TWI433810B - Method of forming nano-scale material - Google Patents

Method of forming nano-scale material Download PDF

Info

Publication number
TWI433810B
TWI433810B TW97101114A TW97101114A TWI433810B TW I433810 B TWI433810 B TW I433810B TW 97101114 A TW97101114 A TW 97101114A TW 97101114 A TW97101114 A TW 97101114A TW I433810 B TWI433810 B TW I433810B
Authority
TW
Taiwan
Prior art keywords
producing
template
substrate
metallization
dimensional nanomaterial
Prior art date
Application number
TW97101114A
Other languages
Chinese (zh)
Other versions
TW200930658A (en
Inventor
Chih Chen
Ching Jung Yang
Shun Mim Wang
Jia Min Shieh
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW97101114A priority Critical patent/TWI433810B/en
Publication of TW200930658A publication Critical patent/TW200930658A/en
Application granted granted Critical
Publication of TWI433810B publication Critical patent/TWI433810B/en

Links

Description

製造奈米結構材料的方法Method for manufacturing nanostructured materials

本發明係有關一種製作奈米結構材料的方法,特別是一種製作一維奈米材料(包含奈米柱、奈米管與核殼型)陣列材料的方法。The present invention relates to a method of making a nanostructured material, and more particularly to a method of fabricating a one-dimensional nanomaterial (including a nanocolumn, a nanotube, and a core-shell) array material.

由於人類對微小化材料的殷切需求,已由原來的微米(10-6 m)範圍進入了奈米(10-9 m)範圍的時代,舉凡光電、磁性、催化等都須要更有效率、有智慧行為的奈米材料。傳統上,材料科學是以冶金、陶瓷及高分子塑膠為基礎,是以塊材材料(Bulk Material)為對象。然而,以物理與化學前沿研究為基礎的奈米材料(Nanomaterials)研究的主要方向是重在化學、光電與機械在實際應用上所須的具有特殊及特定功能材料,它的發展須要基礎凝態物理研究與化學合成做有效之整合。Due to the ardent demand for micro-materials, humans have entered the era of nanometer (10 -9 m) from the original micron (10 -6 m) range. All optoelectronics, magnetism, and catalysis need to be more efficient. The nano material of wisdom behavior. Traditionally, materials science is based on metallurgy, ceramics and polymer plastics, and is based on bulk materials. However, the main direction of nanomaterials research based on the frontier research of physics and chemistry is to focus on the special and specific functional materials required for the practical application of chemistry, optoelectronics and machinery. Its development requires basic condensed state. Physical research and chemical synthesis are effectively integrated.

奈米材料大約分為五類:奈米結晶材料(nanocrystalline materials)、奈米孔隙材料(nanoporous material)、奈米纜線、奈米碳管(carbon nanotubes)及奈米粉體。另一種分類係將奈米材料依維度分為零維、一維和二維。零維奈米材料是指長、寬、高三維尺度都在奈米尺寸內,形狀是點狀,例如奈米粒子、分子團、量子點等。一維奈米材料是指長、寬、高三維中的寬與高二維都是奈米尺度,例如奈米絲、奈米棒、奈米管、奈米柱、奈米帶等。二維奈米材料則是指長、寬、高三維中僅有高度是奈米尺度,形狀是平面,例如奈米薄膜、超晶格等。再者,若以形成材料的種類來分,則包含單一成分的奈米材料與兩種物質以上結合的複合奈米材料。一般而言,製作出奈米材料的方法亦有許多種,不同的製作方法有其應用上的限制,簡述如下:(1)利用氣相-固化法形成的奈米結構,雖有成長優選方向但排列混亂不易控制,且奈米管的生成是藉由高溫下奈米線的破壞而形成。Nanomaterials are roughly classified into five categories: nanocrystalline materials, nanoporous materials, nano cables, carbon nanotubes, and nano-powders. Another classification classifies nanomaterials into zero-dimensional, one-dimensional and two-dimensional dimensions. Zero-dimensional nanomaterials refer to the length, width, and height of the three-dimensional scale in the nanometer size, and the shape is a dot shape, such as nano particles, molecular clusters, quantum dots, and the like. The one-dimensional nanomaterial refers to the width and height of the three-dimensional length, width and height, and is two-dimensional, such as nanowire, nanorod, nanotube, nanocolumn, nanobelt, and the like. Two-dimensional nanomaterials refer to the length, width, and height of three dimensions, only the height is the nanometer scale, and the shape is a plane, such as a nano film, a superlattice, and the like. Further, when the materials are classified according to the type of the material to be formed, a composite nanomaterial in which a single component nanomaterial is combined with two or more materials is used. In general, there are many methods for fabricating nanomaterials. Different methods of fabrication have limitations in their application. Briefly, they are as follows: (1) Nanostructures formed by gas phase-solidification, although growth is preferred. The direction but the disorder is not easy to control, and the formation of the nanotube is formed by the destruction of the nanowire at a high temperature.

(2)以熱蒸鍍的方式成長需較長的時間,且生成的奈米結構直徑較大不易控制。(2) It takes a long time to grow by thermal evaporation, and the diameter of the formed nanostructure is large and difficult to control.

(3)用鋁箔為基材製作陽極氧化鋁(Anodic Aluminum Oxide,AAO)模板之後應用性較低,且有殘留鋁不利分析應用,利用化學氣相沉積成長氧化鋅品質較差且所需的陽極氧化鋁模板孔徑較大。(3) The use of aluminum foil as a substrate for the production of anodized aluminum oxide (AAO) template is less applicable, and there is an unfavorable analytical application of residual aluminum. The quality of zinc oxide grown by chemical vapor deposition is poor and the required anodization is required. The aluminum template has a large aperture.

(4)先利用原子層化學氣相沉積法(atomic layer deposition,ALD)鍍氧化鋅當作觸媒層,之後再利用水溶液法不需催化層即可在氧化鋅觸媒層上成長一維奈米材料,但需很長的時間。(4) Firstly, zinc oxide is used as a catalyst layer by atomic layer deposition (ALD), and then the aqueous solution can be used to grow a virgin on the zinc oxide catalyst layer without using a catalytic layer. Rice material, but it takes a long time.

(5)以原子層化學氣相沉積法鍍上很薄的氧化鋅作為觸媒層,配合作選區的動作後,不需另外鍍上催化層,以氣相-固化法機制只能在高溫下順利於選區區域上成長出奈米線陣列。(5) A very thin layer of zinc oxide is plated as a catalyst layer by atomic layer chemical vapor deposition. After the action of the cooperative selection zone, no additional catalytic layer is required, and the gas phase-curing mechanism can only be used at high temperatures. Smoothly grow the nanowire array on the selected area.

為了解決上述問題,本發明目的之一係在提供一種製造奈米結構材料的方法,利用陽極氧化鋁作為模板配合原子層化學氣相沉積製程,可縮短製作時間。In order to solve the above problems, one of the objects of the present invention is to provide a method for producing a nanostructured material, which can reduce the fabrication time by using anodized aluminum as a template in combination with an atomic layer chemical vapor deposition process.

本發明之目的之一係在提供一種製造奈米結構材料的方法,以剛性或可撓性基材配合原子層化學氣相沉積法成長機制,可以得到品質較佳的奈米材料。One of the objects of the present invention is to provide a method for producing a nanostructured material, which can be obtained by a rigid or flexible substrate in combination with an atomic layer chemical vapor deposition growth mechanism to obtain a nanomaterial of better quality.

為了達到上述目的,本發明之一實施例提供一種製造奈米結構材料的方法,包括下列步驟:提供一基底;形成一接著層於基底;形成一金屬層於接著層上;對金屬層進行陽極化處理步驟,以形成一金屬化物模板,其中金屬化物模板具有複數個奈米孔洞於 金屬化物模板中;沉積一源材料於奈米孔洞中及金屬化物模板上;移除金屬化物模板上之源材料;及移除金屬化物模板以形成一一維奈米材料。In order to achieve the above object, an embodiment of the present invention provides a method of fabricating a nanostructured material, comprising the steps of: providing a substrate; forming an adhesive layer on the substrate; forming a metal layer on the adhesive layer; and performing an anode on the metal layer a processing step to form a metallization template, wherein the metallization template has a plurality of nanopores In the metallization template; depositing a source material in the nanopore and on the metallization template; removing the source material on the metallization template; and removing the metallization template to form the one-dimensional nanomaterial.

配合原子層化學氣相沉積法,本發明之一實施例提供一種製造一維奈米材料的方法,包括下列步驟:提供一基底;形成一接著層於基底上;形成一金屬層於接著層上;對金屬層進行陽極化處理步驟,以形成一金屬化物模板,其中金屬化物模板具有複數個奈米孔洞於金屬化物模板中;原子層化學氣相方式沉積一源材料於奈米孔洞中及金屬化物模板上;移除金屬化物模板上之源材料;及移除金屬化物模板以形成一一維奈米材料。In conjunction with atomic layer chemical vapor deposition, an embodiment of the present invention provides a method of fabricating a one-dimensional nanomaterial, comprising the steps of: providing a substrate; forming an adhesive layer on the substrate; forming a metal layer on the adhesive layer And anodizing the metal layer to form a metallization template, wherein the metallization template has a plurality of nanopores in the metallization template; atomic layer chemical vapor deposition of a source material in the nanopore and metal On the template; removing the source material on the metallization template; and removing the metallization template to form a one-dimensional nanomaterial.

以下藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。The purpose, technical contents, features, and effects achieved by the present invention will become more apparent from the detailed description of the appended claims.

第1圖為根據本發明之製造奈米結構材料之步驟示意圖。首先提供一基底(步驟10)作為承載之用。接著,利用適當的方式,例如蒸鍍或濺鍍的方式形成一金屬層於基底(步驟12)上。之後,以陽極化處理方式處理金屬層以形成具有奈米孔洞結構之金屬化物模板(步驟14)。其次,利用沉積的方式沉積源材料(source material)於金屬化物模板的奈米孔洞結構中並覆蓋金屬化物模板(步驟16)。之後,移除於金屬化物模板表面之源材料(步驟18)。之後,移除金屬化物模板以形成複數個一維奈米材料(包含奈米柱、奈米管與核殼型)於基底上(步驟20)。Figure 1 is a schematic view showing the steps of fabricating a nanostructured material according to the present invention. A substrate (step 10) is first provided for carrying. Next, a metal layer is formed on the substrate (step 12) by a suitable means such as evaporation or sputtering. Thereafter, the metal layer is treated by anodization to form a metallization template having a nanopore structure (step 14). Next, a source material is deposited in the nanopore structure of the metallization template by deposition and covers the metallization template (step 16). Thereafter, the source material on the surface of the metallization template is removed (step 18). Thereafter, the metallization template is removed to form a plurality of one-dimensional nanomaterials (including nanocolumns, nanotubes, and core-shell types) on the substrate (step 20).

第2A至第2E圖為根據本發明方法實現之奈米材料結構之側面示意圖。一基底21上依序形成一接著層22與一金屬層23。首先提供基底21,例如一P型(100)單晶、多晶、非晶型的矽基材、 玻璃基材或陽極氧化鋁模板(AAO)等剛性基材或是可撓性基材作為承載之用。基底21可以為均一基底或是複合基底,例如P型(100)結構存在於基底21表面附近。接著層22,例如以蒸鍍、濺鍍、化學氣相沉積、電鍍、無電鍍等等之一般沉積技術的方式形成一金屬、氧化物、氮化物等等薄膜材料,例如一厚度約20nm的鈦(Ti)、氮化鈦(TiN)、鉭(Ta)或氮化鉭(TaN)材料。之後,利用熱阻蒸鍍系統、濺鍍或化學氣相沉積法的方式,在高真空環境下(<4×10-6 托耳)蒸鍍厚度約1.5μm之金屬層23,例如鋁(Al)。2A through 2E are schematic side views of the structure of the nanomaterial material implemented in accordance with the method of the present invention. A substrate 22 and a metal layer 23 are sequentially formed on a substrate 21. First, a substrate 21 such as a P-type (100) single crystal, polycrystalline, amorphous ruthenium substrate, a glass substrate or an anodized aluminum template (AAO) or a rigid substrate or a flexible substrate is provided as a carrier. Use. The substrate 21 may be a uniform substrate or a composite substrate, for example, a P-type (100) structure exists near the surface of the substrate 21. Next, a layer 22, such as a metal, oxide, nitride, etc. film material, such as titanium having a thickness of about 20 nm, is formed by a general deposition technique such as evaporation, sputtering, chemical vapor deposition, electroplating, electroless plating, or the like. (Ti), titanium nitride (TiN), tantalum (Ta) or tantalum nitride (TaN) materials. Thereafter, a metal layer 23 having a thickness of about 1.5 μm, such as aluminum (Al), is deposited in a high vacuum environment (<4×10 -6 Torr) by means of a thermal resistance evaporation system, sputtering or chemical vapor deposition. ).

之後,以陽極化處理方式,例如兩階段鋁陽極處理方式處理金屬層23以形成具有奈米孔洞241結構之金屬化物模板24。參考第2B圖,於一實施例中,係經以下步驟後得到陣列式奈米孔洞氧化鋁薄膜:(1)消除鋁層之內部殘留應力,例如以退火條件400至600℃,數分鐘至數小時的方式消除殘留應力;及(2)陽極化處理,於本實施例中,電解液為0.3莫耳濃度(M)的草酸(C2 H2 O4 ),電解液溫度控制於25℃,外加40伏特之直流電壓,隨著陽極化處理時間進行反應3分鐘形成金屬化物模板24,例如一陽極氧化鋁(Anodic Aluminum Oxide,AAO)模板。再利用鉻酸(chromic acid,H2 Cr2 O4 )加上磷酸(phosphoric acid,H3 PO4 )混合,在60℃下浸泡40分鐘移除第一階段所生成的陽極氧化鋁,並留下表面具有高規則性凹痕結構的純鋁。在第二階段的陽極氧化反應(second anodization)所使用條件與第一階段相同,電解液便會依照凹痕的位置向下進行反應5分鐘,形成規則一致的陽極氧化鋁AAO奈米孔洞241,再浸泡5wt%的磷酸(phosphoric acid,H3 PO4 )50分鐘進行擴孔,而完成擴孔步驟的奈米孔洞241之直徑為70奈米(nm),高度為630奈米,深寬比為9。Thereafter, the metal layer 23 is treated in an anodizing manner, for example, a two-stage aluminum anode treatment to form a metallization template 24 having a nanopore 241 structure. Referring to FIG. 2B, in an embodiment, an array of nanoporous alumina films is obtained by the following steps: (1) eliminating internal residual stress of the aluminum layer, for example, annealing conditions of 400 to 600 ° C, several minutes to several The residual stress is eliminated in an hourly manner; and (2) anodizing treatment, in the present embodiment, the electrolyte is 0.3 mol concentration (M) of oxalic acid (C 2 H 2 O 4 ), and the electrolyte temperature is controlled at 25 ° C. A direct current voltage of 40 volts is applied, and a metallization template 24, such as an anodized aluminum oxide (AAO) template, is formed by reacting for 3 minutes with the anodizing time. Reusing chromic acid (H 2 Cr 2 O 4 ) plus phosphoric acid (H 3 PO 4 ), immersing at 60 ° C for 40 minutes to remove the anodized aluminum produced in the first stage, and leaving Pure aluminum having a highly regular indentation structure on the lower surface. In the second stage of the second anodization, the conditions used are the same as in the first stage, and the electrolyte is reacted downward according to the position of the dent for 5 minutes to form a regular anodized aluminum oxide AAO nano hole 241. Then, 5 wt% of phosphoric acid (H 3 PO 4 ) was immersed for 50 minutes for reaming, and the diameter of the nanopore 241 for completing the reaming step was 70 nm (nm), the height was 630 nm, and the aspect ratio was Is 9.

參照第2C圖,利用原子層化學氣相沉積法(atomic layer deposition,ALD)沉積源材料,源材料可以是純元素、金屬、Ⅲ-V族化合物、Ⅱ-Ⅵ族化合物、氟化物、氧化物、氮化物等,例如氧化鋅(ZnO)或二氧化鈦(TiO2 )材料於金屬化物模板24的奈米孔洞241結構中 並覆蓋金屬化物模板24。於本實施例中,以二乙基鋅(Zn(C2 H5 )2 ,DEZ)作為鋅前驅物,反應氣體是來自去離子水之水蒸氣。首先,製程壓力控制在5至8托耳(torr);脈衝時間(pluse time)與吹氣時間(purge time)之比為1000毫秒(ms):1500毫秒;沉積溫度200至300℃;二乙基鋅(DEZ)的脈衝時間與水蒸氣的脈衝時間皆為1000毫秒;二乙基鋅(DEZ)的吹氣時間與水蒸氣的吹氣時間為1500毫秒;cycles:150至600循環數,以形成氧化物之一維奈米材料25,例如氧化鋅奈米柱/奈米管於奈米孔洞241結構中,且於金屬化物模板24表面上同時覆蓋一源材料層26。要說明的是,就組合物質種類而言,可以選擇的,除了單一物質所形成的一維奈米材料25外,本發明之一實施例亦可應用於由複數物質組成的複合一維奈米材料25,例如核殼型或混合型。Referring to Figure 2C, the source material is deposited by atomic layer deposition (ALD). The source material may be pure element, metal, III-V compound, II-VI compound, fluoride, oxide. A nitride or the like, such as a zinc oxide (ZnO) or titanium dioxide (TiO 2 ) material, is in the nanopore 241 structure of the metallization template 24 and covers the metallization template 24. In the present embodiment, diethyl zinc (Zn(C 2 H 5 ) 2 , DEZ) is used as the zinc precursor, and the reaction gas is water vapor derived from deionized water. First, the process pressure is controlled at 5 to 8 torr; the ratio of the pluse time to the purge time is 1000 milliseconds (ms): 1500 milliseconds; the deposition temperature is 200 to 300 ° C; The pulse time of zinc (DEZ) and the pulse time of water vapor are both 1000 milliseconds; the blowing time of diethylzinc (DEZ) and the blowing time of water vapor is 1500 milliseconds; cycles: 150 to 600 cycles, to One of the oxides, a Venn material 25, such as a zinc oxide nanocolumn/nanotube, is formed in the nanopore 241 structure, and a source material layer 26 is simultaneously coated on the surface of the metallization template 24. It should be noted that, in terms of the type of the combined substance, an embodiment of the present invention can be applied to a composite one-dimensional nanometer composed of a plurality of substances, in addition to the one-dimensional nano-material 25 formed of a single substance. Material 25, such as a core shell type or a hybrid type.

參照第2D圖,利用一般的移除方法,例如機械研磨及拋光的方式,移除金屬化物模板24表面上的源材料層26,並暴露出金屬化物模板24與氧化物之一維奈米材料25的表面,其中氧化物之一維奈米材料25包含複數個奈米棒、奈米柱或奈米管,結構上可以是實心或中空核殼型,組成物質上則可以是單一物質或複合物質。參照第2E圖,再利用適當的移除方式,例如低濃度的氫氧化鈉溶液(0.4wt% NaOH)移除金屬化物模板24並同時保留氧化物一維奈米材料25,移除製程條件是室溫下進行1小時便可以得到垂直排列在基底21上的氧化物之一維奈米材料25。Referring to FIG. 2D, the source material layer 26 on the surface of the metallization template 24 is removed by a general removal method such as mechanical polishing and polishing, and the metallization template 24 and one of the oxides are exposed. The surface of 25, wherein one of the oxides, the nano-material 25 comprises a plurality of nanorods, nano-pillars or nanotubes, which may be solid or hollow core-shell type, and may be a single substance or a composite material. substance. Referring to FIG. 2E, the metallization template 24 is removed by a suitable removal method such as a low concentration sodium hydroxide solution (0.4 wt% NaOH) while retaining the oxide one-dimensional nanomaterial 25, and the process conditions are removed. One of the oxides of the oxide material 25 vertically aligned on the substrate 21 can be obtained by performing at room temperature for 1 hour.

第3A至第3D圖為根據本發明之實施例製作金屬氧化物奈米柱之中間結構的電子顯微鏡(SEM)圖。以金屬化物與源材料分別為氧化鋁與氧化鋅為例,第3A圖顯示陽極氧化鋁奈米孔洞的上視SEM照片。第3B圖顯示利用原子層化學氣相沉積法在沉積氧化鋅後的上視SEM照片。第3C圖顯示在拋光與選擇性蝕刻陽極氧化鋁奈米孔洞模板後的上視SEM照片。第3D圖顯示氧化鋅奈米柱陣列的剖面SEM照片。3A to 3D are electron microscope (SEM) images of an intermediate structure of a metal oxide nano column fabricated in accordance with an embodiment of the present invention. Taking the metallization and source materials as alumina and zinc oxide, respectively, Figure 3A shows a top SEM photograph of the anodized aluminum nanopore. Figure 3B shows a top SEM photograph of the deposited zinc oxide by atomic layer chemical vapor deposition. Figure 3C shows a top SEM photograph of the anodized aluminum nanohole template after polishing and selective etching. Figure 3D shows a cross-sectional SEM photograph of a zinc oxide nanocolumn array.

第4圖所示為根據本發明之實施例得到之氧化鋅奈米柱陣列之場發射特性曲線圖。如圖所示,氧化鋅奈米柱陣列場發射電性量測為當電流密度到達10 μAcm-2 得一較低啟始電場值6.5 Vμm-1 。如此優異的場發射性質乃由於每一個氧化鋅奈米柱皆垂直於矽基材。根據上述,本發明利用原子層化學氣相沉積與氧化鋁模板輔助,不需使用觸媒或晶種層於250℃成長自我組織氧化鋅或其他材料的一維奈米材料在矽基材上,本發明技術相較於一般法之若干特點如下:(1)相較於氣相-固化機制,利用AAO輔助ALD沉積方式可形成整齊、矩陣狀的奈米結構材料,且奈米管的生成不需高溫破壞原本奈米線。Figure 4 is a graph showing the field emission characteristics of a zinc oxide nanocolumn array obtained according to an embodiment of the present invention. As shown in the figure, the field emission electrical conductivity of the zinc oxide nanocolumn array is such that when the current density reaches 10 μAcm -2 , a lower starting electric field value of 6.5 Vμm -1 is obtained . Such excellent field emission properties are due to the fact that each zinc oxide nanocolumn is perpendicular to the tantalum substrate. According to the above, the present invention utilizes atomic layer chemical vapor deposition and alumina template assisting, and does not require the use of a catalyst or a seed layer to grow self-organized zinc oxide or other materials of the one-dimensional nanomaterial on the tantalum substrate at 250 ° C, The characteristics of the present invention compared to the general method are as follows: (1) Compared with the gas phase-cure mechanism, the AAO-assisted ALD deposition method can form a neat, matrix-shaped nanostructure material, and the formation of the nanotube is not High temperature is required to destroy the original nanowire.

(2)相較於熱蒸鍍的方式成長,AAO輔助ALD沉積方式所需的時間短很多,且生成的奈米結構材料直徑較小易控制。(2) Compared with the method of thermal evaporation, the time required for the AAO-assisted ALD deposition method is much shorter, and the diameter of the produced nanostructure material is smaller and easier to control.

(3)相較於鋁箔為基材之AAO模板配合化學氣相沉積製程,可在矽基材上配合ALD成長機制,其品質較好且AAO也可順利生成奈米結構材料。(3) Compared with the AAO template with chemical processing of aluminum foil as the substrate, the ALD growth mechanism can be matched on the ruthenium substrate, and the quality is good and the AAO can also successfully form the nanostructure material.

(4)相較於利用ALD成長氧化鋅觸媒層,之後再配合水溶液法形成一維奈米材料,以AAO輔助ALD沉積方式生成時間少很多且易控制。(4) Compared with the growth of the zinc oxide catalyst layer by ALD, the one-dimensional nano-material is formed by the aqueous solution method, and the AAO-assisted ALD deposition method has much less generation time and is easy to control.

(5)相較於利用ALD氧化鋅觸媒層配合氣相-固化機制,以AAO輔助ALD沉積方式可以利用ALD製程反應沉積次數控制而在低溫形成不同之奈米結構材料。(5) Compared with the gas phase-cure mechanism using the ALD zinc oxide catalyst layer, the AAO-assisted ALD deposition method can be used to form different nanostructure materials at low temperature by controlling the number of deposition processes of the ALD process.

本發明所提供之步驟所製造之奈米結構材料,可應用於奈米科技、半導體產業、光電技術與能源科技產業,例如場發射顯示器、光偵測器、表面聲波元件、氣體偵測器或紫外光雷射的產品上。The nanostructured material produced by the steps provided by the present invention can be applied to nanotechnology, semiconductor industry, optoelectronic technology and energy technology industries, such as field emission display, photodetector, surface acoustic wave component, gas detector or UV laser products.

以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。The embodiments described above are merely illustrative of the technical spirit and the features of the present invention, and the objects of the present invention can be understood by those skilled in the art, and the scope of the present invention cannot be limited thereto. That is, the equivalent variations or modifications made by the spirit of the present invention should still be included in the scope of the present invention.

10...提供一基底步驟10. . . Providing a substrate step

12...形成一金屬層於基底步驟12. . . Forming a metal layer on the substrate step

14...形成具有奈米孔洞結構之金屬化物模板步驟14. . . Forming a metallization template step having a nanopore structure

16...沉積源材料於金屬化物模板的奈米孔洞結構中並覆蓋金屬化物模板步驟16. . . Depositing source material in the nanopore structure of the metallization template and covering the metallization template step

18...移除於金屬化物模板表面之源材料步驟18. . . Step of removing the source material from the surface of the metallization template

20...移除金屬化物模板以形成一一維奈米材料(包含奈米柱,奈米管與核殼型)步驟20. . . Removing the metallization template to form a one-dimensional nanomaterial (including nanocolumn, nanotube and core-shell type) steps

21...基底twenty one. . . Base

22...接著層twenty two. . . Next layer

23...金屬層twenty three. . . Metal layer

24...金屬化物模板twenty four. . . Metallization template

241...奈米孔洞241. . . Nano hole

25...一維奈米材料25. . . One-dimensional nanomaterial

26...源材料層26. . . Source material layer

第1圖為根據本發明之製造奈米結構材料之步驟示意圖。Figure 1 is a schematic view showing the steps of fabricating a nanostructured material according to the present invention.

第2A、2B、2C、2D、2E圖為根據本發明步驟依序實現之奈米材料結構之側面示意圖。2A, 2B, 2C, 2D, 2E are schematic side views of the nanomaterial structure sequentially implemented in accordance with the steps of the present invention.

第3A、3B、3C、3D圖為根據本發明之實施例製作金屬氧化物奈米柱之中間結構的電子顯微鏡(SEM)圖。3A, 3B, 3C, and 3D are electron microscope (SEM) images of an intermediate structure of a metal oxide nano column fabricated in accordance with an embodiment of the present invention.

第4圖所示為根據本發明之實施例得到之氧化鋅奈米柱陣列之場發射特性曲線圖。Figure 4 is a graph showing the field emission characteristics of a zinc oxide nanocolumn array obtained according to an embodiment of the present invention.

10...提供一基底步驟10. . . Providing a substrate step

12...形成一金屬層於基底步驟12. . . Forming a metal layer on the substrate step

14...形成具有奈米孔洞結構之金屬化物模板步驟14. . . Forming a metallization template step having a nanopore structure

16...沉積源材料於金屬化物模板的奈米孔洞結構中並覆蓋金屬化物模板步驟16. . . Depositing source material in the nanopore structure of the metallization template and covering the metallization template step

18...移除於金屬化物模板表面之源材料步驟18. . . Step of removing the source material from the surface of the metallization template

20...移除金屬化物模板以形成一一維奈米材料(包含奈米柱、奈米管與核殼型)步驟20. . . Removal of the metallization template to form a one-dimensional nanomaterial (including nano-column, nanotube and core-shell type) steps

Claims (19)

一種製造奈米結構材料的方法,包括下列步驟:提供一基底;形成一接著層於該基底上;形成一金屬層於該接著層上;對該金屬層進行陽極化處理步驟,以形成一金屬化物模板,其中該金屬化物模板具有複數個奈米孔洞於該金屬化物模板中;沉積一源材料於該些奈米孔洞中及該金屬化物模板上;移除該金屬化物模板上之該源材料;及移除該金屬化物模板以形成一一維奈米材料。 A method of fabricating a nanostructured material, comprising the steps of: providing a substrate; forming an adhesive layer on the substrate; forming a metal layer on the adhesive layer; and performing an anodizing step on the metal layer to form a metal a template, wherein the metallization template has a plurality of nanopores in the metallization template; depositing a source material in the nanopore and the metallization template; removing the source material on the metallization template And removing the metallization template to form a one-dimensional nanomaterial. 如請求項1所述之製造奈米結構材料的方法,其中該接著層為一鈦、氮化鈦、鉭或氮化鉭薄膜材料。 The method of producing a nanostructured material according to claim 1, wherein the adhesive layer is a titanium, titanium nitride, tantalum or tantalum nitride film material. 如請求項1所述之製造奈米結構材料的方法,其中形成該接著層的步驟以蒸鍍、濺鍍、化學氣相沉積、電鍍或無電鍍的方式進行。 The method of producing a nanostructured material according to claim 1, wherein the step of forming the adhesive layer is performed by evaporation, sputtering, chemical vapor deposition, electroplating or electroless plating. 如請求項1所述之製造奈米結構材料的方法,其中該金屬層材料係鋁。 A method of producing a nanostructured material according to claim 1, wherein the metal layer material is aluminum. 如請求項1所述之製造奈米結構材料的方法,其中該金屬化物模板係陽極氧化鋁。 The method of producing a nanostructured material according to claim 1, wherein the metallization template is anodized aluminum. 如請求項1所述之製造奈米結構材料的方法,其中該源材料包含純元素、金屬、Ⅲ-V族化合物、Ⅱ-Ⅵ族化合物、氟化物、氧化鋅或二氧化鈦。 The method of producing a nanostructured material according to claim 1, wherein the source material comprises a pure element, a metal, a group III-V compound, a group II-VI compound, a fluoride, zinc oxide or titanium dioxide. 如請求項1所述之製造奈米結構材料的方法,其中該源材料包含一或複數個材料種類。 The method of producing a nanostructured material according to claim 1, wherein the source material comprises one or more material species. 如請求項1所述之製造奈米結構材料的方法,其中該基底為一矽基材、一玻璃基材、陽極氧化鋁模板或一可撓性基材。 The method of producing a nanostructured material according to claim 1, wherein the substrate is a tantalum substrate, a glass substrate, an anodized aluminum template or a flexible substrate. 如請求項1所述之製造奈米結構材料的方法,其中該陽極化處理的步驟為一一或多階段陽極處理方式。 The method of producing a nanostructured material according to claim 1, wherein the step of the anodizing treatment is one or more stages of anodizing. 如請求項1所述之製造奈米結構材料的方法,其中該沉積步驟為一原子層化學氣相沉積法。 The method of producing a nanostructured material according to claim 1, wherein the depositing step is an atomic layer chemical vapor deposition method. 一種製造一維奈米材料的方法,包括下列步驟:提供一基底;形成一接著層於該基底上;形成一金屬層於該接著層上;對該金屬層進行陽極化處理步驟,以形成一金屬化物模板,其中該金屬化物模板具有複數個奈米孔洞於該金屬化物模板中;原子層化學氣相方式沉積一源材料於該奈米孔洞中及該金屬化物模板上;移除該金屬化物模板上之該源材料;及移除該金屬化物模板以形成一一維奈米材料。 A method of manufacturing a one-dimensional nanomaterial, comprising the steps of: providing a substrate; forming an adhesive layer on the substrate; forming a metal layer on the adhesive layer; and performing an anodizing step on the metal layer to form a a metallization template, wherein the metallization template has a plurality of nanopores in the metallization template; an atomic layer chemical vapor deposition of a source material in the nanopore and the metallization template; removing the metallization The source material on the template; and removing the metallization template to form a one-dimensional nanomaterial. 如請求項11所述之製造一維奈米材料的方法,其中該基底為一矽基材、一玻璃基材、陽極氧化鋁模板或一可撓性基材。 The method of producing a one-dimensional nanomaterial according to claim 11, wherein the substrate is a tantalum substrate, a glass substrate, an anodized aluminum template or a flexible substrate. 如請求項11所述之製造一維奈米材料的方法,其中該一維奈米材料包含複數個實心奈米柱或中空核殼型的奈米管。 The method of producing a one-dimensional nanomaterial according to claim 11, wherein the one-dimensional nanomaterial comprises a plurality of solid nanotubes or hollow core-shell type nanotubes. 如請求項11所述之製造一維奈米材料的方法,其中該接著層為金屬、氧化物或氮化物薄膜材料。 The method of producing a one-dimensional nanomaterial according to claim 11, wherein the adhesive layer is a metal, oxide or nitride film material. 如請求項11所述之製造一維奈米材料的方法,其中該金屬化物模板係陽極氧化鋁。 The method of producing a one-dimensional nanomaterial according to claim 11, wherein the metallization template is anodized aluminum. 如請求項11所述之製造一維奈米材料的方法,其中該陽極化處理的步驟為一一或多階段陽極處理方式。 The method of producing a one-dimensional nanomaterial according to claim 11, wherein the step of the anodizing treatment is one or more stages of anodizing. 如請求項11所述之製造一維奈米材料的方法,其中形成該接著層的步驟以蒸鍍、濺鍍、化學氣相沉積、電鍍或無電鍍的方式進行。 The method of producing a one-dimensional nanomaterial according to claim 11, wherein the step of forming the adhesive layer is performed by evaporation, sputtering, chemical vapor deposition, electroplating or electroless plating. 如請求項11所述之製造一維奈米材料的方法,其中形成該金屬層的步驟以熱阻蒸鍍系統、濺鍍或化學氣相沉積法的方式進行。 The method of producing a one-dimensional nanomaterial according to claim 11, wherein the step of forming the metal layer is performed by a thermal resistance evaporation system, sputtering or chemical vapor deposition. 如請求項11所述之製造一維奈米材料的方法,其中該源材料包含純元素、金屬、Ⅲ-V族化合物、Ⅱ-Ⅵ族化合物、氟化物、氧化物或氮化物。 The method of producing a one-dimensional nanomaterial according to claim 11, wherein the source material comprises a pure element, a metal, a group III-V compound, a group II-VI compound, a fluoride, an oxide or a nitride.
TW97101114A 2008-01-11 2008-01-11 Method of forming nano-scale material TWI433810B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97101114A TWI433810B (en) 2008-01-11 2008-01-11 Method of forming nano-scale material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97101114A TWI433810B (en) 2008-01-11 2008-01-11 Method of forming nano-scale material

Publications (2)

Publication Number Publication Date
TW200930658A TW200930658A (en) 2009-07-16
TWI433810B true TWI433810B (en) 2014-04-11

Family

ID=44865045

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97101114A TWI433810B (en) 2008-01-11 2008-01-11 Method of forming nano-scale material

Country Status (1)

Country Link
TW (1) TWI433810B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022126432A1 (en) * 2020-12-16 2022-06-23 龚仲伟 Metal material and fabrication method therefor

Also Published As

Publication number Publication date
TW200930658A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
Wu et al. Electrochemical synthesis and applications of oriented and hierarchically quasi-1D semiconducting nanostructures
Sulka et al. Anodic porous alumina as a template for nanofabrication
Li et al. Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications
Wen et al. Synthesis of Cu (OH) 2 and CuO nanoribbon arrays on a copper surface
Morin et al. Screw dislocation-driven growth of two-dimensional nanoplates
Lin et al. Ordered nickel oxide nanowire arrays and their optical absorption properties
Singh et al. Synthesis of TiO2 and CuO nanotubes and nanowires
Ossai et al. Nanostructure and nanomaterial characterization, growth mechanisms, and applications
JP5942115B2 (en) Method for producing single crystal copper (I) oxide nanowire array using low temperature electrochemical growth
Bechelany et al. ZnO nanotubes by template-assisted sol–gel route
Chen et al. Fabrication and characterization of highly-ordered valve-metal oxide nanotubes and their derivative nanostructures
CN108374153B (en) Method for growing large-area and highly-ordered nanoparticles through magnetron sputtering
JP2020527194A (en) Formation of functional material layer on conductive substrate
Sun et al. Preparation of self-supporting hierarchical nanostructured anatase/rutile composite TiO 2 film
Switzer et al. Electrodeposition and chemical bath deposition of functional nanomaterials
Kharisov et al. State of the art of nanoforest structures and their applications
Ottone et al. Wetting behavior of hierarchical oxide nanostructures: TiO2 nanotubes from anodic oxidation decorated with ZnO nanostructures
Tarish et al. Synchronous formation of ZnO/ZnS core/shell nanotube arrays with removal of template for meliorating photoelectronic performance
Ali et al. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process
CN101870453A (en) Manufacture method of semiconductor nano-pillar array structure
Vattikuti Heterostructured nanomaterials: latest trends in formation of inorganic heterostructures
JPH11246300A (en) Titanium nano fine wire, production of titanium nano fine wire, structural body, and electron-emitting element
Kanchibotla et al. Self assembly of nanostructures using nanoporous alumina templates
KR101711888B1 (en) Metallic nanotube and preparation method thereof
TWI433810B (en) Method of forming nano-scale material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees