TWI442585B - A photovoltaic device having a porous electrode and a method of manufacturing the same - Google Patents

A photovoltaic device having a porous electrode and a method of manufacturing the same Download PDF

Info

Publication number
TWI442585B
TWI442585B TW100108885A TW100108885A TWI442585B TW I442585 B TWI442585 B TW I442585B TW 100108885 A TW100108885 A TW 100108885A TW 100108885 A TW100108885 A TW 100108885A TW I442585 B TWI442585 B TW I442585B
Authority
TW
Taiwan
Prior art keywords
layer
positive electrode
electrode layer
photovoltaic device
light
Prior art date
Application number
TW100108885A
Other languages
Chinese (zh)
Other versions
TW201240109A (en
Inventor
Ann Kuo Chu
Wei Chen Tien
Jian An Lu
Mei Ying Chiang
wen yao Huang
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW100108885A priority Critical patent/TWI442585B/en
Publication of TW201240109A publication Critical patent/TW201240109A/en
Application granted granted Critical
Publication of TWI442585B publication Critical patent/TWI442585B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

具有多孔式電極之光電裝置及其製造方法Photoelectric device with porous electrode and method of manufacturing same

本發明是有關於一種光電裝置,且特別是有關於一種具有多孔式電極之光電裝置及其製造方法。The present invention relates to an optoelectronic device, and more particularly to an optoelectronic device having a multi-hole electrode and a method of fabricating the same.

在習知的光電裝置中,以有機太陽電池來說,太陽光之光源可經氧化銦錫玻璃(ITO glass)入射進入有機太陽電池,再由電池之吸光層(Active layer)(或稱光電反應層)予以吸收,產生激子(exciton)。這些激子必需經由擴散作用位移至空乏區(depletion region),並利用空乏區內的強電場將激子分開成自由載子(電洞、電子),載子會在內建電場(build-in electrical field)的影響下,經由正負電極輸出,以達成光能轉電能之功能。然而,有機太陽電池之吸光層由於受到激子擴散長度的限制,無法有效吸收入射的太陽光,使電池的外在量子效率降低。In a conventional photovoltaic device, in the case of an organic solar cell, a light source of sunlight can be incident into an organic solar cell via ITO glass, and then an active layer (or photoelectric reaction) of the battery. The layer) is absorbed to produce an exciton. These excitons must be displaced to the depletion region by diffusion, and the excitons are separated into free carriers (holes, electrons) by the strong electric field in the depletion region, and the carriers will build the electric field (build-in). Under the influence of electrical field, it is output through the positive and negative electrodes to achieve the function of converting light energy into electricity. However, the light absorbing layer of the organic solar cell is not limited by the length of the exciton diffusion, and cannot effectively absorb the incident sunlight, so that the external quantum efficiency of the battery is lowered.

有鑑於此,本發明提供一種具有多孔式電極之光電裝置及其製造方法。In view of the above, the present invention provides an optoelectronic device having a porous electrode and a method of fabricating the same.

依據上述之目的,本發明提供一種具有多孔式電極之光電裝置包含基板、第一透光正極層、第二透光正極層、緩衝層、吸光層與負極層。第一透光正極層在基板上;第二透光正極層在第一透光正極層上,所述第二透光正極層具有多孔隙結構;緩衝層在第二透光正極層上;吸光層在緩衝層上;負極層在吸光層上;其中,當一光源從第二透光正極層射入時,利用所述之多孔隙結構以提升此光源進入吸光層的效率。According to the above object, the present invention provides a photovoltaic device having a porous electrode comprising a substrate, a first light-transmitting positive electrode layer, a second light-transmitting positive electrode layer, a buffer layer, a light-absorbing layer and a negative electrode layer. The first transparent positive electrode layer is on the substrate; the second transparent positive electrode layer is on the first transparent positive electrode layer, the second transparent positive electrode layer has a porous structure; the buffer layer is on the second transparent positive electrode layer; and the light absorption is The layer is on the buffer layer; the anode layer is on the light absorbing layer; wherein when a light source is incident from the second light-transmitting cathode layer, the porous structure is utilized to increase the efficiency of the light source entering the light absorbing layer.

依據上述之目的,本發明亦提供一種具有多孔式電極之光電裝置的製造方法包含製備一基板;形成第一透光正極層在此基板上;利用一溶膠凝膠法以備製具有多孔隙結構的第二透光正極層在此第一透光正極層上;形成緩衝層在此第二透光正極層上;形成吸光層在此緩衝層上;形成負極層在此吸光層上。According to the above object, the present invention also provides a method for fabricating a photovoltaic device having a porous electrode, comprising: preparing a substrate; forming a first transparent positive electrode layer on the substrate; using a sol-gel method to prepare a porous structure The second transparent positive electrode layer is on the first transparent positive electrode layer; the buffer layer is formed on the second transparent positive electrode layer; the light absorbing layer is formed on the buffer layer; and the negative electrode layer is formed on the light absorbing layer.

運用本發明之特點之一在於:當光源從第二透光正極層射入時,利用第二透光正極層之多孔隙結構可提升此光源進入吸光層的效率。One of the features of the present invention is that when the light source is incident from the second transparent positive electrode layer, the multi-porous structure of the second transparent positive electrode layer can improve the efficiency of the light source entering the light absorbing layer.

為讓本發明之上述目的、特徵和特點能更明顯易懂,茲配合圖式將本發明相關實施例詳細說明如下。The above described objects, features, and characteristics of the present invention will become more apparent from the aspects of the invention.

請參閱圖1,圖1為本發明一實施例具有多孔式電極之光電裝置的示意圖。Please refer to FIG. 1. FIG. 1 is a schematic diagram of a photovoltaic device having a porous electrode according to an embodiment of the present invention.

如圖1所示,具有多孔式電極之光電裝置1包含基板10、第一透光正極層11、第二透光正極層12、緩衝層13、吸光層14與負極層15,其中上述每一層皆可具有透光性。As shown in FIG. 1, a photovoltaic device 1 having a porous electrode includes a substrate 10, a first transparent positive electrode layer 11, a second transparent positive electrode layer 12, a buffer layer 13, a light absorbing layer 14, and a negative electrode layer 15, wherein each of the above layers Both can be light transmissive.

基板10能夠為具有可撓性的聚合物基板(Polymer substrate);或者,基板10能夠為玻璃基板。其中,所述基板10於此以聚合物基板作說明,但不限定於此。The substrate 10 can be a flexible polymer substrate; or the substrate 10 can be a glass substrate. Here, the substrate 10 is described herein as a polymer substrate, but is not limited thereto.

第一透光正極層11形成在基板10上。第一透光正極層11於實際運用時可為透明導電氧化物(TCO)。例如,所述第一透光正極層11可為氧化銦錫層(ITO layer)或氧化鋅鋁層(AZO layer),但不限定於此。The first light-transmitting positive electrode layer 11 is formed on the substrate 10. The first light-transmitting positive electrode layer 11 may be a transparent conductive oxide (TCO) in actual use. For example, the first light-transmitting positive electrode layer 11 may be an ITO layer or an AZO layer, but is not limited thereto.

第二透光正極層12形成在第一透光正極層11上。第一透光正極層11與第二透光正極層12可視為電性相互串連。且第二透光正極層12的厚度可薄於第一透光正極層11,使得第二透光正極層12不致於影響第一透光正極層11的透光能力,其中所述第二透光正極層12的厚度例如10奈米(nm)~20奈米(nm),但不限定於此,其可視具有多孔式電極之光電裝置1之實際需求而有不同之厚度。The second light-transmitting positive electrode layer 12 is formed on the first light-transmitting positive electrode layer 11. The first transparent positive electrode layer 11 and the second transparent positive electrode layer 12 can be electrically connected in series. The thickness of the second transparent positive electrode layer 12 can be thinner than that of the first transparent positive electrode layer 11, so that the second transparent positive electrode layer 12 does not affect the light transmissive ability of the first transparent positive electrode layer 11, wherein the second transparent The thickness of the photo positive electrode layer 12 is, for example, 10 nanometers (nm) to 20 nanometers (nm), but is not limited thereto, and may have different thickness depending on the actual demand of the photovoltaic device 1 having a porous electrode.

所述第二透光正極層12具有多孔隙結構120(porous structure)。其中,多孔隙結構120能夠利用一溶膠凝膠法或奈米顆粒溶液旋鋪來形成。例如,於溶膠凝膠法可利用超臨界二氧化碳(Supercritical carbon dioxide)流體或高溫退火法(Annealing)來形成多孔隙結構120,因而符合環保效能。The second transparent positive electrode layer 12 has a porous structure 120. Among them, the porous structure 120 can be formed by a sol-gel method or a spin coating of a nanoparticle solution. For example, in the sol-gel method, a supercritical carbon dioxide fluid or an Annealing method can be used to form the porous structure 120, thereby being environmentally friendly.

另外,第二透光正極層12於實際運用時亦可為透明導電氧化物。例如,所述第二透光正極層12可為氧化銦錫層或氧化鋅鋁層,但不限定於此。In addition, the second transparent positive electrode layer 12 may also be a transparent conductive oxide in actual use. For example, the second light-transmitting positive electrode layer 12 may be an indium tin oxide layer or a zinc aluminum oxide layer, but is not limited thereto.

由此可知,具有多孔式電極之光電裝置1的特點之一為具有至少二層(或以上)的透光正極層(或稱透光陽極層),而此至少二層透光正極層至少有一層具有多孔隙結構120,利用此多孔隙結構120可增加多孔式電極之光電裝置1的整體光電反應效率。It can be seen that one of the characteristics of the photovoltaic device 1 having a porous electrode is that there are at least two layers (or more) of a light-transmitting positive electrode layer (or a light-transmitting anode layer), and at least two layers of the light-transmitting positive electrode layer have at least One layer has a porous structure 120 with which the overall photovoltaic efficiency of the photovoltaic device 1 of the porous electrode can be increased.

