TWI438537B - Liquid crystal device and the manufacturing method thereof - Google Patents

Liquid crystal device and the manufacturing method thereof Download PDF

Info

Publication number
TWI438537B
TWI438537B TW97146234A TW97146234A TWI438537B TW I438537 B TWI438537 B TW I438537B TW 97146234 A TW97146234 A TW 97146234A TW 97146234 A TW97146234 A TW 97146234A TW I438537 B TWI438537 B TW I438537B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal display
substrate
polymer
crystal cell
Prior art date
Application number
TW97146234A
Other languages
Chinese (zh)
Other versions
TW201020661A (en
Inventor
Kuei Lin Chu
Original Assignee
Chi Mei Comm Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Comm Systems Inc filed Critical Chi Mei Comm Systems Inc
Priority to TW97146234A priority Critical patent/TWI438537B/en
Publication of TW201020661A publication Critical patent/TW201020661A/en
Application granted granted Critical
Publication of TWI438537B publication Critical patent/TWI438537B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Description

液晶顯示器及其製造方法 Liquid crystal display and manufacturing method thereof

本發明涉及一種液晶顯示器,特別涉及一種光學補償彎曲模式的液晶顯示器及其製造方法。 The present invention relates to a liquid crystal display, and more particularly to an optical compensation bending mode liquid crystal display and a method of fabricating the same.

隨著液晶顯示器大量應用於各式電子產品中,使得液晶顯示器的應用領域迅速擴大。為了進一步提高反應速度並擴大其視角,習知的液晶顯示器廣泛地採用光學補償彎曲(optical compensated bend,OCB)模式。在採用OCB模式的液晶顯示器中,分佈於上、下玻璃基板表面的液晶分子為平行配向,但內層的液晶分子並不產生扭曲,只是在一個平面內彎曲排列,此種排列方式可以使光線產生雙折射;此時在玻璃基板上再加上雙軸相位差板(Biaxial Retardation Film),即可補償各個軸向的相位差,並克服視角受到液晶分子傾斜造成光學特性變化的影響,從而使液晶顯示器獲得較寬廣的視角。 With the large application of liquid crystal displays in various electronic products, the application field of liquid crystal displays has rapidly expanded. In order to further increase the reaction speed and expand the viewing angle, conventional liquid crystal displays widely employ an optically compensated bend (OCB) mode. In the liquid crystal display using the OCB mode, the liquid crystal molecules distributed on the surfaces of the upper and lower glass substrates are parallel alignment, but the liquid crystal molecules of the inner layer are not twisted, but are arranged in a plane, and the arrangement can make the light Birefringence is generated; at this time, a biaxial retardation film is added to the glass substrate to compensate for the phase difference in each axial direction, and to overcome the influence of the change in optical characteristics caused by the tilt of the liquid crystal molecules, thereby The liquid crystal display has a wider viewing angle.

如圖6所示,習知的OCB液晶顯示器中,液晶分子初始狀態處於均勻斜展態(splay state)。該OCB液晶顯示器開機後,液晶分子受到施加於該OCB液晶顯示器的電壓的影響,經過一定的暖機時間後,才能由均勻斜展態經過一非對稱斜展態(asymmetric splay state)逐漸轉換到適於進行工作的彎曲態(bend state),此時該 液晶顯示器才進入正常工作狀態,之後再逐漸增加電壓,直至該被施加的電壓值等於彎曲飽和電壓,該液晶顯示器進入暗態。 As shown in FIG. 6, in the conventional OCB liquid crystal display, the initial state of the liquid crystal molecules is in a uniform splay state. After the OCB liquid crystal display is turned on, the liquid crystal molecules are affected by the voltage applied to the OCB liquid crystal display, and after a certain warm-up time, the uniform oblique state can be gradually converted to an asymmetric splay state. a bend state suitable for work, at this time The liquid crystal display enters the normal working state, and then gradually increases the voltage until the applied voltage value is equal to the bending saturation voltage, and the liquid crystal display enters a dark state.

同時參閱圖7即可知,當該施加在液晶顯示器上的電壓由0伏特增加至4伏特左右後,該液晶分子才轉換成適於工作的彎曲態。而於該OCB液晶顯示器完成暖機後,其工作電壓範圍約為4伏特到10伏特。顯然,習知的OCB液晶顯示器在開機後,需要經過較長的暖機時間,完成上述升壓過程後方可進入正常的工作狀態,這可能造成使用上的不便。另外,現有的OCB液晶顯示器經常存在亮度較低的問題。 Referring to FIG. 7 at the same time, when the voltage applied to the liquid crystal display is increased from 0 volts to about 4 volts, the liquid crystal molecules are converted into a bending state suitable for operation. After the OCB liquid crystal display is warmed up, its operating voltage ranges from about 4 volts to 10 volts. Obviously, the conventional OCB liquid crystal display needs to go through a long warm-up time after the power is turned on, and the above-mentioned boosting process can be completed before entering a normal working state, which may cause inconvenience in use. In addition, existing OCB liquid crystal displays often have a problem of low brightness.

是以,如何減少OCB模式液晶顯示器暖機所需時間,並增加OCB液晶顯示器的亮度是一重大課題。 Therefore, how to reduce the time required for the OCB mode LCD monitor to warm up and increase the brightness of the OCB liquid crystal display is a major issue.

鑒於以上內容,有必要提供一種能快速開機、又同時提供較高亮度的OCB液晶顯示器。 In view of the above, it is necessary to provide an OCB liquid crystal display that can be quickly turned on while providing high brightness.

一種光學補償模式的液晶顯示器,其包含一上基板、一與該上基板平行的下基板及至少一位於該上基板及該下基板間的液晶盒,所述每一液晶盒包含一穿透區及一反射區。該上基板的下方形成一上電極及一上配合膜,且該下基板的上方依序形成一下電極及一下配向膜。該液晶盒包含由一高分子單體製成的混合配向劑及液晶組成的溶液,其中該溶液因施加至該上基板及下基板的一第一電壓以及UV光源照射而於該液晶盒形成高分子網路,從而得到初始狀態為彎曲態的液晶。 An optical compensation mode liquid crystal display comprising an upper substrate, a lower substrate parallel to the upper substrate, and at least one liquid crystal cell between the upper substrate and the lower substrate, each liquid crystal cell comprising a penetration region And a reflective area. An upper electrode and an upper matching film are formed under the upper substrate, and a lower electrode and a lower alignment film are sequentially formed on the lower substrate. The liquid crystal cell comprises a mixed alignment agent made of a polymer monomer and a liquid crystal solution, wherein the solution is formed in the liquid crystal cell by a first voltage applied to the upper substrate and the lower substrate and a UV light source. Molecular network, thereby obtaining a liquid crystal whose initial state is a curved state.

一種光學補償模式的液晶顯示器製造方法,其包含以下步驟:混 合兩種高分子單體製成配向劑;混合配向劑與液晶為一溶液,並將該溶液填入一液晶盒;及提供一第一電壓至該液晶盒,並同時提供一UV光源照射該液晶盒直至該高分子單體於該液晶盒內形成高分子網路,從而得到初始狀態為彎曲態的液晶。 An optical compensation mode liquid crystal display manufacturing method, comprising the following steps: mixing Combining two polymer monomers to form an alignment agent; mixing the alignment agent with the liquid crystal as a solution, filling the solution into a liquid crystal cell; and providing a first voltage to the liquid crystal cell, and simultaneously providing a UV light source to illuminate the solution The liquid crystal cell is formed into a polymer network in the liquid crystal cell until the polymer monomer is obtained, thereby obtaining a liquid crystal whose initial state is a curved state.

與習知技術相比,所述液晶顯示器將高分子單體所製成的配向劑與液晶進行混合,並同時控制施加至該液晶盒的電壓以及控制該液晶盒曝光的時間,以使得液晶於初始狀態時就呈現為彎曲態,從而降低該液晶顯示器所需暖機時間、並可增加亮度及達到省電的目的。 Compared with the prior art, the liquid crystal display mixes the alignment agent made of the polymer monomer with the liquid crystal, and simultaneously controls the voltage applied to the liquid crystal cell and controls the exposure time of the liquid crystal cell, so that the liquid crystal is In the initial state, it appears as a curved state, thereby reducing the warm-up time required for the liquid crystal display, and increasing the brightness and achieving power saving.

10‧‧‧OCB液晶顯示器 10‧‧‧OCB LCD

20‧‧‧上基板 20‧‧‧Upper substrate

22‧‧‧上電極 22‧‧‧Upper electrode

24‧‧‧上配向膜 24‧‧‧Upward alignment film

30‧‧‧下基板 30‧‧‧lower substrate

32‧‧‧下電極 32‧‧‧ lower electrode

34‧‧‧下配向膜 34‧‧‧ under the alignment film

40‧‧‧液晶盒 40‧‧‧Liquid Crystal Box

41a‧‧‧穿透區 41a‧‧‧ penetration zone

41b‧‧‧反射區 41b‧‧‧Reflective zone

42‧‧‧液晶 42‧‧‧LCD

44a‧‧‧含側鏈高分子 44a‧‧‧Band polymer

44b‧‧‧光聚合高分子 44b‧‧‧Photopolymer

50‧‧‧驅動電路 50‧‧‧ drive circuit

55‧‧‧光罩 55‧‧‧Photomask

60‧‧‧反射器 60‧‧‧ reflector

70‧‧‧下1/4波長板 70‧‧‧lower quarter wave plate

72‧‧‧上1/4波長板 72‧‧‧Upper quarter wave plate

80‧‧‧下偏光板 80‧‧‧low polarizer

82‧‧‧上偏光板 82‧‧‧Upper polarizer

90‧‧‧下背光板 90‧‧‧Lower backlight

圖1為本發明較佳實施例OCB液晶顯示器的部分結構示意圖;圖2a至2e為本發明較佳實施例OCB液晶顯示器中液晶分子之配向改變的示意圖;圖3為本發明較佳實施例OCB液晶顯示器的結構示意圖;圖4為本發明較佳實施例OCB液晶顯示器的操作電壓與穿透與反射光效率之關係圖;圖5為本發明用以製造OCB液晶顯示器之方法的較佳實施例之流程圖;圖6為習知技術OCB液晶顯示器開機後的液晶分子配向之示意圖;及圖7為習知技術OCB液晶顯示器於開機後的操作電壓與發光效率之關係圖。 1 is a partial schematic structural view of an OCB liquid crystal display according to a preferred embodiment of the present invention; and FIGS. 2a to 2e are schematic diagrams showing alignment changes of liquid crystal molecules in an OCB liquid crystal display according to a preferred embodiment of the present invention; FIG. 3 is a preferred embodiment of the present invention. FIG. 4 is a diagram showing the relationship between the operating voltage of the OCB liquid crystal display and the efficiency of the transmitted and reflected light; FIG. 5 is a view showing a preferred embodiment of the method for manufacturing an OCB liquid crystal display according to the present invention; FIG. 6 is a schematic diagram of alignment of liquid crystal molecules after starting up of a conventional OCB liquid crystal display; and FIG. 7 is a diagram showing relationship between operating voltage and luminous efficiency of a conventional OCB liquid crystal display after being turned on.

圖1所示為一OCB液晶顯示器10的部分結構示意圖。該OCB液晶顯示器10包含一上基板20、一下基板30及一由若干液晶盒40組成的液晶層,其中該每一液晶盒40包含一穿透區41a及一反射區41b。 FIG. 1 is a partial schematic structural view of an OCB liquid crystal display 10. The OCB liquid crystal display 10 includes an upper substrate 20, a lower substrate 30, and a liquid crystal layer composed of a plurality of liquid crystal cells 40. Each of the liquid crystal cells 40 includes a penetrating region 41a and a reflective region 41b.

上基板20朝向下基板30的表面依序形成有一上電極22與一上配向膜24,而下基板30朝向上基板20的表面則依序形成一下電極32及一下配向膜34,該液晶盒40配置於該上基板20的上配向膜24及該下基板30的下配向膜34之間。 The upper substrate 20 is sequentially formed with an upper electrode 22 and an upper alignment film 24 toward the surface of the lower substrate 30, and the lower substrate 30 faces the surface of the upper substrate 20 to sequentially form a lower electrode 32 and a lower alignment film 34. The liquid crystal cell 40 is sequentially formed. It is disposed between the upper alignment film 24 of the upper substrate 20 and the lower alignment film 34 of the lower substrate 30.

於本較佳實施例中,該上電極22及該下電極32為ITO導電玻璃,而該上配向膜24及該下配向膜34是分別塗布於該上電極22及該下電極32的聚醯亞胺(Polyimide,PI)化學薄膜,且該上配向膜24及該下配向膜34具有同向性。 In the preferred embodiment, the upper electrode 22 and the lower electrode 32 are ITO conductive glass, and the upper alignment film 24 and the lower alignment film 34 are respectively applied to the upper electrode 22 and the lower electrode 32. An imide (PI) chemical film, and the upper alignment film 24 and the lower alignment film 34 have the same orientation.

