TWI433955B - 含第4族金屬膜的沉積方法 - Google Patents

含第4族金屬膜的沉積方法 Download PDF

Info

Publication number
TWI433955B
TWI433955B TW099135840A TW99135840A TWI433955B TW I433955 B TWI433955 B TW I433955B TW 099135840 A TW099135840 A TW 099135840A TW 99135840 A TW99135840 A TW 99135840A TW I433955 B TWI433955 B TW I433955B
Authority
TW
Taiwan
Prior art keywords
group
bis
precursor
titanium
metal
Prior art date
Application number
TW099135840A
Other languages
English (en)
Other versions
TW201127981A (en
Inventor
Sergei Vladimirovich Ivanov
Xinjian Lei
Hansong Cheng
Daniel P Spence
Moo-Sung Kim
Original Assignee
Air Prod & Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Prod & Chem filed Critical Air Prod & Chem
Publication of TW201127981A publication Critical patent/TW201127981A/zh
Application granted granted Critical
Publication of TWI433955B publication Critical patent/TWI433955B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

含第4族金屬膜的沉積方法 相關申請案之相互參照
本專利申請案請求10/23/2009申請的美國臨時專利申請案序號第61/254,253號的益處。
本發明係關於藉由原子層沉積(ALD)形成含第4族金屬膜的方法,該含第4族金屬膜包括,例如,但不限於,氧化鈦、經摻雜的氧化鈦、氧化鋯、經摻雜的氧化鋯、鈦酸鍶及鈦酸鋇鍶,該第4族金屬膜可當作,舉例來說,半導體裝置中的閘極介電膜或電容器介電膜。
隨著各世代的金氧半導體(MOS)積體電路(IC),裝置尺寸持續縮小以提供高密度及高效能,例如高速度及低耗能的要求。不幸的是,場效半導體裝置產生與通道寬度成正比的輸出信號,使得按比例縮放降低其輸出。此效應一般藉由減小閘極介電質的厚度來補償,由此使該閘極比較接近該通道而且增進場效,藉以提高驅動電流。因此,使得提供用於改善裝置效能之極薄的可靠且低缺陷的閘極介電質變得越來越重要。
數十年來,以熱氧化矽,SiO2 當作主要的閘極介電質,因為其與底下的矽基材相容,而且其裝配方法比較簡單。然而,因為該氧化矽閘極介電質具有相當低的介電常數(k),3.9,尤其是由於穿透該薄的氧化矽閘極介電質的閘極到通道的洩漏電流,使得進一步縮小氧化矽閘極介電質厚度變得越來越困難。
這導致需要能形成比氧化矽更厚的層還能產生相同或更好的裝置效能之替代性介電材料的動機。此效能可以“等效氧化物(EOT)”的方式表示。儘管該替代性介電材料層可能比相當的氧化矽層厚,但是其具有與更薄許多的氧化矽層相等的效果。
最後,有人提出以高-k金屬氧化物材料當作閘極或電容器介質質的替代性介電材料。含第4族的前驅物也可以其本身使用或與其他含金屬的前驅物,例如,舉例來說,Pb(Zr,Ti)O3 或(Ba,Si)(Zr,Ti)O3 ,合併以製造高介電常數及/或鐵電氧化物薄膜。因為金屬氧化物材料的介電常數可製成比該氧化矽的介電常數更高,所以可沉積具有類似EOT的較厚金屬氧化物層。結果,半導體產業需要能夠在例如金屬氮化物或矽的基材上沉積含金屬膜,例如,但不限於,氧化物、氮化物、矽酸鹽或其組合之第4族的前驅物,例如,舉例來說,含鈦、含鋯及含鉿的前驅物及其組合。
不幸的是,當使用例如矽的傳統基材時,高-k金屬氧化物材料的運用存在幾個問題。該矽會與該高-k金屬氧化物反應或在該高-k金屬氧化物沉積或後續熱處理的期間氧化,藉以形成氧化矽的界面層。這增加等效氧化物厚度,藉以降低裝置效能。此外,使該高-k金屬氧化物層與該矽基材之間的界面捕獲電荷密度(interface trap density)提高。因此,使載子的通道移動性降低。這使該MOS電晶體的關/關電流比降低,藉以降低其掃描特性。同樣地,例如氧化鉿(HfO2 )層或氧化鋯(ZrO2 )層的高-k金屬氧化物層具有相當低的結晶溫度而且具有熱不安定性。因此,該金屬氧化物層可在後續用於活化被注入源極/汲極區的摻雜劑的熱退火處理期間輕易地結晶化。這會在電流能通過的金屬氧化物層中形成晶粒邊界。當該金屬氧化物層的表面粗糙度提高時,洩漏電流特性可能變差。此外,該高-k金屬氧化物的結晶化由於光不規則反射在具有粗糙面的對準點(alignment key)上而不欲地影響後續的對準程序。
關於前驅物至CVD或ALD反應器的遞送已經發展出許多不同的遞送系統。舉例來說,在直接液體注射(DLI)法中把液態前驅物或前驅物在溶劑中的溶液遞送至加熱的蒸發系統,藉從液相把該液態組成物轉移至氣相內。該前驅物預先液體計量至該蒸發器提供前驅物遞送速率的精確穩定控制。另一方法,在遞送金屬有機前驅物的半導體產業中已經廣泛使用,係以習用起泡器技術為基礎,其中惰性氣體係於提高溫度下透過純液態或熔融前驅物起泡。經常地,前驅物具有低蒸氣壓並且必須加熱到100至200℃以藉由該起泡方法遞送足夠的前驅物蒸氣至該沉積反應器。以熔融相遞送的固態前驅物可能在多重冷卻/加熱循環期間阻塞管道。吾人所欲為前驅物為液態或具有低於該起泡器溫度相當多的熔點之固體。熱分解的產物也可能阻塞遞送管道並且影響前驅物的遞送速率。長時期處於該起泡器溫度也可能造成該等前驅物熱分解。該等前驅物也可能與多重沉積循環期間引至該起泡器的微量水分及氧起反應。
曾有人提出許多含烷氧基、二酮酸根、酮酯酸根、環戊二烯基配位子的第4族錯合物供金屬氧化物膜的CVD用。
本發明領域中的先前技藝包括:US 6,603,033;Chem. Vap. Deposition,9,p. 295(2003);J. of Less Common Metals,3,p. 253(1961);J. Am. Chem. Soc. 79,pp.4344-4348(1957);JP2007197804A;JP10114781A;WO1984003042A1;JP2822946B2;US6,562,990B;US6,117,487,WO 9640690;US2010/0018439A;Journal of the Chemical Society A: Inorganic,Physical,and Theoretical Chemistry,904-907(1970);Chemical Communications,10,pp.1610-1611(2004);Journal of Materials Chemistry,14,pp. 3231-3238(2004);化學氣相沉積12,172-180(2006);2007年,11月27日申請的審查中的申請案US2007/0248754A1、美國序號第11/945678號,申請人在2008年,11月11日申請的審查中的申請案美國序號第12/266,806號;及申請人在2008年,10月3日申請的審查中的申請案或美國序號第12/245,196號;Gornshtein,F.,M. Kapon,M. Botoshansky and M. S. Eisen(2007)。"Titanium and Zirconium Complexes for Polymerization of Propylene and Cyclic Esters."Organometallics 26(3): pp. 497-507;and Bae,B.-J.,K. Lee,W. S. Seo,M. A. Miah,K.-C. Kim and J. T. Park(2004)。"Preparation of anatase TiO2 thin films with (OPri)2 Ti(CH3 COCHCONEt2)2 precursor by MOCVD."Bull。Korean Chem. Soc. 25(11): pp. 1661-1666。
如前文討論的,先前技藝中的第4族前驅物大都為固體而且具有較低的蒸氣壓(例如,0.5托耳或更低)。據先前技藝記載呈液態的一些第4族前驅物當中,這些前驅物於高於150℃的溫度下沒有熱安定性,因此造成半導體製造過程中的遞送或處理問題,該等問題可包括,但不限於,來源容器與反應器之間的遞送管道阻塞。該等前驅物也具有低ALD加工範圍及/或低ALD生長速率/循環。
因此,必須研發第4族前驅物,較佳為液態的第4族前驅物,其能藉由原子層沉積沉積薄膜而且其顯現出至少一下列性質:較低的分子量(例如,500 m.u.或更低)、較低的熔點(例如,60℃或更低)、高蒸氣壓(例如,0.5托耳或更高),還有高ALD熱範圍(例如,300℃及更高)及ALD生長速率>0.3A/循環。
本發明係關於使用下式所表示的前驅物藉由原子層沉積形成含金屬膜的方法,該含金屬膜包括,例如,但不限於,氧化鈦、經摻雜的氧化鈦、氧化鋯、經摻雜的氧化鋯、鈦酸鍶及鈦酸鋇鍶:
其中M為選自由Ti、Zr及Hf所組成的群組的第4族金屬;其中R1 及R2 可為相同或不同地選自由線性或分支C1-10 烷基及C6-12 芳基所組成的群組,較佳為C1-4 烷基;R3 可選自由線性或分支C1-10 烷基,較佳為C3-6 巨大烷基,及C6-12 芳基所組成的群組;R4 係選自由氫、C1-10 烷基及C6-12 芳基所組成的群組,較佳為氫;R5 係選自由C1-10 線性或分支烷基及C6-12 芳基所組成的群組,較佳為甲基或乙基;X=O或N,其中當X=O時,y=1而且R1 、R2 及R5 相同,當X=N時,y=2而且各個R5 可為相同或不同。
本發明係關於藉由:(a)循環式化學氣相沉積;或(b)原子層沉積形成含金屬膜之方法,該含金屬膜包括,例如,但不限於,氧化鈦、經摻雜的氧化鈦、經摻雜的氧化鈦、氧化鋯、氧化鋯、經摻雜的氧化鋯、經摻雜的氧化鑭、鈦酸鍶及鈦酸鋇鍶,該方法使用此式所表示的前驅物:M(OR1 )(OR2 )(R3 C(O)C(R4 )C(O)XR5 y )2 ;也能以2-維描繪成:
其中M為選自由Ti、Zr及Hf所組成的群組的第4族金屬;其中R1 及R2 可為相同或不同地選自由線性或分支C1-10 烷基及C6-12 芳基所組成的群組,較佳為C1-4 烷基;R3 可選自由線性或分支C1-10 烷基,較佳為C3-6 烷基,及C6-12 芳基所組成的群組;R4 係選自由氫、C1-10 烷基及C6-12 芳基所組成的群組,較佳為氫;R5 係選自由C1-10 線性或分支烷基及C6-12 芳基所組成的群組,較佳為甲基或乙基;X=O或N,其中當X=O時,y=1而且R1、2及5 相同,當X=N時,y=2而且各個R5 可為相同或不同。
更明確地說,液態第4族前驅物係藉由下列二具體實施例來表示,式I及II:
其中M為選自由Ti、Zr及Hf所組成的群組的第4族金屬;其中R1 及R2 可為相同或不同地選自由線性或分支C1-10 烷基及C6-12 芳基所組成的群組;R3 可選自由線性或分支C1-10 烷基及C6-12 芳基所組成的群組,較佳為式I的分支C3-6 烷基及式II的線性C1-3 烷基;R4 係選自由氫、C1-10 烷基及C6-12 芳基所組成的群組,較佳為氫;R5-5’ 係獨立地選自由C1-10 線性或分支烷基及C6-12 芳基所組成的群組,較佳為甲基或乙基。在式I中,R1,2及5 相同。
在特定的具體實施例中,M為鈦;R1 及R2 係相同並且選自包含甲基、乙基或正丙基的群組;R3 包含分支C3-6 烷基,較佳為第三丁基或第三戊基;R4 包含氫;及R5 與R1-2 相同並且選自甲基、乙基或正丙基的群組。下文中舉例說明示範性前驅物,式III及IV:
在另一特定具體實施例中,M為Zr或Hf;R1-2 包含異丙基、第三丁基、第二丁基、第三戊基;R3 包括含3至6個碳原子的巨大烷基;R4 包含氫;而且R5 包含甲基、乙基或正丙基。
在下面式V至VI中舉例說明示範性前驅物:
式I的前驅物之一有用的特徵為R5 與R1-2 相同,所以其僅具有共同的烷氧基,其預防相鄰鍵結部位之間的烷氧基交換於較高溫度下形成其他金屬前驅物,由此提供良好的熱安定性及組成安定性。該等前驅物良好的熱及組成安定性的重要性在於確保能將一致的前驅物遞送至氣相沉積艙及一致的氣相沉積參數。舉例來說,於200 ℃下加熱1小時之前及之後的雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦的1 H NMR光譜及TGA殘餘量沒有見到變化,這表示熱處理之後其組成沒有變化,及由此,此前驅物非常好的熱安定性。相對之下,於200℃下加熱1小時的情況下藉由具有不同R5 及R1-2 的式I的前驅物之1 H NMR及GC-MS分析觀察到多重烷氧基交換程序,如示範性反應A及B所示。在容器中加熱此等錯合物可能造成具有不同組成及揮發性的錯合物混合物。
文中所用的措辭“烷基”包括線性、分支或環狀烷基,其包含1至10個碳原子,較佳為1至6個碳原子,更佳為4至6個碳原子,更佳為3至5個碳原子,最佳為1至3個碳原子,或前述範圍的變化。示範性烷基包括,但不限於,甲基、乙基、正丙基、異丙基、正丁基、異丁基、第二丁基、第三丁基、第三戊基、正戊基、正己基、環戊基及環己基。該措辭“烷基”也適用於其他例如鹵烷基、烷基芳基或芳基烷基的基團中所含的烷基部分。
文中所用的措辭“巨大”說明與具有相同數目碳原子的線性烷基相比更具立體阻礙而且可包括,舉例來說,分支烷基、環狀烷基或具有一或更多側鏈及/或取代基的烷基。
文中所用的措辭“芳基”包含具有芳香族特性的6至12員的碳環。示範性芳基包括苯基及萘基。
該措辭“經烷基取代的芳基”適用於以烷基取代的芳基部分。示範性經烷基取代的芳基包括甲苯基及二甲苯基。
該措辭“鹵基”及“鹵素”包括氟、氯、溴或碘。在特定的具體實施例中,文中所討論的某些基團可以一或更多其他元素予以取代,例如,舉例來說,鹵素原子或其他雜原子,例如O、N、Si或S。
在特定的具體實施例中,式I的β-二酮酯酸根配位子中的R3 及R5 為不同烷基。這些β-二酮酸配位子的實例包括,但不限於;4,4-二甲基-3-酮基戊酸甲酯(MDOP)及4,4-二甲基-3-酮基戊酸乙酯(EDOP)。
在其他具體實施例中,該β-二酮酯配位子中的R3 及R5 為相同烷基。這些β-二酮酸配位子的實例包括,但不限於;乙醯醋酸甲酯及乙醯醋酸乙酯。
在文中所揭示的方法之又另一具體實施例中,該含第4族金屬膜係利用包含下列步驟的循環式化學氣相沉積或原子層沉積法形成:(a)將蒸氣態的含第4族金屬前驅物引入反應艙而且使該含金屬前驅物化學吸附在被加熱的基材上;(b)洗淨未反應的含第4族金屬前驅物;(c)將氧來源引至該被加熱的基材上以與該吸附的含第4族金屬前驅物起反應;及(d)洗淨未反應的氧來源及反應副產物。上述步驟界定有關文中所述的方法之一循環;而且此循環可重複進行直到獲得想要厚度的含金屬膜為止。在一個原子層沉積循環期間所沉積的膜厚度,文中稱為ALD生長速率,取決於ALD前驅物的類型、發生ALD反應的表面,及沉積溫度。
在本方法之一具體實施例中,ALD生長速率為>0.3/循環。表1總結氧化鈦膜的原子層沉積,其使用商業上可購得的二酮酸鈦錯合物;雙(異丙氧基)雙(2,2,6,6-四甲基-3,5-庚二酮酸)鈦及本發明的前驅物:雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦、雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦、雙(異丙氧基)雙(N,N-二甲基乙醯基乙醯胺)鈦及雙(正丙基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦。意外的是,本發明前驅物的二酮酸結構中含有酯或醯胺基團將提供比僅含有烷基的類似鈦二酮酸根錯合物更高的原子層沉積生長速率。
1:雙(異丙氧基)雙(2,2,6,6-四甲基-3,5-庚二酮酸)鈦(比較例)
2:雙(異丙氧基)雙(N,N-二甲基乙醯基乙醯胺)鈦
3:雙(正丙基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦
4:雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦
5:雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦
a: 4 sec脈衝
b: 8 sec脈衝
在各個不同具體實施例中,咸瞭解文中所述的方法的步驟可以各式各樣的順序及其任何組合進行,可連續地或同時地進行(例如,在另一步驟的至少一部分的期間)。供應該等前驅物及該等氧來源氣體的分別步驟可藉由變化供應彼等的時期以改變所得的金屬氧化物膜的計量化學組成。有關多成分金屬氧化物膜,含鍶前驅物、含鋇前驅物或二前驅物可在步驟a中交錯引入該反應器艙內。
在文中所述的方法之一具體實施例中,該反應器,亦即,沉積艙,中的基材溫度為250至400℃,較佳為介於300與400 ℃之間。在各個不同具體實施例中,壓力可介於約0.1托耳至約100托耳或約0.1托耳至約5托耳。
氧化劑可以至少一氧來源的形態被引入該反應器內及/或可附帶存在於該沉積方法中所用的其他前驅物中。適合的氧來源氣體可包括,舉例來說,水(H2 O)(例如,去離子水、純水及/或蒸餾水)、氧(O2 )、氧電漿、臭氧(O3 )、NO、N2 O、一氧化碳(CO)、二氧化碳(CO2 )及其組合。在特定的具體實施例中,該氧來源包含在介於約1至約2000標準立方公分(sccm)或約1至約1000 sccm的流速下引入該反應器的氧來源氣體。該氧來源可被引入介於約0.1至約100秒的時間,較佳為約1至10秒。
文中所揭示的沉積方法可能涉及一或更多洗淨氣體。該洗淨氣體,其係用以洗淨未消耗的反應物及/或反應副產物,為不會與該等前驅物起反應的惰性氣體而且較佳可選自由Ar、N2 、He、H2 及其混合物所組成的群組。在特定的具體實施例中,例如Ar的洗淨氣體係在介於約10至約2000 sccm的流速下供應至該反應器內歷經約0.1至1000秒,較佳為1至50秒,藉以洗掉未反應的材料及任何留在該反應器中的副產物。
有一特定具體實施例中,該第4族金屬前驅物為液體,其顯現出至少一下列性質:低分子量(例如,500 m.u.或更低)、低黏度(600 cP及更低)、低熔點(例如,60℃或更低)及高蒸氣壓(例如,0.5托耳或更高)。
有一具體實施例中,用此方法製造含第4族金屬的氧化物膜、含金屬的氮化物膜、含金屬的氧氮化物膜、含金屬的矽酸鹽膜、多成分金屬氧化物膜及其任何組合或疊層體,其可用於,舉例來說,製造半導體裝置。
有一具體實施例中,文中所揭示的方法提供具有實質上高於任何習用熱氧化矽、氮化矽或鋯/鉿氧化物介電質的介電常數的第4族金屬或多成分金屬氧化物膜。
在文中所揭示的方法之一具體實施例中,利用式I的第4族金屬前驅物、含矽前驅物、氧來源及任意氮來源在基材的至少一表面上形成第4族金屬矽酸鹽或金屬矽氧氮化物膜。儘管含金屬的及含矽的前驅物通常以液態或氣相起反應,藉以預防薄膜形成,但是文中所揭示的方法利用ALD方法避免該含金屬的及含矽的前驅物的預反應,該方法在引至該反應器之前及/或期間隔開該等前驅物。在特定的具體實施例中,文中所揭示的方法利用金屬酮亞胺鹽前驅物及氧來源形成金屬氧化物膜。
如前文提及的,文中所揭示的方法利用至少一金屬前驅物(例如文中所述之含第4族金屬的前驅物)、任意至少一含矽前驅物、任意氧來源、任意額外的含金屬或其他含金屬的前驅物、任意還原劑及任意氮來源形成該等含金屬膜。儘管在此所用的前驅物及來源有時候可能被描述成“氣態”,但是咸了解該等前驅物可任意為液態或固態,其係經由直接蒸發、起泡或昇華作用利用或沒用惰性氣體轉移至該反應器內。在一些案例中,該等蒸發的前驅物可通過一電漿產生器。
在特定的具體實施例中,除了文中所述的含第4族金屬前驅物以外,其他含金屬前驅物均可使用。常用於半導體裝配的金屬,其可當作金屬醯胺的金屬成分,包括:鈦、鉭、鎢、鉿、鋯、鈰、鋅、釷、鉍、鑭、鍶、鋇、鉛及其組合。
其他可配合文中所揭示的方法使用的含金屬前驅物的實例包括,但不限於:肆(二甲基胺基)鋯(TDMAZ)、肆(二乙基胺基)鋯(TDEAZ)、肆(乙基甲基胺基)鋯(TEMAZ)、肆(二甲基胺基)鉿(TDMAH)、肆(二乙基胺基)鉿(TDEAH)及肆(乙基甲基胺基)鉿(TEMAH)、肆(二甲基胺基)鈦(TDMAT)、肆(二乙基胺基)鈦(TDEAT)、肆(乙基甲基胺基)鈦(TEMAT)、第三丁基亞胺基三(二乙基胺基)鉭(TBTDET)、第三丁基亞胺基三(二甲基胺基)鉭(TBTDMT)、第三丁基亞胺基三(乙基甲基胺基)鉭(TBTEMT)、乙基亞胺基三(二乙基胺基)鉭(EITDET)、乙基亞胺基三(二甲基胺基)鉭(EITDMT)、乙基亞胺基三(乙基甲基胺基)鉭(EITEMT)、第三戊基亞胺基三(二甲基胺基)鉭(TAIMAT)、第三戊基亞胺基三(二乙基胺基)鉭、伍(二甲基胺基)鉭、第三戊基亞胺基三(乙基甲基胺基)鉭、雙(第三丁基亞胺基)雙(二甲基胺基)鎢(BTBMW)、雙(第三丁基亞胺基)雙(二乙基胺基)鎢、雙(第三丁基亞胺基)雙(乙基甲基胺基)鎢、雙(2,2,6,6-四甲基-3,5-庚二酮酸)鍶、雙(2,2,6,6-四甲基-3,5-庚二酮酸)鋇、M(Rn C5 H5-n )2 ,其中n=1至5而且R係選自線性或分支C1-6 烷基;M(Rn C4 NH4-n )2 ,其中n=2至4,R係選自線性或分支C1-6 烷基,及M(Rn N2 H3-n )2 ,其中n=2至3,R係選自線性或分支C1-6 烷基及其組合。
在一具體實施例中,該等含金屬的前驅物,其除了文中所述的第4族金屬前驅物以外可用以提供含金屬膜,為多牙β-酮亞胺類,其係於,舉例來說,申請人之審查中的申請案US2007/0248754A1、2007年11月27日申請的US序號第11/945678號、2008年11月11日申請的申請人之審查中的申請案美國序號第12/266,806號,及2008年10月3日申請的申請人之審查中的申請案美國序號第12/245,196號中說明過,在此以引用的方式將其全文併入本文。
在特定的具體實施例中,該等多牙β-酮亞胺類可將烷氧基併入該亞胺基中。該等多牙β-酮亞胺類係選自由下列結構A及B所表示的群組。
結構A係定義為:
其中M為第2族金屬,例如,舉例來說,鎂、鈣、鍶及鋇。較佳地,M為鍶或鋇。本發明的錯合物中所用的有機基團(亦即,該R基團)可包括各式各樣的有機基團而且其可為線性或分支型。在較佳的具體實施例中,R1 為選自由下列各項所組成的群組:C1 至C10 烷基、C1 至C10 烷氧基烷基、C1 至C10 烷氧基、C1 至C10 氟烷基、C1 至C10 脂環族及C6 至C10 芳基。用於本文時,該基團“烷氧基烷基”表示包括C-O-C片斷的醚狀部分。實例包括-CH2 CH2 -O-CH2 CH2 -O-CH3 及-CH2 CH2 -O-CH2 -O-CH3 。較佳地,R1 為含4至6個碳原子的巨大烷基,例如,舉例來說,第三丁基、第二丁基及第三戊基。最佳的R1 基團為第三丁基或第三戊基。較佳地,R2 為選自由下列各項所組成的群組:氫、C1 至C10 烷基、C1 至C10 烷氧基烷基、C1 至C10 烷氧基、C3 至C10 脂環族及C6 至C10 芳基。更佳地,R2 為氫或C1 至C2 烷基。較佳地,R3 為選自由下列各項所組成的群組:C1 至C10 烷基、C1 至C10 烷氧基烷基、C1 至C10 烷氧基、C3 至C10 脂環族及C6 至C10 芳基。更佳地,R3 為C1 至C2 烷基。較佳地,R4 為C1 至C6 線性或分支伸烷基而且,更佳地,R4 含有一分支伸烷基架橋,該分支伸烷基架橋含有3至4個碳原子並且具有至少一開掌型中心碳原子。不欲受任何特定理論限制,咸信該配位子中的開掌型中心扮演降低熔點及提高該錯合物的熱安定性之角色。較佳地,R5 為選自由下列各項所組成的群組:C1 至C10 烷基、C1 至C10 氟烷基、C3 至C10 脂環族及C6 至C10 芳基。更佳地,R5 為C1 至C2 烷基。
這些含金屬錯合物的指定實例係由下列結構B來表示:
其中M為具有2至5價的金屬基團,其中R1 為選自由C1-10 烷基、C2-10 烷氧基烷基、C1-10 氟烷基、C4-10 脂環族及C6-12 芳基所組成的群組;R2 為選自由氫、C1-10 烷基、C1-10 烷氧基、C4-10 脂環族及C6-12 芳基所組成的群組;R3 為選自由C1-10 烷基、C2-10 烷氧基烷基、C1-10 氟烷基、C4-10 脂環族及C6-12 芳基所組成的群組;R4 為C3-10 線性或分支烷基架橋,較佳地R4 為具有至少一開掌型碳原子;R5-6 係獨立地選自由C1-10 烷基、C1-10 氟烷基、C4-10 脂環族、C6-12 芳基及含氧或氮原子的雜環族所組成的群組;及n為等於該金屬M的價數的整數。
有一具體實施例中,除了至少一金屬配位子錯合物之外還可使用本發明的金屬前驅物,其中一或更多配位子係選自由β-二酮酸根、β-二酮酯酸根、β-酮亞胺、β-二亞胺、烷基、羰基、烷基羰基、環戊二烯基類、吡咯基、咪唑基、脒酸根、烷氧化物及其混合物所組成的群組,其中該配位子可為單牙、雙牙及多牙,其錯合於金屬原子,而且該金屬係選自元素週期表的第2至16族元素。這些錯合物的實例包含:雙(2,2-二甲基-5-(二甲基胺基乙基-亞胺基)-3-己酸-N,O,N’)鍶、雙(2,2-二甲基-5-(1-二甲基胺基-2-丙基亞胺基)-3-己酸-N,O,N’)鍶、肆(2,2,6,6-四甲基-3,5-庚二酸)鈰(IV)、叁(2,2,6,6-四甲基-3,5-庚二酸)鑭、Sr[(t Bu)3 Cp]2 、Ba[(t Bu)3 Cp]2 、LaCp3 、La(MeCp)3 、La(EtCp)3 、La(i PrCp)3 、第三丁氧基鋯、雙(2-第三丁基-4,5-二第三戊基咪唑)鍶、雙(2-第三丁基-4,5-二第三戊基咪唑)鋇、雙(2,5-二第三丁基-吡咯基)鋇,其中“Me”為甲基,“Et”為乙基,“Pr”為丙基,而且“Cp”為環戊二烯基。
有一具體實施例中,本發明的金屬前驅物可用於氧化鈦、經摻雜的氧化鈦、經摻雜的氧化鋯、鈦酸鍶(STO)及鈦酸鋇鍶(BST)的沉積。
在所沉積的金屬膜為金屬矽酸鹽的具體實施例中,該沉積方法另外涉及引入至少一含矽前驅物。適合的含矽前驅物的實例包括:單烷基胺基矽烷前驅物、肼基矽烷前驅物或其組合。在特定的具體實施例中,該含矽前驅物包含具有至少一N-H片斷及至少一Si-H片斷的單烷基胺基矽烷前驅物。同時含有該N-H片斷及該Si-H片斷的適合單烷基胺基矽烷前驅物包括,舉例來說:雙(第三丁基胺基)矽烷(BTBAS)、叁(第三丁基胺基)矽烷、雙(異丙基胺基)矽烷、叁(異丙基胺基)矽烷及其混合物。有一具體實施例中,該單烷基胺基矽烷前驅物具有此式(R7 NH)n SiR8 mH4-(n+m) ,其中R7 及R8 係相同或不同並且獨立地選自由C1-10 烷基、乙烯基烯丙基、苯基、C4-10 環狀烷基、C1-10 氟烷基及C1-10 甲矽烷基烷基所組成的群組,及其中n為介於1至3的數字,m為介於0至2的數字,而且“n+m”的總和為小於或等於3的數字。在另一具體實施例中,該含矽前驅物包含具有此式(R9 2 N-NH)x SiR10 y H4-(x+y) 的肼基矽烷,其中R9 及R10 係相同或不同並且獨立地選自由C1-10 烷基、乙烯基、烯丙基、苯基、環狀烷基、氟烷基、甲矽烷基烷基所組成的群組,及其中x為介於1至2的數字,y為介於0至2的數字,而且“x+y”的總和為小於或等於3的數字。肼基矽烷前驅物的適合實例包括,但不限於:雙(1,1-二甲基肼基)矽烷、叁(1,1-二甲基肼基)矽烷、雙(1,1-二甲基肼基)乙基矽烷、雙(1,1-二甲基肼基)異丙基矽烷、雙(1,1-二甲基肼基)乙烯基矽烷及其混合物。
根據該沉積方法,在特定的具體實施例中,該含矽前驅物可於預定的莫耳體積或約0.1至約1000微莫耳下被引入反應器中,在各個不同具體實施例中,該含矽前驅物可被引入該反應器中歷經預定的時期,或約0.001至約500秒。該等含矽前驅物與該金屬醯胺和氧來源的反應所形成的金屬羥基起反應並且化學吸附於該基材的表面上,其導致經由金屬-氧-矽及金屬-氧-氮-矽鍵聯形成氧化矽或氧氮化矽,由此提供該金屬矽酸鹽或該金屬矽氧氮化物膜。
在特定的具體實施例中,例如,舉例來說,對於沉積金屬矽氧氮化物膜的那些具體實施例,例如氮來源氣體的額外氣體可被引入該反應器中。氮來源氣體的實例可包括,舉例來說:NO、NO2 、氨、肼、單烷基肼、二烷基肼及其組合。
供應該等前驅物、氧來源及/或其他前驅物或來源氣體的分別步驟可經由改變供應彼等以改變所得的金屬氧化物膜、金屬矽氧氮化物膜或其他含金屬膜的計量化學組成而進行,該金屬氧化物膜包括,但不限於:鈦酸鍶、鈦酸鋇、鈦酸鋇/鍶、經摻雜的氧化鑭、金屬矽酸鹽。
將能量施於該前驅物、氧來源氣體、還原劑或其組合之至少其一以引發反應並且在該基材上形成該含金屬膜。此能量可經由,但不限於,熱、電漿、脈衝電漿、螺旋電漿(helicon plasma)、高密度電漿、誘導耦合電漿、X-射線、電子束、光子及遠距電漿方法來提供。在特定的具體實施例中,可使用二次射頻(RF)頻率來源以改變該基材表面的電漿特性。在沉積涉及電漿的具體實施例中,該電漿產生方法可包含在該反應器中直接產生電漿的直接電漿產生方法,或選擇性地在該反應器外側產生電漿而且供應至該反應器內的遠距電漿產生方法。
該第4族金屬前驅物及/或其他金屬前驅物可以各式各樣的方式遞送至該反應艙,例如ALD反應器。在一具體實施例中,可利用液體遞送系統。在一選擇性具體實施例中,可運用合併液體遞送及閃蒸處理單元,例如,舉例來說,美國,明尼蘇達州,休爾瓦的MSP有限公司所製造的渦輪蒸發器使低揮發性材料能夠以體積遞送,導致可再現的輸送及沉積而不會使該前驅物熱分解。
在文中所述的方法之一具體實施例中:運用的是臭氧、氧電漿或水電漿。依據程序的需求把從該前驅物藥罐連接到該反應艙的氣體管道加熱至介於約150℃至約200℃的一或更多溫度,而且使該含第4族金屬前驅物的容器保持於介於約100℃至約190℃的一或更多溫度以供起泡,其中把包含該第4族金屬前驅物的溶液注入保持於介於約150℃至約180℃的一或更多溫度的蒸發器以供直接液體注射。流量100 sccm的氬氣可當作載體氣體以協助在該前驅物脈衝的期間將該含第4族金屬前驅物的蒸氣遞送至該反應艙。該反應艙處理壓力為約1托耳。在典型的ALD方法中,在最初暴露於該含第4族金屬前驅物的反應艙的加熱器段上加熱像是舉例來說,氧化矽、金屬氮化物、金屬或金屬氧化物,的基材,以使該錯合物能化學吸附在該基材的表面上。惰性氣體,例如氬氣,從該加工艙洗掉未被吸附的過量錯合物。經過充分的Ar洗淨之後,將氧來源引入反應艙以與被吸附的表面起反應,接著另一惰性氣體洗淨以從該艙移除反應副產物。此加工循環可重複進行以達到想要的薄膜厚度。
在液體遞送配方中,文中所述的前驅物可以純液體形態遞送,或者也可以,可運用於溶劑配方或包含該前驅物的組成物。因此,在特定的具體實施例中該等前驅物配方可包括指定終端用途應用中可能想要及有益的適合特性的溶劑成分以在基材上形成膜。使沉積方法中使用的前驅物溶解時運用的溶劑可包含任何相容性溶劑或其混合物,其包括:脂族烴類(例如,戊烷、己烷、庚烷、辛烷、癸烷、十二烷、乙基環己烷、丙基環己烷)、芳族烴類(例如,苯、甲苯、乙基苯、二甲苯、三甲苯、乙基甲苯及其他經烷基取代的芳族溶劑)、醚類、酯類、腈類、醇類、胺類(例如,三乙基胺、第三丁基胺)、亞胺類及碳二醯亞胺類(例如,N,N'-二異丙基碳二醯亞胺)、酮類、醛類、脒類、胍類及異脲類等。其他適合溶劑的實例係選自由下列各項所組成的群組:具有1至20個乙氧基-(C2 H4 O)-重複單元的甘醇二甲醚類溶劑(例如,二甲氧基乙烷、1,2-二乙氧基乙烷及二甘醇二甲醚);選自由丙二醇基團所組成的群組的有機醚類(例如二丙二醇二甲基醚);C2 -C12 醇類;選自由包含C1 -C6 烷基部分、C4 -C8 環狀醚類的二烷基醚類所組成的群組之有機醚類(例如四氫呋喃及二噁烷);C12 -C60 冠O4 -O20 醚類,其中該字首Ci範圍為該醚化合物中的碳原子數目i,而且該字尾Oi範圍為該醚化合物中的氧原子數目i;C6 -C12 脂族烴類;C6 -C18 芳族烴類;有機醚類;有機胺類、聚胺類、胺基醚類及有機醯胺類。另一類有益處的溶劑為RCONR’R”形式的有機醯胺類,其中R及R’為具有1至10個碳原子的烷基,而且R及R’可連在一起以形成環狀基團(CH2 )n ,其中n為4至6,較佳為5,而且R”係選自具有1至4個碳原子的烷基及環烷基。實例為N-甲基-或N-乙基-或N-環己基-2-吡咯酮類、N,N-二乙基乙醯胺及N,N-二乙基甲醯胺。
特定前驅物的指定溶劑組成物的功效可輕易以實驗測定,以選擇適用於所運用的特定第4族前驅物之液體遞送蒸發及運輸的單成分或多成分溶媒。
在另一具體實施例中,直接液體遞送法可經由將該含第4族金屬前驅物溶解於適當溶劑或溶劑混合物中,依據所運用的溶劑或混合溶劑,製備具有0.01至2 M的莫耳濃度的溶液而加以運用。文中所運用的溶劑可包含任何相容性溶劑或其混合物,其包括,但不限於,脂族烴類、芳族烴類、線性或環狀醚類、酯類、腈類、醇類、胺類、聚胺類、胺基醚類及有機醯胺類,較佳為具有高沸點的溶劑,例如辛烷、乙基環己烷、癸烷、十二烷、二甲苯、三甲苯及二丙二醇二甲基醚。
文中所述的方法也包括用於形成三元金屬氧化物膜的循環式沉積法,其中把多種前驅物連續引入沉積艙,蒸發並且在用於形成該三元金屬氧化物膜的條件之下沉積在基材上。
有一特定具體實施例中,可使所得的金屬氧化物膜暴露於後段沉積處理,例如電漿處理使該膜緻密化。
如先前提過的,文中所述的方法可用以在基材的至少一部分上沉積含金屬膜。適合基材的實例包括,但不限於,半導體材料,例如鈦酸鍶、鈦酸鋇鍶、摻鈦的氧化釔、摻鈦的氧化鑭及其他摻鈦的鑭系氧化物。
下列實施例舉例說明用於製備文中所述的含第4族金屬前驅物及沉積含第4族金屬膜的方法,但是不欲以任何方式限制彼。
實施例1雙(異丙氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦的合成
對2.00 g(7.04 mmol)異丙氧基鈦(IV)緩慢添加2.25 g(14.24 mmol)於25 ℃的4,4-二甲基-3-酮基戊酸甲酯(MDOP)。由於放熱把所得的黃色黏稠溶液加熱至43 ℃並且接著於25 ℃攪動2小時。移除所有揮發物產生白色玻璃狀固體。把該固體再溶解於4 ml的己烷中,攪動該混合物並且在真空之下除己烷以獲得白色結晶狀固體,2.65 g(78%產率)。產物的熔點為68 ℃。在真空之下(0.2托耳)於85 ℃經由昇華純化2.12 g的固體。收集到2.03 g經昇華的產物(96%昇華產率)。
產物的熔點為68 ℃。於85 ℃時在真空之下(0.2托耳)經由昇華純化2.12 g的固體。收集到2.03 g的昇華產物(96%昇華產率)。
1 H-NMR(核磁共振)確認沒有未配位的4,4-二甲基-3-酮基戊酸甲酯並且顯示配位於Ti的i PrO對MDOP的希望比例為兩個i PrO對兩個MDOP配位子。
1 H-NMR(500 MHz,THF) d(ppm):5.12(CH,MDOP),4.69(CH,O-iPr),3.55及3.80(OCH3 ,MDOP),1.40[(CH3 )2 ],1.05及1.20[C(CH3 )3 及C(CH3 )2 ]。
在氮氣環境之下在密封的NMR試管中於200 ℃下加熱此材料的純樣品1小時而且該材料迅速轉為暗橙色,表示有些分解。經加熱之溶於丙酮中的樣品的氣相層析-質譜光譜(GC-MS)顯示有兩種酮酯類出現:4,4-二甲基-3-酮基戊酸甲酯(57.4%)及4,4-二甲基-3-酮基戊酸異丙酯(42.6%,轉酯化反應的產物)。未經加熱之溶於丙酮中的樣品的GC-MS顯示僅出現4,4-二甲基-3-酮基戊酸甲酯。經加熱之溶於d8 -甲苯中的材料的1 H NMR光譜也確認同時含有酮酯酸根配位子及甲氧基配位子(d(ppm) 4.25及4.30)的多種不同錯合物存在,在熱處理之前該等錯合物並不存在於材料中。
實施例2雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦的合成
對2.0 g(8.78 mmol)乙氧基鈦(IV)在6毫升(mL)己烷中的溶液添加2.75 g(17.4 mmol)的MDOP。於室溫(RT)下攪拌所得的黃色溶液16小時,並且在真空之下移除所有揮發物。在真空之下(0.2托耳)於180 ℃經由蒸餾純化3.0 g的橙色液體(88%粗製產率)以獲得2.71 g的淡黃色黏稠液體(79.9%純化率)。蒸餾產物的1 H-NMR表示有不同乙氧基存在,該等乙氧基被認為是來自乙氧化物配位子還有來自同樣由轉酯化反應所形成之4,4-二甲基-3-酮基戊酸乙酯配位子(EDOP)的信號。蒸餾產物的丙酮溶液的氣相層析-質譜光譜(GC-MS)確認有約2/1比例的4,4-二甲基-3-酮基戊酸甲酯及4,4-二甲基-3-酮基戊酸乙酯的混合物存在。
1 H-NMR(500 MHz,C6 D6 ) d(ppm):5.40(CH,酮酯類),4.70(OCH2 ,乙氧基),4.40(OCH3 ,甲氧基),4.0(OCH2 ,EDOP),3.40及3.65(OCH3 ,MDOP),1.35(CH3 ,乙氧化物),1.15及1.26(C(CH3 )3 ,MDOP)。
實施例3雙(正丙氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦的合成
對15.1 g(53.1 mmol)正丙氧基鈦(IV)在30 g於5 ℃的無水己烷中的溶液添加18.0g(113.9 mmol) MDOP。於室溫(RT)下攪動所得的溶液16小時,並且接著迴流2小時。在真空之下移除所有揮發物並且獲得橙色黏稠液體(24.74 g,96.6%粗製產率)。在真空之下於190 ℃蒸餾該材料以獲得19.2 g的淡黃色黏稠液體(75%純化率)。蒸餾產物的1 H-NMR表示有不同正丙氧基存在,該等正丙氧基被認為是來自正丙氧化物配位子還有來自同樣由轉酯化反應所形成之4,4-二甲基-3-酮基戊酸丙酯配位子的信號。蒸餾產物的丙酮溶液的GC-MS確認有約1/1比例的4,4-二甲基-3-酮基戊酸甲酯及4,4-二甲基-3-酮基戊酸丙酯的混合物存在。
含有>90%的雙(正丙氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦的粗製材料的1 H NMR(500 MHz,d8 -甲苯d(ppm):5.20(CH,MDOP),4.47(OCH2 ,正丙氧基),3.35及3.55(OCH3 ,MDOP),1.57(OCH2 ,正丙氧基),1.05及1.29(C(CH3 )3 ,MDOP),0.92(CH3 ,正丙氧基)。
該蒸餾材料的1 H-NMR表示其係同時含有4,4-二甲基-3-酮基戊酸甲酯及4,4-二甲基-3-酮基戊酸丙酯配位子的錯合物的混合物(500 MHz,d8 -甲苯d(ppm):5.25(CH,酮酯酸根),4.50(OCH2 ,正丙氧基),4.3(OCH3 ,甲氧基),3.90(OCH2 ,酮酯酸根),3.35及3.55(OCH3 ,MDOP),1.60及1.45(OCH2 ,正丙氧基),1.05及1.20(C(CH3 )3 ,MDOP),0.75及0.95(CH3 ,正丙氧化物)。
實施例4雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸正丙酯)鈦的合成
對0.43 g(2.50 mmol)的甲氧化鈦(IV)在5 mL的己烷中的漿液添加0.93 g(5.00 mmol)的4,4-二甲基-3-酮基戊酸正丙酯。於RT攪動該反應混合物16小時並且使所有甲氧化鈦(IV)溶解。在真空之下餾除所有揮發物以獲得1.0 g的淡黃色液體,約83%粗製產率。不經由高溫真空蒸餾純化該材料以免甲氧化物配位子與酯基交換。
1 H-NMR(500 MHz,d8 -甲苯d(ppm):5.27(CH,酮酯酸根),4.54(OCH3 ,甲氧化物),4.3(OCH3 ,甲氧化物),3.90(OCH2 ,酮酯酸根),1.49(OCH2 ,酮酯酸根),1.05及1.20(C(CH3 )3 ,酮酯酸根),0.75(CH3 ,酮酯酸根)。
在氮氣環境之下在密封的NMR試管中於200 ℃下加熱此材料的純樣品1小時而且在其1 H NMR中觀察到明顯的變化。在熱處理之後出現含有甲氧化物、正丙氧化物配位子還有4,4-二甲基-3-酮基戊酸正丙酯及4,4-二甲基-3-酮基戊酸甲酯配位子的錯合物混合物。
實施例5雙(乙氧基)雙(乙醯醋酸乙酯)鈦的合成
對5.76g(25.24mmol)的乙氧化鈦(IV)在50mL四氫呋喃(THF)中的溶液添加在25mL THF中的6.57g(50.47mmol)乙醯醋酸乙酯。將該反應混合物迴流16小時,其後移除揮發物產生稱重9.9g的蠟質紅橙色固體。經由在真空之下(125 mTorr)於130℃下蒸餾純化3.41g的粗製材料以獲得2.90 g白色固體(85%純化產率)。藉由示差掃描式熱分析儀(DSC)測得熔點為52℃。
1 H-NMR(500 MHz,C6 D6 ) d(ppm):5.18(CH),4.73(OCH2 CH3 ),3.95及3.92(OCH2 CH3 ,酮酯),1.82(CH3 ,酮酯),1.34(OCH2 CH3 ),1.03及0.93(OCH2 CH3 ,酮酯酸)。
實施例6雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦的合成
對30.41g(176.76 mmol)的甲氧化鈦(IV)在175mL THF中的懸浮液添加55.92 g(353.52 mmol)的4,4-二甲基-3-酮基戊酸甲酯。將所得的反應混合物加熱以迴流16小時,其後移除揮發物。以150mL的己烷分離並且萃取出灰褐色乳狀油。接著透過矽藻土(celite)過濾,而且所有揮發物的移除產生稱重76.05g的黏稠琥珀色油。把該油放在100mL的己烷中,並且於-78 ℃以88%的產率沉澱出65.70g的淺黃色固體。
藉由示差掃描式熱分析儀(DSC)於10℃/min加熱速率下測得熔點為51℃。於10℃/min的DSC的壓力鍋中沒有顯示分解引起的熱效應達於至少約270℃。TGA分析顯示低於0.2重量%殘餘物,暗示其可作為氣相沉積方法中的適合前驅物。
1 H-NMR(500 MHz,C6 D6 ) d(ppm):5.36(CH),4.39(OCH3 ,甲氧基),3.29(OCH3 ,酮酯酸根),1.19[C(CH3 )3 ]。
雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦的無色板狀晶體藉由X-射線單晶分析描述其結構上的特徵。該結構顯示該鈦原子以順式-幾何異構物的形式在扭曲八面體環境中配位兩個甲氧基及兩個4,4-二甲基-3-酮基戊酸甲酯配位子。
實施例7 雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦的合成
經由導管對186.53g(817.58mmol)的乙氧化鈦(IV)在300mL THF中的溶液添加在室溫的300mL THF中的281.61g(1635.15mmol)4,4-二甲基-3-酮基戊酸乙酯。將所得的紅橙色溶液迴流16小時。揮發物的移除產生黏稠橙色液體,在真空之下(0.10托耳)於150℃蒸餾純化該液體以獲得370.47g的黃色黏稠液體。產率為93%。
於10℃/min的DSC的壓力鍋中沒有顯示分解引起的熱效應達於至少約270℃。TGA分析顯示幾乎沒留下殘餘物,暗示其可作為氣相沉積方法中的適合前驅物。
1 H-NMR(500MHz,C6 D6 )d(ppm):5.37(CH),4.70(OCH2 CH3 ),3.97及3.92(OCH2 CH3 ,酮酯),1.34(OCH2 CH3 ),1.23及1.10[C(CH3 )3 ],1.03及0.96(OCH2 CH3 ,酮酯)。
實施例8 雙(正丙氧基)雙(4,4-二甲基-3-酮基戊酸正丙酯)鈦的合成
對0.76g(2.67mmol)的正丙氧化鈦(IV)在1g己烷中的溶液添加1.00g(5.38mmol)的4,4-二甲基-3-酮基戊酸正丙酯。於RT攪動該反應混合物1小時並且接著於60℃下30分鐘。在真空之下餾除所有揮發物以獲得1.1g的無色液體,約69%分離產率。經由真空蒸餾(0.2托耳)於180℃(鍋溫)純化該材料並且收集澄清無色的液體。在高溫真空蒸餾之前及之後並沒有觀察到該材料的1 H NMR光譜有變 化,表示此錯合物之良好的熱及組成安定性。
1 H-NMR(500MHz,d8 -甲苯δ(ppm):5.17(CH,酮酯酸根),4.45(OCH2 ,正丙氧基),3.86及3.74(OCH2 ,酮酯酸根),1.55(CH2 ,正丙氧基),1.38(CH2 ,酮酯酸根),0.95及1.12(C(CH3 )3 ,酮酯酸根),0.90(CH3 ,正丙氧化物),0.70(CH3 ,酮酯酸根)。
實施例9 雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦的熱安定性
在密封的NMR試管中於200℃下加熱雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦的樣品1小時。經加熱的材料的TGA顯示約0.2重量%殘餘物,類似於熱處理之前該材料的TGA殘餘量。經加熱的材料溶在d8 -甲苯中的1 H NMR光譜沒有顯示明顯的變化,確認此前驅物於200℃下加熱1小時之後的組成完好性。
實施例10 雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦及雙(乙氧基)雙(乙醯醋酸乙酯)鈦的熱安定性比較
雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦及雙(乙氧基)雙(乙醯醋酸乙酯)鈦的樣品在氮氣環境之下密封於Perkin Elmer高壓DSC艙內並且於10℃/min下加熱至400℃。DSC數據顯示雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦,其中該R3 基團為分支烷基(放熱起始點為310℃), 比起雙(乙氧基)雙(乙醯醋酸乙酯)鈦,其中R3 基團為線性烷基(放熱起始點為278℃),具有較好的熱安定性。因此雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦可提供比雙(乙氧基)雙(乙醯醋酸乙酯)鈦更高的ALD操作熱範圍。
實施例11 雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦的黏度
使用AR-G2流變儀(德拉威州,新塞市,TA Instruments)來測量黏度。溫度用Peltier加熱元件控制於希望的溫度。使用60mm直徑的平行板幾何形狀。樣品裝填之後,使其在剪切掃描測量之前進行熱平衡600sec。於介於1 to 100s-1的剪切速率下測量黏度。雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦顯示Newtonian性質,於25℃下具有107.9分泊的黏度及於80℃下10.1分泊。雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦的黏度可於25℃下藉由使用具有低黏度的添加物,舉例來說辛烷,降至低於10分泊。
實施例12 雙(異丙氧基)雙(N,N-二乙基乙醯基乙醯胺)鈦的合成
對5.94g(20.90mmol)的異丙氧化鈦(IV)在65mL的四氫呋喃(THF)中的溶液添加在10mL THF中的6.57g(41.8mmol)N,N-二乙基乙醯基乙醯胺。將所得的溶液迴流過夜。在真空之下移除所有揮發物以提供9.89g的橙色固體(約99%粗製產率)。熱重量分析/示差掃描式熱分析儀 (TGA/DSC)指示其具有75℃的熔點。參見Bae,B.-J.,K.Lee,W.S.Seo,M.A.Miah,K.-C.Kim及J.T.Park(2004)."Preparation of anatase TiO2 thin films with (OPri)2 Ti(CH3 COCHCONEt2 )2 precursor by MOCVD." Bull.Korean Chem.Soc.FIELD Full Journal Title:Bulletin of the Korean Chemical Society 25(11):1661-1666。
實施例13 雙(第三丁氧基)雙(N,N-二乙基乙醯基乙醯胺)鈦的合成
於室溫下對6.72g(19.74mmol)的第三丁氧化鈦(IV)在65mL的THF中的溶液逐滴添加在10mL THF中的6.21g(39.49mmol)N,N-二乙基乙醯基乙醯胺。將該反應加熱以迴流16小時,其後使其冷卻至室溫。在真空之下移除所有揮發物以提供9.85g的橙色固體(約99%粗製產率)。TGA/DSC指示其具有67℃的熔點。
實施例14 雙(乙氧基)雙(N,N-二乙基乙醯基乙醯胺)鈦的合成
於室溫下對5.06g(22.20mmol)的乙氧化鈦(IV)在65mL的THF中的溶液逐滴添加在10mL THF中的6.98g(44.41mmol)N,N-二乙基乙醯基乙醯胺。將該反應加熱以迴流16小時,其後使其冷卻至室溫。在真空之下移除所有揮發物以提供9.69g的橙色固體(約97%粗製產率)。TGA/DSC指示其具有60℃的熔點。
實施例15雙(異丙氧基)雙(N,N-二甲基乙醯基乙醯胺)鈦的合成
對57.08 g(200.84 mmol)的異丙氧化鈦(IV)在200 ml的THF中的溶液添加在50 mL THF中的51.88g(401.69 mmol) N,N-二甲基乙醯基乙醯胺。將所得的溶液迴流過夜。在真空之下移除所有揮發物以提供79.84g的黃色固體(約99%粗製產率)。TGA/DSC指示其具有76℃的熔點。
實施例16雙(第三丁氧基)雙(N,N-二甲基乙醯基乙醯胺)鈦的合成
對7.89 g(23.45 mmol)的第三丁氧化鈦(IV)在65 ml的THF中的溶液添加在10 mL THF中的6.06g(46.90 mmol) N,N-二甲基乙醯基乙醯胺。將所得的溶液迴流過夜。在真空之下移除所有揮發物以提供10g的黃色固體(100%粗製產率)。TGA/DSC指示其具有94℃的熔點。參見Gornshtein,F.,M. Kapon,M. Botoshansky and M. S. Eisen(2007)."Titanium and Zirconium Complexes for Polymerization of Propylene and Cyclic Esters."Organometallics 26(3):497-507。
實施例17雙(異丙氧基)雙(N,N-二甲基乙醯基乙醯胺)鈦的ALD
本實施例說明使用雙(異丙氧基)雙(N,N-二甲基乙醯基乙醯胺)鈦及臭氧進行TiO2 的ALD沉積。沉積溫度範圍為200至400℃。沉積艙壓力範圍在1.5托耳左右。將雙(異丙氧基)雙(N,N-二甲基乙醯基乙醯胺)鈦的容器維持在150℃。TiO2 的ALD的一個循環由4個步驟構成。
1. 以Ar當作載體氣經由發泡引入鈦前驅物;
2. 利用Ar進行Ar洗淨以移除任何未吸附的鈦前驅物;
3. 將臭氧引入該沉積艙,及;
4. 利用Ar進行Ar洗淨以移除任何未反應的臭氧。
在本實施例中,獲得TiO2 膜,顯示所得的TiO2 膜的沉積溫度依賴性。典型的ALD條件為:鈦前驅物脈衝時間為3秒,鈦前驅物脈衝之後的Ar洗淨時間為8秒,臭氧脈衝時間為5秒,及臭氧脈衝之後的Ar洗淨時間為10秒。重複進行此循環100次。
圖2中描繪出此結果,其中該ALD加工範圍達於約300℃。
實施例18使用雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦進行TiO2 的ALD
本實施例說明使用雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦及臭氧進行TiO2 的ALD沉積。沉積溫度範圍為200至400℃。沉積艙壓力範圍在1.5托耳左右。將雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦的容器維持在120℃。TiO2 的ALD的一個循環由4個步驟構成。
1.以Ar當作載體氣經由發泡引入鈦前驅物;2.利用Ar進行Ar洗淨以移除任何遺留的鈦前驅物;3.將臭氧引入該沉積艙,及;4.進行Ar洗淨以移除任何未反應的臭氧。
典型的ALD條件為:鈦前驅物脈衝時間為4或8秒,鈦前驅物脈衝之後的Ar洗淨時間為10秒,臭氧脈衝時間為5秒,及臭氧脈衝之後的Ar洗淨時間為10秒。重複進行此循環100次,並且獲得TiO2 膜。氧化鈦厚度對於沉積溫度的依賴性(圖3)暗示ALD熱加工範圍可達於約370℃而且ALD速率可高達0.6A/循環。
實施例19 使用雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦進行TiO2 的ALD
本實施例說明使用雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦及臭氧進行TiO2 的ALD沉積。沉積溫度範圍為200至400℃。沉積艙壓力範圍在1.5托耳左右。將雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦的容器維持在150℃。TiO2 的ALD的一個循環由4個步驟構成。
1.以Ar當作載體氣經由發泡引入鈦前驅物;2.利用Ar進行Ar洗淨以移除任何遺留的鈦前驅物;3.將臭氧引入該沉積艙,及;4.進行Ar洗淨以移除任何未反應的臭氧。
典型的ALD條件為:鈦前驅物脈衝時間為4或8秒,鈦前驅物脈衝之後的Ar洗淨時間為10秒,臭氧脈衝時間為5秒,及臭氧脈衝之後的Ar洗淨時間為10秒。重複進行此循環100次。圖4中顯示氧化鈦厚度對於沉積溫度的依賴性。此結果暗示ALD熱加工範圍可達於約375℃而且ALD速率約0.5Å/循環。
實施例20 雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦的ALD
本實施例係經設計以證明此方法配合下列條件於375℃下為確切的ALD:雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦作為鈦前驅物配合4或8秒的脈衝時間,鈦前驅物脈衝之後的Ar洗淨時間為10秒,臭氧脈衝時間為5秒,及臭氧脈衝之後的Ar洗淨時間為10秒。重複進行此循環50、100、150次。將結果描繪於圖5中,顯示所得的TiO2 膜厚度與循環次數之間的重疊線性關係,其確認於375℃的確切自限性ALD方法。
實施例21 在圖案化基材上用雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦進行TiO2 的ALD
本實施例在間隔550Å左右,縱寬比20比1的溝槽圖案晶圓及在表面上的氮化矽上用雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦及臭氧進行TiO2 的ALD沉積。沉積溫度為375℃。沉積艙壓力為1.0托耳左右。將雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦的容器維持在150℃。該ALD條件:鈦前驅物脈衝時間為15秒,鈦前驅物脈衝之後的Ar洗淨時間為20秒,臭氧脈衝時間為5秒,及臭氧脈衝之後的Ar洗淨時間為10秒。重複進行此循環200次。圖6顯示所沉積的TiO2 膜的穿透式電子顯微鏡(TEM)影像,該TiO2 膜的溝槽頂部具有8.9±0.5 nm的厚度,溝槽的頂角處8.8±0.5 nm,溝槽的中間8.7±0.5 nm,及溝槽底部8.2±0.5 nm,這證實從該圖案化基材的頂部至底部的優良階梯覆蓋率(>90%)。
圖1為關於雙(異丙氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦(點線)、雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦(虛線)及雙(正丙氧基)雙(4,4-二甲基-3-酮基戊酸正丙酯)鈦(實線)的熱重量分析(TGA)的圖形,該圖形表示所有前驅物均為揮發性並且具有低殘餘量。
圖2為使用雙(異丙氧基)雙(N,N-二甲基乙醯基基)鈦及臭氧進行TiO2 的ALD的厚度對溫度圖形。
圖3為使用100個臭氧及雙(甲氧基)雙(4,4-二甲基-3-酮基戊酸甲酯)鈦的ALD循環沉積氧化鈦膜的熱ALD的溫度依賴性,其表示此前驅物的ALD熱範圍係達於約370℃。
圖4為使用100個臭氧及雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦的ALD循環沉積氧化鈦膜的熱ALD的溫度依賴性,其表示此前驅物的ALD熱範圍係達於約375℃。
圖5為氧化鈦厚度對於配合兩個不同的鈦前驅物注入時間使用臭氧及雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦的ALD循環次數的依賴性,其證實於約375℃的確切自限性ALD方法。
圖6為運用雙(乙氧基)雙(4,4-二甲基-3-酮基戊酸乙酯)鈦作為液態鈦前驅物沉積在圖案化基材上的TiO2 膜之穿透式電子顯微鏡(TEM)影像,其證明從該圖案化基材頂部至底部的優異階梯覆蓋率(>90%)。

Claims (8)

  1. 一種在原子層沉積條件之下在基材上沉積至少一含金屬膜之方法,該含金屬膜係選自由鈦、鉿及鋯所組成的群組,該方法包含使該基材與具有下式的前驅物接觸: 其中M為選自由Ti、Zr及Hf所組成的群組的第4族金屬;其中R1 及R2 係選自由線性或分支C1-10 烷基及C6-12 芳基所組成的群組;R3 係選自由分支C3-6 烷基及C6-12 芳基所組成的群組;R4 係選自由氫、C1-3 烷基及C6-12 芳基所組成的群組;R5 係選自由C1-10 線性或分支烷基及C6-12 芳基所組成的群組;X=O,y=1而且R1 、R2 及R5 相同。
  2. 如申請專利範圍第1項之方法,其中該前驅物係於選自由下列各項所組成的群組的溶劑中:戊烷、己烷、庚烷、辛烷、癸烷、十二烷、乙基環己烷、丙基環己烷、苯、甲苯、乙基苯、二甲苯、三甲苯、乙基甲苯、醚類、酯類、腈類、醇類、胺類、三乙基胺、第三丁基胺、亞胺類、碳二醯亞胺類、N,N'-二異丙基碳二醯亞胺、酮類、醛類、脒類、胍類、異脲類、具有1至20個乙氧基-(C2 H4 O)- 重複單元的甘醇二甲醚類溶劑、二甲氧基乙烷、1,2-二乙氧基乙烷及二甘醇二甲醚、有機醚類、丙二醇、二丙二醇二甲基醚、C2 -C12 醇類;有機醚類;包含C1 -C6 烷基部分、C4 -C8 環狀醚類、四氫呋喃及二噁烷的二烷基醚類;C12 -C60 冠O4 -O20 醚類;C6 -C12 脂族烴類、C6 -C18 芳族烴類、有機醚類、有機胺類、聚胺類、胺基醚類、有機醯胺類、RCONR’R”形式的有機醯胺類,其中R及R’為具有1至10個碳原子的烷基,而且R及R’可連在一起以形成環狀基團(CH2 )n ,其中n為4至6,而且R”係選自具有1至4個碳原子的烷基、環烷基;N-甲基-或N-乙基-或N-環己基-2-吡咯酮類、N,N-二乙基乙醯胺及N,N-二乙基甲醯胺。
  3. 一種在原子層沉積條件之下在基材上沉積多成分金屬氧化物之方法,該多成分金屬氧化物之至少一者係選自由鈦、鉿及鋯所組成的群組,該方法包含使該基材與申請專利範圍第1或2項的前驅物接觸。
  4. 如申請專利範圍第3項之方法,其中該多成分金屬氧化物係選自由鈦酸鍶、鈦酸鋇鍶、鈦酸鋇、摻鑭的氧化鈦、摻鑭的氧化鋯及摻鑭的氧化鉿所組成的群組。
  5. 如申請專利範圍第1項之方法,其中該前驅物為純液體。
  6. 如申請專利範圍第1或2項之方法,其另外包含下列步驟:(a)將蒸氣態的前物物引入反應艙而且使該組成物化學吸附在被加熱的基材上;(b)洗淨未反應的前驅物;(c)將氧來源引至該被加熱的基材上以與該吸附的前驅物起反應;及(d)洗淨未反應的氧來源及反應副產物。
  7. 如申請專利範圍第6項之方法,其中重複進行步驟(a)至(d)直到達到希望的膜深度。
  8. 如申請專利範圍第6項之方法,其中經由注射將該前驅物在溶劑中的蒸氣遞送至蒸發器內。
TW099135840A 2009-10-23 2010-10-20 含第4族金屬膜的沉積方法 TWI433955B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25425309P 2009-10-23 2009-10-23
US12/904,461 US20110256314A1 (en) 2009-10-23 2010-10-14 Methods for deposition of group 4 metal containing films

Publications (2)

Publication Number Publication Date
TW201127981A TW201127981A (en) 2011-08-16
TWI433955B true TWI433955B (zh) 2014-04-11

Family

ID=43478088

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099135840A TWI433955B (zh) 2009-10-23 2010-10-20 含第4族金屬膜的沉積方法

Country Status (6)

Country Link
US (1) US20110256314A1 (zh)
EP (1) EP2322690A3 (zh)
JP (2) JP2011155243A (zh)
KR (1) KR101151462B1 (zh)
CN (1) CN102041482B (zh)
TW (1) TWI433955B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130260025A1 (en) * 2012-03-30 2013-10-03 Air Products And Chemicals, Inc. Group 2 Imidazolate Formulations for Direct Liquid Injection
JP6980324B1 (ja) * 2021-03-08 2021-12-15 株式会社クリエイティブコーティングス チタン酸バリウム膜の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU199679B (en) 1983-02-09 1990-03-28 Byk Gulden Lomberg Chem Fab Process for producing new complex compounds and antineoplastic compositions containing them
US5840897A (en) 1990-07-06 1998-11-24 Advanced Technology Materials, Inc. Metal complex source reagents for chemical vapor deposition
JP2822946B2 (ja) 1995-07-31 1998-11-11 三菱マテリアル株式会社 高純度Ti錯体及びその製造方法並びにBST膜形成用液体組成物
JP3883235B2 (ja) 1996-10-08 2007-02-21 株式会社Adeka 金属錯体化合物からなるcvd材料
US6117487A (en) 1998-04-02 2000-09-12 Asahi Denka Kogyo Kabushiki Kaisha Process for forming metal oxide film by means of CVD system
JP2001234343A (ja) 2000-02-17 2001-08-31 Asahi Denka Kogyo Kk 金属化合物溶液及びこれを用いた薄膜の製造方法
KR100435816B1 (ko) 2001-01-19 2004-06-12 한국과학기술연구원 화학증착용 유기티탄 전구체 및 그의 제조 방법
US6562990B1 (en) 2002-07-03 2003-05-13 E. I. Du Pont De Nemours And Company Titanium chelates and processes therefor
US7221018B2 (en) * 2004-02-10 2007-05-22 Micron Technology, Inc. NROM flash memory with a high-permittivity gate dielectric
US20050252449A1 (en) * 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
JP2006182709A (ja) * 2004-12-28 2006-07-13 Adeka Corp 薄膜形成用原料、薄膜の製造方法及び金属化合物
US7514119B2 (en) * 2005-04-29 2009-04-07 Linde, Inc. Method and apparatus for using solution based precursors for atomic layer deposition
GB0513616D0 (en) * 2005-07-04 2005-08-10 Johnson Matthey Plc Novel zirconium compound, catalyst and its use for polyurethane manufacture
JP2007197804A (ja) * 2006-01-30 2007-08-09 Mitsubishi Materials Corp 有機金属化学蒸着法用原料及び該原料を用いた金属含有膜の製造方法
US7947814B2 (en) 2006-04-25 2011-05-24 Air Products And Chemicals, Inc. Metal complexes of polydentate beta-ketoiminates
US20080254218A1 (en) * 2007-04-16 2008-10-16 Air Products And Chemicals, Inc. Metal Precursor Solutions For Chemical Vapor Deposition
CN100590803C (zh) * 2007-06-22 2010-02-17 中芯国际集成电路制造(上海)有限公司 原子层沉积方法以及形成的半导体器件
JP2009160826A (ja) * 2008-01-08 2009-07-23 Jsr Corp 積層体およびその製造方法ならびに半導体装置
JP2009170439A (ja) * 2008-01-10 2009-07-30 Panasonic Corp ゲート絶縁膜の形成方法
US8168811B2 (en) 2008-07-22 2012-05-01 Advanced Technology Materials, Inc. Precursors for CVD/ALD of metal-containing films

Also Published As

Publication number Publication date
JP2012256926A (ja) 2012-12-27
CN102041482B (zh) 2015-08-19
EP2322690A3 (en) 2011-06-15
CN102041482A (zh) 2011-05-04
KR20110044725A (ko) 2011-04-29
EP2322690A2 (en) 2011-05-18
TW201127981A (en) 2011-08-16
JP2011155243A (ja) 2011-08-11
KR101151462B1 (ko) 2012-06-01
US20110256314A1 (en) 2011-10-20
JP5373945B2 (ja) 2013-12-18

Similar Documents

Publication Publication Date Title
TWI454589B (zh) 用於含金屬膜的第4族金屬前驅物
TWI444497B (zh) 用於沉積含金屬膜的金屬-烯醇化物前驅物
JP5711300B2 (ja) 第4族金属含有膜を堆積させるための前駆体
CN102482771B (zh) 用于气相沉积的含钛前体
JP5185356B2 (ja) 第4族金属含有膜を堆積させるための液体前駆体
JP2009539237A (ja) 新規なチタン、ジルコニウムおよびハフニウム前駆体をベースとするhigh−k誘電体フィルムを形成する方法および半導体製造におけるそれらの使用
US8691710B2 (en) Group IV metal complexes for metal-containing film deposition
TWI433955B (zh) 含第4族金屬膜的沉積方法