TWI429588B - 用於製造矽烷之方法及系統 - Google Patents

用於製造矽烷之方法及系統 Download PDF

Info

Publication number
TWI429588B
TWI429588B TW100147557A TW100147557A TWI429588B TW I429588 B TWI429588 B TW I429588B TW 100147557 A TW100147557 A TW 100147557A TW 100147557 A TW100147557 A TW 100147557A TW I429588 B TWI429588 B TW I429588B
Authority
TW
Taiwan
Prior art keywords
reactor
alkaline earth
earth metal
decane
alkali metal
Prior art date
Application number
TW100147557A
Other languages
English (en)
Other versions
TW201231394A (en
Inventor
Puneet Gupta
Henry Frank Erk
Alexis Grabbe
Original Assignee
Memc Electronic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/978,189 external-priority patent/US8388914B2/en
Priority claimed from US12/978,209 external-priority patent/US8821825B2/en
Application filed by Memc Electronic Materials filed Critical Memc Electronic Materials
Publication of TW201231394A publication Critical patent/TW201231394A/zh
Application granted granted Critical
Publication of TWI429588B publication Critical patent/TWI429588B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • C01B33/043Monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/04Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/18Alkaline earth metal compounds or magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Silicon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

用於製造矽烷之方法及系統
本發明之領域係關於用於製造矽烷之方法,且尤其包括使用電解使反應性組分再生之方法。一些特定實施例係針對矽烷之製造為關於鹵素及/或鹼金屬或鹼土金屬之實質性「閉環(closed-loop)」之方法。
矽烷為具有許多工業用途之多功能化合物。在半導體工業中,矽烷可用於在半導體晶圓上沈積磊晶矽層及製造多晶矽。多晶矽為用以製造許多商業產品之重要原料,該等商業產品包括例如可在流體化床反應器中藉由熱分解矽烷於矽粒子上製造之積體電路及光伏打(亦即太陽)電池。
矽烷可藉由使四氟化矽與鹼金屬或鹼土金屬鋁氫化物(諸如四氫化鋁鈉)反應製造,如美國專利第4,632,816號中所揭示,該文獻出於所有相關及一致之目的以引用之方式併入本文中。此方法之特徵在於高能效;然而,起始物質成本可負面影響該系統之經濟效益。
或者,矽烷可藉由所謂「聯合碳化物方法(Union Carbide Process)」製造,其中使冶金級矽與氫氣及四氯化矽反應製造三氯矽烷,如Mller等人,「Development and Economic Evaluation of a Reactive Distillation Process for Silane Production」,Distillation and Adsorption: Integrated Processes ,2002中所述,該文獻出於所有相關及一致之目的以引用之方式併入本文中。三氯矽烷隨後經由一系列歧化及蒸餾步驟處理,製造矽烷終產物。此方法需要大量大型循環流,此舉增加初始設備成本以及操作成本。
因此,繼續需要製造矽烷之經濟型方法及關於製造製程內所用之某些物質之閉環的方法。亦需要執行包括實質性閉環系統之該等方法之系統。
本發明之一個態樣係針對一種由鹼金屬或鹼土金屬鹵化物鹽來源製造矽烷之方法。該方法包括電解鹼金屬或鹼土金屬鹵化物鹽以製造金屬性鹼金屬或鹼土金屬及鹵素氣體。使金屬性鹼金屬或鹼土金屬與氫氣接觸製造鹼金屬或鹼土金屬氫化物。含有至少一種選自由四鹵化矽、三鹵矽烷、二鹵矽烷及單鹵矽烷組成之群的鹵矽烷之鹵化矽原料氣藉由使鹵素氣體與以下至少一者接觸來製造:(1)與矽接觸製造四鹵化矽,及(2)與氫氣接觸製造鹵化氫,其中鹵化氫進一步與矽接觸以製造含有四鹵化矽及三鹵矽烷之混合物。使鹵化原料氣與鹼金屬或鹼土金屬氫化物接觸以製造矽烷及鹼金屬或鹼土金屬氫化物鹽。
本發明之另一個態樣係針對一種在關於鹼金屬或鹼土金屬之實質性閉環系統中製造矽烷之方法。使鹵化矽原料氣與鹼金屬或鹼土金屬鹵化物接觸以製造矽烷及鹼金屬或鹼土金屬鹵化物鹽。電解鹵化物鹽以製造金屬性鹼金屬或鹼土金屬及鹵素氣體。使金屬性鹼金屬或鹼土金屬與氫氣接觸以製造鹼金屬或鹼土金屬氫化物。使藉由使金屬性鹼金屬或鹼土金屬與氫氣接觸製造之鹼金屬或鹼土金屬氫化物與鹵化矽原料氣接觸,製造矽烷及鹼金屬或鹼土金屬鹵化物鹽。
本發明之又一個態樣係針對一種在關於鹵素之實質性閉環系統中製造矽烷之方法。使含有至少一種選自由四鹵化矽、三鹵矽烷、二鹵矽烷及單鹵矽烷組成之群的鹵矽烷之鹵化矽原料氣與鹼金屬或鹼土金屬氫化物接觸以製造矽烷及鹼金屬或鹼土金屬鹵化物鹽。電解鹵化物鹽以製造金屬性鹼金屬或鹼土金屬及鹵素氣體。含有至少一種選自由四鹵化矽、三鹵矽烷、二鹵矽烷及單鹵矽烷組成之群的鹵矽烷之鹵化矽原料氣係藉由使鹵素氣體與以下至少一者接觸來製造:(1)與矽接觸以製造四鹵化矽,及(2)與氫氣接觸以製造鹵化氫,其中該鹵化氫進一步與矽接觸以製造包含四鹵化矽及三鹵矽烷之混合物。使鹵化矽原料氣與鹼金屬或鹼土金屬氫化物接觸以製造矽烷及鹼金屬或鹼土金屬鹵化物鹽。
在本發明之另一個態樣中,製造多晶矽之閉環方法包括使含有至少一種選自由四鹵化矽、三鹵矽烷、二鹵矽烷及單鹵矽烷組成之群的鹵矽烷之鹵化矽原料氣與鹼金屬或鹼土金屬氫化物接觸,以製造矽烷及鹼金屬或鹼土金屬鹵化物鹽。熱分解矽烷以製造多晶矽及氫氣。電解鹵化物鹽以製造金屬性鹼金屬或鹼土金屬及鹵素氣體。含有至少一種選自由四鹵化矽、三鹵矽烷、二鹵矽烷及單鹵矽烷組成之群的鹵矽烷之鹵化矽原料氣係藉由使藉由電解鹼金屬或鹼土金屬鹵化物製造之鹵素氣體與以下至少一者接觸來製造:(1)與矽接觸以製造四鹵化矽,及(2)與氫氣接觸以製造鹵化氫,其中使鹵化氫進一步與矽接觸以製造含有四鹵化矽及三鹵矽烷之混合物。使金屬性鹼金屬或鹼土金屬與由矽烷之熱分解製造之氫氣接觸,以製造鹼金屬或鹼土金屬氫化物。使藉由使鹵素氣體或鹵化氫與矽接觸製造之鹵化矽原料氣與藉由使金屬性鹼金屬或鹼土金屬與氫氣接觸製造之鹼金屬或鹼土金屬氫化物接觸,來製造矽烷及鹼金屬或鹼土金屬鹵化物鹽。
在本發明之又一個態樣中,用於在實質性閉環方法中製造矽烷之系統包括用於電解鹼金屬或鹼土金屬鹵化物鹽以製造金屬性鹼金屬或鹼土金屬及鹵素氣體之容器。該系統包括用於製造以下至少一者之鹵化反應器:(1)四鹵化矽及(2)三鹵矽烷,其係藉由使矽與以下至少一者反應來製造:(1)自容器中排出之鹵素氣體及(2)使自容器中排出之鹵素氣體與氫氣接觸製造之鹵化氫。該系統包括用於使自容器中排出之金屬性鹼金屬或鹼土金屬與氫氣反應製造鹼金屬或鹼土金屬氫化物的氫化物反應器。該系統包括用於使(1)四鹵化矽及(2)三鹵矽烷中之至少一者與鹼金屬或鹼土金屬氫化物反應製造矽烷及鹼金屬或鹼土金屬鹵化物鹽的矽烷反應器。
關於以上所提及之本發明態樣所指出之特徵存在各種改進。其他特徵亦可併入以上所提及之本發明態樣中。此等改進及其他特徵可個別地或以任何組合之形式存在。舉例而言,以下關於任一所說明之本發明實施例所討論之各種特徵可單獨地或以任何組合之形式併入任一上述本發明態樣中。
在所有圖式中,對應參考字符指示對應部件。
本發明實施例之方法在用於製造矽烷之方法中使用電解使反應性組分再生。電解允許矽烷製造方法視情況為關於系統中所用之某些化合物(諸如鹵素(例如氯)及/或鹼金屬或鹼土金屬(例如鈉))的實質性閉環系統。如本文所用,片語「實質性閉環方法(substantially closed-loop process)」或「實質性閉環系統(substantially closed-loop system)」係指具有以下特徵之方法或系統,其中與該系統或方法為閉環相關之化合物除作為雜質以外不會自系統或方法中抽出且不會出於除補充在系統中作為雜質損失之化合物量(例如所補充之化合物量小於系統內總循環之約5%,下文將更全面地描述)以外之目的饋入系統或方法中。
在本發明之一或多個實施例中,矽烷藉由電解鹼金屬或鹼土金屬鹵化物鹽以製造金屬性鹼金屬或鹼土金屬及鹵素氣體來製造。使金屬性鹼金屬或鹼金屬與氫氣反應以製造氫化物,且使鹵素氣體與矽(且另外在一些實施例中為氫氣)反應以製造含有四鹵化矽且在一些實施例中含有三鹵矽烷之鹵化矽原料氣。使原料氣反應以製造矽烷及鹵化物鹽。在方法為關於鹼金屬或鹼土金屬及鹵素氣體中之至少一者的實質性閉環之實施例中,鹵化物鹽副產物藉由電解鹵化物鹽以製造金屬性鹼金屬或鹼土金屬及鹵素氣體而再循環。
使用電解製造矽烷
現在參看圖1,鹵化物鹽3引入容器4中,在該容器中使鹵化物鹽電解以製造鹵素氣體(例如Cl2 )及金屬(例如金屬性鹼金屬或鹼土金屬)。如本文所用,「鹵化物鹽(halide salt)」含有鹼金屬或鹼土金屬及鹵素。鹵化物鹽可具有通式MXy ,其中M為鹼金屬或鹼土金屬,X為鹵素,且當M為鹼金屬時y為1,且當M為鹼土金屬時y為2。鹵化物鹽之鹼金屬或鹼土金屬(且在如下文所述之某些實施例中,其在閉環系統內再循環)可選自由以下組成之群:鋰、鈉、鉀、鎂、鋇、鈣及其混合物。鹵素可選自氟、氯、溴、碘及其混合物。鑒於氯化鈉之廣泛可用性且鑒於氯化鈉可較容易地分離成其組成部分(例如氯氣(chloride gas)及金屬鈉),故鈉為較佳鹼金屬或鹼土金屬且氯為較佳鹵素。就此點而言,應瞭解,可使用任何鹼金屬或鹼土金屬且可使用任何鹵素,在如下所述用於製造矽烷之方法及系統為關於鹼金屬或鹼土金屬之閉環的實施例中尤其如此。
一種適合電解鹵化物鹽之容器4為唐氏池(Downs cell)。例示性唐氏池顯示於圖2中且參考數字一般為「20」。唐氏池20包括位於其中之一或多種鹵化物鹽15,且含有陽極14及陰極16。陽極14可由例如碳(例如石墨)構成且陰極16可由例如鋼或鐵構成。在陽極14處,氯離子氧化形成鹵素氣體(例如Cl2 )。在陰極16處,鹼金屬或鹼土金屬離子還原形成金屬性鹼金屬或鹼土金屬。就此點而言,應瞭解,如本文所用,術語「金屬性(metallic)」係指氧化數為0之鹼金屬或鹼土金屬。所形成之鹵素氣體及金屬性鹼金屬或鹼土金屬由分隔物19分開。分隔物19可為由鋼或鐵製成之篩網或絲網。就此點而言,應瞭解,可使用不為唐氏池之電解池,諸如美國專利第5,904,821號中所述之電解池,該文獻出於所有相關及一致之目的以引用之方式併入本文中。
所製造之金屬性鹼金屬或鹼土金屬之密度小於鹵化物鹽,此使得其在池中上升。鹵素氣體亦上升,且鹵素氣體18與金屬性鹼金屬或鹼土金屬17均自唐氏池中移除。可向唐氏池中添加第二鹼金屬或鹼土金屬鹽以形成共晶混合物且壓低電解之鹵化物鹽之熔點以減少熔融鹵化物鹽及/或使鹵化物鹽維持熔融狀態之能量消耗。舉例而言,當氯化鈉在唐氏池20中電解時,可添加一定量之氯化鈣、氯化鋁或碳酸鈉以壓低氯化鈉之熔點。舉例而言,與單獨氯化鈉之熔點801℃相比,含有53.2 mol%氯化鈣及46.8 mol%氯化鈉之混合物之熔點為494℃,且含有23.1 mol%碳酸鈉及76.9 mol%氯化鈉之例示性混合物之熔點為634℃。較佳地,第二鹽之鹼金屬或鹼土金屬與鹵化物鹽之鹼金屬或鹼土金屬相同,或為比鹵化物鹽之鹼金屬或鹼土金屬弱之氧化劑,以便不影響鹵化物鹽之鹼金屬或鹼土金屬之還原。
再次參看圖1,鹵素氣體18引入鹵化反應器8中,在該鹵化反應器中其與矽6接觸以製造含有四鹵化矽(例如SiCl4 )之鹵化原料氣21。下文說明此反應:
Si+2X2 →SiX4  (1)
矽6之來源可為冶金級矽;然而,應瞭解,可使用其他矽來源,諸如砂(亦即SiO2 )、石英、燧石、矽藻土、礦物矽酸鹽、氟矽酸鹽及其混合物。就此點而言,應瞭解,如本文所用,兩種或兩種以上反應性化合物之「接觸(contact)」一般會引起該等組分之反應,且術語「接觸(contacting)」及「反應(reacting)」為同義詞,如同此等術語之派生詞一般,且此等術語及其派生詞不應被視為具有限制意義。
作為與矽直接反應之替代且如圖3中所示,鹵素氣體18可與氫氣28在鹵化氫燃燒器25(與鹵化氫「烘箱」或「爐」同義)中反應以形成鹵化氫26(HX)。根據如下所示反應,鹵化氫26可在鹵化反應器8中與矽6反應形成含有三鹵矽烷及四鹵化矽之鹵化矽原料氣21':
Si+3HX→SiHX3 +H2  (2)
Si+4HX→SiX4 +2H2  (3)
鹵化矽原料氣21'中四鹵化矽與三鹵矽烷之莫耳比可變化,且在多個實施例中,可為約1:7至約1:2或約1:6至約1:3。就此點而言,應瞭解,矽6與鹵化氫26之反應亦可製造但不限於一定量之二鹵矽烷及/或單鹵矽烷。
在某些實施例中,與矽直接鹵化(圖1)相比,較佳為鹵素氣體18與氫氣28反應形成鹵化氫,之後與矽反應形成包含三鹵矽烷及四鹵化矽之混合物(圖3),此係因為與四鹵化矽相比,由三鹵矽烷使用較少氫化物即可製造矽烷,如以下反應5-6ii中所示。此外,相對於鹵化氫與矽之反應,直接鹵化反應可能需要較高溫度且可能更難控制。
氫氣28之來源可選自下文關於氫氣原料31所述之來源。氫氣28之來源視情況可為由鹵化原料氣21'再循環得到之氫氣或自鹵化矽原料氣21'中分離之氫氣。氫氣可使用氣液分離器(未圖示)自鹵化矽原料氣21'中分離。該等氣液分離器之實例包括使進氣之壓力及/或溫度降低而引起低沸點氣體(例如四鹵化矽及/或三鹵矽烷)冷凝並與高沸點氣體(例如氫氣)分離的容器。適合之容器包括在此項技術中通常稱為「分液罐(knock-out drum)」之容器。該容器可視情況經冷卻以促進氣體分離。或者,氫氣可藉由一或多個蒸餾塔分離。
作為如圖3所示在鹵化氫燃燒器中使氫氣與鹵素反應,之後在鹵化反應器中使鹵化氫與矽反應之替代,可使氫氣、鹵素氣體及矽在一個容器中反應以製造包含三鹵矽烷及四鹵化矽之混合物。就此點而言,應瞭解儘管鹵化氫之製備已參考無水鹵化氫氣體一般化地描述,但在一些實施例中,可製造鹵化氫水溶液且尤其HF水溶液,其可藉由熟習此項技術者已知之方法與矽反應以製造包含三鹵矽烷及四鹵化矽之混合物。此外,就此點而言,儘管鹵化氫及矽之反應產物已經描述為包含三鹵矽烷及四鹵化矽之混合物,但應瞭解,可控制反應參數以製造四鹵化矽及僅微量三鹵矽烷(例如小於約5體積%或小於約1體積%)或製造三鹵矽烷及微量四鹵化矽(例如小於約5體積%或小於約1體積%)。
鹵化反應器8可以流體化床形式操作,其中使矽懸浮於進氣(例如鹵素18(圖1)或鹵化氫26(圖3))中。鹵化反應器8可在室溫(例如約20℃)下操作,尤其當選擇氟作為鹵素時。更一般而言,反應器之操作溫度可為至少約20℃、至少約75℃、至少約150℃、至少約250℃、至少約500℃、至少約750℃、至少約1000℃或至少約1150℃(例如為約20℃至約1200℃、約250℃至約1200℃或約500℃至約1200℃)。反應器8之操作壓力可為至少約1巴、至少約3巴或甚至至少約6巴(例如為約1巴至約8巴或約3巴至約8巴)。
就此點而言,應瞭解,圖1中所示之鹵化矽原料流21及圖3中所示之鹵化矽原料流21'可含有不為四鹵化矽或三鹵矽烷之鹵矽烷,諸如一定量之單鹵矽烷及/或二鹵矽烷。此外,鹵化矽原料流21或鹵化矽原料流21'可引入歧化系統(未圖示)中,以製造一定量之三鹵矽烷、二鹵矽烷及/或單鹵矽烷。應瞭解,如本文所用,「鹵化矽原料氣(halogentated silicon feed gas)」包括含有任何量之一或多種鹵矽烷(亦即四鹵化矽、三鹵矽烷、二鹵矽烷或單鹵矽烷)之任何氣體且包括尚未引入歧化系統中與已引入歧化系統中之氣體。
再次參看圖1,鹵化矽原料流21(或如圖3中之鹵化矽原料流21')引入矽烷反應器30中以製造矽烷35。在引入矽烷反應器30中之前,鹵化矽原料氣21(或含有四鹵化矽與三鹵矽烷之原料氣21')可經純化以移除諸如鹵化鋁或鹵化鐵(例如當鹵素為氯時為AlCl3 及/或FeCl3 )及/或矽聚合物(當鹵素為氯時為Sin Clm 聚合物)之雜質。此等雜質可藉由冷卻氣體以自系統中沈澱出雜質來移除。所沈澱之雜質可藉由將氣體引入諸如袋濾器或氣旋分離器之顆粒分離器中來移除。為沈澱出雜質(例如金屬鹵化物及/或矽聚合物),可使鹵化矽原料氣21(或四鹵化矽及/或三鹵矽烷之混合物21')冷卻至小於約200℃之溫度,或如在其他實施例中,小於約175℃、小於約150℃或甚至小於約125℃(例如為約100℃至約200℃或約125℃至約175℃)。氣體可藉由在熱交換裝置及/或冷卻器裝置中與冷卻水或冷卻油交換熱來冷卻。在雜質移除之後,鹵化矽原料氣21(或四鹵化矽及/或三鹵矽烷之混合物21')可含有小於10體積%雜質(亦即不為鹵矽烷之化合物)或甚至小於約5體積%、小於約1體積%、小於約0.1體積%或甚至小於約0.01體積%雜質(例如0.001體積%至約10體積%或約0.001體積%至約1體積%)。
製造作為電解產物之金屬性鹼金屬或鹼土金屬17引入氫化物反應器9中。一定量之氫氣31亦引入氫化物反應器9中。如以下反應中所示,金屬性鹼金屬或鹼土金屬與氫氣之間的反應製造鹼金屬或鹼土金屬氫化物32:
(2/y)M+H2 →(2/y)MHy  (4)
其中當M為鹼金屬時y為1,且當M為鹼土金屬時y為2。舉例而言,當M為Na時,反應如下進行,
2Na+H2 →2NaH (4i)。
當M為Ca時,反應如下進行,
Ca+H2 →CaH2  (4ii)。
反應(4)可在氫化物反應器9內在溶劑存在下發生。適合之溶劑包括各種烴化合物,諸如甲苯、二甲醚、二乙二醇二甲醚及離子液體,諸如NaAlCl4 。在使用NaAlCl4 之實施例中,氫化物反應器9可包括電極。一旦鹼金屬或鹼土金屬氫化物之供應耗盡,則電極可激發而引起鈉(包括一定量來自NaAlCl4 之鈉)與H2 反應並使氫化物化合物再生。在使用NaAlCl4 作為溶劑之實施例中,可添加其他離子化合物以形成如美國專利第6,482,381號中所揭示之共晶混合物,該文獻出於所有相關及一致之目的以引用之方式併入本文中。
氫化物反應器9可為攪拌槽反應器,其中添加有一定量之溶劑(未圖示)及金屬性鹼金屬或鹼土金屬17。氫氣31可鼓泡穿過反應混合物以分批模式或在半連續或連續製程中形成鹼金屬或鹼土金屬氫化物32。適合的氫氣31來源包括市售氫氣或獲自其他製程流之氫氣。舉例而言,在鹵化氫與矽反應之實施例中,氫氣可自三鹵矽烷及四鹵化矽混合物21'中分離(例如如上所述之氣液分離器)。或者或另外,可使用在下游多晶矽製造期間自矽烷釋放之氫氣。添加至反應器9中之溶劑、氫氣31及金屬性鹼金屬或鹼土金屬17之量可經選擇以便反應器9中氫化物與溶劑之量的重量比可為至少約1:20,且在其他實施例中為至少約1:10、至少約1:5、至少約1:3、至少約2:3或甚至至少約1:1(例如為約1:20至約1:1或約1:10至約2:3)。
在一或多個實施例中,使用例如一或多個具有一或多個葉輪之相對較高攪動之混合器充分混合反應器9中之反應混合物。相對較高之攪動使氫氣充分分散於整個反應混合物中以便使氫氣之溶解速率達到最大,以及自金屬性鹼金屬或鹼土金屬中剪切任何固體鹼金屬或鹼土金屬氫化物以便使液體鹼金屬或鹼土金屬可連續用於與溶解之氫氣反應。就此點而言且不希望受任何特定理論束縛,氫化物反應器中之質量轉移視液體側阻力及預期介於約100 s-1 至約100,0000 s-1 之間且更通常介於約1,000 s-1 與約10,000 s-1 之間的體積氣液質量轉移係數(KL aG )而定。應注意,特定體積氣液質量轉移係數(KL aG )可視選擇用於反應器9中之特定氫化物及溶劑而不同。該等數值可由熟習此項技術者根據已知方法容易地測定(例如量測隨時間變化之氫氣吸收)。
在本發明之若干實施例中,氫化物反應器9在高壓條件下操作,壓力為諸如至少約50巴、至少約125巴、至少約200巴、至少約275巴或至少約350巴(例如為約50巴至約350巴或約50巴至約200巴)。氫化物反應器9可在小於鹼金屬或鹼土金屬鹵化物之熱分解之溫度下操作,溫度為諸如小於約160℃、小於約145℃或小於約130℃(例如為約120℃至約160℃)。
鹼金屬或鹼土金屬氫化物32在有機溶劑中通常為固體。含有懸浮於溶劑中之鹼金屬或鹼土金屬氫化物32之漿料可引入矽烷反應器30中以製造矽烷35。就此點而言,應瞭解,在本發明之某些其他實施例中,鹼金屬或鹼土金屬氫化物32可以含有較少量溶劑之固體或結塊固體形式引入矽烷反應器30中。鹼金屬或鹼土金屬可藉由離心或過濾或藉由熟習此項技術者可用之任何其他適合之方法與溶劑分離。就此點而言,應瞭解,可使用但不限於不為有機溶劑之溶劑(例如NaAlCl4 )。
如上所述,來自鹵化矽原料氣21(或如圖3中之包含四鹵化矽及三鹵矽烷之混合物21')之四鹵化矽及鹼金屬或鹼土金屬氫化物32引入矽烷反應器30中以根據如下所示反應製造矽烷35及鹵化物鹽37:
(4/y)MHy +SiX4 →(4/y)MXy +SiH4  (5)
3MHy +ySiHX3 →3MXy +ySiH4  (6)
其中當M為鹼金屬時y為1,且當M為鹼土金屬時y為2。舉例而言,當M為Na且X為Cl時,反應如下進行,
4NaH+SiCl4 →4NaCl+SiH4  (5i)
3NaH+SiHCl3 →3NaCl+SiH4  (6i)。
當M為Ba且X為Cl時,反應如下進行,
2BaH2 +SiCl4 →2BaCl2 +SiH4  (5ii)
3BaH2 +2SiHCl3 →3BaCl2 +2SiH4  (6ii)。
矽烷反應器30可為攪拌槽反應器(例如葉輪攪動)。添加至反應器30中之鹼金屬或鹼土金屬氫化物32可懸浮於一定量製造其(例如藉由使鹼金屬或鹼土金屬與氫氣反應)之溶劑(例如甲苯)中。四鹵化矽及/或三鹵矽烷31可鼓泡穿過氫化物漿料,且較佳以逆流關係鼓泡。添加至反應器30中之氫化物32與添加至反應器中之溶劑之量的重量比可為至少約1:20,且在其他實施例中為至少約1:10或至少約1:5(例如為約1:20至約1:5或約1:20至約2:10)。添加之來自鹵化矽原料氣21(圖1)之四鹵化矽或來自鹵化矽原料氣21'(圖3)之四鹵化物矽及三鹵矽烷可相對於氫化物32成實質上化學計量之比率,其中莫耳比顯示於以上反應(5)至(6ii)中。
一定量之催化劑(諸如三乙基鋁)、各種路易斯酸(lewis acid)或痕量鹼金屬(例如雜質路易斯酸,諸如金屬氯化物)可添加至反應器30中。該等催化劑使溫度降低,在此溫度下反應(5)及(6)實現充分轉化且可減少輸入系統中之熱量。在不使用催化劑之實施例中,反應器30之操作溫度可為至少約120℃(例如為約120℃至約225℃或約140℃至約200℃);然而,在使用催化劑之實施例中,反應器30之操作溫度可相對較冷,為至少約30℃(例如為約30℃至約125℃、約40℃至約100℃或約40℃至約80℃)。添加至反應器30中之物質的平均滯留時間可為約5分鐘至約60分鐘。
矽烷氣體35可相對較純(例如含有小於約5體積%或甚至小於約2體積%之不為矽烷之化合物)。在自反應器30中移除矽烷氣體35之後,可對矽烷氣體35進行進一步加工。舉例而言,矽烷35可藉由引入一或多個蒸餾塔及/或分子篩中移除雜質,如美國專利第5,211,931號、美國專利第4,554,141號或美國專利第5,206,004號中所揭示,各文獻出所有相關及一致之目的以引用之方式併入本文中,或藉由熟習此項技術者可用之任何其他已知方法來純化(例如移除諸如鹵化硼或鹵化磷之化合物)。
矽烷氣體35可用以製備多晶矽(例如粒狀或塊狀多晶矽)或可用以製備矽晶圓上之一或多個磊晶層。如熟習此項技術者所瞭解,矽烷氣體可在使用之前儲存及/或運輸。
鹼金屬或鹼土金屬氫化物與鹵化矽原料氣21(或包含三鹵矽烷及四鹵化矽之混合物21')中之四鹵化矽之反應製造鹼金屬或鹼土金屬鹵化物鹽37作為副產物。在使用溶劑之實施例中,鹵化物鹽37可溶解且更通常懸浮於溶劑(例如甲苯)中。鹵化物鹽37可與溶劑分離且進行市售或如下文所進一步描述再循環使用。
用於製造矽烷之實質性閉環方法
上文所述之方法可併入製造矽烷之實質性閉環方法中。上文方法可為關於鹼金屬或鹼土金屬及/或關於鹵素之閉環。現在參看圖4,鹵化物鹽37可藉由使用分離器40與溶劑分離。分離器40可為蒸發器,或除蒸發器以外或替代蒸發器,可使用其他適合之設備,包括結晶器、基於過濾及/或重力之分離器(例如離心機)。適合之蒸發器包括刮膜式蒸發器。在分離之後,乾燥之鹵化物鹽可加熱(例如至500℃)以移除痕量溶劑。
溶劑43可冷凝並再引入氫化物反應器9及/或矽烷反應器30中。分離之鹵化物鹽3可用作電解之原料3,以便鹼金屬或鹼土金屬及/或鹵化物在整個系統中實質上再循環。
就此點而言,應瞭解,圖4中所示之實質性閉環方法可經修改以包括鹵化氫燃燒器25以製造如圖3中之含有四鹵化矽及三鹵矽烷之氣體21'。
如圖4中所示,該方法為關於鹼金屬或鹼土金屬及關於鹵素之實質性閉環,其中該系統在任何進料流6、31中皆包括鹼金屬或鹼土金屬或鹵素(亦即單獨或以在含鹼金屬或鹼土金屬或鹵素化合物內之形式)且其中在出料流35中不移除鹼金屬或鹼土金屬及鹵素。就此點而言,應瞭解,鹼金屬或鹼土金屬及/或鹵素可自系統中作為雜質移除或可包括在淨化流中且可作為補充流饋入系統或方法中。鹼金屬或鹼土金屬及/或鹵素之任何補充可藉由添加至含有各別元素之化合物系統中達成,且在某些實施例中,藉由各別氫化物鹽本身達成。在多個實施例中,補充至系統中之鹼金屬或鹼土金屬及/或鹵素氣體(其可以鹼金屬或鹼土金屬鹽形式添加)之量小於系統內之總循環之約5%,且在其他實施例中,小於系統內之總循環之約2%(例如為約0.5%至約5%)。
在本發明之一些實施例中,該系統及方法可為關於氫氣之實質性閉環。舉例而言,如圖5中所示,退出矽烷反應器30之矽烷35可引入多晶反應器50中,較佳在純化移除痕量矽烷、碳化合物、痕量金屬及任何摻雜硼、磷或鋁化合物(例如藉由低溫活性炭吸附器)之後。多晶反應器50可為流體化床(例如製造粒狀多晶矽)或西門子反應器(Siemens reactor)(例如製造塊狀多晶矽)或可合併有適合製造多晶矽之任何其他反應器設計。矽烷根據以下反應熱分解以製造多晶矽:
SiH4 →Si+2H2  (7)
矽烷在添加至多晶反應器50中之前可進行進一步加工,諸如如上所述之各種純化步驟。反應器50之反應產物包括多晶矽52及氫氣31。如圖5中所示,氫氣31引入氫化物反應器9中。氫氣31在引入氫化物反應器9中之前可藉由分離出矽塵及藉由純化(例如蒸餾)進一步加工。如圖5中所示,輸入系統中的僅為矽6且輸出的僅為多晶矽52。該系統為關於氫氣之實質性閉環,其中氫氣僅移除作為雜質或作為淨化流(未圖示)且僅添加作為補充流(未圖示)。
用於製造矽烷之實質性閉環系統
本發明之方法可在用於製造矽烷之系統中進行,諸如圖1至5中所說明之任一系統。該系統可為關於鹵素、鹼金屬或鹼土金屬及氫氣中之一或多者之實質性閉環。
參看圖1,系統可包括用於電解鹵化物鹽以製造金屬性鹼金屬或鹼土金屬及鹵素氣體之容器4(例如唐氏池)。鹵素氣體藉由輸送裝置輸送至以下至少一者中:(1)鹵化氫燃燒器25,以與氫氣反應且製造鹵化氫(圖3),及(2)鹵化反應器8,以與矽(其藉由輸送裝置自矽儲存裝置輸送至鹵化反應器8中)反應且製造四鹵化矽。在鹵素氣體反應製造鹵化氫之實施例中,鹵化氫可隨後藉由輸送裝置輸送至鹵化反應器8中以製造包含四鹵化矽及三鹵矽烷之混合物。所製造之任何四鹵化矽及/或三鹵矽烷氣體藉由輸送裝置輸送至矽烷反應器30中。
系統亦包括氫化物反應器9(例如攪拌槽反應器)。金屬性鹼金屬或鹼土金屬藉由輸送裝置自容器輸送至氫化物反應器9中。氫氣亦藉由輸送裝置輸送至氫化物反應器9中,與金屬性鹼金屬或鹼土金屬反應,製造鹼金屬或鹼土金屬氫化物。系統包括矽烷反應器30(例如攪拌槽反應器),氫化物(視情況存在之任何溶劑)藉由輸送裝置輸送至其中。在矽烷反應器30中,視情況在溶劑存在下,氫化物與四鹵化矽及/或三鹵矽烷氣體反應形成鹵化物鹽。
在多個實施例中且如圖4中所示,溶劑及鹵化物鹽可藉由輸送裝置輸送至用於分離任何溶劑與鹵化物鹽之分離器40中。溶劑可藉由輸送裝置輸送至氫化物反應器9中,且鹵化物鹽可藉由輸送裝置輸送至容器4(例如唐氏池)中以再循環且完成關於鹵素及鹼金屬或鹼土金屬之實質性閉環系統。
在若干其他實施例中,系統亦包括多晶反應器50,其可為西門子型反應器(Siemens-type reactor)或流體化床反應器。矽烷藉由輸送裝置自矽烷反應器30輸送至多晶反應器50以製造氫氣及多晶矽。氫氣可藉由輸送裝置自多晶反應器50輸送至氫化物反應器9中以再循環氫氣且完成關於氫氣之實質性閉環系統。
適合之輸送裝置在此項技術中為習知且熟知的。適用於轉移氣體之輸送裝置包括例如壓縮機或吹風機,且適用於轉移固體之輸送裝置包括例如拖曳式、螺旋式、帶式及氣動輸送機。就此點而言,應瞭解,本文中使用片語「輸送裝置(conveying apparatus)」不意謂暗示自系統之一個單元直接轉移至另一個單元,而僅為物質藉由任何數目之間接轉移部件及/或機構自一個單元轉移至另一個單元。舉例而言,物質可自一個單元輸送至其他加工單元(例如用於提供連續或分批製程之間的緩衝之純化或儲存單元),隨後輸送至第二單元。在此實例中,包括中間加工設備本身之各輸送單元可被視為「輸送裝置」,且片語「輸送裝置」不應被視為具有限制意義。
較佳地,用於製造矽烷之系統中所用之所有設備皆抗環境腐蝕(包括曝露於所用及系統內製造之化合物)。適合構造用物質在本發明領域中為習知且熟知的,且包括例如碳鋼、不鏽鋼、MONEL合金、INCONEL合金、HASTELLOY合金、鎳及非金屬物質,諸如石英(亦即玻璃)及氟化聚合物(諸如TEFLON、KEL-F、VITON、KALREZ及AFLAS)。
應瞭解,上文所述方法及系統可包括一個以上任何所述單元(例如反應器及/或分離單元),且在不背離本發明範疇之情況下,多個單元可連續及/或並行操作。此外,就此點而言,應瞭解,所述方法及系統為例示性的,且該等方法及系統可包括帶有但不限於其他功能之其他單元。
當介紹本發明要素或其較佳實施例時,冠詞「一(a)」、「一(an)」、「該(等)(the)」及「該(等)(said)」意欲意謂存在一或多個要素。術語「包含(comprising)」、「包括(including)」及「具有(having)」意欲為包括性的且意謂可存在除列舉要素以外之其他要素。
因為在不背離本發明範疇之情況下可對上述裝置及方法進行各種改變,所以意欲以上說明書中所含及附圖中所示之所有事項應被視為例示性的且不具有限制意義。
3...鹵化物鹽/原料
4...容器
6...矽
8...鹵化反應器
9...氫化物反應器
14...陽極
15...鹵化物鹽
16...陰極
17...金屬性鹼金屬或鹼土金屬
18...鹵素氣體
19...分隔物
20...唐氏池
21...鹵化原料氣/鹵化矽原料氣/鹵化矽原料流
21'...鹵化原料氣/鹵化矽原料氣/鹵化矽原料流/含有四鹵化矽及/或三鹵矽烷之原料氣/四鹵化矽及/或三鹵矽烷之混合物
25...鹵化氫燃燒器
26...鹵化氫
28...氫氣
30...矽烷反應器
31...氫氣
32...鹼金屬或鹼土金屬氫化物
35...矽烷
37...鹼金屬或鹼土金屬鹵化物鹽
40...分離器
43...溶劑
50...多晶反應器
52...多晶矽
圖1為用於製造矽烷之系統的示意圖,其涉及根據本發明實施例之鹵化物鹽之電解;
圖2為適用於電解鹵化物鹽之唐氏池(Down's cell)之橫截面;
圖3為用於製造含有四鹵化矽及三鹵矽烷之鹵化矽原料氣之系統的示意圖;
圖4為根據本發明實施例之用於製造矽烷之實質性閉環系統的示意圖;及
圖5為根據本發明實施例之用於製造多晶矽之實質性閉環系統之示意圖。
3...鹵化物鹽
4...容器
6...矽
8...鹵化反應器
9...氫化物反應器
17...金屬性鹼金屬或鹼土金屬
18...鹵素氣體
21...鹵化原料氣/鹵化矽原料氣/鹵化矽原料流
30...矽烷反應器
31...氫氣
32...鹼金屬或鹼土金屬氫化物
35...矽烷
37...鹼金屬或鹼土金屬鹵化物鹽

Claims (46)

  1. 一種用於在實質性閉環方法中製造矽烷之系統,該系統包含:用於電解鹼金屬或鹼土金屬鹵化物鹽以製造金屬性鹼金屬或鹼土金屬及鹵素氣體之容器;用於製造以下至少一者之鹵化反應器:(1)四鹵化矽,及(2)三鹵矽烷;其係藉由使矽與以下至少一者反應來製造:(1)自該容器中排出之鹵素氣體;及(2)藉由使自該容器中排出之鹵素氣體與氫氣接觸所製得之鹵化氫;用於使自該容器中排出之金屬性鹼金屬或鹼土金屬與氫氣反應以製造鹼金屬或鹼土金屬氫化物之氫化物反應器;用於使(1)四鹵化矽及(2)三鹵矽烷中之至少一者與該鹼金屬或鹼土金屬氫化物反應以製造矽烷及鹼金屬或鹼土金屬鹵化物鹽的矽烷反應器,該矽烷反應器為攪拌槽反應器,其中使包含至少一種選自由四鹵化矽及三鹵矽烷組成之群的鹵矽烷之鹵化矽原料氣鼓泡穿過含有溶劑及分散於該溶劑中之鹼金屬或鹼土金屬氫化物之反應混合物,且其中所製得之該鹼金屬或鹼土金屬鹵化物鹽係溶解或懸浮於該溶劑中;及用於分離該溶劑與該鹼金屬或鹼土金屬鹵化物鹽之分 離器。
  2. 如請求項1之系統,其中該容器為電解池。
  3. 如請求項1之系統,其中該系統包含用於將自該矽烷反應器中排出之鹼金屬或鹼土金屬鹵化物鹽輸送至該用於電解鹼金屬或鹼土金屬鹵化物鹽之容器的輸送裝置。
  4. 如請求項1之系統,其包含用於將自該矽烷反應器中排出之該溶劑及該鹼金屬或鹼土金屬鹵化物鹽輸送至該分離器之輸送裝置及用於將該經分離之鹼金屬或鹼土金屬鹵化物鹽輸送至該用於電解鹼金屬或鹼土金屬鹵化物鹽之容器之輸送裝置。
  5. 如請求項1之系統,其包含用於將經分離之溶劑輸送至該氫化物反應器之輸送裝置。
  6. 如請求項1之系統,其中該鹵化反應器為流體化床反應器,其中矽係懸浮於包含至少一種選自由四鹵化矽、三鹵矽烷、二鹵矽烷及單鹵矽烷組成之群的鹵矽烷之鹵化矽原料氣中。
  7. 如請求項1之系統,其中該氫化物反應器為攪拌槽反應器,其中使氫氣鼓泡穿過含有溶劑及金屬性鹼金屬或鹼土金屬之反應混合物,以製造懸浮於該溶劑中之鹼金屬或鹼土金屬氫化物。
  8. 如請求項7之系統,其包含用於將鹼金屬或鹼土金屬氫化物及溶劑自該氫化物反應器輸送至該矽烷反應器之輸送裝置。
  9. 如請求項1之系統,其中該系統包含用於分解矽烷以製 造氫氣及多晶矽之多晶矽反應器。
  10. 如請求項9之系統,其中該多晶矽反應器為流體化床反應器,其中矽烷使多晶矽粒子流體化。
  11. 如請求項9之系統,其中該系統包含用於將氫氣自該多晶矽反應器輸送至該氫化物反應器之輸送裝置。
  12. 如請求項9之系統,其中該系統包含用於將矽烷自該矽烷反應器輸送至該多晶矽反應器之輸送裝置。
  13. 如請求項1之系統,其包含用於將自該用於電解鹼金屬或鹼土金屬鹵化物鹽之容器中排出之金屬性鹼金屬或鹼土金屬輸送至該氫化物反應器之輸送裝置。
  14. 如請求項1之系統,其包含用於將自該用於電解鹼金屬或鹼土金屬鹽之容器中排出之鹵素氣體輸送至該鹵化反應器之輸送裝置。
  15. 如請求項1之系統,其包含用於將(1)四鹵化矽及(2)三鹵矽烷中之至少一者自該鹵化反應器輸送至該矽烷反應器之輸送裝置。
  16. 如請求項1之系統,其包含使氫氣與鹵素氣體反應以製造鹵化氫之鹵化氫燃燒器。
  17. 如請求項16之系統,其包含用於將鹵化氫輸送至該鹵化反應器之輸送裝置。
  18. 如請求項16之系統,其包含用於將自該用於電解鹼金屬或鹼土金屬鹽之容器中排出之鹵素氣體輸送至該鹵化氫燃燒器之輸送裝置。
  19. 如請求項1之系統,其包含矽儲存裝置及用於將矽輸送 至該鹵化反應器之輸送裝置。
  20. 如請求項1之系統,其中該系統為關於氫氣之實質性閉環。
  21. 如請求項1之系統,其中該系統為關於鹵素之實質性閉環。
  22. 如請求項1之系統,其中該系統為關於鹼金屬或鹼土金屬之實質性閉環。
  23. 如請求項1之系統,其包含用於由(1)四鹵化矽及(2)三鹵矽烷中之至少一者製造單鹵矽烷或二鹵矽烷之歧化系統。
  24. 一種用於在實質性閉環方法中製造矽烷之系統,該系統為關於氫氣之實質性閉環,該系統包含:用於電解鹼金屬或鹼土金屬鹵化物鹽以製造金屬性鹼金屬或鹼土金屬及鹵素氣體之容器;用於製造以下至少一者之鹵化反應器:(1)四鹵化矽,及(2)三鹵矽烷;其係藉由使矽與以下至少一者反應來製造:(1)自該容器中排出之鹵素氣體;及(2)藉由使自該容器中排出之鹵素氣體與氫氣接觸所製得之鹵化氫;用於使自該容器中排出之金屬性鹼金屬或鹼土金屬與氫氣反應以製造鹼金屬或鹼土金屬氫化物之氫化物反應器;及 用於使(1)四鹵化矽及(2)三鹵矽烷中之至少一者與該鹼金屬或鹼土金屬氫化物反應以製造矽烷及鹼金屬或鹼土金屬鹵化物鹽的矽烷反應器。
  25. 如請求項24之系統,其中該容器為電解池。
  26. 如請求項24之系統,其中該系統包含用於將自該矽烷反應器中排出之鹼金屬或鹼土金屬鹵化物鹽輸送至該用於電解鹼金屬或鹼土金屬鹵化物鹽之容器的輸送裝置。
  27. 如請求項24之系統,其中該矽烷反應器為攪拌槽反應器,其中使包含至少一種選自由四鹵化矽、三鹵矽烷、二鹵矽烷及單鹵矽烷組成之群的鹵矽烷之鹵化矽原料氣鼓泡穿過含有溶劑及分散於該溶劑中之鹼金屬或鹼土金屬氫化物之反應混合物,且其中所製得之該鹼金屬或鹼土金屬鹵化物鹽係溶解或懸浮於該溶劑中。
  28. 如請求項27之系統,其包含:用於分離該溶劑與該鹼金屬或鹼土金屬鹵化物鹽之分離器;及用於將自該矽烷反應器中排出之該溶劑及該鹼金屬或鹼土金屬鹵化物鹽輸送至該分離器之輸送裝置,及用於將該經分離之鹼金屬或鹼土金屬鹵化物鹽輸送至該用於電解鹼金屬或鹼土金屬鹵化物鹽之容器之輸送裝置。
  29. 如請求項27之系統,其包含:用於分離該溶劑與該鹼金屬或鹼土金屬鹵化物鹽之分離器;及用於將經分離之溶劑輸送至該氫化物反應器之輸送裝 置。
  30. 如請求項24之系統,其中該鹵化反應器為流體化床反應器,其中矽係懸浮於包含至少一種選自由四鹵化矽、三鹵矽烷、二鹵矽烷及單鹵矽烷組成之群的鹵矽烷之鹵化矽原料氣中。
  31. 如請求項24之系統,其中該氫化物反應器為攪拌槽反應器,其中使氫氣鼓泡穿過含有溶劑及金屬性鹼金屬或鹼土金屬之反應混合物,以製造懸浮於該溶劑中之鹼金屬或鹼土金屬氫化物。
  32. 如請求項31之系統,其包含用於將鹼金屬或鹼土金屬氫化物及溶劑自該氫化物反應器輸送至該矽烷反應器之輸送裝置。
  33. 如請求項24之系統,其中該系統包含用於分解矽烷以製造氫氣及多晶矽之多晶矽反應器。
  34. 如請求項33之系統,其中該多晶矽反應器為流體化床反應器,其中矽烷使多晶矽粒子流體化。
  35. 如請求項33之系統,其中該系統包含用於將氫氣自該多晶矽反應器輸送至該氫化物反應器之輸送裝置。
  36. 如請求項33之系統,其中該系統包含用於將矽烷自該矽烷反應器輸送至該多晶矽反應器之輸送裝置。
  37. 如請求項24之系統,其包含用於將自該用於電解鹼金屬或鹼土金屬鹵化物鹽之容器中排出之金屬性鹼金屬或鹼土金屬輸送至該氫化物反應器之輸送裝置。
  38. 如請求項24之系統,其包含用於將自該用於電解鹼金屬 或鹼土金屬鹽之容器中排出之鹵素氣體輸送至該鹵化反應器之輸送裝置。
  39. 如請求項24之系統,其包含用於將(1)四鹵化矽及(2)三鹵矽烷中之至少一者自該鹵化反應器輸送至該矽烷反應器之輸送裝置。
  40. 如請求項24之系統,其包含使氫氣與鹵素氣體反應以製造鹵化氫之鹵化氫燃燒器。
  41. 如請求項40之系統,其包含用於將鹵化氫輸送至該鹵化反應器之輸送裝置。
  42. 如請求項40之系統,其包含用於將自該用於電解鹼金屬或鹼土金屬鹽之容器中排出之鹵素氣體輸送至該鹵化氫燃燒器之輸送裝置。
  43. 如請求項24之系統,其包含矽儲存裝置及用於將矽輸送至該鹵化反應器之輸送裝置。
  44. 如請求項24之系統,其中該系統為關於鹵素之實質性閉環。
  45. 如請求項24之系統,其中該系統為關於鹼金屬或鹼土金屬之實質性閉環。
  46. 如請求項24之系統,其包含用於由(1)四鹵化矽及(2)三鹵矽烷中之至少一者製造單鹵矽烷或二鹵矽烷之歧化系統。
TW100147557A 2010-12-23 2011-12-20 用於製造矽烷之方法及系統 TWI429588B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/978,189 US8388914B2 (en) 2010-12-23 2010-12-23 Systems for producing silane
US12/978,209 US8821825B2 (en) 2010-12-23 2010-12-23 Methods for producing silane

Publications (2)

Publication Number Publication Date
TW201231394A TW201231394A (en) 2012-08-01
TWI429588B true TWI429588B (zh) 2014-03-11

Family

ID=45464866

Family Applications (3)

Application Number Title Priority Date Filing Date
TW102114091A TWI486307B (zh) 2010-12-23 2011-12-20 用於製造矽烷之方法及系統
TW102148315A TW201414674A (zh) 2010-12-23 2011-12-20 用於製造矽烷之方法及系統
TW100147557A TWI429588B (zh) 2010-12-23 2011-12-20 用於製造矽烷之方法及系統

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW102114091A TWI486307B (zh) 2010-12-23 2011-12-20 用於製造矽烷之方法及系統
TW102148315A TW201414674A (zh) 2010-12-23 2011-12-20 用於製造矽烷之方法及系統

Country Status (6)

Country Link
EP (1) EP2655247A1 (zh)
KR (1) KR101949542B1 (zh)
CN (2) CN103384640B (zh)
BR (1) BR112013015955A2 (zh)
TW (3) TWI486307B (zh)
WO (1) WO2012087653A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012224202A1 (de) * 2012-12-21 2014-07-10 Evonik Industries Ag Verfahren zum Hydrieren höherer Halogen-haltiger Silanverbindungen

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL277704A (zh) * 1961-04-27
US4340574A (en) * 1980-08-28 1982-07-20 Union Carbide Corporation Process for the production of ultrahigh purity silane with recycle from separation columns
FR2532293A1 (fr) * 1982-08-31 1984-03-02 Rhone Poulenc Spec Chim Procede continu de preparation de silane
US4818495A (en) * 1982-11-05 1989-04-04 Union Carbide Corporation Reactor for fluidized bed silane decomposition
US4684513A (en) * 1982-11-05 1987-08-04 Union Carbide Corporation Zone heating for fluidized bed silane pyrolysis
US4632816A (en) 1982-12-13 1986-12-30 Ethyl Corporation Process for production of silane
DE3247362A1 (de) * 1982-12-22 1984-06-28 Studiengesellschaft Kohle mbH, 4330 Mülheim Verfahren zur herstellung von silicium-wasserstoff-verbindungen, insbesondere des silans
US4554141A (en) 1984-05-14 1985-11-19 Ethyl Corporation Gas stream purification
US4826668A (en) * 1987-06-11 1989-05-02 Union Carbide Corporation Process for the production of ultra high purity polycrystalline silicon
US5206004A (en) 1990-04-30 1993-04-27 Ethyl Corporation Silane compositions and process
DE4101687C1 (zh) * 1991-01-22 1992-04-16 Dr. Bastian Gmbh Silica, 5600 Wuppertal, De
US5211931A (en) 1992-03-27 1993-05-18 Ethyl Corporation Removal of ethylene from silane using a distillation step after separation using a zeolite molecular sieve
US5904821A (en) 1997-07-25 1999-05-18 E. I. Du Pont De Nemours And Company Fused chloride salt electrolysis cell
US5910295A (en) * 1997-11-10 1999-06-08 Memc Electronic Materials, Inc. Closed loop process for producing polycrystalline silicon and fumed silica
DE19812587C1 (de) * 1998-03-23 1999-09-23 Wolfgang Sundermeyer Verfahren zur Hydrierung halogensubstituierter Siliziumverbindungen
JP4256998B2 (ja) * 1999-10-27 2009-04-22 株式会社トクヤマ シラン化合物の不均化反応生成物の製造方法

Also Published As

Publication number Publication date
TWI486307B (zh) 2015-06-01
CN103384640A (zh) 2013-11-06
KR20140006835A (ko) 2014-01-16
WO2012087653A1 (en) 2012-06-28
TW201332893A (zh) 2013-08-16
KR101949542B1 (ko) 2019-02-18
BR112013015955A2 (pt) 2018-11-21
TW201231394A (en) 2012-08-01
CN103384640B (zh) 2016-03-02
EP2655247A1 (en) 2013-10-30
TW201414674A (zh) 2014-04-16
CN105668573A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
TWI474976B (zh) 在涉及歧化操作之實質上封閉迴路方法中之多晶矽製造
JP4630993B2 (ja) 高純度シリコンの製造方法
US8974761B2 (en) Methods for producing silane
US8388925B2 (en) Methods for producing aluminum trifluoride
US20120082610A1 (en) Fluorspar/Iodide process for reduction,purificatioin, and crystallization of silicon
US9487406B2 (en) Systems for producing silane
JP2012505825A (ja) 多結晶シリコンの製造方法
TWI429588B (zh) 用於製造矽烷之方法及系統
KR101788891B1 (ko) 사플루오르화 규소의 제조 방법
US20140341795A1 (en) Fluorspar/Iodide Process for Reduction, Purification, and Crystallization of Silicon