圖2a~2e為用以顯示OCB液晶顯示器10中液晶分子的配向改變的過程的示意圖。 2a to 2e are schematic views for showing a process of alignment change of liquid crystal molecules in the OCB liquid crystal display 10.

首先,將兩種高分子單體(Monomer)44a,44b混合製成垂直配向劑。於本較佳實施例中,該兩種高分單體包括一種含側鏈高分子44a及一種光聚合高分子44b,該含側鏈高分子44a與該光聚合高分子44b的重量百分比大致介於1:2至1:3的範圍。之後,再將該垂直配向劑與液晶42混合並灌入該液晶盒40的穿透區41a及該反射區41b中(如圖2a所示)。於本較佳實施例中,該垂直配向劑重量百分比約占其與該液晶42混合後的溶液的3%至7%。 First, two polymer monomers (Monomer) 44a, 44b are mixed to form a vertical alignment agent. In the preferred embodiment, the two high-component monomers include a side chain polymer 44a and a photopolymerizable polymer 44b, and the weight percentage of the side chain polymer 44a and the photopolymerizable polymer 44b is substantially In the range of 1:2 to 1:3. Thereafter, the vertical alignment agent is mixed with the liquid crystal 42 and poured into the penetration region 41a of the liquid crystal cell 40 and the reflection region 41b (as shown in FIG. 2a). In the preferred embodiment, the vertical alignment agent comprises about 3% to 7% by weight of the solution after mixing with the liquid crystal 42.

請參照圖2b,之後通過一驅動電路50提供一第一電壓至該上基板20及該下基板30。於本較佳實施例中,該驅動電路50所提供的為 一交流電壓,該第一電壓值大致介於5伏特及9伏特之間。該第一電壓會於該上電極22及該下電極32間產生一垂直電場。該垂直電場使得該液晶盒40中的液晶42會依據電場方向而呈垂直排列。雖然高分子單體44a,44b並不會對該垂直電場產生反應,但該含側鏈高分子44a會被液晶42拉起而改變其排列方式。 Referring to FIG. 2b, a first voltage is applied to the upper substrate 20 and the lower substrate 30 through a driving circuit 50. In the preferred embodiment, the driving circuit 50 provides An alternating voltage, the first voltage value being substantially between 5 volts and 9 volts. The first voltage generates a vertical electric field between the upper electrode 22 and the lower electrode 32. The vertical electric field causes the liquid crystals 42 in the liquid crystal cell 40 to be vertically aligned in accordance with the direction of the electric field. Although the polymer monomers 44a, 44b do not react to the vertical electric field, the side chain-containing polymer 44a is pulled up by the liquid crystal 42 to change its arrangement.

於該驅動電路50提供該第一電壓的同時,一UV光源也同時被開啟,並用於對該液晶盒40進行照射曝光。如圖2b所示,於提供該UV光源時,該穿透區41a與該UV光源之間配置有一光罩55。該反射區41b經過一第一時間週期的UV光源照射後才移除該光罩55,並以該UV光源同時照射該穿透區41a及該反射區41b。 While the driving circuit 50 supplies the first voltage, a UV light source is simultaneously turned on and used to illuminate the liquid crystal cell 40. As shown in FIG. 2b, when the UV light source is provided, a light mask 55 is disposed between the penetration region 41a and the UV light source. The reflective region 41b removes the photomask 55 after being irradiated by the UV light source for a first period of time, and simultaneously irradiates the transmissive region 41a and the reflective region 41b with the UV light source.

於本較佳實施例中,該UV光源波長可以是254nm、302nm及365nm任一者。可以理解,曝光時間的長短影響含側鏈高分子44a的排列方式,曝光時間愈長,該含側鏈高分子44a與上配向膜24及下配向膜34的角度愈趨近於90度。同時,該光聚合高分子44b會因為其曝光於該UV光,而會呈現一平行於該上配向膜24及下配向膜34的狀態。 In the preferred embodiment, the UV source wavelength can be any of 254 nm, 302 nm, and 365 nm. It can be understood that the length of the exposure time affects the arrangement of the side chain-containing polymer 44a. The longer the exposure time, the closer the angle of the side chain-containing polymer 44a to the upper alignment film 24 and the lower alignment film 34 is to 90 degrees. At the same time, the photopolymerizable polymer 44b exhibits a state parallel to the upper alignment film 24 and the lower alignment film 34 because it is exposed to the UV light.

如圖2c所示,經過適當的曝光時間,該含側鏈高分子44a穩定在一垂直於該上配向膜24及該下配向膜34的方向,同時該光聚合高分子44b穩定于一平行於該上配向膜24及該下配向膜34的方向,從而形成高分子網路(Polymer network),且該高分子網路固定該液晶42以使該液晶42具有一預傾角(pertilt angle)。 As shown in FIG. 2c, after a suitable exposure time, the side chain-containing polymer 44a is stabilized in a direction perpendicular to the upper alignment film 24 and the lower alignment film 34, and the photopolymerizable polymer 44b is stabilized in a parallel manner. The direction of the upper alignment film 24 and the lower alignment film 34 forms a polymer network, and the polymer network fixes the liquid crystal 42 so that the liquid crystal 42 has a pertilt angle.

於本較佳實施例中,該穿透區41a中的液晶42的預傾角大致介於54至60度的範圍,。之後再移除該UV光源及該第一電壓。此時,如圖2d所示,於液晶盒40中的液晶42已呈現OCB液晶所需的彎曲 態。需注意的是,由於該反射區41b被該UV光源照射的時間相對於該穿透區41a較長,因此該反射區41b中的液晶42包含一較高的預傾角θ,其大致介於65至70度的範圍內。 In the preferred embodiment, the pretilt angle of the liquid crystal 42 in the penetration region 41a is approximately in the range of 54 to 60 degrees. The UV light source and the first voltage are then removed. At this time, as shown in FIG. 2d, the liquid crystal 42 in the liquid crystal cell 40 has exhibited the required curvature of the OCB liquid crystal. state. It should be noted that since the time when the reflective area 41b is illuminated by the UV light source is longer than the penetration area 41a, the liquid crystal 42 in the reflective area 41b includes a higher pretilt angle θ, which is substantially between 65. Up to 70 degrees.

當液晶42處於彎曲態時,此時,再提供一第二電壓至該上基板20及該下基板30,該第二電壓的起始值V0為0伏特。之後,逐漸增加該第二電壓的值直至該值等於OCB液晶的彎曲飽合電壓Vsat。當該第二電壓的值等於OCB液晶的彎曲飽合電壓Vsat時,於液晶盒40中的液晶42即呈現如圖2e所示的排列。 When the liquid crystal 42 is in a bent state, at this time, a second voltage is further supplied to the upper substrate 20 and the lower substrate 30, and the starting value V 0 of the second voltage is 0 volt. Thereafter, the value of the second voltage is gradually increased until the value is equal to the bending saturation voltage Vsat of the OCB liquid crystal. When the value of the second voltage is equal to the bending saturation voltage Vsat of the OCB liquid crystal, the liquid crystal 42 in the liquid crystal cell 40 exhibits an arrangement as shown in FIG. 2e.

圖3所示為一OCB液晶顯示器10的結構示意圖。該OCB液晶顯示器10包含該上基板20、該下基板30、及配置於該上基板20及該下基板30間的若干液晶盒40,其中該每一液晶盒40包含穿透區41a及反射區41b。另外,該液晶顯示器10還包括依序設置於該上基板20背向下基板30一側的一上1/4波長板72及一上偏光板82,以及依序設置於該下基板30背向上基板20一側的一下1/4波長板70、一下偏光板80及一下背光板90。此外,該液晶顯示器10還包括至少一配置在該反射區41b及該1/4波長板70之間的反射器60。 FIG. 3 is a schematic structural view of an OCB liquid crystal display 10. The OCB liquid crystal display 10 includes the upper substrate 20, the lower substrate 30, and a plurality of liquid crystal cells 40 disposed between the upper substrate 20 and the lower substrate 30, wherein each of the liquid crystal cells 40 includes a penetrating region 41a and a reflective region. 41b. In addition, the liquid crystal display 10 further includes an upper 1/4 wavelength plate 72 and an upper polarizing plate 82 disposed on the side of the upper substrate 20 facing the lower substrate 30, and sequentially disposed on the lower substrate 30. The lower quarter wave plate 70 on the side of the substrate 20, the lower polarizing plate 80, and the lower backlight plate 90. In addition, the liquid crystal display 10 further includes at least one reflector 60 disposed between the reflective area 41b and the 1⁄4 wavelength plate 70.

於本較佳實例中,該彎曲飽合電壓Vsat值約為6伏特(如圖4所示)。也就是說,該OCB液晶顯示器10於開機後的操作電壓值範圍大致處於0伏特至6伏特之間。 In the preferred embodiment, the bend saturation voltage Vsat is about 6 volts (as shown in Figure 4). That is to say, the operating voltage value of the OCB liquid crystal display 10 after being turned on is approximately between 0 volts and 6 volts.

圖5所示為根據本發明較佳實施例中用於製造一種OCB液晶顯示器的方法的流程圖。首先,於步驟S2,混合兩種高分子單體以製成垂直配向劑。步驟S4,將該垂直配合劑與OCB液晶42混合並灌入一液晶盒40中。步驟S6,提供一第一電壓及開啟UV光源直到該液晶盒40中的高分子單體形成高分子網路。在提供該UV光源時,該 穿透區41a與該UV光源之間配置有一光罩55,並於一第一時間週期經過後才移除該光罩55,使得該UV光源同時照射該穿透區41a及該反射區41b。之後,步驟S8,移除UV光源及該第一電壓。此時,該液晶盒40中的液晶42已呈現彎曲態,並已可開始進行操作。 Figure 5 is a flow chart showing a method for fabricating an OCB liquid crystal display in accordance with a preferred embodiment of the present invention. First, in step S2, two polymer monomers are mixed to form a vertical alignment agent. In step S4, the vertical compounding agent is mixed with the OCB liquid crystal 42 and poured into a liquid crystal cell 40. In step S6, a first voltage is applied and the UV light source is turned on until the polymer monomer in the liquid crystal cell 40 forms a polymer network. When the UV light source is provided, A reticle 55 is disposed between the penetrating region 41a and the UV light source, and the reticle 55 is removed after a first period of time has elapsed, so that the UV light source simultaneously illuminates the penetrating region 41a and the reflecting region 41b. Thereafter, in step S8, the UV light source and the first voltage are removed. At this time, the liquid crystal 42 in the liquid crystal cell 40 has been in a curved state, and operation has begun.

步驟S10,提供一第二電壓至該液晶盒40,該第二電壓的起始值V0為0伏特。之後,於步驟S12,逐漸增加該第二電壓值直至該第二電壓值等於該液晶的彎曲飽和電壓值。 In step S10, a second voltage is supplied to the liquid crystal cell 40, and the starting value V 0 of the second voltage is 0 volt. Thereafter, in step S12, the second voltage value is gradually increased until the second voltage value is equal to the bending saturation voltage value of the liquid crystal.

該等OCB液晶顯示器10將高分子單體44a,44b所製成的配向劑與液晶42進行混合,並同時控制施加至該液晶盒40的電壓以及控制該液晶盒40曝光的時間,以使得液晶42於初始狀態時就呈現為彎曲態,如此一來,即可降低該OCB液晶顯示器10所需暖機時間。同時,該OCB液晶顯示器10於開機後的操作電壓值範圍也小於習知技術中OCB液晶顯示器的操作電壓值範圍。此外,該液晶42於初始狀態時,於該液晶盒40內已形成高分子網路使得該液晶42具有一預傾角,此也同時增加了該OCB液晶顯示器10的亮度。 The OCB liquid crystal display 10 mixes the alignment agent made of the polymer monomers 44a, 44b with the liquid crystal 42, and simultaneously controls the voltage applied to the liquid crystal cell 40 and controls the exposure time of the liquid crystal cell 40, so that the liquid crystal 42 appears in a curved state in the initial state, so that the warm-up time required for the OCB liquid crystal display 10 can be reduced. At the same time, the range of operating voltage values of the OCB liquid crystal display 10 after being turned on is also smaller than the operating voltage value range of the OCB liquid crystal display in the prior art. In addition, when the liquid crystal 42 is in an initial state, a polymer network is formed in the liquid crystal cell 40 so that the liquid crystal 42 has a pretilt angle, which also increases the brightness of the OCB liquid crystal display 10.

綜上該等,本發明符合發明專利要件,爰依法提出專利申請。惟,以上該等者僅為本發明的較佳實施例,本發明的範圍並不以上述實施例為限,舉凡熟悉本案技藝的人士援依本發明的精神所作的等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. However, the above are only the preferred embodiments of the present invention, and the scope of the present invention is not limited to the above embodiments, and those skilled in the art will be able to make equivalent modifications or variations in accordance with the spirit of the present invention. It should be covered by the following patent application.

Claims (11)

一種光學補償模式的液晶顯示器,其包括:一下基板;一上基板,其與該下基板平行,該上基板朝向下基板的表面依次形成一上電極及一上配合膜,且該下基板朝向上基板的表面依序形成一下電極及一下配向膜;及至少一位於該上基板及該下基板間的液晶盒,所述每一液晶盒包含一穿透區及一反射區,該液晶盒內包含由高分子單體製成的混合配向劑及液晶組成的溶液;所述高分子單體包括一種含側鏈高分子及一種光聚合高分子,且其混合的重量百分比介於1:2至1:3之間;其中該溶液經施加至該上基板及下基板的一第一電壓以及UV光源照射而於該液晶盒形成高分子網路,從而得到初始狀態為彎曲態的液晶。 An optical compensation mode liquid crystal display comprising: a lower substrate; an upper substrate parallel to the lower substrate; the upper substrate sequentially forms an upper electrode and an upper matching film toward the surface of the lower substrate, and the lower substrate faces upward Forming a lower electrode and a lower alignment film on the surface of the substrate; and at least one liquid crystal cell between the upper substrate and the lower substrate, wherein each of the liquid crystal cells includes a penetrating region and a reflective region, and the liquid crystal cell includes a mixed alignment agent made of a polymer monomer and a liquid crystal; the polymer monomer comprises a side chain polymer and a photopolymerizable polymer, and the weight percentage thereof is between 1:2 and 1 Between: 3; wherein the solution is irradiated with a first voltage applied to the upper substrate and the lower substrate and a UV light source to form a polymer network in the liquid crystal cell, thereby obtaining a liquid crystal whose initial state is a curved state. 如申請專利範圍第1項所述之液晶顯示器,其中該上電極及該下電極均為ITO導電玻璃。 The liquid crystal display of claim 1, wherein the upper electrode and the lower electrode are both ITO conductive glass. 如申請專利範圍第1項所述之液晶顯示器,其中該上配向膜及該下配向膜均為具有同向性的配向膜。 The liquid crystal display of claim 1, wherein the upper alignment film and the lower alignment film are both isotropic alignment films. 如申請專利範圍第1項所述之液晶顯示器,其中該混合配向劑的重量占其與該液晶混合後的溶液的3%至7%。 The liquid crystal display of claim 1, wherein the mixed alignment agent has a weight of 3% to 7% of the solution after mixing with the liquid crystal. 如申請專利範圍第1項所述之液晶顯示器,其中該穿透區中的液晶具有一介於54到60度之間的預傾角,而反射區中的液晶具有一介於65到70度之間的預傾角。 The liquid crystal display of claim 1, wherein the liquid crystal in the penetrating region has a pretilt angle between 54 and 60 degrees, and the liquid crystal in the reflecting region has a between 65 and 70 degrees. Pretilt angle. 如申請專利範圍第1項所述之液晶顯示器,其中該液晶顯示器還包括依序設置於該上基板背向下基板一側的一上1/4波長板及一上偏光板,及依序 設置於該下基板背向上基板一側的一下1/4波長板、一下偏光板及一下背光板。 The liquid crystal display of claim 1, wherein the liquid crystal display further comprises an upper 1/4 wavelength plate and an upper polarizing plate disposed on a side of the upper substrate facing the lower substrate, and sequentially The lower quarter-wavelength plate, the lower polarizing plate and the lower backlight plate are disposed on the side of the lower substrate facing the upper substrate. 一種用以製造如申請專利範圍第1項所述之液晶顯示器的方法,其包括以下步驟:混合兩種高分子單體製成所述混合配向劑;該高分子單體包括一種含側鏈高分子及一種光聚合高分子,且其混合重量百分比介於1:2至1:3之間;混合所述混合配向劑與液晶為一溶液,並將該溶液填入液晶盒;提供一第一電壓至該液晶盒;及提供一UV光源照射該液晶盒直至該高分子單體於該液晶盒內形成高分子網路,以得到初始狀態為彎曲態的液晶。 A method for manufacturing a liquid crystal display according to claim 1, comprising the steps of: mixing two polymer monomers to form the mixed alignment agent; the polymer monomer comprising a side chain high a molecule and a photopolymerizable polymer, and the mixing weight percentage thereof is between 1:2 and 1:3; mixing the mixed alignment agent with the liquid crystal as a solution, and filling the solution into the liquid crystal cell; providing a first a voltage is applied to the liquid crystal cell; and a UV light source is provided to illuminate the liquid crystal cell until the polymer monomer forms a polymer network in the liquid crystal cell to obtain a liquid crystal whose initial state is a curved state. 如申請專利範圍第7項所述之方法,其中該方法還包括:於提供UV光源照射的同時,於該穿透區與該UV光源之間配置一光罩;及於該反射區經過一第一時間週期的UV光源照射後移除該光罩。 The method of claim 7, wherein the method further comprises: arranging a reticle between the penetrating region and the UV light source while providing illumination of the UV light source; and passing the first The reticle is removed after exposure to a UV light source for a period of time. 如申請專利範圍第7項所述之方法,其中該混合配向劑的重量占其與該液晶混合後的溶液的3%至7%。 The method of claim 7, wherein the mixed alignment agent has a weight of 3% to 7% of the solution after mixing with the liquid crystal. 如申請專利範圍第7項所述之方法,其中該方法還包括:於得到初始狀態為彎曲態的液晶後,提供一第二電壓至該液晶盒;該第一電壓值介於5伏特及9伏特之間,且該第二電壓值介於0伏特到6伏特之間。 The method of claim 7, wherein the method further comprises: after obtaining the liquid crystal in an initial state of being bent, providing a second voltage to the liquid crystal cell; the first voltage value is between 5 volts and 9 Between volts, and the second voltage value is between 0 volts and 6 volts. 如申請專利範圍第7項所述之方法,其中該UV光源波長小於365nm。 The method of claim 7, wherein the UV source has a wavelength of less than 365 nm.
TW97146234A 2008-11-28 2008-11-28 Liquid crystal device and the manufacturing method thereof TWI438537B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97146234A TWI438537B (en) 2008-11-28 2008-11-28 Liquid crystal device and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97146234A TWI438537B (en) 2008-11-28 2008-11-28 Liquid crystal device and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201020661A TW201020661A (en) 2010-06-01
TWI438537B true TWI438537B (en) 2014-05-21

Family

ID=44832308

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146234A TWI438537B (en) 2008-11-28 2008-11-28 Liquid crystal device and the manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI438537B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514032B (en) * 2009-06-18 2015-12-21 Merck Patent Gmbh Process of preparing a liquid crystal display
CN103558724B (en) 2013-11-15 2015-02-11 京东方科技集团股份有限公司 Liquid crystal prism, manufacturing method thereof and display device

Also Published As

Publication number Publication date
TW201020661A (en) 2010-06-01

Similar Documents

Publication Publication Date Title
JP4456655B2 (en) Method for forming optical λ / 4 layer for transflective liquid crystal display device
US7132064B2 (en) Method for manufacturing brightness enhancement film of liquid crystal display and structure thereof
JP2003262869A (en) Liquid crystal display device
JP2008180875A (en) Polarizer and liquid crystal display using the same
WO2016049961A1 (en) Liquid crystal display device
KR20110126170A (en) Backlight recirculation in transflective liquid crystal displays
JP2003121820A (en) Substrate for reflection liquid crystal display device and reflection liquid crystal display device using it
US20060087863A1 (en) Optical lens system, backlight assembly and display device
US20060131522A1 (en) Optical film, method of manufacturing the same, and flat fluorescent lamp and display device having the same
CN101738780B (en) Liquid crystal display and manufacture method thereof
US7588805B2 (en) Transflective liquid crystal panel and method of making the same
KR20060135771A (en) Transflective liquid crystal displays with patterned optical layer
WO2016049959A1 (en) Liquid crystal display device
TWI438537B (en) Liquid crystal device and the manufacturing method thereof
JP2011028008A (en) Liquid crystal display device
TWI230295B (en) A pixel device of a transflective-type LCD panel
JP2004302359A (en) Liquid crystal display device
CN100487535C (en) Semi-penetrating semi-reflective liquid crystal display panel
US20120207942A1 (en) Process for production of liquid crystal display device
TWI439758B (en) Transflective display and fabrication method thereof
WO2024135354A1 (en) Laminate, liquid crystal display device, and in-vehicle display
KR20080047689A (en) Liquid crystal display
TWI397742B (en) Polymer dispersed transflective liquid crystal display and a manufacturing method of the same
KR20060105911A (en) Liquid crystal display device
JP4477608B2 (en) Reflective liquid crystal display device substrate and reflective liquid crystal display device using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees