, the base station 501 received by the third frequency band f 3 Uplink data or uplink control signal data. In time slot 2, 503 by a third frequency band f 3 wireless communication device transmits an uplink data signal or uplink control data to the first type of communication relay apparatus 502, and the first type relay communication device 502 by a third frequency band f 3 Receive uplink data or uplink control signal data.

為了實現第一類中繼通訊裝置502在同一時間內可以藉由第三頻段f3接收由無線通訊裝置503所傳送的一上行資料,又可藉由第三頻段f3傳送另一上行資料至基地台501,第一類中繼通訊裝置502可利用天線間隔(antenna separation)的方式或方向性天線來達成此目的。另外,第二示範實施例中的基地台501、第一類中繼通訊裝置502與無線通訊裝置503僅為解說的示範例。在本揭露的其他實施例中,無線通訊系統還可包括超過一基地台,每一基地台可涵蓋超過一第一類中繼通訊裝置與超過一無線通訊裝置。上述原則也應用於以下第四示範實施例。 In order to realize that the first type of relay communication device 502 can receive an uplink data transmitted by the wireless communication device 503 by using the third frequency band f 3 at the same time, another uplink data can be transmitted by using the third frequency band f 3 to The base station 501, the first type of relay communication device 502 can achieve this by utilizing an antenna separation or a directional antenna. In addition, the base station 501, the first type of relay communication device 502, and the wireless communication device 503 in the second exemplary embodiment are merely illustrative examples. In other embodiments of the present disclosure, the wireless communication system may further include more than one base station, and each base station may cover more than one first type of relay communication device and more than one wireless communication device. The above principles are also applied to the following fourth exemplary embodiment.

圖6A是根據第三示範實施例所繪示一種具有第二類中繼通訊裝置的無線通訊系統的示意圖。無線通訊系統60包括基地台601、第二類中繼通訊裝置602與無線通訊裝置603。圖6B是圖6A的無線通訊系統60的傳送接收方式的示意圖。請同時參照圖6A與圖6B,第二類中繼通訊裝置602採用TDD模式與FDD模式的混合式運作方式。基地台601與第二類中繼通訊裝置602之間的傳輸模式採 用FDD模式,基地台601與無線通訊裝置603之間的傳輸模式則採用TDD模式,而第二類中繼通訊裝置602與無線通訊裝置603之間的採用FDD模式。此即,如圖6A所示,基地台601與第二類中繼通訊裝置602之間的下行鏈結使用第一頻段f1,而上行鏈結使用第三頻段f3。另外,第二類中繼通訊裝置602與無線通訊裝置603之間的下行鏈結使用第二頻段f2。而無線通訊裝置603與基地台601之間的下行鏈結與上行鏈結都使用第二頻段f2。由於無線通訊裝置603與基地台601之間的下行鏈結與上行鏈結都使用第二頻段f2,無線通訊系統60的整體傳送與接收流程必須要分2個時間槽來進行。 FIG. 6A is a schematic diagram of a wireless communication system having a second type of relay communication device according to a third exemplary embodiment. The wireless communication system 60 includes a base station 601, a second type of relay communication device 602, and a wireless communication device 603. FIG. 6B is a schematic diagram of the transmission and reception mode of the wireless communication system 60 of FIG. 6A. Referring to FIG. 6A and FIG. 6B simultaneously, the second type of relay communication device 602 adopts a hybrid operation mode of a TDD mode and an FDD mode. The transmission mode between the base station 601 and the second type relay communication device 602 adopts the FDD mode, the transmission mode between the base station 601 and the wireless communication device 603 adopts the TDD mode, and the second type relay communication device 602 and the wireless The FDD mode is adopted between the communication devices 603. That is, as shown in FIG. 6A, the downlink link between the base station 601 and the second type of relay communication device 602 uses the first frequency band f 1 , and the uplink link uses the third frequency band f 3 . In addition, the downlink link between the second type of relay communication device 602 and the wireless communication device 603 uses the second frequency band f 2 . The downlink and uplink links between the wireless communication device 603 and the base station 601 both use the second frequency band f 2 . Since both the downlink link and the uplink link between the wireless communication device 603 and the base station 601 use the second frequency band f 2 , the overall transmission and reception process of the wireless communication system 60 must be performed in two time slots.

更進一步來看,在下行鏈結的運作方式中,基地台601藉由第一頻段f1傳送下行資料給第二類中繼通訊裝置602,第二類中繼通訊裝置602從第一頻段f1接收下行資料,而第二類中繼通訊裝置602藉由第二頻段f2傳送下行資料給無線通訊裝置603。基地台601藉由第二頻段f2傳送下行控制信號資料,來協調管理無線通訊裝置603。例如,基地台601可利用3GPP LTE標準中的PDCCH、PHICH以及PCFICH,來傳送下行控制信號資料給無線通訊裝置603。又例如,基地台601還可利用IEEE 802.16m標準中的A-MAP以及SFH,來傳送下行資料或下行控制信號資料給無線通訊裝置603。基地台601還與第二類中繼通訊裝置602共同地或協同地藉由第二頻段f2來傳送下行資料給無線通訊裝置603,而無線通訊裝置603由第二頻段f2 來接收下行資料。 Further, in the operation mode of the downlink link, the base station 601 transmits the downlink data to the second type of relay communication device 602 through the first frequency band f 1 , and the second type relay communication device 602 from the first frequency band f 1 receiving downlink data, and the second type of relay communication device 602 transmits downlink data to the wireless communication device 603 via the second frequency band f 2 . The base station 601 coordinates the management of the wireless communication device 603 by transmitting downlink control signal data through the second frequency band f 2 . For example, the base station 601 can transmit the downlink control signal data to the wireless communication device 603 by using the PDCCH, the PHICH, and the PCFICH in the 3GPP LTE standard. For another example, the base station 601 can also transmit downlink data or downlink control signal data to the wireless communication device 603 by using A-MAP and SFH in the IEEE 802.16m standard. The base station 601 also transmits the downlink data to the wireless communication device 603 by the second frequency band f 2 in cooperation with the second type of relay communication device 602, and the wireless communication device 603 receives the downlink data from the second frequency band f 2 . .

在上行鏈結的運作方式中,基地台601藉由第二頻段f2來實現上行的資料通道與上行的控制通道。無線通訊裝置603至基地台601的上行鏈結可同時傳送上行資料與上行控制信號資料。基地台601藉由相同的一第一上行資料通道或一第一上行控制通道協調管理無線通訊裝置603,其中第一上行資料通道或第一上行控制通道運作在第二頻段f2。另外,基地台601藉由相同的一第二上行資料通道或一第二上行控制通道協調管理第二類中繼通訊裝置602,其中第二上行資料通道或第二上行控制通道運作在第三頻段f3In the operation mode of the uplink link, the base station 601 implements the uplink data channel and the uplink control channel by using the second frequency band f 2 . The uplink link of the wireless communication device 603 to the base station 601 can simultaneously transmit uplink data and uplink control signal data. The base station 601 coordinates the management of the wireless communication device 603 by using the same first uplink data channel or a first uplink control channel, wherein the first uplink data channel or the first uplink control channel operates in the second frequency band f 2 . In addition, the base station 601 coordinates and manages the second type of relay communication device 602 by using the same second uplink data channel or a second uplink control channel, where the second uplink data channel or the second uplink control channel operates in the third frequency band. f 3 .

舉例說明,無線通訊裝置603藉由第二頻段f2,可利用3GPP LTE標準中的PUCCH、PUSCH以及RACH,來直接傳送上行資料或上行控制信號資料給基地台601。而第一上行資料通道或第一上行控制通道例如為3GPP LTE標準中的PUCCH、PUSCH以及RACH。另外,無線通訊裝置603還可利用例如:IEEE 802.16m標準中的PFBCH以及SFBCH,來直接傳送上行資料或上行控制信號資料給基地台601。而第一上行資料通道或第一上行控制通道例如為IEEE 802.16m標準中的PFBCH以及SFBCH。 For example, the wireless communication device 603 can directly transmit the uplink data or the uplink control signal data to the base station 601 by using the PUCCH, the PUSCH, and the RACH in the 3GPP LTE standard by using the second frequency band f 2 . The first uplink data channel or the first uplink control channel is, for example, a PUCCH, a PUSCH, and a RACH in the 3GPP LTE standard. In addition, the wireless communication device 603 can directly transmit the uplink data or the uplink control signal data to the base station 601 by using, for example, the PFBCH and the SFBCH in the IEEE 802.16m standard. The first uplink data channel or the first uplink control channel is, for example, a PFBCH and an SFBCH in the IEEE 802.16m standard.

相類似地,第二類中繼通訊裝置602藉由第三頻段f3,可利用3GPP LTE標準中的PUCCH、PUSCH以及RACH,來直接傳送上行資料或上行控制信號資料給基地台601。第二上行資料通道或第二上行控制通道例如為 3GPP LTE標準中的PUCCH、PUSCH以及RACH。另外,第二類中繼通訊裝置602還可利用例如:IEEE 802.16m標準中的PFBCH以及SFBCH,來直接傳送上行資料或上行控制信號資料給基地台601。而第二上行資料通道或第二上行控制通道例如為IEEE 802.16m標準中的PFBCH以及SFBCH。 Similarly, the second type of relay communication device 602 can directly transmit uplink data or uplink control signal data to the base station 601 by using the PUCCH, the PUSCH, and the RACH in the 3GPP LTE standard by using the third frequency band f3. The second uplink data channel or the second uplink control channel is, for example, PUCCH, PUSCH, and RACH in the 3GPP LTE standard. In addition, the second type of relay communication device 602 can also directly transmit uplink data or uplink control signal data to the base station 601 by using, for example, the PFBCH and the SFBCH in the IEEE 802.16m standard. The second uplink data channel or the second uplink control channel is, for example, a PFBCH and an SFBCH in the IEEE 802.16m standard.

請參照圖6B,在時間槽1中,基地台601與第二類中繼通訊裝置602都藉由第二頻段f2傳送下行資料或下行控制信號資料至無線通訊裝置603,而無線通訊裝置603由第二頻段f2接收下行資料或下行控制信號資料。在時間槽2中,無線通訊裝置603藉由第二頻段f2傳送上行資料或上行控制信號資料至基地台601,而基地台601由第二頻段f2接收上行資料或上行控制信號資料。 Referring to FIG. 6B, in the time slot 1, the base station 601 and the second type of relay communication device 602 both transmit downlink data or downlink control signal data to the wireless communication device 603 through the second frequency band f 2 , and the wireless communication device 603 The downlink data or the downlink control signal data is received by the second frequency band f 2 . In time slot 2, the wireless communication device 603 by a second frequency F 2 transmits the uplink data signal or uplink control data to the base station 601, the base station 601 receives uplink data from a second frequency F 2 uplink control signal or data.

圖7A是根據第四示範實施例所繪示一種具有第一類中繼通訊裝置的無線通訊系統的示意圖。無線通訊系統70包括基地台701、第一類中繼通訊裝置702與無線通訊裝置703。圖7B是圖7A的無線通訊系統的傳送接收方式的示意圖。請同時參照圖7A與圖7B,在無線通訊系統70中,基地台701與第一類中繼通訊裝置702之間採用FDD模式,而第一類中繼通訊裝置702與無線通訊裝置703之間採用TDD模式。因為在第一類中繼通訊裝置702與無線通訊裝置703之間採用TDD模式,無線通訊系統7的整體傳送與接收流程必須要分2個時間槽來進行。此即,在時間槽1中,第一類中繼通訊裝置702藉由第二頻段f2 傳送下行資料或下行控制信號資料至無線通訊裝置703,而無線通訊裝置703由第二頻段f2接收下行資料或下行控制信號資料。在時間槽2中,無線通訊裝置703藉由第二頻段f2傳送上行資料或上行控制信號資料至無線通訊裝置703,而無線通訊裝置703由第二頻段f2接收上行資料或上行控制信號資料。 FIG. 7A is a schematic diagram of a wireless communication system having a first type of relay communication device according to a fourth exemplary embodiment. The wireless communication system 70 includes a base station 701, a first type of relay communication device 702, and a wireless communication device 703. FIG. 7B is a schematic diagram of a transmission and reception mode of the wireless communication system of FIG. 7A. Referring to FIG. 7A and FIG. 7B simultaneously, in the wireless communication system 70, the FDD mode is adopted between the base station 701 and the first type of relay communication device 702, and between the first type of relay communication device 702 and the wireless communication device 703. Adopt TDD mode. Since the TDD mode is adopted between the first type of relay communication device 702 and the wireless communication device 703, the overall transmission and reception process of the wireless communication system 7 must be performed in two time slots. Namely, in the time slot 1, the first type relay communication device 702 by a second frequency f 2 transmit downlink data or downlink control data signals to the wireless communication device 703 and the wireless communication device 703 is received by the second frequency f 2 Downstream data or downlink control signal data. In time slot 2, the wireless communication device 703 by a second frequency F 2 transmits the uplink data signal or uplink control data to the wireless communication device 703 and the wireless communication device 703 by a second frequency F 2 data receiving an uplink data signal or uplink control .

更進一步來看,在下行鏈結的運作方式中,基地台701藉由第一頻段f1傳送下行資料或下行控制信號資料給第一類中繼通訊裝置702。例如,基地台701可利用3GPP LTE標準中的PDCCH、PHICH、PCFICH、PDSCH、BCH以及SCH,來傳送資料或控制信號資料給無線通訊裝置703。又例如,基地台701還可利用IEEE 802.16m標準中的A-MAP以及SFH,來傳送下行資料或下行控制信號資料給無線通訊裝置703。 Further, in the operation mode of the downlink link, the base station 701 transmits the downlink data or the downlink control signal data to the first type of relay communication device 702 by using the first frequency band f 1 . For example, the base station 701 can transmit data or control signal data to the wireless communication device 703 by using the PDCCH, PHICH, PCFICH, PDSCH, BCH, and SCH in the 3GPP LTE standard. For another example, the base station 701 can also transmit downlink data or downlink control signal data to the wireless communication device 703 by using A-MAP and SFH in the IEEE 802.16m standard.

第一類中繼通訊裝置702藉由第二頻段f2傳送下行資料或下行控制信號資料給無線通訊裝置703。例如,第一類中繼通訊裝置702可利用3GPP LTE標準中的PDCCH、PHICH、PCFICH、PDSCH、BCH以及SCH,來傳送下行資料或下行控制信號資料給無線通訊裝置703。又例如,第一類中繼通訊裝置702還可利用IEEE 802.16m標準中的A-MAP以及SFH,來傳送下行資料或控制信號資料給下行無線通訊裝置703。 The first type of relay communication device 702 transmits downlink data or downlink control signal data to the wireless communication device 703 via the second frequency band f 2 . For example, the first type of relay communication device 702 can transmit downlink data or downlink control signal data to the wireless communication device 703 by using PDCCH, PHICH, PCFICH, PDSCH, BCH, and SCH in the 3GPP LTE standard. For another example, the first type of relay communication device 702 can also transmit downlink data or control signal data to the downlink wireless communication device 703 by using A-MAP and SFH in the IEEE 802.16m standard.

在上行鏈結的運作方式中,基地台701藉由第三頻段f3來接收資料或控制信號資料(由第一類中繼通訊裝置702 傳送的)。此即,第一類中繼通訊裝置702藉由第三頻段f3,可利用3GPP LTE標準中的PUCCH、PUSCH以及RACH,來直接傳送上行資料或上行控制信號給基地台701。另外,第一類中繼通訊裝置702還可利用例如:IEEE 802.16m標準中的PFBCH以及SFBCH,來直接傳送上行資料或上行控制信號資料給基地台701。相類似地,第一類中繼通訊裝置702藉由第三頻段f3來接收上行資料或上行控制信號資料(由無線通訊裝置703傳送的)。無線通訊裝置703藉由第二頻段f2,可利用3GPP LTE標準中的PUCCH、PUSCH以及RACH,來直接傳送上行資料或上行控制信號資料給第一類中繼通訊裝置702。另外,無線通訊裝置703還可利用例如:IEEE 802.16m標準中的PFBCH以及SFBCH,來直接傳送上行資料或上行控制信號資料給第一類中繼通訊裝置702。 In the mode of operation of the upstream link, 3 to receive data or control information signal (transmitted by the first communication device 702 of the relay type) base station 701 by a third frequency band f. That is, the first type of relay communication device 702 can directly transmit the uplink data or the uplink control signal to the base station 701 by using the PUCCH, the PUSCH, and the RACH in the 3GPP LTE standard by using the third frequency band f 3 . In addition, the first type of relay communication device 702 can also directly transmit uplink data or uplink control signal data to the base station 701 by using, for example, the PFBCH and the SFBCH in the IEEE 802.16m standard. Similarly, the first type relay communication device 702 by a third frequency band f 3 to receive an uplink data signal or uplink control information (transmitted by the wireless communication device 703). The wireless communication device 703 can directly transmit the uplink data or the uplink control signal data to the first type of relay communication device 702 by using the PUCCH, the PUSCH, and the RACH in the 3GPP LTE standard by using the second frequency band f 2 . In addition, the wireless communication device 703 can also directly transmit uplink data or uplink control signal data to the first type of relay communication device 702 by using, for example, the PFBCH and the SFBCH in the IEEE 802.16m standard.

圖8A是根據第五示範實施例所繪示一種具有第二類中繼通訊裝置的無線通訊系統的示意圖。無線通訊系統80包括基地台801、第二類中繼通訊裝置802與無線通訊裝置803。圖8B是圖8A的無線通訊系統80的傳送接收方式的示意圖。請同時參照圖8A與圖8B,第二類中繼通訊裝置802採用TDD模式。基地台801與第二類中繼通訊裝置802之間採用TDD模式,基地台801與無線通訊裝置803之間則採用TDD模式,而第二類中繼通訊裝置802與無線通訊裝置803為單方向鏈結。此即,如圖8A所示,基地台801與第二類中繼通訊裝置802之間的上行鏈結與 下行鏈結皆使用第一頻段f1。第二類中繼通訊裝置802與無線通訊裝置803之間的下行鏈結也使用第二頻段f2,而基地台801與無線通訊裝置803之間的上行鏈結與下行鏈結皆使用第二頻段f2。由於基地台801與第二類中繼通訊裝置802之間採用TDD模式,基地台801與無線通訊裝置803之間也採用TDD模式,無線通訊系統80的整體傳送與接收流程必須要分2個時間槽來進行。 FIG. 8A is a schematic diagram of a wireless communication system having a second type of relay communication device according to a fifth exemplary embodiment. The wireless communication system 80 includes a base station 801, a second type of relay communication device 802, and a wireless communication device 803. FIG. 8B is a schematic diagram of the transmission and reception mode of the wireless communication system 80 of FIG. 8A. Referring to FIG. 8A and FIG. 8B simultaneously, the second type of relay communication device 802 adopts a TDD mode. The TDD mode is adopted between the base station 801 and the second type relay communication device 802, the TDD mode is adopted between the base station 801 and the wireless communication device 803, and the second type relay communication device 802 and the wireless communication device 803 are in one direction. link. That is, as shown in FIG. 8A, both the uplink link and the downlink link between the base station 801 and the second type of relay communication device 802 use the first frequency band f 1 . The downlink link between the second type of relay communication device 802 and the wireless communication device 803 also uses the second frequency band f 2 , and the uplink link and the downlink link between the base station 801 and the wireless communication device 803 are both used. Frequency band f 2 . Since the TDD mode is adopted between the base station 801 and the second type of relay communication device 802, the TDD mode is also adopted between the base station 801 and the wireless communication device 803, and the overall transmission and reception process of the wireless communication system 80 must be divided into two times. The slot is coming.

更進一步來看,在下行鏈結的運作方式中,基地台801藉由第一頻段f1傳送下行資料給第二類中繼通訊裝置602,第二類中繼通訊裝置802從第一頻段f1接收下行資料,而第二類中繼通訊裝置802藉由第二頻段f2傳送下行資料給無線通訊裝置803。基地台801藉由第二頻段f2傳送下行控制信號資料給無線通訊裝置803,來協調管理無線通訊裝置803。例如,基地台801可利用3GPP LTE標準中的PDCCH、PHICH以及PCFICH,來傳送下行控制信號資料給無線通訊裝置803。又例如,基地台801還可利用IEEE 802.16m標準中的A-MAP以及SFH,來傳送下行控制信號資料給無線通訊裝置803。基地台801還與第二類中繼通訊裝置602共同地或協同地藉由第二頻段f2來傳送下行資料給無線通訊裝置803,而無線通訊裝置803由第二頻段f2來接收下行資料。 Further, in the operation mode of the downlink link, the base station 801 transmits the downlink data to the second type of relay communication device 602 through the first frequency band f 1 , and the second type relay communication device 802 from the first frequency band f 1 receiving the downlink data, and the second type of relay communication device 802 transmits the downlink data to the wireless communication device 803 via the second frequency band f 2 . The base station 801 transmits the downlink control signal data to the wireless communication device 803 via the second frequency band f 2 to coordinate and manage the wireless communication device 803. For example, the base station 801 can transmit the downlink control signal data to the wireless communication device 803 by using the PDCCH, the PHICH, and the PCFICH in the 3GPP LTE standard. For another example, the base station 801 can also transmit downlink control signal data to the wireless communication device 803 by using A-MAP and SFH in the IEEE 802.16m standard. The base station 801 also transmits the downlink data to the wireless communication device 803 by the second frequency band f 2 in cooperation with the second type of relay communication device 602, and the wireless communication device 803 receives the downlink data from the second frequency band f 2 . .

在上行鏈結的運作方式中,基地台801藉由第二頻段f2來實現無線通訊裝置803的上行資料通道與上行控制通道。此即,無線通訊裝置803至基地台801的上行鏈結可 同時傳送上行資料與上行控制信號資料。舉例說明,無線通訊裝置803藉由第二頻段f2,可利用3GPP LTE標準中的PUCCH、PUSCH以及RACH,來直接傳送上行資料或上行控制信號資料給基地台801。又例如,無線通訊裝置803還可利用例如:IEEE 802.16m標準中的PFBCH以及SFBCH,來直接傳送上行資料或上行控制信號資料給基地台601。 In the operation mode of the uplink link, the base station 801 implements the uplink data channel and the uplink control channel of the wireless communication device 803 by using the second frequency band f 2 . That is, the uplink link of the wireless communication device 803 to the base station 801 can simultaneously transmit the uplink data and the uplink control signal data. For example, the wireless communication device 803 can directly transmit the uplink data or the uplink control signal data to the base station 801 by using the PUCCH, the PUSCH, and the RACH in the 3GPP LTE standard by using the second frequency band f 2 . For another example, the wireless communication device 803 can directly transmit the uplink data or the uplink control signal data to the base station 601 by using, for example, the PFBCH and the SFBCH in the IEEE 802.16m standard.

相類似地,基地台801藉由第一頻段f1來實現第二類中繼通訊裝置802的上行資料通道與上行控制通道。此即,第二類中繼通訊裝置802至基地台801的上行鏈結可同時傳送上行資料與上行控制信號資料。舉例說明,第二類中繼通訊裝置802藉由第一頻段f1,可利用3GPP LTE標準中的PUCCH、PUSCH以及RACH,來直接傳送上行資料或上行控制信號資料給基地台801。又例如,第二類中繼通訊裝置802還可利用例如:IEEE 802.16m標準中的PFBCH以及SFBCH,來直接傳送上行資料或上行控制信號給基地台801。 Similarly, the base station 801 implements the uplink data channel and the uplink control channel of the second type of relay communication device 802 by using the first frequency band f 1 . That is, the uplink link of the second type of relay communication device 802 to the base station 801 can simultaneously transmit uplink data and uplink control signal data. For example, the second type of relay communication device 802 can directly transmit uplink data or uplink control signal data to the base station 801 by using the PUCCH, the PUSCH, and the RACH in the 3GPP LTE standard by using the first frequency band f 1 . For another example, the second type of relay communication device 802 can also directly transmit uplink data or uplink control signals to the base station 801 by using, for example, the PFBCH and the SFBCH in the IEEE 802.16m standard.

請參照圖8B,在時間槽1中,基地台801藉由第一頻段f1傳送下行資料至第二類中繼通訊裝置802,並藉由第二頻段f2傳送下行資料或下行控制信號資料至無線通訊裝置803,而第二類中繼通訊裝置802另外藉由第二頻段f2傳送下行資料至無線通訊裝置803。在時間槽1中,第二類中繼通訊裝置802由第一頻段f2接收下行資料,而無線通訊裝置803由第二頻段f2接收下行資料或下行控制信 號資料。在時間槽2中,第二類中繼通訊裝置802藉由第一頻段f1傳送上行資料或上行控制信號資料至基地台801,無線通訊裝置803藉由第二頻段f2傳送上行資料或上行控制信號資料至基地台801。在時間槽2中,基地台801由第一頻段f1接收第二類中繼通訊裝置802的上行資料,且同時由第二頻段f2接收無線通訊裝置803的上行資料與上行控制信號資料。 Referring to FIG 8B, in time slot 1, the base station 801 by a first frequency band f band f 2 by a second downlink transmission control information or downlink data signal transmitted to a second type of downlink relay data communication device 802, and To the wireless communication device 803, the second type of relay communication device 802 additionally transmits downlink data to the wireless communication device 803 via the second frequency band f 2 . In time slot 1, the second type of relay communication device 802 receives downlink data from the first frequency band f 2 , and the wireless communication device 803 receives downlink data or downlink control signal data from the second frequency band f 2 . In time slot 2, the second relay communication device 802 by a first frequency f 1 transmits uplink data signal or uplink control data to the base station 801, wireless communication device 803 by a second frequency F 2 transmits the uplink data or the uplink The signal data is controlled to the base station 801. In time slot 2, the first base station 801 receives uplink data band f second type communication device 802 of the relay 1, while the receiving wireless communication device by a second frequency band f 2 803 of the uplink data and uplink control data signal.

綜上所述,本揭露的示範實施例提供一種無線通訊系統及其中繼通訊裝置與無線通訊裝置。所述的無線通訊系統藉由在上行鏈結與下行鏈結中使用同頻段或異頻段無線資源,以及適當地搭配分時雙工與分頻雙工的技術,可提升無線通訊裝置在中繼轉傳方式的最高傳輸速率。另外,還可減少在中繼轉傳的上行鏈結與下行鏈結之間的轉換時間間隔,並同時減少所需的載波資源,以提升無線資源的使用效率。 In summary, the exemplary embodiments of the present disclosure provide a wireless communication system, a relay communication device thereof, and a wireless communication device. The wireless communication system can improve the wireless communication device by using the same frequency band or different frequency band radio resources in the uplink link and the downlink link, and appropriately matching the techniques of time division duplexing and frequency division duplexing. The highest transfer rate of the transfer mode. In addition, the switching time interval between the uplink and downlink links of the relay transfer can be reduced, and the required carrier resources can be reduced at the same time to improve the use efficiency of the radio resources.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作些許之更動與潤飾,故本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of this disclosure is subject to the definition of the scope of the patent application.

10、20、40、50、60、70、80‧‧‧無線通訊系統 10, 20, 40, 50, 60, 70, 80‧‧‧ wireless communication systems

101、201、401、501、601、701、801‧‧‧基地台 101, 201, 401, 501, 601, 701, 801‧‧ ‧ base station

102、502、702‧‧‧第一類中繼通訊裝置 102, 502, 702‧‧‧ first type relay communication device

202、402、602、802‧‧‧第二類中繼通訊裝置 202, 402, 602, 802‧‧‧ second type relay communication device

f1‧‧‧第一頻段 f 1 ‧‧‧first frequency band

f2‧‧‧第二頻段 f 2 ‧‧‧second frequency band

f3‧‧‧第三頻段 f 3 ‧‧‧ third frequency band

圖1A是一種習知的具有第一類中繼通訊裝置的無線通訊系統的示意圖。 1A is a schematic diagram of a conventional wireless communication system having a first type of relay communication device.

圖1B是圖1A的無線通訊系統的傳送接收方式的示意 圖。 FIG. 1B is a schematic diagram of a transmission and reception mode of the wireless communication system of FIG. 1A Figure.

圖2A是一種習知的具有第二類中繼通訊裝置的無線通訊系統的示意圖。 2A is a schematic diagram of a conventional wireless communication system having a second type of relay communication device.

圖2B是圖2A的無線通訊系統的傳送接收方式的示意圖。 2B is a schematic diagram of a transmission and reception mode of the wireless communication system of FIG. 2A.

圖3是一種因中繼通訊裝置造成轉換時間間隔的示意圖。 Figure 3 is a schematic illustration of the transition time interval due to the relay communication device.

圖4A是根據第一示範實施例所繪示一種具有第二類中繼通訊裝置的無線通訊系統的示意圖。 4A is a schematic diagram of a wireless communication system having a second type of relay communication device according to the first exemplary embodiment.

圖4B是圖4A的無線通訊系統的傳送接收方式的載波與時序的示意圖。 4B is a schematic diagram of a carrier and timing of a transmission and reception mode of the wireless communication system of FIG. 4A.

圖5A是根據第二示範實施例所繪示一種具有第一類中繼通訊裝置的無線通訊系統的示意圖。 FIG. 5A is a schematic diagram of a wireless communication system having a first type of relay communication device according to a second exemplary embodiment.

圖5B是圖5A的無線通訊系統的傳送接收方式的示意圖。 FIG. 5B is a schematic diagram of a transmission and reception mode of the wireless communication system of FIG. 5A.

圖6A是根據第三示範實施例所繪示一種具有第二類中繼通訊裝置的無線通訊系統的示意圖。 FIG. 6A is a schematic diagram of a wireless communication system having a second type of relay communication device according to a third exemplary embodiment.

圖6B是圖6A的無線通訊系統的傳送接收方式的示意圖。 6B is a schematic diagram of a transmission and reception mode of the wireless communication system of FIG. 6A.

圖7A是根據第四示範實施例所繪示一種具有第一類中繼通訊裝置的無線通訊系統的示意圖。 FIG. 7A is a schematic diagram of a wireless communication system having a first type of relay communication device according to a fourth exemplary embodiment.

圖7B是圖7A的無線通訊系統的傳送接收方式的示意圖。 FIG. 7B is a schematic diagram of a transmission and reception mode of the wireless communication system of FIG. 7A.

圖8A是根據第五示範實施例所繪示一種具有第二類 中繼通訊裝置的無線通訊系統的示意圖。 FIG. 8A is a second class diagram according to a fifth exemplary embodiment. Schematic diagram of a wireless communication system for a relay communication device.

圖8B是圖8A的無線通訊系統的傳送接收方式的示意圖。 FIG. 8B is a schematic diagram of the transmission and reception mode of the wireless communication system of FIG. 8A.

50‧‧‧無線通訊系統 50‧‧‧Wireless communication system

501‧‧‧基地台 501‧‧‧Base Station

502‧‧‧中繼通訊裝置 502‧‧‧Relay communication device

503‧‧‧無線通訊裝置 503‧‧‧Wireless communication device

Claims (15)

一種無線通訊系統,包括:至少一基地台;至少一中繼通訊裝置,無線連接至該至少一基地台;以及至少一無線通訊裝置,無線連接至該至少一中繼通訊裝置,其中該無線通訊系統中的該至少一中繼通訊裝置的上行鏈結與該至少一無線通訊裝置的上行鏈結為同頻段,而該無線通訊系統中的該至少一中繼通訊裝置的下行鏈結與該至少一無線通訊裝置的下行鏈結為異頻段,其中,上述同頻段與上述異頻段中的頻段皆為互不相同的頻段。 A wireless communication system comprising: at least one base station; at least one relay communication device wirelessly connected to the at least one base station; and at least one wireless communication device wirelessly connected to the at least one relay communication device, wherein the wireless communication The uplink link of the at least one relay communication device in the system is in the same frequency band as the uplink link of the at least one wireless communication device, and the downlink link of the at least one relay communication device in the wireless communication system and the at least The downlink link of a wireless communication device is a different frequency band, wherein the same frequency band and the frequency band in the different frequency band are mutually different frequency bands. 如申請專利範圍第1項所述的無線通訊系統,其中,該至少一基地台與該至少一中繼通訊裝置之間的一第一傳輸模式採用一分頻雙工模式;該至少一基地台與該至少一無線通訊裝置的一第二傳輸模式採用該分頻雙工模式;該至少一基地台藉由一第一頻段傳送一下行資料給該至少一中繼通訊裝置;該至少一中繼通訊裝置由該第一頻段接收該下行資料;該至少一基地台與該至少一中繼通訊裝置共同地藉由一第二頻段傳送該下行資料給該至少一無線通訊裝置;該至少一無線通訊裝置由該第二頻段接收該下行資 料;該至少一基地台更藉由該第二頻段傳送一下行控制信號資料給該至少一無線通訊裝置;以及該至少一基地台在相同的一上行資料通道或一上行控制通道協調管理該至少一中繼通訊裝置以及該至少一無線通訊裝置。 The wireless communication system of claim 1, wherein a first transmission mode between the at least one base station and the at least one relay communication device adopts a frequency division duplex mode; the at least one base station The second transmission mode of the at least one wireless communication device adopts the frequency division duplex mode; the at least one base station transmits the downlink data to the at least one relay communication device by using a first frequency band; the at least one relay The communication device receives the downlink data from the first frequency band; the at least one base station and the at least one relay communication device jointly transmit the downlink data to the at least one wireless communication device by using a second frequency band; the at least one wireless communication The device receives the downlink asset from the second frequency band And the at least one base station further transmits the downlink control signal data to the at least one wireless communication device by using the second frequency band; and the at least one base station coordinates and manages the at least one uplink data channel or an uplink control channel a relay communication device and the at least one wireless communication device. 如申請專利範圍第2項所述的無線通訊系統,其中,該至少一中繼通訊裝置傳送該下行資料給該至少一無線通訊裝置所使用的至少一通道包括第三代通訊系統夥伴專案(3GPP LTE)標準中的實體層下行共用通道(PDSCH);該至少一基地台傳送該下行資料給該至少一無線通訊裝置所使用的至少一通道包括3GPP LTE標準中的實體層下行控制通道(PDCCH)、實體層混合式自動傳送指標通道(PHICH)、以及實體層控制格式指標通道(PCFICH);以及該上行資料通道或該上行控制通道包括3GPP LTE標準中的實體層上行控制通道(Physical Uplink Control Channel,簡稱為PUCCH)、實體層上行共用通道(Physical Uplink Shared Channel,簡稱為PUSCH)以及隨機存取通道(Random Access Channel,簡稱為RACH)。 The wireless communication system of claim 2, wherein the at least one relay communication device transmits the downlink data to at least one channel used by the at least one wireless communication device, including a third generation communication system partner project (3GPP) a physical layer downlink shared channel (PDSCH) in the LTE) standard; the at least one base station transmits the downlink data to at least one channel used by the at least one wireless communication device, including a physical layer downlink control channel (PDCCH) in the 3GPP LTE standard a physical layer hybrid automatic transmission indicator channel (PHICH) and a physical layer control format indicator channel (PCFICH); and the uplink data channel or the uplink control channel includes a physical layer uplink control channel (Physical Uplink Control Channel) in the 3GPP LTE standard , referred to as PUCCH), Physical Uplink Shared Channel (PUSCH) and Random Access Channel (RACH). 如申請專利範圍第2項所述的無線通訊系統,其中,該至少一基地台傳送該下行資料給該至少一無線通訊裝置所使用的至少一通道包括IEEE 802.16m標準中的先 進媒體存取通訊協定(A-MAP)以及超訊框標頭(SFH);以及該上行資料通道或該上行控制通道包括IEEE 802.16m標準中的主要回授通道(Primary Feedback Channel,簡稱為PFBCH)以及次要回授通道(Secondary Feedback Channel,簡稱為SFBCH)。 The wireless communication system of claim 2, wherein the at least one base station transmits the downlink data to at least one channel used by the at least one wireless communication device, including the first one in the IEEE 802.16m standard. Incoming Media Access Protocol (A-MAP) and Hyperframe Header (SFH); and the uplink data channel or the uplink control channel includes a primary feedback channel (PFBCH) in the IEEE 802.16m standard ) and the secondary feedback channel (Secondary Feedback Channel, referred to as SFBCH). 如申請專利範圍第1項所述的無線通訊系統,其中,該至少一基地台與該至少一中繼通訊裝置之間的一第一傳輸模式採用一分頻雙工模式;該至少一基地台與該至少一無線通訊裝置的一第二傳輸模式採用該分頻雙工模式;該至少一基地台藉由一第一頻段傳送一下行資料或一下行控制信號資料給該至少一中繼通訊裝置;該至少一中繼通訊裝置由該第一頻段接收該下行資料或該下行控制信號資料;該至少一中繼通訊裝置藉由一第二頻段傳送該下行資料或該下行控制信號資料給該至少一無線通訊裝置;該至少一無線通訊裝置由該第二頻段接收該下行資料或該下行控制信號資料;以及該至少一基地台在相同的一上行資料通道或一上行控制通道協調管理該至少一中繼通訊裝置以及該至少一無線通訊裝置,其中該上行資料通道或該上行控制通道運作在一第三頻段。 The wireless communication system of claim 1, wherein a first transmission mode between the at least one base station and the at least one relay communication device adopts a frequency division duplex mode; the at least one base station And the second transmission mode of the at least one wireless communication device adopts the frequency division duplex mode; the at least one base station transmits the downlink data or the downlink control signal data to the at least one relay communication device by using a first frequency band Receiving, by the at least one relay communication device, the downlink data or the downlink control signal data by the first frequency band; the at least one relay communication device transmitting the downlink data or the downlink control signal data to the at least one second frequency band a wireless communication device; the at least one wireless communication device receives the downlink data or the downlink control signal data by the second frequency band; and the at least one base station coordinates and manages the at least one of the same uplink data channel or an uplink control channel a relay communication device and the at least one wireless communication device, wherein the uplink data channel or the uplink control channel operates in a third frequency band . 如申請專利範圍第5項所述的無線通訊系統,其 中,該至少一基地台傳送該下行資料或該下行控制信號資料給該至少一中繼通訊裝置所使用的至少一通道包括3GPP LTE標準中的PDCCH、PHICH、PCFICH、PDSCH、廣播通道(BCH)以及同步通道(SCH);以及該上行資料通道或該上行控制通道包括3GPP LTE標準中的PUCCH、PUSCH以及RACH。 A wireless communication system as described in claim 5, The at least one base station transmits the downlink data or the downlink control signal information to the at least one channel used by the at least one relay communication device, including a PDCCH, a PHICH, a PCFICH, a PDSCH, and a broadcast channel (BCH) in the 3GPP LTE standard. And a synchronization channel (SCH); and the uplink data channel or the uplink control channel includes a PUCCH, a PUSCH, and a RACH in the 3GPP LTE standard. 如申請專利範圍第5項所述的無線通訊系統,其中,該至少一基地台傳送該下行資料或該下行控制信號資料給該至少一中繼通訊裝置所使用的至少一通道包括IEEE 802.16m標準中的A-MAP以及SFH;以及該上行資料通道或該上行控制通道包括IEEE 802.16m標準中的PFBCH以及SFBCH。 The wireless communication system of claim 5, wherein the at least one base station transmits the downlink data or the downlink control signal data to at least one channel used by the at least one relay communication device, including an IEEE 802.16m standard. A-MAP and SFH in the medium; and the uplink data channel or the uplink control channel includes a PFBCH and an SFBCH in the IEEE 802.16m standard. 如申請專利範圍第5項所述的無線通訊系統,其中,該至少一中繼通訊裝置具有一方向性天線,以藉由該第三頻段同時接收一下行資料與傳送另一下行資料。 The wireless communication system of claim 5, wherein the at least one relay communication device has a directional antenna for simultaneously receiving the downlink data and transmitting another downlink data by the third frequency band. 一種中繼通訊裝置,適用於在至少一基地台與至少一無線通訊裝置之間中繼轉傳一資料或一控制信號資料,其中,該中繼通訊裝置一第一上行鏈結與該至少一無線通訊裝置的一第二上行鏈結為同頻段,而該中繼通訊裝置一第一下行鏈結與該至少一無線通訊裝置的一第二下行鏈結為異頻段,其中,上述同頻段與上述異頻段中的頻段皆為互不相同的頻段。 A relay communication device, configured to relay a data or a control signal data between at least one base station and at least one wireless communication device, wherein the relay communication device has a first uplink link and the at least one A second uplink link of the wireless communication device is in the same frequency band, and a first downlink link of the relay communication device and a second downlink link of the at least one wireless communication device are in different frequency bands, wherein the same frequency band The frequency bands in the different frequency bands are different from each other. 如申請專利範圍第9項所述的中繼通訊裝置,其中,該至少一基地台與該至少一中繼通訊裝置之間的一傳輸模式採用一分頻雙工模式;該中繼通訊裝置由該第一頻段接收一下行資料;該至少一基地台與該中繼通訊裝置共同地藉由一第二頻段傳送一第二資料給該至少一無線通訊裝置;以及該至少一基地台在相同的一上行資料通道或一上行控制通道協調管理該中繼通訊裝置。 The relay communication device of claim 9, wherein a transmission mode between the at least one base station and the at least one relay communication device adopts a frequency division duplex mode; The first frequency band receives the downlink data; the at least one base station and the relay communication device jointly transmit a second data to the at least one wireless communication device by using a second frequency band; and the at least one base station is in the same An uplink data channel or an uplink control channel coordinates management of the relay communication device. 如申請專利範圍第10項所述的中繼通訊裝置,其中,該至少一中繼通訊裝置傳送該下行資料給該至少一無線通訊裝置所使用的至少一通道包括3GPP LTE標準中的PDSCH;以及該上行資料通道或該上行控制通道包括3GPP LTE標準中的實體層上行控制通道PUCCH、PUSCH以及RACH。 The relay communication device of claim 10, wherein the at least one relay communication device transmits the downlink data to at least one channel used by the at least one wireless communication device, including a PDSCH in a 3GPP LTE standard; The uplink data channel or the uplink control channel includes physical layer uplink control channels PUCCH, PUSCH, and RACH in the 3GPP LTE standard. 如申請專利範圍第10項所述的中繼通訊裝置,其中,該上行資料通道或該上行控制通道包括IEEE 802.16m標準中的PFBCH以及SFBCH。 The relay communication device according to claim 10, wherein the uplink data channel or the uplink control channel includes a PFBCH and an SFBCH in the IEEE 802.16m standard. 如申請專利範圍第9項所述的中繼通訊裝置,其中,該中繼通訊裝置與該至少一基地台之間的一第一傳輸模式採用一分頻雙工模式;該中繼通訊裝置與該至少一無線通訊裝置之間的一第 二傳輸模式採用該分頻雙工模式;該中繼通訊裝置由該第一頻段接收一下行資料或一下行控制信號資料;該中繼通訊裝置藉由一第二頻段傳送該下行資料或該下行控制信號資料;以及該中繼通訊裝置的一上行資料通道或一上行控制通道運作在一第三頻段。 The relay communication device of claim 9, wherein a first transmission mode between the relay communication device and the at least one base station adopts a frequency division duplex mode; the relay communication device and a first between the at least one wireless communication device The second transmission mode adopts the frequency division duplex mode; the relay communication device receives the downlink data or the downlink control signal data from the first frequency band; the relay communication device transmits the downlink data or the downlink by using a second frequency band Control signal data; and an uplink data channel or an uplink control channel of the relay communication device operates in a third frequency band. 如申請專利範圍第13項所述的中繼通訊裝置,其中,該中繼通訊裝置接收該下行資料或該下行控制信號資料所使用的至少一通道包括3GPP LTE標準中的PDCCH、PHICH、PCFICH、PDSCH、BCH以及SCH;以及該上行資料通道或該上行控制通道包括3GPP LTE標準中的PUCCH、PUSCH以及RACH。 The relay communication device of claim 13, wherein at least one channel used by the relay communication device to receive the downlink data or the downlink control signal data includes a PDCCH, a PHICH, a PCFICH in a 3GPP LTE standard, The PDSCH, the BCH, and the SCH; and the uplink data channel or the uplink control channel include PUCCH, PUSCH, and RACH in the 3GPP LTE standard. 如申請專利範圍第13項所述的中繼通訊裝置,其中,該中繼通訊裝置接收該下行資料或該下行控制信號資料所使用的至少一通道包括IEEE 802.16m標準中的A-MAP以及SFH;以及該上行資料通道或該上行控制通道包括IEEE 802.16m標準中的PFBCH以及SFBCH。 The relay communication device according to claim 13, wherein at least one channel used by the relay communication device to receive the downlink data or the downlink control signal data includes A-MAP and SFH in the IEEE 802.16m standard. And the uplink data channel or the uplink control channel includes a PFBCH and an SFBCH in the IEEE 802.16m standard.
TW99132434A 2009-10-29 2010-09-24 Wireless communication system and relay station and wireless communication device thereof TWI444083B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/907,040 US20110103269A1 (en) 2009-10-29 2010-10-19 Wireless communication system and relay station and wireless communication device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US25603309P 2009-10-29 2009-10-29

Publications (2)

Publication Number Publication Date
TW201130368A TW201130368A (en) 2011-09-01
TWI444083B true TWI444083B (en) 2014-07-01

Family

ID=43959541

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99132434A TWI444083B (en) 2009-10-29 2010-09-24 Wireless communication system and relay station and wireless communication device thereof

Country Status (2)

Country Link
CN (1) CN102055579A (en)
TW (1) TWI444083B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087199B (en) * 2019-05-09 2021-07-27 信息产业电子第十一设计研究院科技工程股份有限公司 User group data service system and method based on millimeter wave system downlink of relay
CN113872658B (en) * 2020-06-30 2023-10-31 星宸科技股份有限公司 Wireless communication system and wireless signal extension device and method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893832B1 (en) * 2005-10-18 2009-04-17 삼성전자주식회사 Apparatus and method for supporting multi link in multi-hop relay cellular network with using two frequency bands
CN101111047B (en) * 2006-07-18 2011-03-30 华为技术有限公司 Method and system for communication using relaying base station
CN101262268B (en) * 2007-03-09 2012-03-21 电信科学技术研究院 Method and relay device for realizing wireless link orthogonality supporting relay cellular system

Also Published As

Publication number Publication date
CN102055579A (en) 2011-05-11
TW201130368A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
US10687353B2 (en) Management of conflicting scheduling commands in wireless networks
US10063279B2 (en) Communication system, relay device, communication terminal, and base station
JP5118253B2 (en) Resource allocation method for backhaul link and access link in wireless communication system including relay station
KR101955516B1 (en) Method and device for communication between terminals in wireless communication system
EP2476284B1 (en) Methods and apparatuses for interference coordination in a telecommunications system
US20210037445A1 (en) Smart directional repeaters with buffering capability
US20100315989A1 (en) Method and apparatus for cooperative relaying in wireless communications
US20110103269A1 (en) Wireless communication system and relay station and wireless communication device thereof
CN109845161A (en) Dynamic hybrid automatic repeat-request time control
KR20170127443A (en) Resource partitioning between wireless backhaul and access communications in millimeter wave networks
US20150257160A1 (en) Base station and radio communication method
CN102648589A (en) Relay backhaul in wireless communication
CN113661758B (en) High path loss mode multiplexing
CN105900508A (en) User terminal, wireless base station, wireless communication system, and wireless communication method
US20220345285A1 (en) Operating method for iab node in wireless communication system, and device using method
US11870718B2 (en) Sidelink CSI report transmission methods and conditions
WO2011047616A1 (en) Relay method, apparatus and system
US9426811B2 (en) Method and device for avoiding inter-cell interference in a wireless access system
US20150304016A1 (en) Relay system for moving object
CN116711246A (en) Uplink hybrid automatic repeat request retransmission scheduling in networks with large propagation delays
US20140228035A1 (en) Multipoint-to-multipoint base station communication
CN109644389A (en) Physical Cell Identifier channel (PCICH)
TWI444083B (en) Wireless communication system and relay station and wireless communication device thereof
JP7406652B2 (en) A method for operating an IAB node connected to a plurality of parent nodes in a wireless communication system and an apparatus using the method
Yuan et al. LTE-A relay study and related technologies