緩衝層13形成在第二透光正極層12上。緩衝層13可為具有導電性的高分子聚合物層,例如緩衝層13為PEDOT:PSS之有機物互掺層。所述PEDOT是EDOT(3,4-乙撐二氧噻吩單體)的聚合物;PSS是聚苯乙烯磺酸鹽。PEDOT:PSS可應用於有機發光二極體(OLED)、有機太陽電池、有機薄膜晶體管或超級電容器等的電子傳輸層。此部份為熟悉此項技藝人士所能夠理解之技術範疇,於此不加贅述。The buffer layer 13 is formed on the second light-transmitting positive electrode layer 12. The buffer layer 13 may be a polymer layer having conductivity, for example, the buffer layer 13 is an organic interdop layer of PEDOT:PSS. The PEDOT is a polymer of EDOT (3,4-ethylenedioxythiophene monomer); the PSS is a polystyrene sulfonate. PEDOT: PSS can be applied to an electron transport layer of an organic light emitting diode (OLED), an organic solar cell, an organic thin film transistor, or a super capacitor. This section is intended to be familiar to those skilled in the art and will not be described here.

另外,緩衝層13除了作為透光正極層(例如第一透光正極層11與第二透光正極層12)與吸光層14之間的介面層之外,亦有助於調和透光正極層與吸光層14之間的化學特性或導電性,使光電效應更加完善。In addition, the buffer layer 13 serves to adjust the transparent positive electrode layer in addition to the interface layer between the light-transmitting positive electrode layer (for example, the first light-transmitting positive electrode layer 11 and the second light-transmitting positive electrode layer 12) and the light-absorbing layer 14. The chemical properties or conductivity between the light absorbing layer 14 and the light absorbing layer 14 make the photoelectric effect more perfect.

吸光層14(Active layer)形成在緩衝層13上。其中,吸光層作為p-n結合層(p-n junction layer),亦即作為光電反應層。An active layer 14 is formed on the buffer layer 13. The light absorbing layer serves as a p-n junction layer, that is, as a photoelectric reaction layer.

負極層15(或稱陰極層)形成在吸光層14上。所述負極層15包含金屬材料。此金屬材料可包含鋁、銀或金。A negative electrode layer 15 (or a cathode layer) is formed on the light absorbing layer 14. The negative electrode layer 15 contains a metal material. This metallic material may comprise aluminum, silver or gold.

請參閱圖2,圖2為圖1多孔式電極之光電裝置的應用示意圖。Please refer to FIG. 2. FIG. 2 is a schematic diagram of the application of the photovoltaic device of the porous electrode of FIG.

由圖2可知,當一光源L(例如太陽光)從多孔式電極之光電裝置1之外部而射入第二透光正極層12時,利用多孔隙結構120可令光源L1產生散射效應(Scattering Effect),以增加光源在吸光層14之行進距離,提升光源L1進入吸光層14的效率以增加吸光層14的光電反應效能;並且,所產生的電能可經由透光正極層(例如第一透光正極層11或第二透光正極層12)與負極層15被導出以作進一步的利用,例如將此電能加以儲存於蓄電池或供負載(Load)使用,但不限定於此。As can be seen from FIG. 2, when a light source L (for example, sunlight) is incident from the outside of the photovoltaic device 1 of the porous electrode into the second transparent positive electrode layer 12, the porous structure 120 can cause the light source L1 to have a scattering effect (Scattering). In order to increase the distance traveled by the light source in the light absorbing layer 14, the efficiency of the light source L1 entering the light absorbing layer 14 is increased to increase the photoelectric reaction efficiency of the light absorbing layer 14; and the generated electrical energy can be transmitted through the transparent positive electrode layer (for example, the first transparent The photo positive electrode layer 11 or the second light transmissive positive electrode layer 12) and the negative electrode layer 15 are derived for further use, for example, the electric energy is stored in a battery or used for loading, but is not limited thereto.

請參閱圖3與圖4,圖3為本發明一實施例多孔式電極之光電裝置的製造方法流程圖;圖4為圖3之基板、第一透光正極層與第二透光正極層之製造示意圖。Please refer to FIG. 3 and FIG. 4. FIG. 3 is a flow chart of a method for manufacturing a photovoltaic device of a porous electrode according to an embodiment of the present invention; FIG. 4 is a substrate, a first transparent positive electrode layer and a second transparent positive electrode layer of FIG. Manufacturing schematic.

多孔式電極之光電裝置的製造方法包含下列步驟:製備基板(步驟S100);形成第一透光正極層在基板上(步驟S110);利用溶膠凝膠法以備製具有多孔隙結構的第二透光正極層在第一透光正極層上(步驟S120);形成緩衝層在第二透光正極層上(步驟S130);形成吸光層在緩衝層上(步驟S140);形成負極層在吸光層上(步驟S150)。The manufacturing method of the photovoltaic device of the porous electrode comprises the steps of: preparing a substrate (step S100); forming a first transparent positive electrode layer on the substrate (step S110); using a sol-gel method to prepare a second having a porous structure The light-transmitting positive electrode layer is on the first light-transmitting positive electrode layer (step S120); the buffer layer is formed on the second light-transmitting positive electrode layer (step S130); the light-absorbing layer is formed on the buffer layer (step S140); and the negative electrode layer is formed at the light-absorbing layer On the layer (step S150).

請同時參閱圖1、圖3與圖4。於製備基板S100的步驟中,能夠利用聚合物材料製備基板10,使之成為具有可撓性之聚合物基板;或者,基板10能夠為玻璃基板。其中,所述基板10於此以聚合物基板作說明,但不限定於此。Please also refer to Figure 1, Figure 3 and Figure 4. In the step of preparing the substrate S100, the substrate 10 can be prepared from a polymer material to be a flexible polymer substrate; or the substrate 10 can be a glass substrate. Here, the substrate 10 is described herein as a polymer substrate, but is not limited thereto.

接著,於形成第一透光正極層在基板上S110的步驟中,能夠利用一濺鍍法(Sputter)將第一透光正極層11形成在基板10上。其中,第一透光正極層11於實際運用時可為透明導電氧化物。例如,第一透光正極層11可為氧化銦錫層或氧化鋅鋁層,但不限定於此。Next, in the step of forming the first light-transmitting positive electrode layer on the substrate S110, the first light-transmitting positive electrode layer 11 can be formed on the substrate 10 by a sputtering method. The first transparent positive electrode layer 11 may be a transparent conductive oxide when actually used. For example, the first light-transmitting positive electrode layer 11 may be an indium tin oxide layer or a zinc aluminum oxide layer, but is not limited thereto.

於利用溶膠凝膠法以備製具有多孔隙結構的第二透光正極層在第一透光正極層上S120的步驟中,製造者能夠利用溶膠凝膠法,將第二透光正極層12形成在第一透光正極層11上。第二透光正極層12於實際運用時可為透明導電氧化物。例如,所述第二透光正極層12可為氧化銦錫層或氧化鋅鋁層,但不限定於此。In the step of preparing the second light-transmitting positive electrode layer having a porous structure on the first light-transmitting positive electrode layer S120 by the sol-gel method, the manufacturer can use the sol-gel method to apply the second light-transmitting positive electrode layer 12 It is formed on the first light-transmitting positive electrode layer 11. The second transparent positive electrode layer 12 may be a transparent conductive oxide in practical use. For example, the second light-transmitting positive electrode layer 12 may be an indium tin oxide layer or a zinc aluminum oxide layer, but is not limited thereto.

並且,利用溶膠凝膠法(Sol-Gel)以備製具有多孔隙結構120的第二透光正極層12在第一透光正極層11上。其中,溶膠凝膠法可包含利用超臨界二氧化碳流體法或高溫退火法來形成多孔隙結構120,因而符合環保效能。Further, a second light-transmitting positive electrode layer 12 having a porous structure 120 is prepared on the first light-transmitting positive electrode layer 11 by a sol-gel method (Sol-Gel). Among them, the sol-gel method may include forming a porous structure 120 by a supercritical carbon dioxide fluid method or a high-temperature annealing method, thereby being environmentally friendly.

舉例而言,超臨界二氧化碳流體法的實施條件可設定在溫度範圍介於31℃~100℃以及壓力範圍介於1200psi~5000psi,如此即可形成具有多孔隙結構120的第二透光正極層12在第一透光正極層11上。其中,超臨界二氧化碳流體法的實施條件更以溫度範圍介於60℃~80℃以及壓力範圍介於2000psi~4000psi為佳,使得第二透光正極層12具有更完善的多孔隙結構120,而令射入第二透光正極層12之光源能夠具有更佳的散射效應。For example, the supercritical carbon dioxide fluid method can be set at a temperature ranging from 31 ° C to 100 ° C and a pressure ranging from 1200 psi to 5000 psi, so that the second transparent positive electrode layer 12 having the porous structure 120 can be formed. On the first light-transmitting positive electrode layer 11. Wherein, the supercritical carbon dioxide fluid method is preferably carried out at a temperature ranging from 60 ° C to 80 ° C and a pressure ranging from 2000 psi to 4000 psi, so that the second transparent positive electrode layer 12 has a more complete porous structure 120, and The light source that is incident on the second light-transmitting positive electrode layer 12 can have a better scattering effect.

或者,高溫退火法的實施條件可設定在溫度範圍介於450℃~600℃,如此即可形成具有多孔隙結構120的第二透光正極層12在第一透光正極層11上。其中,高溫退火法的實施條件更以溫度範圍介於500℃~550℃為佳,使得第二透光正極層12具有更完善的多孔隙結構120,而令射入第二透光正極層12之光源能夠具有更佳的散射效應。Alternatively, the high temperature annealing method can be set at a temperature ranging from 450 ° C to 600 ° C, so that the second transparent positive electrode layer 12 having the porous structure 120 can be formed on the first transparent positive electrode layer 11 . The high temperature annealing method is preferably carried out at a temperature ranging from 500 ° C to 550 ° C, so that the second transparent positive electrode layer 12 has a more complete porous structure 120 and is incident on the second transparent positive electrode layer 12 . The light source can have a better scattering effect.

接著,請參閱圖3與圖1所示,於形成緩衝層在第二透光正極層上S130的步驟中,製造者可利用旋轉塗佈法或噴印法將緩衝層13形成在第二透光正極層12上,但不限定於此些方法。Next, referring to FIG. 3 and FIG. 1, in the step of forming the buffer layer on the second transparent positive electrode layer S130, the manufacturer can form the buffer layer 13 in the second through the spin coating method or the printing method. The photo positive electrode layer 12 is, but not limited to, these methods.

其中,緩衝層13可為具有導電性的高分子聚合物層,例如緩衝層13為PEDOT:PSS之有機物互掺層。為了簡明起見,此部分請參考上述即可,於此不加贅述。The buffer layer 13 may be a conductive polymer layer. For example, the buffer layer 13 is an organic interdop layer of PEDOT:PSS. For the sake of brevity, please refer to the above for this part, and I will not repeat them here.

另外,緩衝層13除了作為透光正極層(例如第一透光正極層11與第二透光正極層12)與吸光層14之間的介面層之外,亦有助於調和透光正極層與吸光層14之間的化學特性或導電性,使光電效應更加完善。In addition, the buffer layer 13 serves to adjust the transparent positive electrode layer in addition to the interface layer between the light-transmitting positive electrode layer (for example, the first light-transmitting positive electrode layer 11 and the second light-transmitting positive electrode layer 12) and the light-absorbing layer 14. The chemical properties or conductivity between the light absorbing layer 14 and the light absorbing layer 14 make the photoelectric effect more perfect.

於形成吸光層在緩衝層上S140的步驟中,製造者能夠利用旋轉塗佈法或噴印法將吸光層14形成在緩衝層13上,但不限定於此些方法。In the step of forming the light absorbing layer on the buffer layer S140, the manufacturer can form the light absorbing layer 14 on the buffer layer 13 by a spin coating method or a printing method, but is not limited to these methods.

接著,於形成負極層在吸光層上S150的步驟中,製造者能夠利用金屬材料製備負極層15以將此負極層15形成在吸光層14上。其中,金屬材料可包含鋁、銀或金,但不限定於此。Next, in the step of forming the negative electrode layer on the light absorbing layer S150, the manufacturer can prepare the negative electrode layer 15 using a metal material to form the negative electrode layer 15 on the light absorbing layer 14. The metal material may include aluminum, silver or gold, but is not limited thereto.

如圖2所示,當一光源L(例如太陽光)從多孔式電極之光電裝置1之外部而射入第二透光正極層12時,利用多孔隙結構120可令光源L1產生散射效應,因而在不影響第一透光正極層11的透光情況下,多孔隙結構120更可提升光源L1進入吸光層14的效率以增加吸光層14的光電反應效能;並且,所產生的電能可經由透光正極層(例如第一透光正極層11或第二透光正極層12)與負極層15被導出以作進一步的利用,例如將此電能加以儲存於蓄電池或供負載使用,但不限定於此。As shown in FIG. 2, when a light source L (for example, sunlight) is incident from the outside of the photovoltaic device 1 of the porous electrode into the second transparent positive electrode layer 12, the use of the porous structure 120 causes the light source L1 to have a scattering effect. Therefore, the porous structure 120 can improve the efficiency of the light source L1 entering the light absorbing layer 14 to increase the photoelectric reaction efficiency of the light absorbing layer 14 without affecting the light transmission of the first light-transmitting positive electrode layer 11; and the generated electrical energy can be The light-transmitting positive electrode layer (for example, the first light-transmitting positive electrode layer 11 or the second light-transmitting positive electrode layer 12) and the negative electrode layer 15 are derived for further use, for example, the electric energy is stored in a storage battery or used for a load, but is not limited herein.

請參閱圖5,圖5為本發明一實施例運用不同的高溫退火法之實施條件所製造出多孔隙結構對於多孔式電極之光電裝置的I-V特性比較圖。Please refer to FIG. 5. FIG. 5 is a comparison diagram of I-V characteristics of a photovoltaic device for a porous electrode fabricated by using a different high temperature annealing method according to an embodiment of the present invention.

如圖5所示,表中的橫軸單位為伏特(V);縱軸單位為電流(I)(電流密度Current Density mA/cm2);以S1為標準,S2為高溫退火400℃所製造出的多孔隙結構對於多孔式電極之光電裝置的I-V特性;S3為高溫退火500℃所製造出的多孔隙結構對於多孔式電極之光電裝置的I-V特性。As shown in Fig. 5, the horizontal axis in the table is in volts (V); the vertical axis is current (I) (current density Current Density mA/cm2); S1 is standard, and S2 is high temperature annealing at 400 °C. The porous structure of the porous device is the IV characteristic of the photovoltaic device of the porous electrode; S3 is the IV characteristic of the porous structure produced by the high temperature annealing at 500 ° C for the photovoltaic device of the porous electrode.

由圖5可明顯的看出,多孔式電極之光電裝置的短路電流有顯著的增加,其中以500℃高溫退火所製成的多孔隙結構對於多孔式電極之光電裝置的I-V特性的增幅最大,超過52%,效率的提昇可達46%。It can be clearly seen from Fig. 5 that the short-circuit current of the photovoltaic device of the porous electrode is significantly increased, and the porous structure made by annealing at a high temperature of 500 ° C has the largest increase in the IV characteristic of the photovoltaic device of the porous electrode. More than 52%, the efficiency increase can reach 46%.

由此可知,具有多孔式電極之光電裝置1(特別是第二透光正極層12的多孔隙結構120及其製造方法)可應用於常見的光電裝置,例如有機太陽電池或有機發光二極體(OLED)等以提升整體之光電效率,但具有多孔式電極之光電裝置1應用之領域可因製造者需求而異,並不限定於此。It can be seen that the photovoltaic device 1 having the porous electrode (particularly the porous structure 120 of the second transparent positive electrode layer 12 and the manufacturing method thereof) can be applied to a common photovoltaic device such as an organic solar cell or an organic light emitting diode. (OLED) or the like to improve the overall photoelectric efficiency, but the field of application of the photovoltaic device 1 having a porous electrode may vary depending on the needs of the manufacturer, and is not limited thereto.

由上述可知,本發明所述具有多孔式電極之光電裝置及其製造方法,具有下列之特點:As can be seen from the above, the photovoltaic device having the porous electrode of the present invention and the method of manufacturing the same have the following characteristics:

1. 當光源射入第二透光正極層時,利用第二透光正極層的多孔隙結構可令光源產生散射效應,因而在不影響第一透光正極層的透光情況下,多孔隙結構更可提升光源進入吸光層的效率以增加吸光層的光電反應效能。1. When the light source is incident on the second transparent positive electrode layer, the porous structure of the second transparent positive electrode layer can cause the light source to have a scattering effect, so that the porous light does not affect the light transmission of the first transparent positive electrode layer. The structure can further improve the efficiency of the light source entering the light absorbing layer to increase the photoelectric reaction efficiency of the light absorbing layer.

2. 由於使用超臨界二氧化碳流體法或高溫退火法來形成第二透光正極層的多孔隙結構,因而符合環保效能、更適合大量生產以及降低生產成本。2. Due to the use of a supercritical carbon dioxide fluid method or a high temperature annealing method to form a porous structure of the second light-transmitting positive electrode layer, it is environmentally friendly, more suitable for mass production, and lowers production cost.

3. 基板能夠由聚合物基板或玻璃基板來實現,並且多孔隙結構能夠增加光源散射效果,因此可應用於常見的光電裝置,例如有機太陽電池或有機發光二極體。3. The substrate can be realized by a polymer substrate or a glass substrate, and the porous structure can increase the light source scattering effect, and thus can be applied to a common photovoltaic device such as an organic solar cell or an organic light emitting diode.

4. 具有至少二層(或以上)的透光正極層,而此至少二層透光正極層至少有一層具有多孔隙結構,利用此多孔隙結構可增加多孔式電極之光電裝置的整體光電反應效率。4. having at least two layers (or more) of a transparent positive electrode layer, and at least one of the at least two transparent positive electrode layers has a porous structure, and the porous structure can increase the overall photoelectric reaction of the photovoltaic device of the porous electrode effectiveness.

綜上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之較佳實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。In summary, the present invention is only described as a preferred embodiment or embodiment of the technical means for solving the problem, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made in accordance with the scope of the patent application of the present invention or the scope of the invention are covered by the scope of the invention.

1...具有多孔式電極之光電裝置1. . . Photoelectric device with porous electrode

10...基板10. . . Substrate

11...第一透光正極層11. . . First transparent positive electrode layer

12...第二透光正極層12. . . Second transparent positive electrode layer

120...多孔隙結構120. . . Porous structure

13...緩衝層13. . . The buffer layer

14...吸光層14. . . Light absorbing layer

15...負極層15. . . Negative electrode layer

L,L1...光源L, L1. . . light source

步驟:S100~S150Step: S100~S150

圖1為本發明一實施例具有多孔式電極之光電裝置的示意圖;1 is a schematic view of an optoelectronic device having a porous electrode according to an embodiment of the present invention;

圖2為圖1多孔式電極之光電裝置的應用示意圖;2 is a schematic view showing the application of the photovoltaic device of the porous electrode of FIG. 1;

圖3為本發明一實施例多孔式電極之光電裝置的製造方法流程圖;3 is a flow chart showing a method of manufacturing a photovoltaic device of a porous electrode according to an embodiment of the present invention;

圖4為圖3之基板、第一透光正極層與第二透光正極層之製造示意圖;以及4 is a schematic view showing the manufacture of the substrate, the first transparent positive electrode layer and the second transparent positive electrode layer of FIG. 3;

圖5為本發明一實施例運用不同的高溫退火法之實施條件所製造出多孔隙結構對於多孔式電極之光電裝置的I-V特性比較圖。Fig. 5 is a view showing comparison of I-V characteristics of a photovoltaic device having a porous structure for a porous electrode by using different conditions of high temperature annealing according to an embodiment of the present invention.

1...具有多孔式電極之光電裝置1. . . Photoelectric device with porous electrode

10...基板10. . . Substrate

11...第一透光正極層11. . . First transparent positive electrode layer

12...第二透光正極層12. . . Second transparent positive electrode layer

120...多孔隙結構120. . . Porous structure

13...緩衝層13. . . The buffer layer

14...吸光層14. . . Light absorbing layer

15...負極層15. . . Negative electrode layer

L,L1...光源L, L1. . . light source

Claims (23)

一種具有多孔式電極之光電裝置,包含:一基板;一第一透光正極層,在該基板上;一第二透光正極層,在該第一透光正極層上,該第二透光正極層厚度薄於該第一透光正極層,該第二透光正極層具有一多孔隙結構;一緩衝層,在該第二透光正極層上;一吸光層,在該緩衝層上;以及一負極層,在該吸光層上;其中,當一光源從該第二透光正極層射入時,利用該多孔隙結構以提升該光源進入該吸光層的效率。 An optoelectronic device having a porous electrode, comprising: a substrate; a first transparent positive electrode layer on the substrate; a second transparent positive electrode layer on the first transparent positive electrode layer, the second transparent light The thickness of the positive electrode layer is thinner than the first light-transmitting positive electrode layer, the second light-transmitting positive electrode layer has a porous structure; a buffer layer is disposed on the second light-transmissive positive electrode layer; and a light-absorbing layer is disposed on the buffer layer; And a negative electrode layer on the light absorbing layer; wherein when a light source is incident from the second light transmitting positive electrode layer, the porous structure is utilized to enhance the efficiency of the light source entering the light absorbing layer. 如申請專利範圍第1項所述具有多孔式電極之光電裝置,其中該基板為一聚合物基板。 The photovoltaic device having a porous electrode according to claim 1, wherein the substrate is a polymer substrate. 如申請專利範圍第1項所述具有多孔式電極之光電裝置,其中該基板為一玻璃基板。 The photovoltaic device having a porous electrode according to claim 1, wherein the substrate is a glass substrate. 如申請專利範圍第1項所述具有多孔式電極之光電裝置,其中該第一透光正極層為氧化銦錫層。 The photovoltaic device having a porous electrode according to claim 1, wherein the first transparent positive electrode layer is an indium tin oxide layer. 如申請專利範圍第1項所述具有多孔式電極之光電裝置,其中該第一透光正極層為氧化鋅鋁層。 The photovoltaic device having a porous electrode according to claim 1, wherein the first transparent positive electrode layer is a zinc aluminum oxide layer. 如申請專利範圍第1項所述具有多孔式電極之光電裝置,其中該第二透光正極層為氧化銦錫層。 The photovoltaic device having a porous electrode according to claim 1, wherein the second transparent positive electrode layer is an indium tin oxide layer. 如申請專利範圍第1項所述具有多孔式電極之光電裝 置,其中該第二透光正極層為氧化鋅鋁層。 Photovoltaic device with porous electrode as described in claim 1 The second transparent positive electrode layer is a zinc aluminum oxide layer. 如申請專利範圍第1項所述具有多孔式電極之光電裝置,其中該緩衝層為具導電性的一高分子聚合物層。 The photovoltaic device having a porous electrode according to claim 1, wherein the buffer layer is a polymer layer having conductivity. 如申請專利範圍第1項所述具有多孔式電極之光電裝置,其中該吸光層作為p-n結合層。 An optoelectronic device having a porous electrode according to claim 1, wherein the light absorbing layer functions as a p-n bonding layer. 如申請專利範圍第1項所述具有多孔式電極之光電裝置,其中該負極層包含一金屬材料。 The photovoltaic device having a porous electrode according to claim 1, wherein the negative electrode layer comprises a metal material. 如申請專利範圍第10項所述具有多孔式電極之光電裝置,其中該金屬材料包含鋁、銀或金。 The photovoltaic device having a porous electrode according to claim 10, wherein the metal material comprises aluminum, silver or gold. 一種具有多孔式電極之光電裝置的製造方法,包含:製備一基板;形成一第一透光正極層在該基板上;利用一溶膠凝膠法以備製具有一多孔隙結構的一第二透光正極層在該第一透光正極層上;形成一緩衝層在該第二透光正極層上;形成一吸光層在該緩衝層上;以及形成一負極層在該吸光層上,其中該溶膠凝膠法包含以一超臨界二氧化碳流體法備製具有該多孔隙結構的該第二透光正極層在該第一透光正極層上。 A manufacturing method of a photovoltaic device having a porous electrode, comprising: preparing a substrate; forming a first transparent positive electrode layer on the substrate; using a sol-gel method to prepare a second transparent having a porous structure The photo positive electrode layer is on the first light transmissive positive electrode layer; a buffer layer is formed on the second light transmissive positive electrode layer; a light absorbing layer is formed on the buffer layer; and a negative electrode layer is formed on the light absorbing layer, wherein The sol-gel method comprises preparing the second transparent positive electrode layer having the porous structure on the first transparent positive electrode layer by a supercritical carbon dioxide fluid method. 如申請專利範圍第12項所述具有多孔式電極之光電裝置的製造方法,其中利用一聚合物材料製備該基板。 A method of manufacturing a photovoltaic device having a porous electrode according to claim 12, wherein the substrate is prepared using a polymer material. 如申請專利範圍第12項所述具有多孔式電極之光電裝 置的製造方法,其中利用一濺鍍法將該第一透光正極層形成在該基板上。 Photovoltaic device having a porous electrode as described in claim 12 The manufacturing method is characterized in that the first light-transmitting positive electrode layer is formed on the substrate by a sputtering method. 如申請專利範圍第12項所述具有多孔式電極之光電裝置的製造方法,其中該超臨界二氧化碳流體法的實施條件為溫度範圍介於31℃~100℃以及壓力範圍介於1200psi~5000psi。 The method for manufacturing a photovoltaic device having a porous electrode according to claim 12, wherein the supercritical carbon dioxide fluid method is carried out under the conditions of a temperature ranging from 31 ° C to 100 ° C and a pressure ranging from 1200 psi to 5000 psi. 如申請專利範圍第15項所述具有多孔式電極之光電裝置的製造方法,其中該超臨界二氧化碳流體法的實施條件更以溫度範圍介於60℃~80℃以及壓力範圍介於2000psi~4000psi為佳。 The method for manufacturing a photovoltaic device having a porous electrode according to claim 15, wherein the supercritical carbon dioxide fluid method is carried out at a temperature ranging from 60 ° C to 80 ° C and a pressure ranging from 2000 psi to 4000 psi. good. 如申請專利範圍第12項所述具有多孔式電極之光電裝置的製造方法,其中該溶膠凝膠法包含以一高溫退火法備製具有該多孔隙結構的該第二透光正極層在該第一透光正極層上。 The method for manufacturing a photovoltaic device having a porous electrode according to claim 12, wherein the sol-gel method comprises preparing the second transparent positive electrode layer having the porous structure by a high temperature annealing method. A light transmissive positive electrode layer. 如申請專利範圍第17項所述具有多孔式電極之光電裝置的製造方法,其中該高溫退火法的實施條件為溫度範圍介於450℃~600℃。 The method for producing a photovoltaic device having a porous electrode according to claim 17, wherein the high temperature annealing method is carried out under the temperature range of 450 ° C to 600 ° C. 如申請專利範圍第18項所述具有多孔式電極之光電裝置的製造方法,其中該高溫退火法的實施條件更以溫度範圍介於500℃~550℃為佳。 The method for producing a photovoltaic device having a porous electrode according to claim 18, wherein the high temperature annealing method is preferably carried out at a temperature ranging from 500 ° C to 550 ° C. 如申請專利範圍第12項所述具有多孔式電極之光電裝置的製造方法,其中利用一旋轉塗佈法或一噴印法將該緩衝層形成在該第二透光正極層上。 The method of manufacturing a photovoltaic device having a porous electrode according to claim 12, wherein the buffer layer is formed on the second light-transmitting positive electrode layer by a spin coating method or a jet printing method. 如申請專利範圍第12項所述具有多孔式電極之光電裝置的製造方法,其中利用一旋轉塗佈法或一噴印法將該吸光層形成在該緩衝層上。 The method of manufacturing a photovoltaic device having a porous electrode according to claim 12, wherein the light absorbing layer is formed on the buffer layer by a spin coating method or a jet printing method. 如申請專利範圍第12項所述具有多孔式電極之光電裝置的製造方法,其中利用一金屬材料製備該負極層以將該負極層形成在該吸光層上。 A method of manufacturing a photovoltaic device having a porous electrode according to claim 12, wherein the negative electrode layer is formed using a metal material to form the negative electrode layer on the light absorbing layer. 如申請專利範圍第22項所述具有多孔式電極之光電裝置的製造方法,其中該金屬材料包含鋁、銀或金。The method of manufacturing a photovoltaic device having a porous electrode according to claim 22, wherein the metal material comprises aluminum, silver or gold.
TW100108885A 2011-03-16 2011-03-16 A photovoltaic device having a porous electrode and a method of manufacturing the same TWI442585B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100108885A TWI442585B (en) 2011-03-16 2011-03-16 A photovoltaic device having a porous electrode and a method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100108885A TWI442585B (en) 2011-03-16 2011-03-16 A photovoltaic device having a porous electrode and a method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201240109A TW201240109A (en) 2012-10-01
TWI442585B true TWI442585B (en) 2014-06-21

Family

ID=47599708

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100108885A TWI442585B (en) 2011-03-16 2011-03-16 A photovoltaic device having a porous electrode and a method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI442585B (en)

Also Published As

Publication number Publication date
TW201240109A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
Kong et al. Graphene/Si Schottky solar cells: a review of recent advances and prospects
CN108292688B (en) Solar cell comprising oxide nanoparticle buffer layer and method of manufacture
KR101139577B1 (en) Tandem organic-inorganic hybrid solar cell containing various types of nanoparticles and method for fabricating the same
KR101310058B1 (en) Inverted organic solar cell and method for fabricating the same
KR101557587B1 (en) Organic solar cell and manufacturing the same
KR20120013731A (en) Tandem solar cell using amorphous silicon solar cell and organic solar cell
TWI572049B (en) Perovskite solar cell and method of manufacturing method thereof
KR101448041B1 (en) organic thin-film solar cell having an barrier layer and preparing method thereof
WO2021238175A1 (en) Double-sided light-transmitting cadmium telluride solar cell and preparation method therefor
CN105206746A (en) Organic thin-film solar cell based on ternary solvent system and preparing method thereof
KR101495764B1 (en) Inverted organic solar cell containing quantum dot single layer in electron transfer layer and method for fabricating the same
US20140216520A1 (en) Solar cell module and fabricating method thereof
US11581150B2 (en) Perovskite silicon tandem solar cell and method for manufacturing the same
WO2023098038A1 (en) Method for preparing columnar electrode structure of perovskite solar cell
KR101206758B1 (en) Hybrid tandem type thin film Solar Cell and method of manufacturing the same
TWI442585B (en) A photovoltaic device having a porous electrode and a method of manufacturing the same
TWI407609B (en) Optoelectronic device having a sandwich structure and method for forming the same
JP2009260209A (en) Laminated photoelectric converter and photoelectric conversion module
CN111326659B (en) Metal transparent electrode and organic solar cell
KR101237369B1 (en) Photovoltaic cell having efficiency improving structure and method of manufacturing the same
KR101541108B1 (en) solar cell and manufacturing method thereof
KR20200008712A (en) Semi-transparent/flexible solar cell and method for manufacturing thereof
US9093645B2 (en) Manufacturing method of the organic solar cell
KR101419805B1 (en) Back contact of thin film solar cell and Thin film solar cell comprising the same
JP6371977B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees