TWI420355B - A positioning method of multi-touch - Google Patents

A positioning method of multi-touch Download PDF

Info

Publication number
TWI420355B
TWI420355B TW98123996A TW98123996A TWI420355B TW I420355 B TWI420355 B TW I420355B TW 98123996 A TW98123996 A TW 98123996A TW 98123996 A TW98123996 A TW 98123996A TW I420355 B TWI420355 B TW I420355B
Authority
TW
Taiwan
Prior art keywords
voltage
conductive layer
detecting
electrode
positioning method
Prior art date
Application number
TW98123996A
Other languages
Chinese (zh)
Other versions
TW201102886A (en
Inventor
Po Yang Chen
Po Sheng Shih
Hsuan Lin Pan
Original Assignee
Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innolux Corp filed Critical Innolux Corp
Priority to TW98123996A priority Critical patent/TWI420355B/en
Publication of TW201102886A publication Critical patent/TW201102886A/en
Application granted granted Critical
Publication of TWI420355B publication Critical patent/TWI420355B/en

Links

Description

一種多點觸控的定位方法Multi-touch positioning method

本發明涉及一種觸摸屏的定位方法。The invention relates to a positioning method of a touch screen.

現有技術的觸摸屏主要包括電阻式、電容式、紅外線式以及表面聲波式。一般如四線或五線感測電阻式觸摸屏,因為是采類比方式偵測導電膜上的電壓變化,因此,在使用過程中同一時間只能辨識單點觸摸動作,當使用者同時以多點觸摸動作進行輸入時,會產生誤動作。Prior art touch screens mainly include resistive, capacitive, infrared, and surface acoustic wave types. Generally, a four-wire or five-wire sensing resistive touch screen is used to detect a voltage change on a conductive film in an analogy manner. Therefore, only a single touch action can be recognized at the same time during use, when the user simultaneously has multiple points. When a touch action is input, a malfunction occurs.

近來發展出可同時進行兩點或多點輸入的觸摸屏,逐漸成為流行趨勢。多點觸摸屏主要是多線電容式觸摸屏,其一般包括分別設置在一個透明玻璃兩面的兩透明導電層,依據產品解析度的不同,兩個導電層分別形成多條圖案化、平行設置的導線,且兩面的導線互相垂直,通過反復掃描該多條導線,分析其上電容的變化來判斷觸摸點的座標。The recent development of touch screens that can simultaneously perform two or more points of input has gradually become a popular trend. The multi-touch screen is mainly a multi-line capacitive touch screen, which generally comprises two transparent conductive layers respectively disposed on two sides of a transparent glass. According to different resolutions of the product, the two conductive layers respectively form a plurality of patterned and parallel arranged wires. And the wires on both sides are perpendicular to each other, and the coordinates of the touched point are judged by repeatedly scanning the plurality of wires and analyzing the change in the capacitance thereof.

然而,可同時進行多個觸摸點操作的電容式觸摸屏的製作工藝較高,驅動方法也比較複雜,因此,無形中大幅增加了多點電容式觸摸屏的成本,並限制了其適合應用的產品範圍。However, the capacitive touch screen capable of simultaneously performing multiple touch point operations has a high manufacturing process and a complicated driving method, thereby virtually increasing the cost of the multi-point capacitive touch screen and limiting the range of products suitable for the application. .

為了解決現有技術觸摸屏製作工藝較高和驅動方法複雜,同時進行的觸摸點數量少的問題,有必要提供一種製作工藝和驅動方法都較簡單,且可同時進行多個觸摸點操作的觸摸屏的定位方法。In order to solve the problem that the prior art touch screen manufacturing process is high and the driving method is complicated, and the number of touch points is small at the same time, it is necessary to provide a touch screen positioning method which is simple in both the manufacturing process and the driving method and can simultaneously perform multiple touch point operations. method.

一種觸摸屏的定位方法,其包括:提供一觸摸屏,該觸摸屏包括一具阻抗異向性的導電層和設置在該導電層一側邊的多個相間隔的探測電極;提供一第一電壓到該導電層;當該觸摸屏被接觸時,提供一第二電壓到該導電層,該第二電壓的施加點定義為一觸摸點;依序測量該多個探測電極的電壓,並找出相對極值電壓和與該極值電壓最近鄰的探測電極的電壓;和根據測量出的該極值電壓和最近鄰的探測電壓的探測電極位置,確定觸摸點在該導電層的一位置座標。A method for positioning a touch screen, comprising: providing a touch screen, the touch screen comprising a conductive layer having an impedance anisotropy and a plurality of spaced apart detecting electrodes disposed on one side of the conductive layer; providing a first voltage to the a conductive layer; when the touch screen is contacted, providing a second voltage to the conductive layer, the application point of the second voltage is defined as a touch point; sequentially measuring the voltages of the plurality of detecting electrodes, and finding a relative extreme value a voltage and a voltage of the detecting electrode adjacent to the extreme value voltage; and determining a position coordinate of the touch point at the conductive layer based on the measured detected electrode position of the extreme value voltage and the nearest neighbor detecting voltage.

另外,一種觸摸屏的定位方法,其包括:提供一觸摸屏,該觸摸屏包括一第一導電層、設置在該觸摸屏一側邊的多個相間隔的第一探測電極、一第二導電層和設置在與該多個第一探測電極垂直的一側邊的多個相間隔的第二探測電極,該第一導電層與第二導電層具阻抗異向性;提供一第一電壓到該第一導電層;提供一第二電壓到該第二導電層,該第一導電層與該第二導電層之間的接觸點定義為一觸摸點;測量該多個第一探測電極的電壓,並找出相對極值電壓及與該極值電壓最近鄰的第一探測電極的電壓,根據測量出的該極值電壓及最近鄰的探測電壓的第一探測電極位置,確定觸摸點在該導電層的一水平位置座標;和測量該多個第二探測電極的電壓,並找出相對極值電壓和與該極值電壓最近鄰的第二探測電極的電壓,根據測量出的該極值電壓和最近鄰的探測電壓的第二探測電極位置,確定觸摸點在該導電層的一垂直位置座標。In addition, a method for positioning a touch screen includes: providing a touch screen, the touch screen including a first conductive layer, a plurality of spaced apart first detecting electrodes disposed on one side of the touch screen, a second conductive layer, and a plurality of spaced apart second detecting electrodes on a side perpendicular to the plurality of first detecting electrodes, the first conductive layer and the second conductive layer having impedance anisotropy; providing a first voltage to the first conductive Providing a second voltage to the second conductive layer, a contact point between the first conductive layer and the second conductive layer is defined as a touch point; measuring voltages of the plurality of first detecting electrodes, and finding Determining a touch point at the conductive layer according to the measured extreme value of the extreme detection voltage and the first detection electrode position of the nearest neighbor detection voltage, relative to the extreme value voltage and the voltage of the first detection electrode adjacent to the extreme value voltage a horizontal position coordinate; and measuring a voltage of the plurality of second detecting electrodes, and finding a relative extreme voltage and a voltage of a second detecting electrode nearest to the extreme voltage, according to the measured extreme voltage and nearest neighbor Second detecting electrode position detection voltage, a vertical position to determine the touch point coordinates of the conductive layer.

相較於現有技術,採用上述定位方法的觸摸屏採用電阻率異向性材料,尤其是採用導電高分子材料或碳奈米管材料 製作導電層,特別是採用具有擇優取向排列的碳奈米管薄膜製作導電層,其具有如下優點:第一,具有擇優取向排列的碳奈米管薄膜的電阻率具有異向性,通過測量該碳奈米管薄膜側邊的電壓,根據電壓下降的位置和下降幅度就可以判斷出觸摸點的實際座標,該觸摸屏具有簡單的結構及簡單驅動方法;第二,該擇優取向排列的碳奈米管薄膜被分為多個沿碳奈米管延伸方向的導電通道,不同的探測電極對應不同的導電通道,因此該觸摸屏根據各個導電通道上電壓變化可以實現多點觸控操作,且觸摸點數理論上不受限制,真正實現多點觸控的功能;第三,碳奈米管的優異力學特性使得碳奈米管層具有很高的韌性和機械強度,因此,採用碳奈米管層作導電層可以相應提高該觸摸屏的耐用性;第四,碳奈米管薄膜具有良好的導電性,可以提高該觸摸屏的導電性能,從而提高其解析度和精確度;第五,碳奈米管薄膜具有良好的光穿透性,從而該觸摸屏具有良好的光學表現。Compared with the prior art, the touch screen adopting the above positioning method uses a resistivity anisotropic material, especially a conductive polymer material or a carbon nanotube material. Making a conductive layer, in particular, using a carbon nanotube film having a preferred orientation arrangement to form a conductive layer, has the following advantages: First, the electrical resistivity of the carbon nanotube film having a preferred orientation arrangement is anisotropic, by measuring The voltage on the side of the carbon nanotube film can determine the actual coordinates of the touch point according to the position and the falling amplitude of the voltage drop. The touch screen has a simple structure and a simple driving method. Second, the carbon nanotubes of the preferred orientation are arranged. The tube film is divided into a plurality of conductive channels extending along the carbon nanotube tube, and different detecting electrodes correspond to different conductive channels, so the touch screen can realize multi-touch operation according to voltage changes on the respective conductive channels, and the number of touch points Theoretically unrestricted, truly realizes the function of multi-touch; thirdly, the excellent mechanical properties of the carbon nanotubes make the carbon nanotube layer have high toughness and mechanical strength. Therefore, the carbon nanotube layer is used. The conductive layer can correspondingly improve the durability of the touch screen; fourth, the carbon nanotube film has good conductivity and can improve the guide of the touch screen. Performance, thereby enhancing its accuracy and resolution; Fifth, the carbon nanotube film has excellent light permeability, such that the touch screen has a good optical performance.

上述觸摸屏的驅動方法中,通過測量探測電極的電壓變化,找出相對極值電壓以及臨近相對極值的最近鄰探測電壓,根據三個電壓,提出一種稱為三點內插法的觸摸屏定位方法,該方法能夠精確確定該觸摸屏上任意一點的座標,具有較高的準確性。In the above driving method of the touch screen, by measuring the voltage change of the detecting electrode, finding the relative extreme value voltage and the nearest neighbor detecting voltage adjacent to the relative extreme value, according to the three voltages, a touch screen positioning method called three-point interpolation is proposed. The method can accurately determine the coordinates of any point on the touch screen, and has high accuracy.

請參閱圖1,其是本發明觸摸屏第一實施方式的剖面結構示意圖。該觸摸屏2包括相對設置的一第一基板21和一第二基板22。該第一基板21一般由彈性材料製成,該第二基板22由剛性材料製成以承載一定壓力。本實施例中,該第一基 板21為聚酯膜,該第二基板22為玻璃基板。該第一基板21相對該第二基板22一側的表面設置一第一傳導層23。該第二基板22相對該第一基板21一側的表面設置一第二傳導層24。一粘合層25設置在該第一基板21和該第二基板22之間的邊緣處,從而將該第一基板21和該第二基板22粘合在一起。該第一傳導層23和該第二傳導層24之間的距離為2-10微米。該第一傳導層23和該第二傳導層24之間間隔設置有多個彼此隔離的間隙子27,該多個間隙子27具絕緣和支撐作用,以使該第一傳導層23和該第二傳導層24在初始狀態下為電絕緣狀態。可以理解,當該觸摸屏2尺寸較小時,該間隙子27為可選結構,只需要確保第一傳導層23和該第二傳導層24在初始狀態下為電絕緣狀態即可。Please refer to FIG. 1, which is a cross-sectional structural view of a first embodiment of the touch screen of the present invention. The touch screen 2 includes a first substrate 21 and a second substrate 22 disposed opposite to each other. The first substrate 21 is generally made of an elastic material, and the second substrate 22 is made of a rigid material to carry a certain pressure. In this embodiment, the first base The plate 21 is a polyester film, and the second substrate 22 is a glass substrate. A first conductive layer 23 is disposed on a surface of the first substrate 21 opposite to the second substrate 22 . A second conductive layer 24 is disposed on a surface of the second substrate 22 opposite to the first substrate 21 side. An adhesive layer 25 is disposed at an edge between the first substrate 21 and the second substrate 22 to bond the first substrate 21 and the second substrate 22 together. The distance between the first conductive layer 23 and the second conductive layer 24 is 2-10 microns. The first conductive layer 23 and the second conductive layer 24 are spaced apart from each other by a plurality of spacers 27 separated from each other, and the plurality of spacers 27 are insulated and supported to make the first conductive layer 23 and the first The second conductive layer 24 is in an electrically insulated state in an initial state. It can be understood that when the size of the touch screen 2 is small, the spacer 27 is an optional structure, and it is only necessary to ensure that the first conductive layer 23 and the second conductive layer 24 are electrically insulated in the initial state.

請一併參閱圖2,其是該第一傳導層23和該第二傳導層24的平面結構示意圖。在本圖中引入笛卡爾坐標系,其包括相互垂直的X軸方向和Y軸方向。該第一傳導層23包括一第一導電層231和一第一電極232。該第一導電層231是一矩形的氧化銦錫薄膜,從而擁有較低的電阻率和較高的光穿透率。該第一電極232連續設置在該第一導電層231的四側邊,並與該第一導電層231電連接。Please refer to FIG. 2 , which is a schematic diagram of the planar structure of the first conductive layer 23 and the second conductive layer 24 . A Cartesian coordinate system is introduced in this figure, which includes an X-axis direction and a Y-axis direction that are perpendicular to each other. The first conductive layer 23 includes a first conductive layer 231 and a first electrode 232. The first conductive layer 231 is a rectangular indium tin oxide film, which has a lower resistivity and a higher light transmittance. The first electrode 232 is continuously disposed on four sides of the first conductive layer 231 and electrically connected to the first conductive layer 231.

該第二傳導層24包括一第二導電層241、一第二電極242和多個探測電極E11 -E1x ,其中,x為自然數,其代表該多個探測電極243的數量。The second conductive layer 24 includes a second conductive layer 241, a second electrode 242 and a plurality of detecting electrodes E 11 -E 1x , wherein x is a natural number, which represents the number of the plurality of detecting electrodes 243.

該第二導電層241為一電阻異向性導電薄膜,即,其在二維空間上的電阻率不同。具體地,該第二導電層241沿X軸方向的橫向電阻率ρ1大於其沿Y軸方向的縱向電阻率ρ2。The second conductive layer 241 is a resistive anisotropic conductive film, that is, its resistivity in a two-dimensional space is different. Specifically, the lateral resistivity ρ1 of the second conductive layer 241 along the X-axis direction is greater than its longitudinal resistivity ρ2 along the Y-axis direction.

該第二電極242為一長條型電極,其設置在該第二透明導電層241垂直於碳奈米管延伸方向的一側邊,即,圖2中該第二透明導電層241的上側邊,並電連接該第二透明導電層241。The second electrode 242 is an elongated electrode disposed on a side of the second transparent conductive layer 241 perpendicular to the extending direction of the carbon nanotube, that is, the upper side of the second transparent conductive layer 241 in FIG. The second transparent conductive layer 241 is electrically connected to the side.

該多個探測電極E11 -E1x 均勻設置在該第二導電層241相對該第二電極242的另一側邊,即,圖2中該第二導電層241的下側邊,且該多個探測電極E11 -E1x 都電連接該第二導電層241。由於碳奈米管薄膜的電阻異向性,該多個探測電極E11-E1x將該第二導電層241分為多個對應的導電通道。The plurality of detecting electrodes E 11 -E 1x are uniformly disposed on the other side of the second conductive layer 241 opposite to the second electrode 242, that is, the lower side of the second conductive layer 241 in FIG. 2, and the plurality of Each of the detecting electrodes E 11 -E 1x is electrically connected to the second conductive layer 241. Due to the resistance anisotropy of the carbon nanotube film, the plurality of detecting electrodes E11-E1x divide the second conductive layer 241 into a plurality of corresponding conductive paths.

作為一優選實施例,該第二導電層241由厚度均勻的碳奈米管薄膜材料製成。該碳奈米管薄膜的厚度為0.5奈米到100微米。該碳奈米管薄膜為有序的碳奈米管形成的具有均勻厚度的層狀結構。該碳奈米管為單壁碳奈米管、雙壁碳奈米管或多壁碳奈米管中的一種或多種的混合,其中,單壁碳奈米管的直徑為0.5奈米到50奈米,雙壁碳奈米管的直徑為1.0奈米到50奈米,多壁碳奈米管的直徑為1.5奈米到50奈米。該碳奈米管薄膜中的碳奈米管沿單一方向擇優取向排列或沿不同方向擇優取向排列。As a preferred embodiment, the second conductive layer 241 is made of a carbon nanotube film material having a uniform thickness. The carbon nanotube film has a thickness of from 0.5 nm to 100 μm. The carbon nanotube film is a layered structure having a uniform thickness formed by an ordered carbon nanotube. The carbon nanotube is a mixture of one or more of a single-walled carbon nanotube, a double-walled carbon nanotube or a multi-walled carbon nanotube, wherein the diameter of the single-walled carbon nanotube is 0.5 nm to 50 Nano, double-walled carbon nanotubes have a diameter of 1.0 nm to 50 nm, and multi-walled carbon nanotubes have a diameter of 1.5 nm to 50 nm. The carbon nanotubes in the carbon nanotube film are arranged in a preferred orientation in a single direction or in a preferred orientation in different directions.

進一步地,該第二導電層241採用碳奈米管薄膜或重疊設置的多層碳奈米管薄膜,且多層碳奈米管薄膜的重疊角度不限。該碳奈米管為有序排列。更進一步講,該碳奈米管薄膜包括多個擇優取向的碳奈米管,該碳奈米管具有基本相等的長度且通過凡德華力彼此連接,從而形成連續的碳奈米管束。具體地,該第二導電層241中的碳奈米管沿圖2所示的Y軸方向擇優取向排列。Further, the second conductive layer 241 is formed of a carbon nanotube film or a stacked multi-layer carbon nanotube film, and the overlapping angle of the multilayer carbon nanotube film is not limited. The carbon nanotubes are in an ordered arrangement. Furthermore, the carbon nanotube film comprises a plurality of preferentially oriented carbon nanotubes having substantially equal lengths and connected to each other by van der Waals forces to form a continuous bundle of carbon nanotubes. Specifically, the carbon nanotubes in the second conductive layer 241 are arranged in a preferred orientation along the Y-axis direction shown in FIG. 2 .

上述具有擇優取向排列的碳奈米管薄膜具有阻抗異向性的特點,即,該碳奈米管薄膜沿碳奈米管延伸方向的電阻率遠遠小於其垂直於碳奈米管延伸方向的電阻率。具體來講,如圖2所示,該第二導電層241沿X軸方向的橫向電阻率遠遠大於其沿Y軸方向的縱向電阻率。The carbon nanotube film having the preferred orientation arrangement has the characteristic of impedance anisotropy, that is, the electrical resistivity of the carbon nanotube film along the extending direction of the carbon nanotube is much smaller than that perpendicular to the extending direction of the carbon nanotube. Resistivity. Specifically, as shown in FIG. 2, the lateral resistivity of the second conductive layer 241 in the X-axis direction is much larger than its longitudinal resistivity in the Y-axis direction.

一般地,ρ1/ρ2的值隨該觸摸屏2中尺寸的增大而增大。當該觸摸屏2中尺寸(矩形對角線)小於3.5英寸時,ρ1/ρ2的值以不小於2為宜;當該觸摸屏2的尺寸大於3.5英寸時,ρ1/ρ2的值以不小於5為宜。In general, the value of ρ1/ρ2 increases as the size of the touch screen 2 increases. When the size (rectangular diagonal) of the touch screen 2 is less than 3.5 inches, the value of ρ1/ρ2 is preferably not less than 2; when the size of the touch screen 2 is larger than 3.5 inches, the value of ρ1/ρ2 is not less than 5 should.

進一步地,本實施例中觸摸屏2的尺寸為3.5英寸,所採用的碳奈米管的橫向電阻率與縱向電阻率的比值ρ1/ρ2大於等於100,例如其橫向電阻為540千歐姆,縱向電阻為3.6千歐姆。Further, in the embodiment, the size of the touch screen 2 is 3.5 inches, and the ratio of the transverse resistivity to the longitudinal resistivity ρ1/ρ2 of the carbon nanotube used is greater than or equal to 100, for example, the lateral resistance is 540 kilo ohms, and the longitudinal resistance is It is 3.6 kilo ohms.

該第一電極232、第二電極242以及該多個探測電極E11 -E1x 由低阻材料製成,如鋁、銅或銀等,以減少電信號的衰減。本實施例中,其都由導電銀漿製成。The first electrode 232, the second electrode 242 and the plurality of detecting electrodes E 11 -E 1x are made of a low-resistance material such as aluminum, copper or silver to reduce the attenuation of the electrical signal. In this embodiment, they are all made of a conductive silver paste.

該觸摸屏2的驅動方法如下:The driving method of the touch screen 2 is as follows:

驅動過程中,該第一電極232接一第一電壓準位而該第二電極242及多個探測E11 -E1x 接一第二電壓準位,其中該第一電壓準位可以高於該第二電壓準位,也可以低於該第二電壓準位。以下以該第一電壓準位低於該第二電壓準位為例具體介紹其定位方法。具體地,該第一電極232電連接該觸摸屏2系統的地,即該第一導電層231的電壓為0伏。該第二電極與多個探測電極E11 -E1x 接受一高電壓準位,本實施例為5伏,則該第二導電層241的電壓為5伏。該多個探測電極 E11 -E1x 可用來探測該第二導電層241對應位置的電壓變化,為觸摸定位提供資料。During the driving process, the first electrode 232 is connected to a first voltage level, and the second electrode 242 and the plurality of probes E 11 -E 1x are connected to a second voltage level, wherein the first voltage level may be higher than the first voltage level. The second voltage level may also be lower than the second voltage level. The positioning method is specifically described below by taking the first voltage level lower than the second voltage level as an example. Specifically, the first electrode 232 is electrically connected to the ground of the touch screen 2 system, that is, the voltage of the first conductive layer 231 is 0 volts. The second electrode and the plurality of detecting electrodes E 11 -E 1x receive a high voltage level. In this embodiment, 5 volts, the voltage of the second conductive layer 241 is 5 volts. The plurality of detecting electrodes E 11 -E 1x can be used to detect a voltage change of the corresponding position of the second conductive layer 241 to provide information for touch positioning.

當用戶沒有對該觸摸屏2進行任何操作時,該第一導電層231與該第二導電層241相互絕緣,對該第二導電層241的電壓沒有影響。則該多個探測電極E11 -E1x 的探測電壓相等,均為5伏。請一併參閱圖3,其是對該觸摸屏2未進行觸摸操作時,該觸摸屏2的多個探測電極E11 -E1x 的電壓曲線圖。圖3中橫軸表示該多個探測電極E11 -E1x 的物理橫坐標,縱軸表示該多個探測電極E11 -E1x 的探測電壓。由於該多個探測電極E11 -E1x 的探測電壓相等,圖中表示為一條垂直於縱坐標的直線。When the user does not perform any operation on the touch screen 2, the first conductive layer 231 and the second conductive layer 241 are insulated from each other, and have no influence on the voltage of the second conductive layer 241. Then, the detection voltages of the plurality of detecting electrodes E 11 -E 1x are equal, both being 5 volts. Please refer to FIG. 3 , which is a voltage graph of the plurality of detecting electrodes E 11 -E 1x of the touch screen 2 when the touch screen 2 is not touched. 3 the horizontal axis represents the plurality of detecting electrodes E 11 -E 1x physical abscissa and the vertical axis represents the detection voltage detecting electrodes E 11 -E 1x in. Since the detection voltages of the plurality of detecting electrodes E 11 -E 1x are equal, the figure is represented as a straight line perpendicular to the ordinate.

當用戶對該觸摸屏2進行觸摸操作時,該第一基板21在壓力作用下彎向該第二基板22,從而使該第一導電層231與該第二導電層241在該觸摸點產生電連接。如果是單點觸摸,則在觸摸處產生單個電連接點;如果是多點觸摸,則相應產生多個電連接點。由於該第一導電層231的電壓低於該第二導電層241的電壓,此時,觸摸點所對應的探測電極E11 -E1x 的探測電壓發生變化。具體而言,該對應點探測電極E11 -E1x 的電壓將低於該第二電極241的電壓,即小於5伏。實驗表明,該探測電極E11 -E1x 的電壓降低的幅度與對應該觸摸點所處位置的縱坐標有關。該觸摸點愈接近該第二電極242,對應該觸摸點的探測電極E11 -E1x 的電壓降低幅度愈小;反之,該觸摸點愈遠離該第二電極242,對應該觸摸點的探測電極E11 -E1x 的電壓降低幅度愈大,也就是觸摸點的探 測電極E11 -E1x 的電壓與該觸摸點到該第二電極242的距離成正相關的關係。When the user performs a touch operation on the touch screen 2, the first substrate 21 is bent toward the second substrate 22 under pressure, so that the first conductive layer 231 and the second conductive layer 241 are electrically connected at the touch point. . If it is a single touch, a single electrical connection point is generated at the touch; if it is a multi-touch, a plurality of electrical connection points are generated accordingly. Since the voltage of the first conductive layer 231 is lower than the voltage of the second conductive layer 241, the detection voltage of the detecting electrodes E 11 -E 1x corresponding to the touched point changes at this time. Specifically, the voltage of the corresponding point detecting electrode E 11 -E 1x will be lower than the voltage of the second electrode 241, that is, less than 5 volts. Experiments have shown that the magnitude of the voltage drop of the detection electrodes E 11 -E 1x is related to the ordinate corresponding to the position at which the touch point is located. The closer the touch point is to the second electrode 242, the smaller the voltage reduction amplitude of the detection electrode E 11 -E 1x corresponding to the touch point; conversely, the farther the touch point is away from the second electrode 242, the detection electrode corresponding to the touch point The greater the voltage drop of E 11 -E 1x , that is, the voltage of the detecting electrode E 11 -E 1x of the touch point is positively related to the distance of the touch point to the second electrode 242.

請一併參閱圖4和圖5,圖4是對該觸摸屏2進行三點操作的觸摸點的實際位置示意圖,圖5是該觸摸屏2在三點觸摸操作下的探測電極的電壓曲線圖。如圖4所示為同時對該觸摸屏2進行三點操作的觸摸點實際位置,其中,A、B、C表示該三個觸摸點在該觸摸屏2上的實際位置,其分別對應探測電極E12、E15、E18所在的位置。圖5中所示的橫軸表示該多個探測電極E11 -E1x 的橫坐標,縱軸表示探測電極E11 -E1x 的電壓。如圖所示,該三個探測電極E12、E15、E18所探測的電壓分別具有不等的下降幅度。Please refer to FIG. 4 and FIG. 5 together. FIG. 4 is a schematic diagram of the actual position of the touch point for performing the three-point operation on the touch screen 2, and FIG. 5 is a voltage graph of the detecting electrode of the touch screen 2 under the three-point touch operation. As shown in FIG. 4 , the actual position of the touch point for performing the three-point operation on the touch screen 2 at the same time, wherein A, B, and C represent the actual positions of the three touch points on the touch screen 2, which respectively correspond to the detecting electrode E12, The location where E15 and E18 are located. The horizontal axis shown in Fig. 5 indicates the abscissa of the plurality of detecting electrodes E 11 - E 1x , and the vertical axis indicates the voltage of the detecting electrodes E 11 - E 1x . As shown, the voltages detected by the three detecting electrodes E12, E15, and E18 have unequal decreases.

根據電壓曲線中電壓下降點在坐標軸中的位置,可以直觀地判斷出該三個觸摸點A、B、C所對應地探測電極為探測電極E12、E15、E18,該三個探測電極E12、E15、E18的橫坐標也即該三個觸摸點的橫坐標。進一步,根據觸摸點對應的三個探測電極E12、E15、E18的電壓下降幅度,可以分析出該多個觸摸點相對該E11 -E1x 電極的距離,即該觸摸點在座標中的縱坐標。通過上述方法可以確定所有觸摸點在該觸摸屏上的座標。According to the position of the voltage drop point in the coordinate axis in the voltage curve, it can be intuitively determined that the detecting electrodes corresponding to the three touch points A, B, and C are the detecting electrodes E12, E15, and E18, and the three detecting electrodes E12, The abscissa of E15 and E18 is also the abscissa of the three touch points. Further, according to the voltage drop amplitude of the three detecting electrodes E12, E15, and E18 corresponding to the touch point, the distance between the plurality of touch points relative to the E 11 -E 1x electrode, that is, the ordinate of the touch point in the coordinate, can be analyzed. . The coordinates of all touch points on the touch screen can be determined by the above method.

上述採用碳奈米管薄膜的觸摸屏2具有以下優點:第一,具有擇優取向排列的碳奈米管薄膜的電阻率具有異向性,通過測量該多個探測電極E11-E1x的電壓,根據電壓下降的位置及下降幅度就可以判斷出觸摸點的實際座標,該觸摸屏2具有簡單的結構和簡單驅動方法;第二,該擇優取向排列的碳奈米管薄膜被分為多個沿碳奈米管延伸方向的導 電通道,不同的探測電極E1-Ex對應不同的導電通道,因此該觸摸屏2可以實現多點觸控操作,且觸摸點理論上不受限制,真正實現多點觸控的功能;第三,碳奈米管的優異力學特性使得碳奈米管層具有很高的韌性和機械強度,因此,採用碳奈米管層作導電層可以相應提高該觸摸屏2的耐用性;第四,碳奈米管薄膜具有良好的導電性,可以該觸摸屏的導電性能,從而提高其解析度和精確度;第五,碳奈米管薄膜具有良好的透光性,從而該觸摸屏具有良好的透光性。The above touch screen 2 using a carbon nanotube film has the following advantages: First, the resistivity of the carbon nanotube film having the preferred orientation arrangement is anisotropic, by measuring the voltage of the plurality of detecting electrodes E11-E1x, according to the voltage The actual position of the touch point can be judged by the position of the drop and the extent of the drop. The touch screen 2 has a simple structure and a simple driving method. Second, the carbon nanotube film of the preferred orientation is divided into a plurality of carbon nanotubes. Guide to the direction of extension of the tube The electrical channel, the different detecting electrodes E1-Ex correspond to different conductive channels, so the touch screen 2 can realize multi-touch operation, and the touch point is theoretically unrestricted, realizing the function of multi-touch; third, carbon The excellent mechanical properties of the nanotubes make the carbon nanotube layer have high toughness and mechanical strength. Therefore, the carbon nanotube layer can be used as the conductive layer to improve the durability of the touch screen 2; fourth, the carbon nanotube The film has good electrical conductivity, can improve the conductivity and accuracy of the touch screen, and fifthly, the carbon nanotube film has good light transmittance, so that the touch screen has good light transmittance.

請參閱圖6,其是本發明觸摸屏的第二實施方式的第一傳導層43和第二傳導層44的平面結構示意圖。圖中僅表示一第一傳導層43和一第二傳導層44的平面結構。該觸摸屏4與第一實施方式的觸摸屏2相似,其不同之處在於:該第一傳導層43的結構與該第二傳導層44的結構相似,即該第一傳導層43包括一碳奈米管薄膜製成的第一導電層431、一個條型的第一電極432和多個第一探測電極E21 -E2y ,其中,y為代表該多個第一探測電極的數量的自然數;該第二傳導層44包括一碳奈米管薄膜製成的第二導電層441、一條型的第二電極442和多個第二探測電極E11 -E1x ,x為代表該多個第二探測電極的數量的自然數。進一步,該第一導電層431中的碳奈米管沿坐標軸中X軸方向延伸,該第一電極432設置在該第一透明導電層431的左側邊沿Y軸方向延伸,並電連接該第一透明導電薄膜431,該多個第一探測電極E21-E2y均勻設置在該第一導電層431相對該第一電極432的右側邊,並電連接該第一導電層431。該第一導電層431沿該Y軸方向的電阻率ρ3大於 其沿該X軸方向的電阻率ρ4,且ρ3/ρ4的值隨著該第一導電層431沿該Y軸方向的尺寸增大而增大。Please refer to FIG. 6, which is a schematic plan view of the first conductive layer 43 and the second conductive layer 44 of the second embodiment of the touch screen of the present invention. Only the planar structure of a first conductive layer 43 and a second conductive layer 44 is shown. The touch screen 4 is similar to the touch screen 2 of the first embodiment, except that the structure of the first conductive layer 43 is similar to that of the second conductive layer 44, that is, the first conductive layer 43 includes a carbon nanometer. a first conductive layer 431 made of a tube film, a strip-shaped first electrode 432 and a plurality of first detecting electrodes E 21 -E 2y , wherein y is a natural number representing the number of the plurality of first detecting electrodes; The second conductive layer 44 includes a second conductive layer 441 made of a carbon nanotube film, a second type electrode 442 and a plurality of second detecting electrodes E 11 -E 1x , and x represents the plurality of second A natural number of probe electrodes. Further, the carbon nanotubes in the first conductive layer 431 extend along the X-axis direction of the coordinate axis, and the first electrode 432 is disposed on the left side of the first transparent conductive layer 431 and extends in the Y-axis direction, and electrically connects the first electrode A plurality of first detecting electrodes E21-E2y are uniformly disposed on the right side of the first conductive layer 431 opposite to the first electrode 432, and are electrically connected to the first conductive layer 431. The resistivity ρ3 of the first conductive layer 431 along the Y-axis direction is greater than the resistivity ρ4 along the X-axis direction, and the value of ρ3/ρ4 increases with the dimension of the first conductive layer 431 along the Y-axis direction. And increase.

該觸摸屏4的驅動方法是:確定觸摸點橫坐標時,該第一電極432和第一探測電極E21 -E2y 接地,該第二電極442和第二探測電極E11 -E1x 接高電壓,本實施例為5伏,通過各別測量該多個第二探測電極E11 -E1x 的電壓來確定觸摸點的橫坐標;確定觸摸點縱坐標時,通過各別測量該多個第一探測電極E21 -E2y 的電壓來確定觸摸點的縱坐標。The driving method of the touch screen 4 is: when determining the abscissa of the touch point, the first electrode 432 and the first detecting electrode E 21 -E 2y are grounded, and the second electrode 442 and the second detecting electrode E 11 -E 1x are connected to a high voltage. The embodiment is 5 volts, and the abscissa of the touch point is determined by separately measuring the voltages of the plurality of second detecting electrodes E 11 -E 1x ; when determining the ordinate of the touch point, the plurality of firsts are separately measured The voltage of the electrodes E 21 -E 2y is detected to determine the ordinate of the touch point.

該觸摸屏4的定位方法中,通過施加低電壓於該第一電極432及探測電極E21 -E2y ,另外施加高電壓於該第二電極442及探測電極E11 -E1x ,分別測量該第一探測電極E21 -E2y 和第二探測電極E21 -E2y 的電壓變化即可確定觸摸點的縱坐標和橫坐標,而不需要分析電壓的下降幅度。該驅動方法更加簡單、準確。In the positioning method of the touch panel 4, the first electrode 432 and the detecting electrodes E 21 -E 2y are applied with a low voltage, and a high voltage is applied to the second electrode 442 and the detecting electrodes E 11 -E 1x to measure the first The change in voltage of the detecting electrodes E 21 -E 2y and the second detecting electrodes E 21 -E 2y determines the ordinate and abscissa of the touch point without the need to analyze the magnitude of the voltage drop. This driving method is simpler and more accurate.

更進一步,上述實施方式中的導電層除採用碳奈米管薄膜外,也可採用其他具有電阻率異向性的材料,如導電高分子材料、某些低維度(一維或二維)的晶體材料等。在上述低維度(一維或二維)的晶體材料中,由於材料中的電子被限制在一維的線性間或二維的平面上做傳導,故這些材料的導電性在某一或某二晶格方向具有優勢,而在其他方向上導電性明顯降低,即,具有電阻率異向性,或稱為導電異向性。這些材料都符合本發明對導電異向性導電層的要求,能夠達到上述各實施方式的相同或相似的效果Furthermore, in addition to the carbon nanotube film, the conductive layer in the above embodiment may also adopt other materials having resistivity anisotropy, such as conductive polymer materials, and some low-dimensional (one-dimensional or two-dimensional). Crystal materials, etc. In the above low-dimensional (one-dimensional or two-dimensional) crystal materials, since the electrons in the material are restricted to conduct in one-dimensional linear or two-dimensional planes, the conductivity of these materials is in one or two The lattice direction has an advantage, while the conductivity is significantly reduced in other directions, that is, has resistivity anisotropy, or is called conductive anisotropy. These materials all meet the requirements of the present invention for the conductive anisotropic conductive layer, and can achieve the same or similar effects of the above embodiments.

然而,上述驅動方法中,當觸摸點剛好對應任意的第一探測電極E21 -E2y 所在橫軸線上或任意的第二探測電極 E11 -E1x 所在縱軸線的時候,該方法能夠準確判斷觸摸點的座標。當觸摸點處於任意兩個第一探測電極E21 -E2y 或任意兩個第二探測電極E11 -E1x 中間位置的時候,需通過已知的探測電壓經由內插計算來得出觸摸點的精確位置。However, in the above driving method, when the touch point corresponds to the longitudinal axis of any of the first detecting electrodes E 21 -E 2y or the longitudinal axis of any of the second detecting electrodes E 11 -E 1x , the method can accurately determine Touch the coordinates of the point. When the touch point is in the middle of any two first detecting electrodes E 21 -E 2y or any two second detecting electrodes E 11 -E 1x , the touch point is calculated by interpolation calculation by a known detecting voltage. Precise location.

以下,詳細介紹一種稱為三點內插法的計算方法,該驅動方法能夠精確確定該觸摸屏4上任意一點座標,這裏以橫坐標的定位方法為例詳細介紹。In the following, a calculation method called a three-point interpolation method is described in detail. The driving method can accurately determine an arbitrary coordinate on the touch screen 4, and the positioning method of the abscissa is taken as an example for details.

請參閱圖7,其是利用三點內插法確定觸摸點座標方法的第一實施方式的電壓測量示意圖。該圖7中橫軸表示該多個第二探測電極E11-E1x及其所對應的橫坐標,縱軸為該多個第二探測電極E11-E1x的輸出電壓。為清楚表示觸摸點電壓變化,圖中僅顯示了觸摸點及其附近的探測電壓。點T為觸摸點在該觸摸屏4的橫軸上的相對位置。點B為探測電壓波形中電壓極小值,Xn表示電壓極小值電極橫坐標,其對應探測電極E1n ,2nx-1。點A、點C為極小值所在該探測電極E1n 左右最近臨的探測電極E1n-1 、E1n+1 對應的探測電壓。點A、B、C電壓值分別為Vn-1 、Vn 、Vn+1 ,且Vn-1 ≧Vn ,Vn+1 ≧VnPlease refer to FIG. 7, which is a schematic diagram of voltage measurement of the first embodiment of the method for determining touch point coordinates by three-point interpolation. In FIG. 7, the horizontal axis represents the plurality of second detecting electrodes E11-E1x and their corresponding abscissas, and the vertical axis represents the output voltages of the plurality of second detecting electrodes E11-E1x. In order to clearly show the change of the touch point voltage, only the touch voltage and the detection voltage in the vicinity thereof are shown in the figure. Point T is the relative position of the touch point on the horizontal axis of the touch screen 4. Point B is the voltage minimum value in the detection voltage waveform, and Xn is the voltage minimum value electrode abscissa, which corresponds to the detection electrode E 1n , 2 n X-1. Points A, where C is the minimum value of the latest probe electrode E 1n Pro around the detection electrode detecting a voltage corresponding to E 1n-1, E 1n + 1 . The voltage values of points A, B, and C are V n-1 , V n , V n+1 , and V n-1 ≧V n , V n+1 ≧V n .

設定一常量Px和一變數△S,Px的值為任意兩相鄰探測電極E11 -E1x 之間距離的一半,△S 的值等於該觸摸點T到最近鄰探測電極E1n 的橫向偏移距離。△S與Vn-1 、Vn 、Vn+1 的關係滿足如下方程組:△S =f (△1,△2) △1=|V n -1 -V n | △2=|V n +1 -V n | (1)A constant Px and a variable ΔS are set. The value of Px is half of the distance between any two adjacent detecting electrodes E 11 -E 1x , and the value of Δ S is equal to the lateral offset of the touch point T to the nearest neighbor detecting electrode E 1n . Move the distance. The relationship between ΔS and V n-1 , V n , V n+1 satisfies the following equations: Δ S = f (Δ1, Δ2) Δ1 = | V n -1 - V n | Δ2=| V n +1 - V n | (1)

更進一步演算,方程組1具體表示為: Further calculations, Equation 1 is specifically expressed as:

又,Xt=Xn+△S ,(3)其中,Xt為觸摸點橫坐標,當Vn為極小值電壓時,觸摸點位置Xt為(Vn-1 -Vn+1 ),(Vn+1 -Vn ),(Vn-1 -Vn )其中任兩個當變數的一函數,Xn為探測電極E1n 的橫坐標。Further, Xt=Xn+Δ S , (3) where Xt is the touch point abscissa, and when Vn is a minimum voltage, the touch point position Xt is (V n-1 -V n+1 ), (V n+1 -V n ), (V n-1 -V n ) A function of any two of the variables, Xn is the abscissa of the detecting electrode E 1n .

結合方程組(1)、(2)、(3),得到: Combining equations (1), (2), and (3), we get:

下面討論三個特別點的計算:當△10;△2≠0時,△S -P x ,從而得:Xt Xn -P x The calculation of three special points is discussed below: when △1 0; △ 2 ≠ 0, △ S - P x , which gives: Xt Xn - P x .

表示為該觸摸點趨近於該探測電極E1n-1 和探測電極E1n 的中線位置,其橫坐標值趨近於Xn-Px;當△1=△2時,△S =0,Xt XnIt is indicated that the touch point is close to the midline position of the detecting electrode E 1n-1 and the detecting electrode E 1n , and the abscissa value thereof is close to Xn-Px; when Δ1=Δ2, Δ S =0, Xt Xn .

則觸摸點趨近於該探測電極En對應的位置,其橫坐標值趨近於Xn;當△1≠0;△20時,△S +P x ,從而得:Xt Xn +P x Then the touch point approaches the position corresponding to the detecting electrode En, and the abscissa value approaches Xn; when Δ1≠0; Δ2 0, △ S + P x , which gives: Xt Xn + P x .

則觸摸點趨近於該探測電極E1n 和探測電極E1n+1 的中線位置,其橫坐標值趨近於Xn+Px。Then, the touch point approaches the center line position of the detecting electrode E 1n and the detecting electrode E 1n+1 , and the abscissa value thereof approaches Xn+Px.

上述三種情況符合實驗類比情況,表明方程式(2)滿足對觸摸點T座標的描述,該觸摸屏4中橫軸的任意一點的位置可以用上述方程式(4)來精確確定。The above three cases are in accordance with the experimental analogy, indicating that equation (2) satisfies the description of the touch point T coordinate, and the position of any point on the horizontal axis of the touch screen 4 can be accurately determined by the above equation (4).

請參閱圖8,其是利用三點內插法確定觸摸點座標方法的第二實施方式的電壓測量示意圖。依據相同原理,第一探測電極E21 ~E2y 探測到觸摸點的電壓為極大值,為清楚表示觸摸點電壓變化,圖中僅顯示了觸摸點的探測電壓。點T為觸摸點在該觸摸屏4的縱軸上的相對位置。點B’為探測電壓波形中電壓極大值,其對應探測電極E2m ,2my-1。點A’、點C’為極大值所在該探測電極E2m 左右最近臨的探測電極E2m-1 、E2m+1 對應的探測電壓。點A’、B’、C’電壓值分別為Vm-1 ’、Vm ’、Vm+1 ’,且Vm-1 ’≦Vm ’,Vm+1 ’≦Vm ’。Please refer to FIG. 8 , which is a schematic diagram of voltage measurement of a second embodiment of a method for determining touch point coordinates by three-point interpolation. According to the same principle, the first detecting electrodes E 21 to E 2y detect that the voltage of the touched point is a maximum value, and in order to clearly indicate the change of the touch point voltage, only the detected voltage of the touched point is shown in the figure. Point T is the relative position of the touch point on the longitudinal axis of the touch screen 4. Point B' is the voltage maximum value in the detection voltage waveform, which corresponds to the detection electrode E 2m , 2 m Y-1. Point A ', point C' where a maximum value around the probe electrode E 2m recent advent of the detection electrode E 2m-1, the detection voltage corresponding to E 2m + 1. The voltage values of points A', B', and C' are V m-1 ', V m ', V m+1 ', and V m-1 '≦V m ', V m+1 '≦V m '.

設定一常量Py和一變數△S’,Py的值為任意兩相鄰探測電極E21 -E2y 之間距離的一半,△S’的值等於該觸摸點T到最近鄰探測電極E2m 的橫向偏移距離。△S’與Vm-1 ’、Vm ’、Vm+1 ’的關係滿足如下方程組:△S '=f (△1',△2') △1'=|V m -1 '-V m '| △2'=|V m +1 '-V m '| (5)A constant Py and a variable ΔS' are set, and the value of Py is half of the distance between any two adjacent detecting electrodes E 21 -E 2y , and the value of ΔS' is equal to the touch point T to the nearest neighbor detecting electrode E 2m Lateral offset distance. The relationship between ΔS' and V m-1 ', V m ', V m+1 ' satisfies the following equations: △ S '= f (△1', Δ2') △1'=| V m -1 ' - V m '| △2'=| V m +1 '- V m '| (5)

更進一步演算,方程組5具體表示為: Further calculations, Equation 5 is specifically expressed as:

又,Yt=Ym+△S ',(7)其中,Yt為觸摸點縱坐標,當Vm 為極大值電壓時,觸摸點位置Yt為(Vm-1 -Vm+1 ),(Vm+1 -Vm ),(Vm-1 -Vm )其中任兩個當變數的一函數,Ym為探測電極E2m 的縱坐標。 And, Yt = Ym + △ S ' , (7) where, Yt is the touch point vertical coordinate, when V m is the maximum value of the voltage, the touch point Yt is (V m-1 -V m + 1), (V m +1 -V m ), (V m-1 -V m ) Any one of the two functions as a function, and Ym is the ordinate of the detecting electrode E 2m .

結合方程組(5)、(6)、(7),得到: Combining equations (5), (6), (7), we get:

下面討論三個特別點的計算:當△1'0;△2'≠0時,△S '-P y ,從而得:Yt Ym -P y The calculation of three special points is discussed below: when △1' 0; △ 2 ' ≠ 0, △ S ' - P y , which gives: Yt Ym - P y .

表示為該觸摸點趨近於該探測電極E2m-1 和探測電極E2m 的中線位置,其縱坐標值趨近於Ym-Py;當△1'=△2'時,△S '=0,Yt YmIt is indicated that the touch point is close to the midline position of the detecting electrode E 2m-1 and the detecting electrode E 2m , and the ordinate value thereof is close to Ym-Py; when Δ1'=Δ2', Δ S '= 0, Yt Ym .

則觸摸點趨近於該探測電極E2m 對應的位置,其縱坐標值趨近於Ym ;當△1'≠0;△2'0時,△S '+P y ,從而得:Yt Ym +P y Then the touch point approaches the position corresponding to the detection electrode E 2m , and the ordinate value thereof approaches Y m ; when Δ1' ≠ 0; Δ 2 ' 0, △ S ' + P y , which gives: Yt Ym + P y .

則觸摸點趨近於該探測電極E2m 和探測電極E2m+1 的中線位置,其橫坐標值趨近於Ym+Py。Then, the touch point approaches the center line position of the detecting electrode E 2m and the detecting electrode E 2m+1 , and the abscissa value thereof approaches Ym+Py.

上述三種情況符合實驗類比情況,表明方程式(6)滿足對觸摸點T座標的描述,該觸摸屏4中縱軸的任意一點的位置可以用上述方程式(8)來精確確定。The above three cases are in accordance with the experimental analogy, indicating that equation (6) satisfies the description of the touch point T coordinate, and the position of any point of the vertical axis of the touch screen 4 can be accurately determined by the above equation (8).

採用上述演算法,可以更加精確確定該觸摸屏上任意一點的座標。With the above algorithm, the coordinates of any point on the touch screen can be determined more accurately.

請參閱圖9,其是該觸摸屏進行分區確定觸摸點座標的分區示意圖。該觸摸屏4被分為兩個區域,分別為中間區域I與周邊區域II,其中,中間區域I包括所有距離該觸摸屏4橫邊緣最短距離大於等於Py且到縱邊距離大於等於Px的區域;周邊區域II包括所有距離該觸摸屏4橫邊距離小於Py且到縱邊距離小於Px的區域。Px,Py的值同上述內容所定義。Please refer to FIG. 9 , which is a schematic diagram of partitioning of the touch screen to determine the touch point coordinates. The touch screen 4 is divided into two regions, namely an intermediate region I and a peripheral region II, wherein the intermediate region I includes all regions whose shortest distance from the lateral edge of the touch screen 4 is greater than or equal to Py and the longitudinal edge distance is greater than or equal to Px; Region II includes all regions that are less than Py from the lateral edge of the touch screen 4 and less than Px from the longitudinal edge. The values of Px and Py are as defined above.

當觸摸點落在中間區域I時,如觸摸點T0可以採用上述方程式(4)和方程式(8)進行座標定位。When the touch point falls in the intermediate area I, the touch point T0 can be coordinately positioned using the above equations (4) and (8).

當觸摸點落在周邊區域II時,此時,觸摸點的座標滿足下麵的方程。When the touch point falls on the peripheral area II, at this time, the coordinates of the touched point satisfy the following equation.

當該第一探測電極E21 -E2y 電壓小於該第二探測電極E11 -E1x 電壓時,該第二探測電極的探測極值電壓為一極小值電壓,該第一探測電極的探測極值電壓為一極大值電壓。When the voltage of the first detecting electrode E 21 -E 2y is less than the voltage of the second detecting electrode E 11 -E 1x , the detecting extreme voltage of the second detecting electrode is a minimum voltage, and the detecting pole of the first detecting electrode The value voltage is a maximum voltage.

如觸摸點T1 介於E11 ~E11 +Px ,其橫軸最臨近為探測電極E11 ,次臨近探測電極只有E12 For example, if the touch point T 1 is between E 11 and E 11 +P x , the horizontal axis is closest to the detecting electrode E 11 , and the next adjacent detecting electrode is only E 12 .

對於橫軸座標:For the horizontal axis coordinates:

其V1 為極小值電壓時,觸摸點位置Xt 為(V2 -V1 )當變數的一函數,觸摸點位置Xt 滿足以下方程:V R 為參考電壓準位,其中VR >V2 >V1When V 1 is a minimum voltage, the touch point position X t is (V 2 -V 1 ) as a function of the variable, and the touch point position X t satisfies the following equation: V R is the reference voltage level, where V R >V 2 >V 1 .

如觸摸點T1介於E1x ~E1x -Px ,其橫軸最臨近為探測電極E1x ,次臨近探測電極只有E1x-1 。此時,其Vx 為極小值電壓,觸摸點位置Xt為(Vx-1 -Vx )當變數的一函數,觸摸點的座標滿足下面的方程:V R 為參考電壓準位,其中VR >Vx-1 >VxIf the touch point T1 is between E 1x ~ E 1x - P x , the horizontal axis is closest to the detecting electrode E 1x , and the next adjacent detecting electrode is only E 1x-1 . At this time, its V x is the minimum voltage, and the touch point position Xt is (V x-1 -V x ) as a function of the variable, and the coordinates of the touch point satisfy the following equation: V R is the reference voltage level, where V R >V x-1 >V x .

其Yt 座標符合上述方程式(8)。Its Y t coordinate conforms to equation (8) above.

如觸摸點T1 介於E21 ~E21 +Py ,其縱軸最臨近為探測電極E21 ,次臨近探測電極只有E22 For example, if the touch point T 1 is between E 21 and E 21 +P y , the vertical axis is closest to the detecting electrode E 21 , and the next adjacent detecting electrode is only E 22 .

對於縱軸座標:For the vertical axis coordinates:

其V1 為極大值電壓時,觸摸點位置Yt 為(V1 ’-V2 ’)當變數的一函數,觸摸點位置Yt 滿足以下方程:,VR ’為參考電壓准位,其中V1 ’>V2 ’>VR ’。When V 1 is the maximum voltage, the touch point position Y t is (V 1 '-V 2 ') as a function of the variable, and the touch point position Y t satisfies the following equation: , V R ' is the reference voltage level, where V 1 '>V 2 '>V R '.

如觸摸點T1 介於E2y ~E2y -Py ,其縱軸最臨近為探測電極E2y ,次臨近探測電極只有E2y-1 。此時,其Vy ’為極大值電壓,觸摸點位置Yt為(Vy ’-Vy-1 ’)當變數的一函數,觸摸點的座標滿足下面的方程:,VR ’為參考電壓准位,其中Vy ’>Vy-1 ’>VR ’。If the touch point T 1 is between E 2y ~ E 2y - P y , the vertical axis is closest to the detecting electrode E 2y , and the next adjacent detecting electrode is only E 2y-1 . At this time, its V y ' is the maximum voltage, and the touch point position Yt is (V y '-V y-1 '). As a function of the variable, the coordinates of the touch point satisfy the following equation: , V R ' is the reference voltage level, where V y '>V y-1 '>V R '.

其Xt座標符合上述方程式(4)。Its Xt coordinates conform to equation (4) above.

2、4‧‧‧觸摸屏2, 4‧‧‧ touch screen

21‧‧‧第一基板21‧‧‧First substrate

22‧‧‧第二基板22‧‧‧second substrate

23、43‧‧‧第一傳導層23, 43‧‧‧ first conductive layer

24、44‧‧‧第二傳導層24, 44‧‧‧ second conductive layer

25‧‧‧粘合層25‧‧‧Adhesive layer

27‧‧‧間隙子27‧‧‧ spacer

231、431‧‧‧第一導電層231, 431‧‧‧ first conductive layer

232、432‧‧‧第一電極232, 432‧‧‧ first electrode

241、441‧‧‧第二導電層241, 441‧‧‧ second conductive layer

242、442‧‧‧第二電極242, 442‧‧‧ second electrode

243‧‧‧探測電極243‧‧‧Detection electrode

433‧‧‧第一探測電極433‧‧‧First detection electrode

443‧‧‧第二探測電極443‧‧‧Second detection electrode

圖1是本發明觸摸屏第一實施方式的剖面結構示意圖。1 is a schematic cross-sectional view showing a first embodiment of a touch panel of the present invention.

圖2是圖1所示觸摸屏的第一傳導層和第二傳導層的平面結構示意圖。2 is a schematic plan view showing the first conductive layer and the second conductive layer of the touch screen shown in FIG. 1.

圖3是對圖1所示的觸摸屏未進行觸摸操作時,該觸摸屏的探測電極的電壓曲線圖。FIG. 3 is a voltage graph of the detecting electrodes of the touch screen when the touch screen shown in FIG. 1 is not touched. FIG.

圖4是對圖1所示的觸摸屏進行三點操作的觸摸點的實際位置示意圖。4 is a schematic diagram showing the actual position of a touch point for performing a three-point operation on the touch screen shown in FIG. 1.

圖5是圖4所示觸摸屏在三點觸摸操作下的探測電極的電壓曲線圖。FIG. 5 is a voltage graph of the detecting electrode of the touch screen shown in FIG. 4 under a three-point touch operation. FIG.

圖6是本發明觸摸屏的第二實施方式的第一傳導層和第二傳導層平面結構示意圖。6 is a schematic plan view showing the first conductive layer and the second conductive layer of the second embodiment of the touch screen of the present invention.

圖7是圖6所示的觸摸屏利用三點內插法確定觸摸點座標方法第一實施方式的電壓測量示意圖。FIG. 7 is a schematic diagram of voltage measurement of the first embodiment of the touch point coordinate method for determining the touch point coordinate method by using the three-point interpolation method of the touch screen shown in FIG. 6. FIG.

圖8是圖6所示的觸摸屏利用三點內插法確定觸摸點座標方法第二實施方式的電壓測量示意圖。FIG. 8 is a schematic diagram of voltage measurement of the second embodiment of the touch point coordinate method for determining the touch point coordinate method by the three-point interpolation method of the touch screen shown in FIG. 6. FIG.

圖9是圖6所示觸摸屏進行分區確定觸摸點座標的分區示意圖。FIG. 9 is a schematic diagram showing the partitioning of the touch screen shown in FIG. 6 for determining the touch point coordinates.

23‧‧‧第一傳導層23‧‧‧First Conductive Layer

24‧‧‧第二傳導層24‧‧‧Second conductive layer

231‧‧‧第一導電層231‧‧‧First conductive layer

232‧‧‧第一電極232‧‧‧first electrode

241‧‧‧第二導電層241‧‧‧Second conductive layer

242‧‧‧第二電極242‧‧‧second electrode

243‧‧‧探測電極243‧‧‧Detection electrode

Claims (29)

一種觸摸屏的定位方法,其包括:提供一觸摸屏,其包括一具阻抗異向性的導電層和設置在該導電層一側邊的多個相間隔的探測電極;提供一第一電壓到該導電層;當該觸摸屏被接觸時,提供一第二電壓到該導電層,該第二電壓的施加點定義為一觸摸點;依序測量該多個探測電極的電壓,並找出相對極值電壓和與該極值電壓最近鄰的探測電極的電壓;和根據測量出的該極值電壓和最近鄰的探測電壓的探測電極位置,確定觸摸點在該導電層的一位置座標。 A method for positioning a touch screen, comprising: providing a touch screen comprising a conductive layer having an impedance anisotropy and a plurality of spaced apart detecting electrodes disposed on one side of the conductive layer; providing a first voltage to the conductive a layer; when the touch screen is contacted, providing a second voltage to the conductive layer, the application point of the second voltage is defined as a touch point; sequentially measuring voltages of the plurality of detecting electrodes, and finding a relative extreme voltage And a voltage of the detecting electrode adjacent to the extreme value voltage; and determining a position coordinate of the touch point at the conductive layer according to the measured position of the detecting electrode of the extreme value voltage and the nearest neighbor detecting voltage. 如申請專利範圍第1項所述之定位方法,其特徵在於:該多個探測電極依次定義為E11 -E1x ,其所對應探測電壓分別定義為V1 -Vx ,該多個探測電極的座標分別定義為X1 -Xx ,任意兩相鄰的探測電極之間的距離定義為2Px,一中間電極定義為E1n ,2≦n≦x-1,Vn 為極值電壓,極值電壓所對應探測電極最近鄰的兩個探測電極分別定義為E1n-1 ,E1n+1 ,觸摸點座標定位為Xt。The positioning method according to claim 1, wherein the plurality of detecting electrodes are sequentially defined as E 11 -E 1x , and the corresponding detecting voltages are respectively defined as V 1 -V x , and the plurality of detecting electrodes are respectively The coordinates are defined as X 1 -X x , the distance between any two adjacent detector electrodes is defined as 2Px, and the middle electrode is defined as E 1n , 2≦n≦x-1, V n is the extreme voltage, pole The two detection electrodes adjacent to the detection electrode corresponding to the value voltage are respectively defined as E 1n-1 , E 1n+1 , and the touch point coordinates are positioned as Xt. 如申請專利範圍第2項所述之定位方法,其特徵在於:當該第一電壓小於該第二電壓時,該極值電壓為一極大值電壓。 The positioning method according to claim 2, wherein when the first voltage is less than the second voltage, the extreme voltage is a maximum voltage. 如申請專利範圍第3項所述之定位方法,其特徵在於:當V1 為極大值電壓時,觸摸點位置Xt滿足以下方程:,VR 為參考電壓準位,其中V1 >V2 >VRThe positioning method according to claim 3, wherein when the V 1 is a maximum voltage, the touch point position Xt satisfies the following equation: V R is a reference voltage level, where V 1 >V 2 >V R . 如申請專利範圍第3項所述之定位方法,其特徵在於:當Vx 為極大值電壓時,觸摸點位置Xt滿足以下方程:,VR 為參考電壓準位,其中Vx >Vx-1 >VRThe application of the method of locating patentable scope of Item 3, wherein: when the voltage V x is the maximum value, the touch point Xt satisfies the following equation: V R is the reference voltage level, where V x >V x-1 >V R . 如申請專利範圍第3項所述之定位方法,其特徵在於:當Vn 為極大值電壓,且2<n<x-1時,觸摸點位置Xt滿足以下方程組: The positioning method according to claim 3, wherein when V n is a maximum voltage and 2 < n < x -1, the touch point position Xt satisfies the following system of equations: 如申請專利範圍第2項所述之定位方法,其特徵在於:當該第一電壓大於該第二電壓時,該極值電壓為一極小值電壓。 The positioning method according to claim 2, wherein when the first voltage is greater than the second voltage, the extreme voltage is a minimum voltage. 如申請專利範圍第7項所述之定位方法,其特徵在於:當V1 為極小值電壓時,觸摸點位置Xt滿足以下方程:,VR 為參考電壓準位,其中VR >V2 >V1The positioning method according to claim 7 is characterized in that when V 1 is a minimum voltage, the touch point position Xt satisfies the following equation: V R is a reference voltage level, where V R > V 2 > V 1 . 如申請專利範圍第7項所述之定位方法,其特徵在於:當Vx 為極小值電壓時,觸摸點位置Xt滿足以下方程:,VR 為參考電壓準位,其中VR >Vx-1 >VxThe positioning method according to claim 7 is characterized in that: when V x is a minimum voltage, the touch point position Xt satisfies the following equation: V R is the reference voltage level, where V R >V x-1 >V x . 如申請專利範圍第7項所述之定位方法,其特徵在於:當Vn 為極小值電壓,其中2<n<x-1,觸摸點位置Xt滿足以下方程組: The positioning method according to claim 7 is characterized in that when V n is a minimum voltage, wherein 2 < n < x -1, the touch point position Xt satisfies the following equations: 如申請專利範圍第1項所述之定位方法,其特徵在於:該導電層為平行碳奈米管薄膜。 The positioning method according to claim 1, wherein the conductive layer is a parallel carbon nanotube film. 如申請專利範圍第1項所述之定位方法,其特徵在於:該觸摸屏相對於該多個探測電極的一側,具有一第一電極,該第一電壓由該第一電極提供至該導電膜。 The positioning method of claim 1, wherein the touch screen has a first electrode with respect to one side of the plurality of detecting electrodes, and the first voltage is supplied to the conductive film by the first electrode. . 如申請專利範圍第12項所述之定位方法,其特徵在於:該第一電極和該多個探測電極排列方向與該導電層的主導電方向垂直。 The positioning method according to claim 12, wherein the first electrode and the plurality of detecting electrodes are arranged in a direction perpendicular to a main conductive direction of the conductive layer. 如申請專利範圍第12項所述之定位方法,其特徵在於:當依序測量該多個探測電極的電壓時,提供該第一電壓到其他未進行測量的探測電極。 The positioning method according to claim 12, wherein when the voltages of the plurality of detecting electrodes are sequentially measured, the first voltage is supplied to other detecting electrodes that are not measured. 一種觸摸屏的定位方法,其包括 提供一觸摸屏,其包括一第一導電層、設置在該觸摸屏一側邊的多個相間隔的第一探測電極、一第二導電層和設置在與該多個第一探測電極垂直的一側邊的多個相間隔的第二探測電極,該第一導電層與第二導電層具阻抗異向性;提供一第一電壓到該第一導電層;提供一第二電壓到該第二導電層,該第一導電層與該第二導電層之間的接觸點定義為一觸摸點;測量該多個第一探測電極的電壓,並找出相對極值電壓及與該極值電壓最近鄰的第一探測電極的電壓,根據測量出的該極值電壓及最近鄰的探測電壓的第一探測電極位置,確定觸摸點在該導電層的一水平位置座標;測量該多個第二探測電極的電壓,並找出相對極值電壓和與該極值電壓最近鄰的第二探測電極的電壓,根據測量出的該極值電壓和最近鄰的探測電壓的第二探測電極位置,確定觸摸點在該導電層的一垂直位置座標。 A method for positioning a touch screen, including Providing a touch screen comprising a first conductive layer, a plurality of spaced apart first detecting electrodes disposed on one side of the touch screen, a second conductive layer, and a side disposed on a side perpendicular to the plurality of first detecting electrodes a plurality of spaced apart second detecting electrodes, the first conductive layer and the second conductive layer are impedance anisotropic; providing a first voltage to the first conductive layer; providing a second voltage to the second conductive a contact point between the first conductive layer and the second conductive layer is defined as a touch point; measuring voltages of the plurality of first detecting electrodes, and finding a relative extreme voltage and nearest to the extreme value voltage The voltage of the first detecting electrode determines a horizontal position coordinate of the touch point at the conductive layer according to the measured extreme value voltage and the first detecting electrode position of the nearest neighbor detecting voltage; and measuring the plurality of second detecting electrodes Voltage, and find the relative extreme voltage and the voltage of the second detecting electrode nearest to the extreme voltage, and determine the touch point according to the measured extreme value voltage and the second detecting electrode position of the nearest neighbor detecting voltage In the A vertical position coordinates of the dielectric layer. 如申請專利範圍第15項所述之定位方法,其特徵在於:該多個第二探測電極依次定義為E21 -E2y ,其所對應探測電壓分別定義為V1 ’-Vy ’,該多個第二探測電極的座標分別定義為Y1 -Yy ,任意兩相鄰的第二探測電極之間的距離定義為2Py,極值電壓為Vm ’,該極值電壓對應探測電極定義為E2m ,2≦m≦y-1,極值電壓所對應探測電極最近 鄰的兩個探測電極分別定義為E2m-1 ,E2m+1 ,觸摸點在第二探測電極排列方向的座標定位為Yt。The positioning method according to claim 15 is characterized in that: the plurality of second detecting electrodes are sequentially defined as E 21 -E 2y , and the corresponding detecting voltages thereof are respectively defined as V 1 '-V y ', The coordinates of the plurality of second detecting electrodes are respectively defined as Y 1 -Y y , the distance between any two adjacent second detecting electrodes is defined as 2Py, and the extremum voltage is V m ', and the extremum voltage corresponds to the detecting electrode definition For E 2m , 2≦m≦y-1, the two detection electrodes nearest to the detection electrode corresponding to the extreme voltage are defined as E 2m-1 , E 2m+1 , and the coordinates of the touch point in the direction of the second detection electrode. Positioned as Yt. 如申請專利範圍第16項所述之定位方法,其特徵在於:當該第一電壓小於該第二電壓時,該第一探測電極的極值電壓為一極大值電壓,該第二探測電極的極值電壓為一極小值電壓。 The positioning method of claim 16, wherein when the first voltage is less than the second voltage, the extreme voltage of the first detecting electrode is a maximum voltage, and the second detecting electrode The extreme voltage is a very small voltage. 如申請專利範圍第17項所述之定位方法,其特徵在於:當V1 ’為極小值電壓時,觸摸點位置Yt滿足以下方程:,VR ’為參考電壓,其中VR ’>V2 ’>V1 ’。The positioning method according to claim 17, wherein when the V 1 ' is a minimum voltage, the touch point position Yt satisfies the following equation: , V R ' is the reference voltage, where V R '>V 2 '>V 1 '. 如申請專利範圍第17項所述之定位方法,其特徵在於:當Vy ’為極小值電壓時,觸摸點位置Yt滿足以下方程:V R '為參考電壓,其中VR ’>Vy-1 ’>Vy ’。The positioning method according to claim 17, wherein when the V y ' is a minimum voltage, the touch point position Yt satisfies the following equation: , V R ' is the reference voltage, where V R '>V y-1 '>V y '. 如申請專利範圍第17項所述之定位方法,其特徵在於:當Vm ’為極小值電壓,且2<m<y-1時,觸摸點位置Yt滿足以下方程組: The positioning method according to claim 17 is characterized in that when V m ' is a minimum voltage and 2 < m < y-1, the touch point position Yt satisfies the following equation group: 如申請專利範圍第16項所述之定位方法,其特徵在於: 當該第一電壓大於該第二電壓時,該第一探測電極的極值電壓為一極小值電壓,該第二探測電極的極值電壓為一極大值電壓。 The positioning method described in claim 16 is characterized in that: When the first voltage is greater than the second voltage, the extreme voltage of the first detecting electrode is a minimum voltage, and the extreme voltage of the second detecting electrode is a maximum voltage. 如申請專利範圍第21項所述之定位方法,其特徵在於:當V1 ’為極大值電壓時,觸摸點位置Yt滿足以下方程:,VR ’為參考電壓,其中V1 ’>V2 ’>VR ’。The positioning method according to claim 21, wherein when V 1 ' is a maximum voltage, the touch point position Yt satisfies the following equation: , V R ' is the reference voltage, where V 1 '>V 2 '>V R '. 如申請專利範圍第21項所述之定位方法,其特徵在於:當Vy ’為極大值電壓時,觸摸點位置Yt滿足以下方程:,VR ’為參考電壓,其中Vy ’>Vy-1 ’>VR ’。The positioning method according to claim 21, wherein when the V y ' is a maximum voltage, the touch point position Yt satisfies the following equation: , V R ' is the reference voltage, where V y '>V y-1 '>V R '. 如申請專利範圍第21項所述之定位方法,其特徵在於:當Vm ’為極大值電壓時,其中2<m<y-1,觸摸點位置Yt滿足以下方程組: The positioning method according to claim 21, wherein when V m ' is a maximum voltage, wherein 2 < m < y-1, the touch point position Yt satisfies the following equation group: 如申請專利範圍第15項所述之定位方法,其特徵在於:該第一導電層和該第二導電層為平行碳奈米管薄膜,且第一導電層及第二導電層的主導電方向相互垂直。 The positioning method according to claim 15, wherein the first conductive layer and the second conductive layer are parallel carbon nanotube films, and the main conductive directions of the first conductive layer and the second conductive layer Vertical to each other. 如申請專利範圍第15項所述之定位方法,其特徵在於:該第一導電層相對於該多個第一探測電極的一側,具有一第一電極,該第一電壓由該第一電極提供到該第一導 電膜,該第二導電層相對於該多個第二探測電極的一側,具有一第二電極,該第二電壓由該第二電極提供到該第二導電膜。 The positioning method of claim 15, wherein the first conductive layer has a first electrode with respect to one side of the plurality of first detecting electrodes, and the first voltage is generated by the first electrode Provided to the first guide An electric film, the second conductive layer has a second electrode opposite to the side of the plurality of second detecting electrodes, and the second voltage is supplied to the second conductive film by the second electrode. 如申請專利範圍第26項所述之定位方法,其特徵在於:該第一電極及該多個第二探測電極排列方向與該第一導電層的主導電方向垂直,該第二電極和該多個第二探測電極排列方向與該第一導電層的主導電方向垂直。 The positioning method of claim 26, wherein the first electrode and the plurality of second detecting electrodes are arranged in a direction perpendicular to a main conductive direction of the first conductive layer, the second electrode and the plurality of electrodes The second detecting electrodes are arranged in a direction perpendicular to the main conductive direction of the first conductive layer. 如申請專利範圍第26項所述之定位方法,其特徵在於:當依序測量該多個第一探測電極的電壓時,提供該第一電壓到其他未進行測量的第一探測電極,且提供該第二電壓到未進行測量的第二探測電極。 The positioning method of claim 26, wherein when the voltages of the plurality of first detecting electrodes are sequentially measured, the first voltage is supplied to other first detecting electrodes that are not measured, and is provided The second voltage is to a second detecting electrode that is not measured. 如申請專利範圍第26項所述之定位方法,其特徵在於:當依序測量該多個第二探測電極的電壓時,提供該第二電壓到其他未進行測量的第二探測電極,且提供該第一電壓到未進行測量的第一探測電極。 The positioning method of claim 26, wherein when the voltages of the plurality of second detecting electrodes are sequentially measured, the second voltage is supplied to other second detecting electrodes that are not measured, and is provided The first voltage is to a first detecting electrode that is not measured.
TW98123996A 2009-07-15 2009-07-15 A positioning method of multi-touch TWI420355B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98123996A TWI420355B (en) 2009-07-15 2009-07-15 A positioning method of multi-touch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98123996A TWI420355B (en) 2009-07-15 2009-07-15 A positioning method of multi-touch

Publications (2)

Publication Number Publication Date
TW201102886A TW201102886A (en) 2011-01-16
TWI420355B true TWI420355B (en) 2013-12-21

Family

ID=44837647

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98123996A TWI420355B (en) 2009-07-15 2009-07-15 A positioning method of multi-touch

Country Status (1)

Country Link
TW (1) TWI420355B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102681711B (en) * 2011-03-15 2015-12-02 群康科技(深圳)有限公司 Contact panel and multi-point detection method thereof
TW201324261A (en) 2011-12-01 2013-06-16 Novatek Microelectronics Corp Multi-touch positioning method
TWI485610B (en) * 2012-12-28 2015-05-21 Egalax Empia Technology Inc Method and device for detecting touch or proximity

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI269997B (en) * 2005-06-08 2007-01-01 Elan Microelectronics Corp Multi-object detection method of capacitive touch pad
US7196696B2 (en) * 2004-03-19 2007-03-27 Tsung-Ying Li Position touch screen panel and method of arranging a resistive sensing circuit thereof
US7230609B2 (en) * 2003-06-16 2007-06-12 Generaltouch Technology Co., Ltd. Touch position coordinate detecting system
US7312409B2 (en) * 2004-02-16 2007-12-25 Sunplus Technology Co., Ltd. Touch pad and position detecting circuit and method thereof
TW200905539A (en) * 2007-07-24 2009-02-01 J Touch Corp A controller framework of resistive touch panel and a method of differentiating and operating multi-point coordinates
TW200910167A (en) * 2007-08-20 2009-03-01 Inventec Appliances Corp Computer system with multi-touch screen
TW200917111A (en) * 2007-10-02 2009-04-16 Himark Technology Inc Resistive type multi-touch control panel and its detection method
TW200925966A (en) * 2007-12-11 2009-06-16 J Touch Corp Method of controlling multi-point controlled controller
TW200928935A (en) * 2007-12-19 2009-07-01 Asustek Comp Inc Touch panel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230609B2 (en) * 2003-06-16 2007-06-12 Generaltouch Technology Co., Ltd. Touch position coordinate detecting system
US7312409B2 (en) * 2004-02-16 2007-12-25 Sunplus Technology Co., Ltd. Touch pad and position detecting circuit and method thereof
US7196696B2 (en) * 2004-03-19 2007-03-27 Tsung-Ying Li Position touch screen panel and method of arranging a resistive sensing circuit thereof
TWI269997B (en) * 2005-06-08 2007-01-01 Elan Microelectronics Corp Multi-object detection method of capacitive touch pad
TW200905539A (en) * 2007-07-24 2009-02-01 J Touch Corp A controller framework of resistive touch panel and a method of differentiating and operating multi-point coordinates
TW200910167A (en) * 2007-08-20 2009-03-01 Inventec Appliances Corp Computer system with multi-touch screen
TW200917111A (en) * 2007-10-02 2009-04-16 Himark Technology Inc Resistive type multi-touch control panel and its detection method
TW200925966A (en) * 2007-12-11 2009-06-16 J Touch Corp Method of controlling multi-point controlled controller
TW200928935A (en) * 2007-12-19 2009-07-01 Asustek Comp Inc Touch panel

Also Published As

Publication number Publication date
TW201102886A (en) 2011-01-16

Similar Documents

Publication Publication Date Title
JP5508964B2 (en) Touch panel positioning method
JP2011014142A (en) Touch panel and driving method thereof
US8120371B2 (en) Object position sensing apparatus
US8829926B2 (en) Transparent proximity sensor
TWI521288B (en) An array of touch unit and a display panel having the same
TWI503723B (en) Capacitive touch panel and method for detecting touch spot
TWI506502B (en) Method of determining touch point and touch pressure
TWI506520B (en) Method for detecting touch spot of capacitive touch panel
TWI442276B (en) Touch panel
US20110242047A1 (en) Touch screen panel and display device having the same
TW201508603A (en) Sensing method based on capacitive touch device
JP2014503888A (en) Linear projection type single layer capacitive sensor
US20140197845A1 (en) Apparatus for inspecting touch panel and method thereof
JP2013152581A (en) Detector, detection method and display device
WO2016082244A1 (en) Touch panel and touch display device
TWI420356B (en) Touch panel and method for driving same
CN101901069A (en) Multipoint touch screen and driving method thereof
KR102000964B1 (en) Position measuring apparatus and driving method thereof
TWI459267B (en) Method for detecting touch spot of touch panel
TWI420355B (en) A positioning method of multi-touch
WO2015192597A1 (en) Touch panel and driving method therefor and display device
TWI585658B (en) Method for detecting touch spot of touch panel
US9958999B2 (en) Capacitive touch sensor with Z-shaped electrode pattern
TWI420376B (en) Method of multi-touch detection for touch panel
KR20110005650A (en) Touch panel and multi-touch detecting method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees