TWI412596B - Blast furnace iron production with integrated power generation - Google Patents

Blast furnace iron production with integrated power generation Download PDF

Info

Publication number
TWI412596B
TWI412596B TW099104039A TW99104039A TWI412596B TW I412596 B TWI412596 B TW I412596B TW 099104039 A TW099104039 A TW 099104039A TW 99104039 A TW99104039 A TW 99104039A TW I412596 B TWI412596 B TW I412596B
Authority
TW
Taiwan
Prior art keywords
blast furnace
gas
top gas
oxygen
iron
Prior art date
Application number
TW099104039A
Other languages
Chinese (zh)
Other versions
TW201120220A (en
Inventor
Michael Dennis Lanyi
Joseph Anthony Terrible
Maarten Geerdes
Roman Vaynshteyn
Original Assignee
Air Prod & Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/630,256 external-priority patent/US20100146982A1/en
Application filed by Air Prod & Chem filed Critical Air Prod & Chem
Publication of TW201120220A publication Critical patent/TW201120220A/en
Application granted granted Critical
Publication of TWI412596B publication Critical patent/TWI412596B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2

Landscapes

  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

An integrated system for blast furnace iron making and power production based upon higher levels of oxygen enrichment in the blast gas is disclosed. The integrated system leads to; (1) enhanced productivity in the blast furnace, (2) more efficient power production, and (3) the potential to more economically capture and sequester carbon dioxide. Oxygen enhances the ability of coal to function as a source of iron reductant and to be gasified within the blast furnace thereby generating an improved fuel-containing top gas.

Description

整合功率生產的鼓風爐鐵生產方法Method for producing blast furnace iron integrated with power production 對相關請的申交叉引用Cross-reference to the relevant application

本申請是2008年12月5日提交的美國申請第12/329010號的部分繼續申請;其公開的內容通過參考引入本申請。美國申請第12/329010號要求2007年12月6日提交的美國臨時申請第60/992754號的權益和2008年8月5日提交的美國臨時申請第61/086237號的權益。這些美國臨時申請公開的內容通過參考引入本申請。This application is a continuation-in-part of U.S. Application Serial No. 12/329,010, filed on Dec. 5, 2008, the disclosure of which is hereby incorporated by reference. US Application No. 12/329,010 claims the benefit of U.S. Provisional Application No. 60/992,754, filed on Dec. 6, 2007, and U.S. Provisional Application No. 61/086237, filed on August 5, 2008. The disclosures of these U.S. Provisional Applications are incorporated herein by reference.

本發明涉及將供應到烴注入的製鐵鼓風爐的空氣進行富集並使用來自所述爐子的煙道或爐頂氣體來產生功率。本文使用的“烴”是指燃料或還原劑,包括油、天然氣、石油焦炭、煤、其他材料等等和/或它們的混合物。The present invention relates to enriching the air supplied to a hydrocarbon injection blast furnace and using the flue or top gas from the furnace to generate power. As used herein, "hydrocarbon" refers to a fuel or reducing agent, including oil, natural gas, petroleum coke, coal, other materials, and the like, and/or mixtures thereof.

“Oxygen blast furnace and combined cycle(OBF-CC) -an efficient iron-making and power generation process”,Y. Jianwei等人,Energy 28(2003)825-835中描述了結合製鐵和產生功率的方法。A method of combining iron making and generating power is described in "Oxygen blast furnace and combined cycle (OBF-CC) - an efficient iron-making and power generation process", Y. Jianwei et al, Energy 28 (2003) 825-835.

美國專利第5,268,019號描述了多個空氣分離單元(ASUs)和在其中製備氧氣的方法;該發明通過參考引入本發明中。美國專利第5,582,029號和WO 9728284-A1中描述了結合製鐵方法和ASU的方法。“Developments in iron making and opportunities for power generation”,1999 Gasification Technologies Conference,三藩市,加州,1999年10月17-20日,描述了結合ASU和產生功率的方法。該出版物也描述了在製鐵中使用煤以便減少所需焦炭的用量。A plurality of air separation units (ASUs) and a method of preparing oxygen therein are described in U.S. Patent No. 5,268,019; the disclosure of which is incorporated herein by reference. A method of combining a steel making process and an ASU is described in U.S. Patent No. 5,582,029 and WO 9728284-A1. "Developments in iron making and opportunities for power generation", 1999 Gasification Technologies Conference, San Francisco, California, October 17-20, 1999, describes a method of combining ASU and generating power. The publication also describes the use of coal in the manufacture of iron in order to reduce the amount of coke required.

美國專利第6,216,441 B1號描述了在燃氣渦輪機或聯合式循環發電站中進行燃燒以前除去煙道或爐頂氣體中的惰性氣體。U.S. Patent No. 6,216,441 B1 describes the removal of inert gases from flue or top gas prior to combustion in a gas turbine or combined cycle power plant.

前文中確定的專利和專利申請所公開的內容通過參考引入本申請中。The disclosures of the patents and patent applications identified in the foregoing are hereby incorporated by reference.

在本技術中存在對一種整合的系統的需要,該整合的系統將鼓風爐中的煤的氣化和富集氧氣的製鐵與產生功率結合,並且如果需要的話,與二氧化碳的除去和扣押結合。There is a need in the art for an integrated system that combines gasification of coal in a blast furnace with oxygen-enriched iron making with production power and, if desired, with carbon dioxide removal and seizure.

本發明通過提供了一種基於將爐頂氣體中的生熱值或發熱值最大化的整合系統,來解決涉及將傳統的製鐵方法與燃燒爐頂氣體而得到的高效率聯合式循環產生功率進行結合的問題,並且同時增加了所述爐子的熱金屬產量。所述整合的系統包括在一種方式下操作鼓風爐,其中該方式能夠達到至少一個以下的目的:a)粉煤注射(PCI)速率得到最大化並且與(b)使用氧氣對提供到鼓風爐的空氣進行的“超級富集”進行組合(例如,通過ASU、膜、其他適合用於產生氧氣的裝置),其中使用氧氣對鼓風空氣進行的'超級富集'意即將鼓風的氧氣濃度富集到大於約32%並高至約70%摩爾體積(例如,至少40%至大約60%摩爾體積),c)將蒸汽加到所述富含氧氣的鼓風來提高氫氣的產生和控制在鼓風爐較低部分中的溫度(例如,可以從聯合式循環(CC)蒸汽渦輪機提取蒸汽),和d)焦炭消耗速率被最小化到在礦石還原過程期間足以提供支援和氣體滲透性的程度。所述的超級富集的空氣(和如果需要時的蒸汽)提高了在爐子中的煤的氣化來生產CO和H2 的還原氣體,由此替代了更昂貴的冶金焦。所述超級富集的空氣也可以達到至少一種以下的目的:增加所述爐子中所用的煤的量,b)更完全的氣化,c)改善指定爐子的製鐵產率,和d)產生較高的生熱值,或含燃料的爐頂氣體,其可以配合下游處理達到下游處理的操作的最高效率(例如,在一些情況中,僅需要少量或不需要補充的燃料)。The present invention solves the problem of high efficiency combined cycle generation power involving the conventional iron making method and combustion of the top gas by providing an integrated system that maximizes the heat generation value or the heat value in the top gas. The problem of bonding, and at the same time, increases the hot metal yield of the furnace. The integrated system includes operating the blast furnace in a manner that achieves at least one of the following objectives: a) maximizing the rate of pulverized coal injection (PCI) and (b) using oxygen to provide air to the blast furnace. "super-enrichment" is combined (for example, through ASU, membranes, other devices suitable for generating oxygen), where the 'super-enrichment' of blast air using oxygen means that the oxygen concentration of the blast is enriched to Greater than about 32% and up to about 70% molar volume (eg, at least 40% to about 60% molar volume), c) adding steam to the oxygen-enriched blast to increase hydrogen production and control in a blast furnace The temperature in the lower portion (e.g., steam can be extracted from a combined cycle (CC) steam turbine), and d) the rate of coke consumption is minimized to the extent that sufficient support and gas permeability are provided during the ore reduction process. Super-enriched air (and, if desired when steam) improves the gasification of coal in a furnace to produce a reducing gas CO and H 2, thereby replacing the more expensive metallurgical coke. The super-enriched air may also achieve at least one of the following purposes: increasing the amount of coal used in the furnace, b) more complete gasification, c) improving the iron production yield of the designated furnace, and d) producing Higher calorific value, or fuel-containing top gas, can match the highest efficiency of downstream processing to downstream processing operations (eg, in some cases, only a small amount or no need for supplemental fuel).

最大化PCI注射率提高了鼓風爐的有效的去硫化和能量轉換特性與下游爐頂氣體處理和轉換方法和設備結合生產了至少一種功率、合成氣、蒸汽、其他的優點。以PCI注射的鼓風爐的操作可以與超級富集的空氣結合,這可以消除傳統熱鼓風爐的需要。Maximizing the PCI injection rate increases the effective desulfurization and energy conversion characteristics of the blast furnace in combination with downstream top gas processing and conversion methods and equipment to produce at least one of power, syngas, steam, and other advantages. The operation of a blast furnace with PCI injection can be combined with super-enriched air, which eliminates the need for a conventional hot blast furnace.

本發明的一個方面涉及製鐵和煤的氣化,其與聯合式循環功率生產整合。One aspect of the invention relates to the gasification of iron and coal, which is integrated with combined cycle power production.

本發明的另外一個方面涉及製鐵和煤的氣化,其中注射入鼓風爐的氧氣是由ASU產生的,該ASU也與所述聯合式循環燃氣渦輪機整合來提供氮氣用於冷卻和品質提高,並且將任何來自供應助燃空氣到燃氣渦輪機的壓縮機的過量壓縮空氣供應到所述ASU。Another aspect of the invention relates to the gasification of iron and coal, wherein the oxygen injected into the blast furnace is produced by an ASU that is also integrated with the combined cycle gas turbine to provide nitrogen for cooling and quality improvement, And any excess compressed air from the compressor supplying combustion air to the gas turbine is supplied to the ASU.

本發明的另外一個方面涉及製鐵和煤的氣化,其與聯合式循環功率生產和可以進行捕獲的二氧化碳捕獲整合,兩者都通過在所述爐頂氣體中由於使用了超級富集的氧氣鼓風而導致的降低的N2 濃度而得到或增強。捕獲或除去二氧化碳可以增加爐頂氣體的燃料值,在任選的再循環環路中,降低或消除供應到爐子的二氧化碳量,和其他優點。Another aspect of the invention relates to the gasification of iron and coal, which is integrated with combined cycle power production and capture of carbon dioxide that can be captured, both by using super-enriched oxygen in the top gas Obtained or enhanced by the reduced N 2 concentration caused by blasting. Capturing or removing carbon dioxide can increase the fuel value of the top gas, reduce or eliminate the amount of carbon dioxide supplied to the furnace, and other advantages in an optional recirculation loop.

本發明的進一步方面涉及製鐵和煤的氣化,其與聯合式循環功率生產和二氧化碳捕獲整合,同時在二氧化碳除去和捕獲步驟之前包括額外的轉化反應器,以便能夠將較大部分的二氧化碳除去和捕獲。A further aspect of the invention relates to the gasification of iron and coal, which is integrated with combined cycle power production and carbon dioxide capture, while including an additional conversion reactor prior to the carbon dioxide removal and capture step to enable removal of a larger portion of carbon dioxide And capture.

本發明的另外一個方面涉及製鐵和煤的氣化,其與聯合式循環功率生產和CO2 捕獲整合,利用了來自燃氣渦輪機的排氣中所含的熱量而產生的蒸汽或者來自ASU的氮氣來驅動轉化反應器或CO2 除去(例如,捕獲)方法。A steam further aspect of the invention relates to the gasification of coal and iron, which is integrated with a combined-cycle power production and CO 2 capture utilizing heat of the exhaust from the gas turbine contained in or generated from the ASU nitrogen to drive the conversion reactor or removal of CO 2 (e.g., capture) method.

本發明的進一步方面涉及製鐵和煤的氣化,其與爐頂氣體清除和/或CO2 除去整合用以生產合成氣。A further aspect of the present invention relates to an iron and coal gasification system, which is integrated with the top gas purge to remove 2 and / or CO for the production of synthesis gas.

本發明的一個方面涉及一種製鐵的方法,其中包括:將鐵礦石、焦炭和煤引入到鼓風爐內,由此通過引入超級富集的空氣到鼓風爐內將所述煤氣化,和從鼓風爐回收爐頂氣體,使用該爐頂氣體來產生功率;以及,從所述鼓風爐回收熱金屬。One aspect of the invention relates to a method of making iron, comprising: introducing iron ore, coke, and coal into a blast furnace, thereby coal gasifying by introducing super-enriched air into a blast furnace, and recovering from a blast furnace a top gas that is used to generate power; and a hot metal is recovered from the blast furnace.

本發明的另外一個方面涉及一種產生功率的方法,其中包括:從鼓風爐提供爐頂氣體,或部分爐頂氣體,其包括一氧化碳、二氧化碳、氫氣、氮氣,它們的濃度使其具有的生熱值可以配合在下游燃氣渦輪機所需的燃料值操作範圍內而不需要補充的燃料,將所述氣體在足以產生功率的條件下引入燃氣渦輪機,和;將來自燃氣渦輪機的排氣在足以產生功率的條件下引入熱回收蒸汽產生器。Another aspect of the invention relates to a method of generating power, comprising: providing a top gas from a blast furnace, or a portion of a top gas comprising carbon monoxide, carbon dioxide, hydrogen, nitrogen, at a concentration such that the heat generation value can be Fitting the fuel within the operating range of the fuel value required by the downstream gas turbine without the need for additional fuel, introducing the gas into the gas turbine under conditions sufficient to generate power, and; venting the exhaust from the gas turbine sufficient to generate power The heat recovery steam generator is introduced under the conditions.

本發明的進一步方面涉及一種氣化煤和製鐵的方法,其中包括:將煤引入製鐵鼓風爐,和;將富含氧氣的空氣引入所述鼓風爐,其中在所述鼓風爐內的條件足以將至少一部分的所述煤轉換為包括一氧化碳、二氧化碳和氫氣的氣體;除去所述爐子中的一部分所述氣體,除去所述氣體中的至少一部分二氧化碳,將所述氣體供應到聯合式循環產生功率系統、轉化反應器和製鐵鼓風爐中的至少一種;和,從所述製鐵鼓風爐回收鐵。A further aspect of the invention relates to a method of gasifying coal and making iron, comprising: introducing coal into a blast furnace, and introducing oxygen-enriched air into the blast furnace, wherein conditions in the blast furnace are sufficient to at least partially Converting the coal into a gas comprising carbon monoxide, carbon dioxide and hydrogen; removing a portion of the gas from the furnace, removing at least a portion of the carbon dioxide from the gas, supplying the gas to a combined cycle to produce a power system, converting At least one of a reactor and an iron-making blast furnace; and, recovering iron from the iron-making blast furnace.

本發明涉及裝置、方法和組合物,提供了一種整合的系統,該系統利用提供到鼓風爐的空氣的氧氣的富集(例如通過ASU)而有效地結合了煤的氣化和鼓風爐製鐵。所述整合的系統在製鐵鼓風爐中就地將煤氣化並且生產煙道或者爐頂氣體,這些煙道或者爐頂氣體對產生功率具有改進的應用性,並且,如果需要的話,可以從這些煙道或者爐頂氣體中除去或者扣押二氧化碳。The present invention relates to apparatus, methods, and compositions that provide an integrated system that utilizes the enrichment of oxygen supplied to the blast furnace (e.g., via ASU) to effectively combine coal gasification and blast furnace steelmaking. The integrated system will coal gasify and produce flue or top gas in situ in a steel blast furnace that has improved applicability to power generation and, if desired, from these smokes Carbon dioxide is removed or sequestered in the gas or top gas.

超出正常供應到空氣鼓風的附加氧氣是被直接注入或者結合到被供應到鼓風爐的鼓風空氣來提高鼓風爐的效率,由此可以接受比較大量的被注入的烴或化石燃料,例如來自粉煤注射系統(PCI)的煤,和/或讓更多的粉煤被注入。這種PCI系統降低了在鼓風爐中進行製鐵所需的焦炭用量。另外,將富含氧氣的空氣提供到鼓風爐能夠產生:1)具有降低的氮含量和增加的燃料或生熱值的煙道或者爐頂氣體,2)具有增大的產生功率值的爐頂氣體,3)適合於燃氣渦輪機功率產生器的爐頂氣體,4)通過在鼓風爐中就地將煤氣化獲得的爐頂氣體,和其他的有益之處。相對於傳統的方法,本發明具有顯著的改進,其整合系統獲得的爐頂氣體可以具有增加的氫濃度和一氧化碳濃度,並且在某些情況下具有降低的氮氣含量。Additional oxygen that is normally supplied to the air blast is directly injected or incorporated into the blast air supplied to the blast furnace to increase the efficiency of the blast furnace, thereby accepting a relatively large amount of injected hydrocarbon or fossil fuel, such as from pulverized coal. Injection system (PCI) coal, and / or allow more pulverized coal to be injected. This PCI system reduces the amount of coke required to make iron in a blast furnace. In addition, the provision of oxygen-enriched air to the blast furnace can produce: 1) flue or top gas with reduced nitrogen content and increased fuel or heat generation value, 2) top gas with increased power generation value 3) top gas suitable for gas turbine power generators, 4) top gas obtained by coal gasification in situ in a blast furnace, and other benefits. The present invention has significant improvements over conventional methods in that the top gas obtained by the integrated system can have an increased hydrogen concentration and a carbon monoxide concentration, and in some cases a reduced nitrogen content.

在本發明的一個方面中,煤能夠與其他烴結合或者與其他烴分別地共同注入。In one aspect of the invention, the coal can be combined with other hydrocarbons or co-injected separately with other hydrocarbons.

本發明能夠允許控制和選擇所需的經濟操作基礎,該基礎是通過衡量以下變數的益處和成本來達到的:焦炭、煤、鐵、氧氣、電力和爐子的利用率(即熱鼓風)。對於給定的焦炭、氧氣和煤的成本,可以選擇優化的鐵和電力數值。通常,導入鼓風爐的煤的量的增加會使所用氧氣的量增加,但是這會使所用焦炭的量減少,繼而使製鐵的成本降低。類似地,煤的量的增加也會使所用的氧氣的量增加並使熱鼓風溫度降低(例如,由爐子提供的熱量能夠被減少),並增加能夠產生的電量。根據上述變數的相對經濟價值,可以消除熱鼓風(爐子)並由此可以利用所述爐子已經消耗的能量來產生功率,或用於操作水轉化反應器、二氧化碳除去等系統。The present invention is capable of allowing control and selection of the desired economical operational basis that is achieved by measuring the benefits and costs of the following variables: coke, coal, iron, oxygen, electricity, and furnace utilization (i.e., hot blast). For a given cost of coke, oxygen and coal, an optimized iron and power value can be chosen. Generally, an increase in the amount of coal introduced into the blast furnace increases the amount of oxygen used, but this reduces the amount of coke used, which in turn reduces the cost of making the iron. Similarly, an increase in the amount of coal will also increase the amount of oxygen used and reduce the temperature of the hot blast (e.g., the heat provided by the furnace can be reduced) and increase the amount of electricity that can be produced. Depending on the relative economic value of the above variables, it is possible to eliminate hot blasts (furns) and thereby utilize the energy already consumed by the furnace to generate power, or to operate systems such as water conversion reactors, carbon dioxide removal, and the like.

如需要的話,引入鼓風爐並用於富集化空氣所用的氧氣可以由任何適合的氣體分離系統,諸如低溫蒸餾(包括ASU)、膜(例如,離子傳輸膜)、真空變壓吸附(PVSA)和其他適合產生能夠用於富集化空氣的含有氧氣流的系統來提供。由於使用了較高水準的氧氣的富集或超級富集,所述富集氧的鼓風可以在環境溫度條件下直接供給鼓風爐,由此,如需要的話,消除了使用熱鼓風爐(例如使用爐頂氣體來加熱引入鼓風爐之前的空氣的爐子)的需要,並且還可以讓專用於給熱鼓風爐消耗的能量變成可再次用於產生功率的能量。此外,將富集氧的空氣引入PCI鼓風爐的資料也可以在A. Poos and N. Pongis,“Potentials and problems of high coal injection rates”,1990 Ironmaking Conference Proceedings中找到。If desired, the oxygen used to introduce the blast furnace and be used to enrich the air can be by any suitable gas separation system, such as cryogenic distillation (including ASU), membranes (eg, ion transport membranes), vacuum pressure swing adsorption (PVSA), and others. It is suitable for providing a system containing oxygen flow that can be used for enriched air. Due to the use of a higher level of enrichment or superconcentration of oxygen, the oxygen-enriched blast can be supplied directly to the blast furnace at ambient temperature conditions, thereby eliminating the use of a hot blast furnace if required (eg using a furnace) The need to top gas to heat the furnace that is introduced into the blast furnace, and also to allow the energy dedicated to the heat blast furnace to become energy that can be reused to generate power. In addition, data for introducing oxygen-enriched air into a PCI blast furnace can also be found in A. Poos and N. Pongis, "Potentials and problems of high coal injection rates", 1990 Ironmaking Conference Proceedings.

而且,也可以使用任何適合的ASU,適合的ASU的例子是Air Products and Chemicals,Inc.,Allentown,PA商業提供的ASU。美國專利第5,268,019號也描述了適合的ASU;該專利通過參考引入本發明中。一種氣體分離系統,如ASU,可以生產含有氧氣的物流,與鼓風爐中的空氣結合時,該物流所能夠具有的氧氣濃度為約40體積%到少於約100體積%。來自ASU的含氧氣的物流能夠與空氣(被加熱的或環境條件下的)混和或者結合來為鼓風爐提供預先確定的氧氣濃度(例如,約35%至接近純氧,但更典型是在約40%到約70%氧)。來自ASU的含氧氣的物流也能夠供應到HRSG的管道燃燒器,以提高相對低生熱的爐頂氣體的燃燒率(例如,改善蒸汽的生產率)。如需要的話,由ASU產生的氮氣可以供應到燃氣渦輪機(例如,下述的用於由鼓風爐的爐頂氣體產生電力的燃氣渦輪機),以便增加所述燃氣渦輪機的效率並且保持適當的燃燒溫度和質量流量體積。類似地,送到燃氣渦輪機的由進料壓縮機產生的過量壓縮空氣可以被提取並供應到所述ASU,以便增加ASU的效率,或者所述壓縮的空氣可以用於補充或者替代供應到鼓風爐的爐子的空氣(例如,通過鼓風機引入爐子的空氣)。然後,通過燃氣渦輪機或者蒸汽渦輪機驅動的發電機所產生的電力可以供應到所述ASU。Moreover, any suitable ASU can be used. An example of a suitable ASU is the ASU commercially available from Air Products and Chemicals, Inc., Allentown, PA. Suitable ASUs are also described in U.S. Patent No. 5,268,019, the disclosure of which is incorporated herein by reference. A gas separation system, such as ASU, can produce a stream containing oxygen that, when combined with air in a blast furnace, can have an oxygen concentration of from about 40% by volume to less than about 100% by volume. The oxygen-containing stream from the ASU can be mixed or combined with air (either under heated or ambient conditions) to provide a predetermined oxygen concentration to the blast furnace (eg, about 35% to near pure oxygen, but more typically at about 40). % to about 70% oxygen). The oxygen-containing stream from the ASU can also be supplied to the pipeline burner of the HRSG to increase the rate of combustion of the relatively low-heating top gas (e.g., improve steam productivity). If desired, the nitrogen produced by the ASU can be supplied to a gas turbine (eg, a gas turbine for generating electricity from the top gas of the blast furnace as described below) in order to increase the efficiency of the gas turbine and maintain proper Combustion temperature and mass flow volume. Similarly, excess compressed air produced by the feed compressor to the gas turbine can be extracted and supplied to the ASU to increase the efficiency of the ASU, or the compressed air can be used to supplement or replace the supply to the blast furnace. The air of the furnace (for example, the air introduced into the furnace by a blower). The power generated by the gas turbine or steam turbine driven generator can then be supplied to the ASU.

如需要的話,可以通過引入蒸汽(例如,下述的與產生功率相關而產生的蒸汽)來改變供應到在已注入了化石燃料(例如,PCI)的鼓風爐中的富含氧氣的空氣。蒸汽可以與富含氧氣的空氣結合或者分別供應到所述PCI鼓風爐。將蒸汽引入所述鼓風爐能夠產生兩種有益的並同時發生的效果。第一,它可以用於緩和位於鼓風爐的較低部分的火焰溫度,否則氧氣的富集就會使得溫度過高。第二,蒸汽與在鼓風爐的較低部分中注入的粉煤和熱焦炭的反應會增加在鼓風爐中所產生氣體中的氫氣的量(以及,在一些情況下,一氧化碳的量)。然後,這種額外的氫氣氣體物質可以參與驅動鐵的還原反應,同時也增加了爐頂氣體的生熱含量,繼而使爐頂氣體更適用於產生功率(例如,在組合式循環功率產生中)。任何適合的蒸汽濃度都是可以使用的,典型的蒸汽含量為約10到高達約250克/Nm3 的鼓風體積(例如,約50到約15克/Nm3 的鼓風體積,以及,在一些情況下,約20到約60克/Nm3 的鼓風體積)。If desired, the oxygen-enriched air supplied to the blast furnace that has been injected with fossil fuel (e.g., PCI) can be changed by introducing steam (e.g., steam generated in connection with generating power as described below). The steam may be combined with oxygen-enriched air or separately supplied to the PCI blast furnace. Introducing steam into the blast furnace can produce two beneficial and simultaneous effects. First, it can be used to moderate the flame temperature at the lower part of the blast furnace, otherwise the enrichment of oxygen will cause the temperature to be too high. Second, the reaction of steam with pulverized coal and hot coke injected in the lower portion of the blast furnace increases the amount of hydrogen (and, in some cases, the amount of carbon monoxide) in the gas produced in the blast furnace. This additional hydrogen gas species can then participate in the reduction of the iron drive, while also increasing the heat build-up of the top gas, which in turn makes the top gas more suitable for generating power (eg, in combined cycle power generation) . Any suitable vapor concentration can be used, typically having a blast volume of from about 10 up to about 250 grams per Nm 3 (eg, an blast volume of from about 50 to about 15 grams per Nm 3 , and, in In some cases, an blast volume of about 20 to about 60 grams per Nm 3 ).

在本發明的一個方面中,富含氧氣的空氣還包含蒸汽、至少一種選自一氧化碳、二氧化碳和氫氣的物質。氧氣可以從ASU獲得,而一氧化碳、二氧化碳和氫氣可以通過再循環一部分的爐頂氣體獲得。因此,可以生產實質上無氮氣的爐頂氣體。所述“實質上無”表示所述爐頂氣體包含少於大約十個(10)體積百分比的氮氣(例如,少於大約8體積百分比)。In one aspect of the invention, the oxygen-enriched air further comprises steam, at least one material selected from the group consisting of carbon monoxide, carbon dioxide, and hydrogen. Oxygen can be obtained from the ASU, while carbon monoxide, carbon dioxide and hydrogen can be obtained by recycling a portion of the top gas. Therefore, it is possible to produce a top gas which is substantially free of nitrogen. By "substantially free" is meant that the top gas comprises less than about ten (10) volume percent nitrogen (eg, less than about 8 volume percent).

本發明可將在典型的大約1100到1250℃、大約1100到850℃和在一些情況下大約1100到600℃的熱鼓風溫度下被引入爐子的鼓風(例如,包括富含氧氣的空氣)溫度降低。通常,較低的鼓風溫度將會取決於增加的氧氣含量或者將會使用增加的氧氣含量。所述“鼓風溫度”表示當富含氧氣的空氣物流在鼓風口處進入鼓風爐的平衡溫度。如果需要的話,可以通過以下方式準備鼓風溫度:在進入爐子之前將環境溫度的氧氣混合到環境溫度的空氣,然後加熱整個混合物到所需的平衡鼓風溫度。作為選擇,所述環境溫度的空氣可以單獨在爐子中被加熱到高於所述所需的鼓風溫度,並且相對較冷的環境溫度的氧氣可以被加入位於爐子下游的所述已加熱的空氣鼓風中,以在所需的氧氣濃度下和在所需的熱鼓風溫度下生產富含氧氣的空氣鼓風的混合物。用於製備鼓風的組份的溫度可以改變並且可以以任何適合的方式結合以便在所需的溫度和氧氣濃度下產生熱空氣鼓風。除了在引入爐子之前正常地結合氧氣和空氣,如果需要的話,氧氣和空氣也可以被分別地引入,並且能夠達到“等量的”熱鼓風溫度,而該溫度相應於當所述兩種物流已經被混合在一起並且它們的溫度已經被平衡時的富含氧氣的鼓風溫度。The present invention can incorporate blasts (e.g., including oxygen-enriched air) into the furnace at typical hot blast temperatures of about 1100 to 1250 ° C, about 1100 to 850 ° C, and in some cases about 1100 to 600 ° C. The temperature is lowered. Generally, a lower blast temperature will depend on the increased oxygen content or an increased oxygen content will be used. The "blast temperature" means the equilibrium temperature at which the oxygen-enriched air stream enters the blast furnace at the tuyere. If desired, the blast temperature can be prepared by mixing ambient temperature oxygen to ambient temperature air prior to entering the furnace and then heating the entire mixture to the desired equilibrium blast temperature. Alternatively, the ambient temperature air may be separately heated in the furnace above the desired blast temperature, and relatively cold ambient temperature oxygen may be added to the heated air downstream of the furnace. In blast, a mixture of oxygen-enriched air blast is produced at the desired oxygen concentration and at the desired hot blast temperature. The temperature of the components used to prepare the blast can vary and can be combined in any suitable manner to produce a hot air blast at the desired temperature and oxygen concentration. In addition to the normal combination of oxygen and air prior to introduction into the furnace, oxygen and air can be introduced separately if desired, and an "equal" hot blast temperature can be achieved, which corresponds to when the two streams The oxygen-rich blast temperature that has been mixed together and their temperature has been balanced.

可以控制所述富含氧氣的空氣鼓風的溫度、PCI速率、焦比、熱金屬流或釋放速率,和氧氣/蒸汽濃度以便獲得具有所需生熱值的爐頂氣體。典型的爐頂氣體生熱值的範圍為大約110到大約170btu/scf(例如,所述生熱值可以隨著空氣鼓風中所用氧氣的濃度而變化,使所述爐頂氣體的生熱值可以在以下範圍內變化:大約110到大約130btu/scf(當所述富含氧氣的空氣包含大約40體積%氧氣)至大約135到大約170btu/scf(當所述富含氧氣的空氣包含大約60體積%氧氣))。The temperature of the oxygen-enriched air blast, the PCI rate, the coke ratio, the hot metal flow or release rate, and the oxygen/vapor concentration can be controlled to obtain a top gas having a desired heat generation value. Typical top gas heat generation values range from about 110 to about 170 btu/scf (eg, the heat build-up value can vary with the concentration of oxygen used in the air blast, resulting in a heat generation value of the top gas) It can vary within the following range: about 110 to about 130 btu/scf (when the oxygen-enriched air contains about 40 volume% oxygen) to about 135 to about 170 btu/scf (when the oxygen-enriched air contains about 60) Volume % oxygen)).

本發明的一個方面涉及除去爐頂氣體中的二氧化碳。可以使用任何適合的方法來除去爐頂氣體中的二氧化碳。在本發明的一個方面中,可以通過使用氣提吸附床,例如,通過參考引入本發明中的美國專利第5,582,029號中描述的氣提吸附床來除去二氧化碳。在本發明的另外一個方面中,可以通過將二氧化碳暴露到一種溶液中來除去該二氧化碳,所述溶液包括MEA(例如,包含大約20% MEA的溶液),或者其他適合的溶液等。通過除去爐頂氣體中的二氧化碳,本發明能夠控制釋放到環境的二氧化碳含量,也能夠提供具有改善的燃料值的爐頂氣體以用於隨後的功率產生步驟,或者其他用途等等。One aspect of the invention relates to the removal of carbon dioxide from the top gas. Any suitable method can be used to remove carbon dioxide from the top gas. In one aspect of the invention, carbon dioxide can be removed by using a stripping adsorbent bed, for example, by reference to a stripping adsorbent bed as described in U.S. Patent No. 5,582,029, which is incorporated herein by reference. In another aspect of the invention, the carbon dioxide can be removed by exposing the carbon dioxide to a solution comprising an MEA (eg, a solution comprising about 20% MEA), or other suitable solution, and the like. By removing carbon dioxide from the top gas, the present invention is capable of controlling the carbon dioxide content released to the environment, and is also capable of providing a top gas having an improved fuel value for subsequent power generation steps, or other uses and the like.

如果需要的話,在除去爐頂氣體中的二氧化碳之前,在所述爐頂氣體中的一氧化碳可以通過一種轉化反應器被轉化為二氧化碳。即,一種反應器,其中一氧化碳和水被轉化為二氧化碳和氫氣(例如,美國專利申請公開US20060188435A1號和美國專利US4725381A號中所描述的;它們都通過參考被引入本發明中)。可以通過如上描述的方式除去所述二氧化碳,而所剩下的氫氣更可以用於產生功率、純化石油產品、供應到燃料電池來產生功率,和其他用途等等。作為選擇,除了用於產生功率以外,所述爐頂氣體可以被轉化為氨、甲醇、其他產物等等。If desired, the carbon monoxide in the top gas can be converted to carbon dioxide by a conversion reactor prior to removal of carbon dioxide from the top gas. That is, a reactor in which carbon monoxide and water are converted into carbon dioxide and hydrogen (for example, as described in U.S. Patent Application Publication No. US20060188435A1 and U.S. Patent No. 4,725,381 A; each of which is incorporated herein by reference). The carbon dioxide can be removed by the means described above, and the remaining hydrogen can be used to generate power, purify petroleum products, supply to fuel cells to generate power, and other uses and the like. Alternatively, the top gas may be converted to ammonia, methanol, other products, etc., in addition to being used to generate power.

在本發明的另外一個方面中,所述爐頂氣體可以用於產生功率。而且所述爐頂氣體可以用於任何適合的功率產生系統,適合的結合式循環功率產生系統的例子已公開在美國專利第6,216,441 B1號中(通過參考被引入本發明中)。所述爐頂氣體可以在燃氣渦輪機和/或熱回收蒸汽產生器中進行燃燒來產生功率。如果需要的話,在將所述爐頂氣體引入功率產生系統之前,可以除去爐頂氣體中的二氧化碳(並且,如果需要的話,可以扣押二氧化碳,用於隨後的化學方法,和其他的用途等等)。與捕獲HRSG的排氣中的CO2 (其中氣提的CO2 含量會更稀釋並且排氣會含有O2 )相比,在燃燒之前捕獲CO2 是比較理想的。In another aspect of the invention, the top gas can be used to generate power. Moreover, the top gas can be used in any suitable power generating system. An example of a suitable combined cycle power generating system is disclosed in U.S. Patent No. 6,216,441 B1, incorporated herein by reference. The top gas may be combusted in a gas turbine and/or a heat recovery steam generator to produce power. If desired, the carbon dioxide in the top gas can be removed (and, if desired, carbon dioxide can be sequestered, for subsequent chemical methods, and other uses, etc.) before the top gas is introduced into the power generation system. . (Wherein the stripping of CO 2 will be more diluted and content of the exhaust gas contain O 2) of the exhaust gas HRSG capture of CO 2 in comparison, prior to combustion CO 2 capture is ideal.

在本發明的一個方面中,所述功率產生系統排出來的排氣是實質上無二氧化碳的。所述“實質上無”二氧化碳表示所述排氣含有少於大約5體積%的二氧化碳。在除去CO2 的過程之前,通過使用上述的水轉化反應器來轉化一氧化碳和水成為二氧化碳和氫氣,所述排氣更可以實質上無二氧化碳和一氧化碳,(例如,在CO2 除去過程之前進行水轉移方法,如圖3所示)。In one aspect of the invention, the exhaust gas from the power generation system is substantially carbon dioxide free. The "substantially free" carbon dioxide means that the exhaust gas contains less than about 5% by volume of carbon dioxide. Prior to the process of removing CO 2 , carbon monoxide and water are converted to carbon dioxide and hydrogen by using the water conversion reactor described above, and the exhaust gas may be substantially free of carbon dioxide and carbon monoxide (for example, water is supplied before the CO 2 removal process). The transfer method is shown in Figure 3.

在本發明的另外一個方面中,可以使用一系列的燃氣和蒸汽渦輪機來進行功率產生。可以控制渦輪機的數目、爐頂氣體的生熱值、供應到渦輪機的物質的比率/速率,和補充的燃料氣體來最大化本發明方法和系統的經濟價值(例如,在一方面中去最大化功率產生量)。In another aspect of the invention, a series of gas and steam turbines can be used for power generation. The number of turbines, the heat generation value of the top gas, the ratio/rate of the material supplied to the turbine, and the supplemental fuel gas can be controlled to maximize the economic value of the method and system of the present invention (eg, to maximize in one aspect) Power generation).

在本發明的一個方面中,所述功率產生系統可以在沒有外部來源供應補充份量的燃料氣體的情況下操作(有時稱為“整理性燃料”)。典型地,在本發明的這一方面,所述燃氣渦輪機和所述HRSG會使用少於大約十個百分比(10%)的氣體(得自補充的燃料或外部產生或供應的燃料氣體(例如,天然氣、一氧化碳,其他燃料等等))的生熱值來操作。雖然本發明期望的一個方面是降低或消除補充燃料的使用,但是本發明的所有方面並不排除補充燃料的使用。In one aspect of the invention, the power generation system can operate without the external source supplying a supplemental amount of fuel gas (sometimes referred to as "finishing fuel"). Typically, in this aspect of the invention, the gas turbine and the HRSG will use less than about ten percent (10%) of the gas (from supplemental fuel or externally produced or supplied fuel gas (eg, , natural gas, carbon monoxide, other fuels, etc.)) the heat value to operate. While one aspect of the present invention is desirable to reduce or eliminate the use of supplemental fuel, all aspects of the invention do not exclude the use of supplemental fuel.

附圖中例舉了本發明的一些方面。通過參考附圖,圖1例舉了本發明的一個方面,其中包括一種整合的製鐵和煤的氣化系統,其中由於提供了粉煤注射(PCI)系統3,引入鼓風爐(BF)2的焦炭1的量得以減少。富含氧氣的空氣通過結合空氣與由空氣分離單元(ASU)4產生的氧氣來提供。從鼓風爐2排出來的煙道或爐頂氣體5被收集並在氣體清潔系統6中進行清潔(例如,通過旋風或濕式文氏系統)。經過旋風或濕式洗擦系統後,使所述爐頂氣體還通過靜電沉澱器7,由此除去所述爐頂氣體中任何額外的微粒,使得(並保證)該氣體適當地清潔以便用於壓縮機和燃氣渦輪機。然後將所述爐頂氣體在煙道氣體壓縮機(FGC)8中進行壓縮並引入燃氣渦輪機(GT)9,由此進行功率產生。然後,從燃氣渦輪機9釋出的燃燒的爐頂氣體/空氣混合物被引入熱回收蒸汽產生器(HRSG)10以通過熱轉移來產生蒸汽。將蒸汽通過蒸汽渦輪機(ST)11以進行功率產生。Some aspects of the invention are exemplified in the drawings. Referring to the drawings, Figure 1 illustrates an aspect of the invention including an integrated gasification system for iron and coal, wherein a blast furnace (BF) 2 is introduced due to the provision of a pulverized coal injection (PCI) system 3. The amount of coke 1 is reduced. Oxygen-enriched air is provided by combining air with oxygen produced by an air separation unit (ASU) 4. The flue or top gas 5 discharged from the blast furnace 2 is collected and cleaned in the gas cleaning system 6 (e.g., by a cyclone or wet Venturi system). After passing through a cyclone or wet scrubbing system, the top gas is also passed through an electrostatic precipitator 7, thereby removing any additional particulates in the top gas, so that (and ensuring) the gas is properly cleaned for use Compressors and gas turbines. The top gas is then compressed in a flue gas compressor (FGC) 8 and introduced into a gas turbine (GT) 9, thereby performing power generation. The combusted top gas/air mixture released from the gas turbine 9 is then introduced into a heat recovery steam generator (HRSG) 10 to produce steam by heat transfer. Steam is passed through a steam turbine (ST) 11 for power generation.

在圖1中例舉的本發明的方面(和本發明的其他方面),所產生的熱金屬12的量可得到增加。典型的焦炭使用量為每公噸熱金屬少於大約300千克並且所述煤的(注射)速率為每公噸熱金屬至少大約200千克(或每千克生產的鐵為大約0.40千克的碳)。在一些情況下,所述燃料(例如,也公知為還原劑)與鐵的比率為每千克生產的鐵大於大約0.45千克的碳。In the aspects of the invention (and other aspects of the invention) exemplified in Figure 1, the amount of hot metal 12 produced can be increased. Typical coke usage is less than about 300 kilograms per metric ton of hot metal and the coal has an (injection) rate of at least about 200 kilograms per metric ton of hot metal (or about 0.40 kilograms of carbon per kilogram of produced iron). In some cases, the ratio of the fuel (also known as a reducing agent) to iron is greater than about 0.45 kilograms of carbon per kilogram of produced iron.

圖2例舉了本發明的另外一個方面,其中改變了圖1的系統以包括在將所述爐頂氣體引入燃氣渦輪機9之前除去二氧化碳的系統13。然而,任何適合的系統都可以用於除去二氧化碳,一個適合的系統的例子包括使用物理溶劑,如市售的SELEXOL體系,(由UOP LLC,Des Plaines,IL供應),來捕獲和除去氣體物流中的二氧化碳。將含有二氧化碳的來自FGC 8的壓縮爐頂氣體引入二氧化碳除去系統13。除去系統13接收低壓(LP)蒸汽並且產生二氧化碳和水(如果需要的話,所述低壓蒸汽可以通過HRSG 10來供應)。二氧化碳可以作為產物回收,可以被扣押和/或用於其他已知的二氧化碳用途(如用於改良的油回收(EOR))。在本發明的一個方面中,作為稀釋劑的氮氣(例如,來自ASU 4)可以引入任何適合的位置,例如在二氧化碳除去之後,引入燃氣渦輪機9,用於冷卻燃氣渦輪機中的火焰和增大物質流量(mass flow)。2 illustrates another aspect of the invention in which the system of FIG. 1 is modified to include a system 13 for removing carbon dioxide prior to introducing the top gas into the gas turbine 9. However, any suitable system can be used to remove carbon dioxide. An example of a suitable system includes the use of physical solvents such as the commercially available SELEXOL. The system, (supplied by UOP LLC, Des Plaines, IL), captures and removes carbon dioxide from the gas stream. The compressed top gas from the FGC 8 containing carbon dioxide is introduced into the carbon dioxide removal system 13. The removal system 13 receives low pressure (LP) steam and produces carbon dioxide and water (which may be supplied through the HRSG 10 if desired). Carbon dioxide can be recovered as a product and can be sequestered and/or used in other known carbon dioxide applications (eg, for improved oil recovery (EOR)). In one aspect of the invention, nitrogen as a diluent (e.g., from ASU 4) can be introduced into any suitable location, such as after the removal of carbon dioxide, into a gas turbine 9 for cooling the flame in the gas turbine. Mass flow.

圖3例舉了本發明的另外一個方面,其中改變了圖2的系統以包括轉化反應器14。該反應器14通常位於二氧化碳除去系統13之前。所述反應器14將蒸汽(例如,來自HRSG 10)和所述爐頂氣體中的一氧化碳結合來產生二氧化碳和氫氣。通過在二氧化碳除去步驟13之前的工藝流程中包括轉化反應器14,在從整個系統最終排出燃燒產物之前,可以預備將更多的含碳氣體物種除去和捕獲。通過這種手段或設備,可以在隨後的系統13(例如,Selexol方法)中除去更多部分的二氧化碳。另外,增加的氫氣濃度改善了剩餘氣體的燃料值,這些氣體隨後可以用於產生功率和其他用途等。如果需要的話,可以從二氧化碳除去系統13獲得含有氫氣和氮氣的物流(例如,以用於除了功率產生以外的用途)。Figure 3 illustrates another aspect of the invention in which the system of Figure 2 is modified to include a conversion reactor 14. The reactor 14 is typically located before the carbon dioxide removal system 13. The reactor 14 combines steam (e.g., from HRSG 10) with carbon monoxide in the top gas to produce carbon dioxide and hydrogen. By including the conversion reactor 14 in the process prior to the carbon dioxide removal step 13, more carbonaceous gas species can be prepared for removal and capture prior to final discharge of combustion products from the overall system. By this means or device, it can be in the subsequent system 13 (for example, Selexol Method) removes more of the carbon dioxide. In addition, the increased hydrogen concentration improves the fuel value of the remaining gases, which can then be used to generate power and other uses. If desired, a stream containing hydrogen and nitrogen can be obtained from the carbon dioxide removal system 13 (e.g., for use other than power generation).

圖4例舉了本發明的另外一個方面,其中圖2的系統整合了HRSG 10,和ASU 4產生的氧氣和氮氣與系統的其他組份。由ASU 4產生的氮氣可以供應到PCI系統3中以傳輸/運輸粉煤、除去水,或用於其他用途。由ASU 4產生的氮氣也可以供應到燃氣渦輪機9來提高燃氣渦輪機的效率。此外,可以通過接收提取自將助燃氣體進料到燃氣渦輪機9的壓縮器的過量壓縮氣體(若有的話)來增加ASU的效率。除了以上的用途之外,來自ASU 4的氧氣也可以供應到HRSG以便在通向HRSG的輸送管(未示出)內改進任何過量爐頂氣體(例如,沒有導入燃氣渦輪機的氣體)的燃燒效率。來自HRSG 10的蒸汽可以供應到蒸汽渦輪機11、鼓風爐2、二氧化碳除去系統13、轉化反應器14,或者用於其他用途。如果需要的話,圖3的實施方式,如轉化反應器14,也可以併入圖4所示的系統中。Figure 4 illustrates another aspect of the invention in which the system of Figure 2 incorporates HRSG 10, and oxygen and nitrogen produced by ASU 4 with other components of the system. Nitrogen produced by the ASU 4 can be supplied to the PCI system 3 to transport/transport pulverized coal, remove water, or for other uses. Nitrogen produced by the ASU 4 can also be supplied to the gas turbine 9 to increase the efficiency of the gas turbine. In addition, the efficiency of the ASU can be increased by receiving excess compressed gas, if any, extracted from a compressor that feeds the combustion gas to the gas turbine 9. In addition to the above uses, oxygen from the ASU 4 can also be supplied to the HRSG to improve the combustion of any excess top gas (eg, gas not introduced into the gas turbine) in a transfer pipe (not shown) leading to the HRSG. effectiveness. Steam from the HRSG 10 may be supplied to the steam turbine 11, the blast furnace 2, the carbon dioxide removal system 13, the conversion reactor 14, or for other uses. The embodiment of Figure 3, such as conversion reactor 14, can also be incorporated into the system shown in Figure 4, if desired.

圖5例舉了本發明的另外一個方面,其中圖2的系統應用了儲氣器17。將離開濕式ESP 16的氣體供應到FGC 8,並且,如果需要的話,供應到HRSG 10,並且在其中通過使用由ASU 4供應的氧氣來進行燃燒。濕式ESP系統的例子已公開在美國專利第7318857號;第6294003號;第6110256號;第5039318號;第5084072號;和第4074983號中;它們通過參考被引入本發明中。將來自HRSG的蒸汽供應到蒸汽渦輪機11,以進行功率產生,例如,能夠將這些電力用於操作ASU 4。如果需要的話,圖3和4的實施方式,如轉化反應器14,也可以併入圖5例舉的系統中。Figure 5 illustrates another aspect of the invention in which the system of Figure 2 utilizes a gas reservoir 17. The gas leaving the wet ESP 16 is supplied to the FGC 8, and, if necessary, supplied to the HRSG 10, and in which combustion is performed by using oxygen supplied from the ASU 4. Examples of the wet ESP system are disclosed in U.S. Patent No. 7,318,857; No. 6,294,003; No. 6,110,256; No. 5,039,318; 5,084,072; and No. 4,074,883; Steam from the HRSG is supplied to the steam turbine 11 for power generation, for example, which can be used to operate the ASU 4. The embodiments of Figures 3 and 4, such as the conversion reactor 14, can also be incorporated into the system illustrated in Figure 5, if desired.

圖6例舉了本發明的另外一個方面,其中圖2的系統應用了爐子18來產生供入鼓風爐12的熱鼓風。可以通過抽取自用於燃氣渦輪機9的助燃空氣壓縮機的壓縮空氣來提供至少一部分的所述鼓風空氣。這種系統可以帶來優點,因為所述的壓縮空氣已經通過壓縮的作用被稍微加熱,並且進料到爐子的這些壓縮空氣的使用可以降低對爐子輸入熱能的需要和降低一些鼓風機產生鼓風的功率需要。可以控制離開燃氣渦輪機9的氣體來優化供應氣體到爐子18或HRSG10或兩者的價值。Figure 6 illustrates another aspect of the invention in which the system of Figure 2 utilizes a furnace 18 to produce a hot blast that is supplied to the blast furnace 12. At least a portion of the blast air may be provided by drawing compressed air from a combustion air compressor for the gas turbine 9. Such a system can bring advantages because the compressed air has been slightly heated by the action of compression, and the use of these compressed air fed to the furnace can reduce the need to input thermal energy to the furnace and reduce the blasting of some blowers. Power needs. The gas leaving the gas turbine 9 can be controlled to optimize the value of the supply gas to the furnace 18 or HRSG 10 or both.

圖7例舉了本發明在圖1中例舉的一個方面,只是圖7應用了熱鼓風爐、空氣鼓風機和儲氣器。通過參考圖7,該方法利用了增大了生熱值的爐頂氣體,該氣體首先被導入通過氣旋的或倒流的除塵器來進行清潔或***大微粒。其次,所述氣體通過Bischoff文氏管(環形缺口)濕式洗刷器以除去更多的塵。經過濕式洗刷器後,所述氣體通過去霧器以除去爐頂氣體中殘留的或凝結的水分。所述除塵器、文氏管洗刷器和去霧器這三種組件是典型地在所有鼓風爐中存在的組件。Figure 7 illustrates an aspect of the invention illustrated in Figure 1, except that Figure 7 utilizes a hot blast furnace, an air blower and a gas reservoir. By referring to Fig. 7, the method utilizes a top gas that increases the heat generation value, which is first introduced into a cyclone or backflow cleaner to clean or drain large particles. Second, the gas passes through a Bischoff venturi (annular notch) wet scrubber to remove more dust. After passing through the wet scrubber, the gas passes through a mist eliminator to remove residual or condensed moisture from the top gas. The three components of the precipitator, venturi scrubber and demisters are components that are typically present in all blast furnaces.

如果,鼓風爐是設計為並用於高頂部壓力下操作的,就可以在已存在的氣體清潔系統之後設置爐頂氣體壓力回收減速下降渦輪機(pressure recovery let-down turbine)(在圖7中未示出)。任何爐頂氣體回收渦輪機的存在(或不存在)並不影響本發明的全部方案。在存在的氣體清潔系統和所述爐頂氣體壓力回收渦輪機(如存在)之後,將所述氣體導入濕式靜電沉澱器以使其適用於燃料氣體壓縮。然後,將所述氣體導入燃料氣體壓縮機來提升其壓力到燃氣渦輪機的進口所需的壓力。由於所述的燃料氣體是在壓縮的狀態下進入所述燃氣渦輪機的,並且在此時該氣體已經會被壓縮,所以在此階段下可以有利地選擇進行CO2 除去步驟。將現改進了的生熱的燃料氣體(通過在鼓風爐實施的操作參數和/或通過除去燃料氣體中的CO2 所產生的結果)引入燃氣渦輪機並在其中燃燒產生軸功率,以產生電力並驅動產生器以及提供助燃空氣到所述燃氣渦輪機的壓縮機。If the blast furnace is designed and operated for high top pressure, a pressure recovery let-down turbine can be provided after the existing gas cleaning system (not shown in Figure 7). ). The presence (or absence) of any top gas recovery turbine does not affect the overall solution of the present invention. After the gas cleaning system present and the top gas pressure recovery turbine (if present), the gas is introduced into a wet electrostatic precipitator to make it suitable for fuel gas compression. The gas is then introduced into the fuel gas compressor to raise the pressure required to bring it to the inlet of the gas turbine. Since the fuel gas enters the gas turbine in a compressed state, and the gas is already compressed at this time, the CO 2 removal step can be advantageously selected at this stage. Introducing an improved heat generating fuel gas (by operating parameters implemented in a blast furnace and/or by removing CO 2 from the fuel gas) into a gas turbine and combusting therein to generate shaft power to generate electricity and A generator is driven and a compressor that provides combustion air to the gas turbine.

將來自燃氣渦輪機的熱排氣導入熱回收蒸汽產生器(HRSG)以製造蒸汽並通過蒸汽渦輪機產生更多的電力(“聯合式循環”)。The hot exhaust from the gas turbine is directed to a heat recovery steam generator (HRSG) to produce steam and generate more electricity through the steam turbine ("combined cycle").

為了最大化所述爐頂氣體的利用度並且適應鼓風爐內的流動變化,可以設置氣體收集和壓力管理系統。這些系統包括儲氣器、專業控制裝置和整理性氣體混合系統(如需要)。In order to maximize the availability of the top gas and to accommodate changes in flow within the blast furnace, a gas collection and pressure management system can be provided. These systems include gas storage, specialized controls, and a finishing gas mixing system (if needed).

圖7例舉的系統的技術效果包括:The technical effects of the system illustrated in Figure 7 include:

‧ 增加了煤和氧氣注入率。‧ Increased coal and oxygen injection rates.

‧ 減少了焦炭使用度,大大節省了操作上(焦炭成本)的成本。‧ Reduced coke usage and greatly reduced the cost of operation (coke cost).

‧ 降低了熱鼓風溫度,使得較大部分的所述爐頂氣體可以用於產生電力(表示來自爐子的加熱步驟和熱鼓風的產生步驟的CO2 較少)。‧ The hot blast temperature is lowered such that a larger portion of the top gas can be used to generate electricity (representing less CO 2 from the furnace heating step and the hot blast generation step).

‧ 改善了(提高了)爐頂氣體的生熱值,使所述爐頂氣體能夠直接在燃氣渦輪機中燃燒,作為在更有效率的聯合式循環電力的生產中的第一步。‧ Improved (increased) the heat generation value of the top gas, enabling the top gas to be burned directly in the gas turbine as the first step in the production of more efficient combined cycle power.

‧ 在熱鼓風(整體)中的氧氣的富集高達60%氧氣的水準。‧ The enrichment of oxygen in hot blast (overall) is as high as 60% oxygen.

‧ 結合了氣體收集、清潔和管理系統。‧ Combined gas collection, cleaning and management systems.

本申請提供了以下的實施例來例舉本發明的一些方面,這些實施例並不對本申請權利要求的保護範圍造成限制。The following examples are provided to illustrate some aspects of the invention, which are not intended to limit the scope of the claims.

實施例AExample A

實施例A例舉了在鼓風中的增加煤注射和增加氧氣濃度對鼓風爐性能的影響。根據表1的參數,欄(a)(下文所示),正常地操作工作容積為2,855m3 的鼓風爐。這些參數是為了進行比較而使用,通過使用所述鼓風爐的質量和能量平衡電腦模型來例舉本發明具有的某些優良的方面。本發明實施例使用的電腦模型是一種傳統的二階段質量和熱量平衡模型,“Principals of Blast Furnace Ironmaking”by Anil K. Biswas(1981 Cootha Publishing House,Brisbane,Australia)記載了以上的模型和公開了該模型所用的方程式。所述的電腦模型是用於例舉在熱空氣鼓風中增加粉煤注射含量和增加氧氣濃度下所述的鼓風爐的操作情況。Example A exemplifies the effect of increased coal injection and increased oxygen concentration on the performance of the blast furnace in the blast. According to the parameters of Table 1, column (a) (shown below), a blast furnace with a working volume of 2,855 m 3 was normally operated. These parameters are used for comparison, and some of the superior aspects of the present invention are exemplified by using the mass and energy balance computer model of the blast furnace. The computer model used in the embodiment of the present invention is a traditional two-stage quality and heat balance model. "Principals of Blast Furnace Ironmaking" by Anil K. Biswas (1981 Cootha Publishing House, Brisbane, Australia) documents the above model and discloses it. The equation used in the model. The computer model is used to exemplify the operation of the blast furnace described in the case of increasing the pulverized coal injection content and increasing the oxygen concentration in the hot air blast.

在熱鼓風中進料的組成和水分的量(18g/Nm3 )被保持恒定。隨後,根據表1的情況(b)到(i)所示的數值,將煤和氧氣引入鼓風爐的操作中。這些參數包括增加煤注射速率和鼓風氧氣的含量。依據熱鼓風的溫度,可以針對各個增加的煤注射速率以不同的焦比進行調整。表1中示出了這些參數對來自鼓風爐的爐頂氣體和熱金屬的生產率的影響。The composition of the feed and the amount of moisture (18 g/Nm 3 ) in the hot blast were kept constant. Subsequently, coal and oxygen were introduced into the operation of the blast furnace according to the values shown in the cases (b) to (i) of Table 1. These parameters include increasing the rate of coal injection and the amount of blasting oxygen. Depending on the temperature of the hot blast, it can be adjusted at different coke ratios for each increased coal injection rate. The effect of these parameters on the productivity of the top gas and hot metal from the blast furnace is shown in Table 1.

所述實施例也例舉了使用一部分所述爐頂氣體作為燃料來點燃所述爐子的影響。所述作為燃料使用的部分取決於在方法中要使用的熱鼓風含量及其溫度。從產生的全部爐頂氣體中減去用於爐子點燃所用的一部分爐頂氣體得到剩餘含量的爐頂氣體,它們可以用於其他用途,如下游功率生產。將可用於其他用途的剩餘爐頂氣體的量以其生熱含量倍增得到可以用於轉成電流的熱能。The embodiment also exemplifies the effect of using a portion of the top gas as a fuel to ignite the furnace. The portion used as fuel depends on the hot blast content and its temperature to be used in the process. A portion of the top gas used for ignition of the furnace is subtracted from all of the generated top gas to obtain a residual amount of top gas which may be used for other purposes, such as downstream power production. The amount of residual top gas that can be used for other purposes is multiplied by its heat build-up to obtain thermal energy that can be used to convert to electrical current.

對於粉煤注射的增加(高至操作最高值),可以在一個範圍的新操作參數內調整所述操作表1的(b)和(c)欄示出了兩種不同的操作情況,其中粉煤注射的速率由(a)欄的基本情況時的150Kg/T增加到200Kg/T。For the increase in pulverized coal injection (up to the highest operating value), the operation can be adjusted within a range of new operating parameters. Tables (b) and (c) of Table 1 show two different operating conditions, of which The rate of coal injection is increased from 150 Kg/T to 200 Kg/T in the basic case of column (a).

在(b)示出的操作情況中,煤的注射速率增加到200Kg/T,而熱鼓風溫度就保持在恒定值1250℃。對於這種情況,在鼓風中的氧氣濃度由基本情況(a)時的26.6%氧氣增加到情況(b)時的30.1%氧氣。如表1所示,所述調整後的操作的結果包括:In the operation shown in (b), the injection rate of coal was increased to 200 Kg/T, while the hot blast temperature was maintained at a constant value of 1250 °C. For this case, the oxygen concentration in the blast increased from 26.6% oxygen in the basic case (a) to 30.1% oxygen in the case (b). As shown in Table 1, the results of the adjusted operation include:

i.) 熱鼓風所需容量得到減少;i.) The required capacity for hot blast is reduced;

ii.) 加熱爐子所需要的爐頂氣體的量得到相應減少;Ii.) the amount of top gas required to heat the furnace is reduced accordingly;

iii.) 爐頂氣體的生熱值得到增加;Iii.) the heat generation value of the top gas is increased;

iv.) 可以通過將爐頂氣體導進蘭金或組合式循環功率產生等適合的過程來用於其他下游用途(如電力產生的用途)的爐頂氣體和熱能的量得到增加;Iv.) The amount of top gas and heat energy that can be used for other downstream uses (eg, power generation applications) by introducing a top gas into a Rankine or combined cycle power generation process is increased;

v.) 操作所需的焦比得到減少;和v.) The coke ratio required for operation is reduced; and

vi.) 產量得到增加。Vi.) Production has increased.

在(c)所示的操作情況中,煤的注射速率被增加到與情況(b)的水準一樣,即200Kg/T,但是在空氣鼓風中的氧氣濃度就進一步被增加到在調整後的操作中的34.8%。這些操作的結果包括:In the operation shown in (c), the injection rate of coal is increased to the same level as in case (b), ie 200 Kg/T, but the oxygen concentration in the air blast is further increased to the adjusted 34.8% of the operation. The results of these operations include:

i.) 所需的熱鼓風溫度由1250℃降低到800℃;i.) The required hot blast temperature is reduced from 1250 ° C to 800 ° C;

ii.) 熱鼓風所需容量得到進一步些微減少;Ii.) The required capacity for hot blasting is further reduced slightly;

iii.) 加熱爐子所需要的爐頂氣體的量得到更進一步減少;Iii.) the amount of top gas required to heat the furnace is further reduced;

iv.) 爐頂氣體的生熱值得到進一步增加;Iv.) The heat generation value of the top gas is further increased;

v.) 可以通過將爐頂氣體導進蘭金或組合式循環功率產生等適合的過程來用於其他下游用途(如電力產生的用途)的爐頂氣體和熱能的量得到更較大的增加(與情況(b)相比);v.) The amount of top gas and heat energy that can be used for other downstream applications (such as power generation) can be increased by introducing a top gas into a Rankine or combined cycle power generation process. (compared to case (b));

vi.) 與情況(b)相比焦比得到增加,但仍然小於(a);和Vi.) The coke ratio is increased compared to case (b) but still less than (a); and

vii.) 與情況(b)相比產量得到減少,但與情況(a)相比仍然得到增加。Vii.) Production is reduced compared to case (b), but still increased compared to case (a).

將情況(b)和(c)與基本操作(a)進行比較,可以例舉出鼓風爐的整體操作可以得到改善並且得到選擇性地調整以找到以下過程的最適宜值:取決於焦炭、煤和氧氣的成本的經濟生產;和熱金屬生產的相關價值;和對下游的功率生產上所述爐頂氣體的價值。Comparing cases (b) and (c) with basic operation (a), it can be exemplified that the overall operation of the blast furnace can be improved and selectively adjusted to find the optimum value for the following process: depending on coke, coal and The economic production of the cost of oxygen; and the associated value of hot metal production; and the value of the top gas for downstream power production.

現在參考情況(d)、(e)和(f),這些情況例舉了將煤注射速率增加到240Kg/T。這三個情況各自是在鼓風中增加的氧氣百分比下進行的。然而,根據加入到鼓風中的氧氣百分比,在給定的煤的注射速率下,用於調整的操作的熱鼓風溫度會改變。如前所述,爐頂氣體和用於產生功率的爐頂氣體的能量的最高量是在氧氣的百分比被最大化、熱鼓風溫度被降低和鐵的產量被限制(在固定的煤的注射速率)的時候發生的。Referring now to cases (d), (e) and (f), these cases exemplify increasing the coal injection rate to 240 Kg/T. Each of these three conditions is carried out under the percentage of oxygen added to the blast. However, depending on the percentage of oxygen added to the blast, the hot blast temperature for the operation of the adjustment will change at a given injection rate of coal. As mentioned earlier, the maximum amount of energy of the top gas and the top gas used to generate the power is maximized in the percentage of oxygen, the hot blast temperature is lowered, and the iron production is limited (injected in fixed coal) Rate occurs when).

在所述的情況(d)、(e)和(f)中,最低的焦比是在最高的熱鼓風溫度情況(d)下發生的。隨著焦炭在鼓風爐中的引入速率降低,有效的鼓風爐操作會變得困難,這是由於焦炭的平均分佈所涉及的複雜性而導致的。因此,這些實施例例舉了使用了每噸熱金屬至少262千克(或更多)的焦炭(即已經證明了每噸熱金屬262千克的焦炭是有效的)。In the cases (d), (e) and (f) described, the lowest coke ratio occurs at the highest hot blast temperature condition (d). As the rate of introduction of coke in the blast furnace is reduced, efficient blast furnace operation can become difficult due to the complexity involved in the average distribution of coke. Thus, these examples exemplify the use of at least 262 kilograms (or more) of coke per ton of hot metal (i.e., 262 kilograms of coke per ton of hot metal has been demonstrated to be effective).

在情況(g)和(h)中示出了將煤的注射速率進一步增加到280Kg/T。在這兩個情況下,熱鼓風溫度被降低以便保持調整後的操作並同時增加空氣鼓風的氧氣富集以便在進料混合物中保持至少262Kg/T的焦炭。情況(g)和(h)的結果如下:The injection rate of coal was further increased to 280 Kg/T in cases (g) and (h). In both cases, the hot blast temperature is lowered to maintain the adjusted operation while increasing the oxygen enrichment of the air blast to maintain at least 262 Kg/T of coke in the feed mixture. The results of cases (g) and (h) are as follows:

i.) 更加比較大的熱金屬的產量,和i.) a much larger production of hot metal, and

ii.) 用於下游功率產生的熱能量得到增加的爐頂氣體,與所有在先的情況比較時。Ii.) Increased thermal energy for downstream power generation with increased top gas compared to all prior conditions.

進一步增加煤的注射速率到在表1的情況(i)下的320Kg/T,同時保持熱鼓風溫度等於在先情況(h)下的600℃,由此得到僅僅239Kg/T的焦比需要。為了在一個煤的注射速率水準(320Kg/T)下和在具有所示的氧氣的富集水準下達到調整後的操作,進一步降低熱鼓風溫度可以適當地讓更多的焦炭留在進料中,而同時保持調整後的操作。Further increasing the injection rate of coal to 320 Kg/T under the case (i) of Table 1, while maintaining the hot blast temperature equal to 600 ° C under the previous case (h), thereby obtaining a coke ratio of only 239 Kg/T. . In order to achieve an adjusted operation at a coal injection rate level (320 Kg/T) and at an enrichment level with the indicated oxygen, further reduction of the hot blast temperature may suitably allow more coke to remain in the feed. While maintaining the adjusted operation.

在一些生熱值的閾值水準(例如,大於4,700kJ/Nm3 的生熱值),所述爐頂氣體變得可以控制以在改善的效率下通過直接地在燃氣渦輪機中進行燃燒轉換成電流而不需要補充的燃料。因此,生產具有較高生熱值的爐頂氣體對由該爐頂氣體進行下游的功率生產是有利的。At some threshold level of calorific value (eg, a calorific value greater than 4,700 kJ/Nm 3 ), the top gas becomes controllable to convert to combustion by direct combustion in a gas turbine at improved efficiency Current does not require supplemental fuel. Therefore, it is advantageous to produce a top gas having a higher heat generation value for downstream power production from the top gas.

在鼓風中增加了氧氣含量的情況下操作BF,同時增加煤的注射速率,達到了以下的利益:Operating BF while increasing the oxygen content in the blast, while increasing the injection rate of coal, achieves the following benefits:

i.) 爐頂氣體能量的產量得到增加,i.) the production of gas energy at the top of the furnace is increased,

ii.) 在鼓風爐中的焦炭需要得到減少,Ii.) the coke in the blast furnace needs to be reduced,

iii.) 用於爐子加熱的爐頂氣體能量的需要通過以下方式得到減少:Iii.) The need for furnace top gas energy for furnace heating is reduced by:

a. 降低熱鼓風溫度需要,和a. reduce the need for hot blast temperature, and

b. 降低所需的熱鼓風的總流率,b. reduce the total flow rate of the required hot blast,

iv.) 從給定尺寸的鼓風爐中的給定的固定資源的熱金屬產量得到增加。Iv.) Increased hot metal production from a given fixed resource in a given size blast furnace.

實施例BExample B

該實施例例舉了改變傳統的鼓風爐操作來冷卻(環境溫度)鼓風操作。在下述的表2的(a)欄中示出了傳統鼓風爐的操作參數,通過操作該鼓風爐以達到高的煤注射速率與高的熱鼓風溫度和氧氣的富集來使該鼓風爐在穩定的操作所用的進料中最低的實踐量的焦炭下進行驅動(例如,熱鼓風溫度為1250℃;煤注射速率為240Kg/T;升高的溫度鼓風使用氧氣來富集到33.5%的水準;和焦比為262Kg/T[表2的基本情況(a)大概相應於表1的情況(d)])。在實施例B中也同樣使用了實施例A中描述的電腦模型。This embodiment exemplifies changing the conventional blast furnace operation to cool (ambient temperature) blast operation. The operating parameters of a conventional blast furnace are shown in column (a) of Table 2 below, which is stabilized by operating the blast furnace to achieve a high coal injection rate with high hot blast temperature and oxygen enrichment. The lowest practical amount of coke used in the operation is driven (eg, hot blast temperature is 1250 ° C; coal injection rate is 240 Kg / T; elevated temperature blast using oxygen to enrich to 33.5% level ; and the coke ratio is 262 Kg / T [the basic case of Table 2 (a) roughly corresponds to the case (d) of Table 1]). The computer model described in Embodiment A is also used in Embodiment B.

一種對任何鼓風爐操作的約束是要滿足爐子下部分中的熱需要,其表示為管路絕熱火焰溫度(Raceway Adiabatic Flame Temperature,RAFT)。當滿足所述傳統的操作參數時,所述RAFT優選在大約1950至2300℃的範圍內。One constraint on the operation of any blast furnace is to meet the heat demand in the lower portion of the furnace, which is expressed as the Raceway Adiabatic Flame Temperature (RAFT). When the conventional operating parameters are satisfied, the RAFT is preferably in the range of about 1950 to 2300 °C.

在表2中的情況(b)示出了操作情況(a)的傳統鼓風爐所得的結果,其中具有以下的變化:Case (b) in Table 2 shows the results obtained by the conventional blast furnace of the operation case (a) with the following changes:

i.) 煤的注射速率得到增加,i.) The injection rate of coal is increased,

ii.) 空氣鼓風氧氣得到增加,和Ii.) air blasting oxygen is increased, and

iii.) 鼓風溫度降低到環境溫度(25℃)Iii.) The blast temperature is lowered to ambient temperature (25 ° C)

同時滿足爐子的較低部分中的熱條件(如計算的1996℃ RAFT所示)。在該情況(b)中,鼓風爐是使用富集到55.5%的氧氣的環境溫度的鼓風來操作的,其具有與基本情況(a)相同的焦比(當煤注射速率是335Kg/T時)。At the same time, the thermal conditions in the lower part of the furnace are met (as indicated by the calculated 1996 °C RAFT). In this case (b), the blast furnace is operated using an blast having an ambient temperature enriched to 55.5% of oxygen, which has the same coke ratio as the basic case (a) (when the coal injection rate is 335 Kg/T) ).

情況(b)例舉了鼓風爐的操作,其中:Case (b) exemplifies the operation of the blast furnace, where:

i.) 鼓風爐的產率得到提高,i.) The productivity of the blast furnace is improved,

ii.) 爐頂氣體的生熱值被增加5,744kJ/Nm3 ,由此使其可以在聯合式循環功率產生操作的燃氣渦輪機中進行直接燃燒。Ii.) The heat generation value of the top gas is increased by 5,744 kJ/Nm 3 , thereby making it possible to perform direct combustion in a gas turbine operating in a combined cycle power generation operation.

iii.) 由於鼓風溫度是在周圍環境接受的,所以使用部分的爐頂氣體作為用於爐子加熱的燃料的需要可以消除,由此允許整個爐頂氣體物流可以用於其他有用的目的(例如組合式循環功率產生)。Iii.) Since the blast temperature is acceptable in the surrounding environment, the need to use part of the top gas as fuel for furnace heating can be eliminated, thereby allowing the entire top gas stream to be used for other useful purposes (eg Combined cycle power generation).

以上確定的電腦模型用於例舉情況(a)的鼓風爐的其他改變操作流程和裝置。情況(c)例舉了當對一些所述爐頂氣體進行CO2 汽提操作,並且將剩餘的CO/H2 -富集的爐頂氣體物流再循環並通過鼓風口與氧氣富集的環境溫度的空氣一起再注射入鼓風爐的時候對爐子操作的影響。在情況(c)中,製備了46Nm3 /T的CO2 汽提的和再循環的爐頂氣體並且將其通過鼓風爐的鼓風口與所需氧氣富集的冷鼓風一起注射用於調整操作。在表2的情況(c)示出了該實施例的結果:The computer model determined above is used to exemplify other changes in the operation flow and apparatus of the blast furnace of the case (a). Case (c) exemplifies an environment in which some of the top gas is subjected to a CO 2 stripping operation and the remaining CO/H 2 -rich top gas stream is recycled and enriched by the tuyere and oxygen. The effect of temperature air on the furnace operation when injected into the blast furnace together. In case (c), 46 Nm 3 /T of CO 2 stripped and recycled top gas was prepared and injected through the tuyere of the blast furnace together with the cold blast enriched with the desired oxygen for adjustment operation. . The result of this embodiment is shown in case (c) of Table 2:

i.) 與情況(b)相比沒有顯著的焦炭或煤(燃料)的節省;i.) There is no significant coke or coal (fuel) savings compared to case (b);

ii.) 與情況(b)相比剩餘的排出爐頂氣體提供了較少的能量給下游用途;Ii.) The remaining vented top gas provides less energy for downstream use than in case (b);

iii.) 該情況增加了CO2 除去步驟的操作複雜性;Iii.) this situation increases the operational complexity of the CO 2 removal step;

iv.) 具有相對較少的產量增加,由8990到9010T/天。Iv.) has a relatively small increase in yield from 8990 to 9010 T/day.

情況(d)例舉了改變的鼓風爐操作,其中將CO2 汽提的和再循環的爐頂氣體以73Nm3 /T的速率注射到爐子的中間堆區域。使用了額外還原氣體的中間堆注射來改善在所述爐子的該區域中的還原潛力。在焦炭節省或者爐頂氣體熱能生產方面,該操作情況(d)的結果與情況(b)相比沒有顯示出優點。存在產量增加,由8,990到9,407T/天。Case (d) exemplifies a modified blast furnace operation in which CO 2 stripped and recycled top gas is injected into the intermediate stack region of the furnace at a rate of 73 Nm 3 /T. An intermediate stack injection of additional reducing gas is used to improve the reduction potential in this region of the furnace. The results of this operating condition (d) show no advantage over case (b) in terms of coke savings or roof gas thermal energy production. There is an increase in yield from 8,990 to 9,407 T/day.

情況(e)例舉了一種改變的鼓風爐,其中中間堆注射的再循環氣體與情況(d)相比被增加一倍。情況(e)的結果包括:Case (e) exemplifies a modified blast furnace in which the recycle gas injected by the intermediate stack is doubled compared to case (d). The results of case (e) include:

i.) 總燃料速率得到降低,i.) The total fuel rate is reduced,

ii.) 爐頂氣體中的生熱值得到增加,Ii.) the heat generation value in the top gas is increased,

iii.) 用於下游的功率生產的所生產的總可用的熱能得到進一步改善,Iii.) The total available heat energy produced for downstream power production is further improved,

iv.) 與情況(d)相比得到額外改善的產率;和,Iv.) an additional improved yield compared to case (d); and,

v.) 設備成本得到增加。v.) Equipment costs are increased.

情況(f)例舉了改變的鼓風爐,其中汽提的和再循環的爐頂氣體的中間堆注射被增加到216Nm3 /T的速率。情況(f)的結果包括:Case (f) exemplifies a modified blast furnace in which the intermediate stack injection of stripped and recirculated top gas is increased to a rate of 216 Nm 3 /T. The results of case (f) include:

i) 產率得到增加,i) the yield is increased,

ii) 燃料需要得到降低,和Ii) fuel needs to be reduced, and

iii) 可用於輸出的爐頂氣體能量得到加大,Iii) the energy of the top gas that can be used for output is increased,

iv) 爐腹區域中的熱條件(例如,直接在鼓風爐的鼓風口前面和周圍的鼓風爐區域)是無法接受的高(如2500℃的RAFT所示)。Iv) The thermal conditions in the belly area (for example, directly in the blast furnace area in front of and around the blast chamber of the blast furnace) are unacceptably high (as indicated by the RAFT at 2500 °C).

情況(g)例舉了一種改變的鼓風爐,其中將100% O2 用作冷鼓風。Case (g) exemplifies a modified blast furnace in which 100% O 2 is used as a cold blast.

情況(g)利用了從所述爐頂氣體除去CO2 和再循環/再注射一些CO2 -汽提的爐頂氣體到爐子的爐腹和再循環/再注射一些CO2 -汽提的爐頂氣體到爐子的中間堆區域。情況(g)的結果包括:Case (g) utilizes the removal of CO 2 from the top gas and the recycle/re-injection of some CO 2 - stripped top gas to the furnace belly and recirculation/reinjection of some CO 2 - stripping furnace Top gas to the middle heap area of the furnace. The results of case (g) include:

i.) 在所有情況的爐子中所示的產率是最高的,而其中的RAFT是在可接受的範圍內;i.) The yield shown in the furnace in all cases is the highest, and the RAFT therein is within an acceptable range;

ii.) 可達到爐頂氣體生熱值是最高的;Ii.) The top gas heat generation value is the highest;

iii.) 總燃料速率接近傳統熱鼓風操作(情況(a))的總燃料速率。Iii.) The total fuel rate is close to the total fuel rate of conventional hot blast operation (case (a)).

iv.) CO2 汽提;再循環到中間堆注射;和再循環到鼓風口注射的設備成本得到增加.Iv.) CO 2 stripping; recycling to intermediate stack injection; and equipment costs for recirculation to the tuyere injection are increased.

情況(h)例舉了一種改變的鼓風爐,該鼓風爐是喲年過了100%的冷鼓風注射,而不需要再循環CO2 -汽提的爐頂氣體到所述鼓風口。這種流程不能夠被利用,因為RAFT是不能接受的。Case (h) exemplifies a modified blast furnace which is 100% cold blast injection in the following year without the need to recycle CO 2 -stripped top gas to the blast opening. This process cannot be utilized because RAFT is unacceptable.

實施例B例舉了情況(b)具有以下影響:Example B illustrates that case (b) has the following effects:

i.) 通過冷鼓風操作消除了爐的需要i.) Eliminate the need for the furnace by cold blast operation

ii.) 產率增加Ii.) Increase in productivity

iii.) 焦比降低Iii.) Reduced coke ratio

iv.) 足夠高的生熱值的爐頂氣體,用於經濟的直接在組合式的循環功率產生的燃氣渦輪機中燃燒,可用於聯合式循環功率產生。Iv.) A sufficiently high calorific value of the top gas for economical combustion directly in a combined cycle power generating gas turbine for combined cycle power generation.

v.) 可用於功率生產的總熱能得到增加v.) The total heat energy available for power production is increased

vi.) 不必需要CO2 -汽提和再注射Vi.) No need for CO 2 - stripping and reinjection

vii.) 鼓風爐沒有用於再循環再注射到中間堆或鼓風口區域的複雜改變或者再循環管道系統Vii.) The blast furnace does not have a complex change or recirculation piping system for re-injection into the intermediate stack or tuyere area

viii.) 同時符合在爐子的爐腹中需要的熱條件(RAFT)。Viii.) At the same time meet the thermal conditions (RAFT) required in the belly of the furnace.

實施例CExample C

實施例C例舉了鼓風爐方法的改變對生產功率能力的影響。根據表3的情況(a)中所示的參數操作普通大小每年2.3-百萬噸的鼓風爐,如下(例如,煤的注射速率為150Kg/T,熱鼓風的氧氣富集到26.6%體積的水準,以及相應焦比為339Kg/T)。情況(b)、(c)和(d)示出了當鼓風中的氧氣的百分比從26.6%逐漸增加到較高的百分比33.3、40和61%時在該特定的操作內所產生的影響。這些影響包括:Example C illustrates the effect of changes in the blast furnace process on production power capabilities. Operate a normal-sized 2.3-million-ton blast furnace per year according to the parameters shown in case (a) of Table 3, as follows (for example, the injection rate of coal is 150 Kg/T, and the oxygen of hot blast is enriched to 26.6% by volume. Level, and the corresponding focal ratio is 339Kg / T). Cases (b), (c) and (d) show the effect of this particular operation when the percentage of oxygen in the blast increases from 26.6% to a higher percentage of 33.3, 40 and 61%. . These effects include:

i.) 能夠注射的煤的量得到相應增加;i.) The amount of coal that can be injected is correspondingly increased;

ii.) 空氣鼓風的溫度得到降低;Ii.) the temperature of the air blast is reduced;

iii.) 所需空氣鼓風的份量得到降低;Iii.) the amount of air blast required is reduced;

iv.) 在進料中所需焦炭的量被降低到最小的“底”水準(在此所定的水準為262Kg/T),在該點之後所述焦比可用被保持恒定;Iv.) The amount of coke required in the feed is reduced to a minimum "bottom" level (at a level of 262 Kg/T) at which point the coke ratio can be kept constant;

v.) 產生了更多的爐頂氣體熱能;v.) produced more top gas heat energy;

vi.) 需要較少部分的總爐頂氣體來加熱爐子;Vi.) requires a smaller portion of the total top gas to heat the furnace;

vii.) 更多爐頂氣體可被導入(專用於)下游的功率產生;Vii.) More top gas can be introduced (dedicated to) downstream power generation;

viii.) 用於運行渦輪鼓風機或者空氣鼓風機來提供空氣到鼓風爐的蒸汽需要得到減少(例如,由於空氣鼓風流率需要的減少而導致),而且這額外使得更多的由BF爐頂氣體能量內所含有的能量產生的蒸汽可以用於功率生產;Viii.) The steam used to run the turbine blower or air blower to provide air to the blast furnace needs to be reduced (for example, due to the reduced air blast flow rate required), and this additionally makes more of the BF top gas energy The steam produced by the energy contained can be used for power production;

ix.) 當鼓風爐在相應的增加的水準的氧氣的富集和煤的注射速率下操作時,可用於功率發生的剩餘的MMbtu/hr的爐頂氣體由619MMbtu/hr增加到924MMbtu/hr、由619MMbtu/hr增加到1,236MMbtu/hr、由619MMbtu/hr增加到1,843MMbtu/hr。Ix.) When the blast furnace is operated at the corresponding increased level of oxygen enrichment and coal injection rate, the remaining MMbtu/hr of top gas available for power generation increases from 619 MMbtu/hr to 924 MMbtu/hr. 619 MMbtu/hr increased to 1,236 MMbtu/hr, from 619 MMbtu/hr to 1,843 MMbtu/hr.

該實施例例舉了通過將該實施例的鼓風爐的空氣鼓風中的氧氣水準從26.6%提高到61%使得可用於功率生產的能量的量得到三倍的增加的影響。This example exemplifies that by increasing the oxygen level in the air blast of the blast furnace of this embodiment from 26.6% to 61%, the amount of energy available for power production is three times increased.

現參考表3,表3例舉了用於各個鼓風爐操作情況所產生的“淨功率”的量(以kWe)。對於各個鼓風爐操作情況,所述爐頂氣體是通過以下的一個或兩個方法用於功率生產的:Referring now to Table 3, Table 3 illustrates the amount (in kWe) of "net power" produced for each blast furnace operation. For each blast furnace operation, the top gas is used for power production by one or both of the following methods:

i.) 在蒸汽鍋爐中燃燒所述爐頂氣體並通過與蒸汽渦輪機連接的產生器生產功率(即傳統的蘭金循環功率產生),或i.) burning the top gas in a steam boiler and producing power through a generator connected to the steam turbine (ie, conventional Rankine cycle power generation), or

ii.) 在驅動產生器的燃氣渦輪機中壓縮和燃燒所述爐頂氣體,然後將所述燃氣渦輪機的排氣送到熱回收蒸汽產生器(HRSG),然後其中的蒸汽通過適當大小的蒸汽渦輪機產生器產生功率(即組合式循環功率產生)。Ii.) compressing and burning the top gas in a gas turbine that drives the generator, and then sending the gas turbine exhaust to a heat recovery steam generator (HRSG), where the steam passes through an appropriately sized The steam turbine generator produces power (ie, combined cycle power generation).

表3例舉了所產生的電力的量顯著地提升(當所述鼓風爐被額外地氧氣富集時),並且生產了較高的生熱值爐頂氣體。表3也例舉了使用組合式循環功率產生以增加效率和提升在各個給定的鼓風爐情況下能夠產生的功率的總量,其中:Table 3 exemplifies that the amount of electric power generated is significantly increased (when the blast furnace is additionally enriched with oxygen), and a higher calorific value top gas is produced. Table 3 also exemplifies the use of combined cycle power generation to increase efficiency and increase the amount of power that can be generated in each given blast furnace condition, where:

i.) 在不同的BF操作參數所生產的爐頂氣體生熱值範圍內,將熱能轉換到電能kW的整體效率仍然固定在31.3。i.) The overall efficiency of converting thermal energy to electrical energy kW is still fixed at 31.3 over the range of top gas heat generation values produced by different BF operating parameters.

ii.) 在組合式循環功率產生的情況下,使用較高的氧氣富集的BF操作所生產的爐頂氣體達到了效率上的優點。這是在表3中的數字的最後一行中例舉的,其中當在空氣鼓風中的氧氣的富集水準從26.6%增加到61%時,將來自鼓風爐的爐頂氣體熱能進行轉換的整體淨效率從38.1%提升到43.7%(伴隨著BF操作參數的其他所需的相應改變)。Ii.) In the case of combined cycle power generation, the top gas produced using the higher oxygen enriched BF operation achieves an efficiency advantage. This is exemplified in the last row of the numbers in Table 3, where the overall energy conversion from the top gas of the blast furnace is converted when the enrichment level of oxygen in the air blast increases from 26.6% to 61%. The net efficiency increased from 38.1% to 43.7% (along with other required changes in BF operating parameters).

雖然該實施例示出了在四個特定選擇的點(或操作參數組)的鼓風爐操作和功率產生效率,可用理解的是鼓風爐能夠沿著所公開的氧氣濃度範圍在任何適合的點下進行操作。例如,當計畫的爐頂氣體的份量和生熱值是最適於配合特定大小的燃氣渦輪機的工業效用時,可理想地在52%氧氣下進行操作。While this embodiment shows blast furnace operation and power generation efficiency at four particular selected points (or sets of operating parameters), it can be appreciated that the blast furnace can operate at any suitable point along the disclosed oxygen concentration range. For example, when the fractional and heat generation values of the planned top gas are best suited to match the industrial utility of a particular size gas turbine, it is desirable to operate at 52% oxygen.

雖然已經描述了本發明的一些方面,可用理解的是本發明並不限於這些方面並且本發明可以覆蓋包括在所附申請專利範圍內的不同改變和等同技術方式。Although some aspects of the invention have been described, it is understood that the invention is not limited to the aspects and the invention may be construed to cover various modifications and equivalents thereof.

1...焦炭1. . . Coke

2...鼓風爐2. . . Blast furnace

3...粉煤注射系統3. . . Pulverized coal injection system

4...空氣分離單元4. . . Air separation unit

5...爐頂氣體5. . . Top gas

6...清潔系統6. . . Cleaning system

7...靜電沉澱器7. . . Electrostatic precipitator

8...氣體壓縮機8. . . Gas compressor

9...燃氣渦輪機9. . . Gas turbine

10...蒸汽產生器10. . . Steam generator

11...蒸汽渦輪機11. . . Steam turbine

12...熱金屬12. . . Hot metal

13...除去系統13. . . Removal system

14...反應器14. . . reactor

圖1是本發明的一個方面的示意圖,其採用了與鼓風爐製鐵相關聯的煤的氣化和聯合式循環功率生產。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of an aspect of the invention employing gasification and combined cycle power production of coal associated with blast furnace steelmaking.

圖2是本發明另一方面的示意圖,其採用了與鼓風爐製鐵一起的煤的氣化和聯合式循環功率生產和二氧化碳捕獲和除去(可用於捕獲)。2 is a schematic illustration of another aspect of the invention employing coal gasification and combined cycle power production and carbon dioxide capture and removal (capable for capture) with blast furnace iron.

圖3也是本發明的另外一個方面的示意圖,其採用了煤的氣化和聯合式循環功率生產與二氧化碳捕獲和除去(可用於捕獲)一起,其通過在二氧化碳捕獲和除去步驟之前包括轉化反應器來改善。3 is also a schematic illustration of another aspect of the invention employing coal gasification and combined cycle power production along with carbon dioxide capture and removal (available for capture) by including a conversion reactor prior to the carbon dioxide capture and removal step To improve.

圖4是本發明的另外一個方面的示意圖,其採用了來自ASU的氮氣來幫助驅動燃氣渦輪機和利用了來自ASU的氧氣來幫助在HRSG中燃燒至少一部分所述爐頂氣體。4 is a schematic illustration of another aspect of the invention employing nitrogen from an ASU to assist in driving a gas turbine and utilizing oxygen from the ASU to help burn at least a portion of the top gas in the HRSG.

圖5是本發明的進一步方面的示意圖,其採用了儲氣器來緩衝爐頂氣體的流動和壓力變化,和其中將至少一部分處理的爐頂氣體在HRSG周圍導入燃氣渦輪機。5 is a schematic illustration of a further aspect of the invention employing a gas reservoir to buffer flow and pressure changes of the top gas, and wherein at least a portion of the treated top gas is introduced into the gas turbine around the HRSG.

圖6是本發明的一個方面的示意圖,其採用了爐子來提供加熱的鼓風,其中一部分鼓風空氣是通過提取自將助燃空氣進料到燃氣渦輪機的壓縮機的空氣而提供的。Figure 6 is a schematic illustration of an aspect of the invention employing a furnace to provide heated blast, wherein a portion of the blast air is provided by extraction from air that feeds combustion air to a compressor of the gas turbine.

圖7是本發明的圖1例舉的另外一個方面,除此之外圖7採用了熱鼓風爐和空氣鼓風機來提供加熱的富含氧氣的空氣到鼓風爐。Figure 7 is a further aspect of the Figure 1 of the present invention, in addition to Figure 7 using a hot blast furnace and an air blower to provide heated oxygen-enriched air to the blast furnace.

在這些附圖中例舉的裝置、元件、系統和方法可以個別地或者結合地採用來獲得本發明沒有在所述附圖中例舉的附加方面。The devices, elements, systems and methods exemplified in the figures may be employed individually or in combination to obtain additional aspects of the invention that are not illustrated in the drawings.

1...焦炭1. . . Coke

2...鼓風爐2. . . Blast furnace

3...粉煤注射系統3. . . Pulverized coal injection system

4...空氣分離單元4. . . Air separation unit

5...爐頂氣體5. . . Top gas

6...清潔系統6. . . Cleaning system

7...靜電沉澱器7. . . Electrostatic precipitator

8...氣體壓縮機8. . . Gas compressor

9...燃氣渦輪機9. . . Gas turbine

10...蒸汽產生器10. . . Steam generator

11...蒸汽渦輪機11. . . Steam turbine

12...熱金屬12. . . Hot metal

13...除去系統13. . . Removal system

14...反應器14. . . reactor

Claims (19)

一種製備鐵的方法,包括:將鐵礦石、焦炭和煤引入鼓風爐中,由此在引入鼓風爐中的蒸汽和超級富集的空氣的存在下將所述煤氣化,其中所述超級富集的空氣是使用氧氣來超級富集到大約36%氧氣的水準的;回收鼓風爐中的爐頂氣體並使用所述爐頂氣體來產生功率;和回收所述鼓風爐中的熱金屬;其中所述超級富集的空氣是在低於大約1250℃的溫度下引入所述鼓風爐中的並且熱金屬是在還原劑與鐵的比例為每千克生產的鐵大於或等於大約0.40千克的碳下生產的。 A method of preparing iron, comprising: introducing iron ore, coke, and coal into a blast furnace, thereby gasifying the coal in the presence of steam introduced into the blast furnace and super-enriched air, wherein the super-enriched Air is highly enriched to a level of approximately 36% oxygen using oxygen; the top gas in the blast furnace is recovered and used to generate power; and the hot metal in the blast furnace is recovered; wherein the super rich The collected air is introduced into the blast furnace at a temperature below about 1250 ° C and the hot metal is produced at a carbon ratio of reducing agent to iron of greater than or equal to about 0.40 kilograms per kilogram of produced iron. 如申請專利範圍第1項的方法,其中所述空氣是使用來自至少一個選自空氣分離單元、離子傳輸膜和PVSA的系統的氧氣來富集的。 The method of claim 1, wherein the air is enriched using oxygen from at least one system selected from the group consisting of an air separation unit, an ion transport membrane, and a PVSA. 如申請專利範圍第1項的方法,其中還包括在使用所述爐頂氣體來產生功率之前除去所述爐頂氣體中的二氧化碳。 The method of claim 1, further comprising removing carbon dioxide from the top gas prior to using the top gas to generate power. 如申請專利範圍第1項的方法,其中焦炭的使用量為每公噸熱金屬少於大約300千克並且所述煤的使用量為每公噸熱金屬至少大約200千克。 The method of claim 1, wherein the coke is used in an amount of less than about 300 kilograms per metric ton of hot metal and the coal is used in an amount of at least about 200 kilograms per metric ton of hot metal. 如申請專利範圍第2項的方法,其中所述空氣分離單元包括低溫蒸餾空氣分離單元。 The method of claim 2, wherein the air separation unit comprises a cryogenic distillation air separation unit. 一種產生功率的方法,其中包括:提供至少一部分來自製鐵鼓風爐的爐頂氣體,其中所述爐頂氣體包括一氧化碳、二氧化碳、氫氣和氮氣,它們各自的濃度使得所述爐頂氣體在沒有補充的燃料下具有足以操作燃氣渦輪機的生熱值,將該爐頂氣體壓縮並與氮氣合併再供應到所述燃氣渦輪機,和在足以操作蒸汽渦輪機的條件下將所述燃氣渦輪機的排氣引入熱回收蒸汽產生器,其中:i)所述氮氣是通過供應氧氣到所述鼓風爐中的空氣分離單元(ASU)產生的,和/或ii)將得自所述ASU的氧氣用於在一熱回收蒸汽產生器(HRSG)中燃燒該鼓風爐爐頂氣體的一部分和/或iii)將來自ASU的氮氣供應到所述燃氣渦輪機。 A method of producing power, comprising: providing at least a portion of a top gas from a steel blast furnace, wherein the top gas comprises carbon monoxide, carbon dioxide, hydrogen, and nitrogen, each of which has a concentration such that the top gas is not replenished a fuel having a heat generation value sufficient to operate the gas turbine, compressing the top gas and combining it with nitrogen for supply to the gas turbine, and exhausting the gas turbine under conditions sufficient to operate the steam turbine Introducing a heat recovery steam generator, wherein: i) the nitrogen is produced by supplying oxygen to an air separation unit (ASU) in the blast furnace, and/or ii) using oxygen from the ASU for use in a A portion of the blast furnace top gas is combusted in a heat recovery steam generator (HRSG) and/or iii) nitrogen from the ASU is supplied to the gas turbine. 如申請專利範圍第6項的方法,其中還包括在將所述爐頂氣體引入燃氣渦輪機之前除去所述爐頂氣體中的二氧化碳。 The method of claim 6, further comprising removing carbon dioxide from the top gas prior to introducing the top gas into the gas turbine. 如申請專利範圍第7項的方法,其中還包括在除 去二氧化碳之前將至少一部分一氧化碳轉化為二氧化碳。 For example, the method of claim 7 of the patent scope, which also includes At least a portion of the carbon monoxide is converted to carbon dioxide prior to the removal of carbon dioxide. 一種製備鐵和氣化煤的方法,包括:將具有鐵的材料和焦炭引入鼓風爐,將煤引入製鐵鼓風爐,和;將富含氧氣的空氣引入所述鼓風爐,其中在所述鼓風爐內的條件足以用於製鐵並將至少一部分所述的煤轉化為含有一氧化碳、二氧化碳和氫氣的氣體;將所述爐的一部分氣體除去;將所述氣體中的至少一部分二氧化碳除去並將所述氣體供應到以下中的至少一個:i)聯合式循環功率產生系統並將該聯合式循環功率產生系統產生的蒸汽供應到鼓風爐,和ii)生產氫氣的水轉化反應器;和,回收製鐵鼓風爐中的鐵。 A method of preparing iron and gasified coal, comprising: introducing a material having iron and coke into a blast furnace, introducing the coal into a blast furnace, and introducing oxygen-enriched air into the blast furnace, wherein conditions in the blast furnace are sufficient Used for making iron and converting at least a portion of said coal into a gas comprising carbon monoxide, carbon dioxide and hydrogen; removing a portion of the gas from said furnace; removing at least a portion of the carbon dioxide from said gas and supplying said gas to At least one of: i) a combined cycle power generation system and supplying steam generated by the combined cycle power generation system to a blast furnace, and ii) a water conversion reactor for producing hydrogen; and recovering iron in the iron blast furnace. 如申請專利範圍第9項的方法,其中用於富集所述空氣的氧氣是供應自空氣分離單元的。 The method of claim 9, wherein the oxygen for enriching the air is supplied from an air separation unit. 如申請專利範圍第9項的方法,其中所述氣體被供應到轉化反應器,在該轉化反應器中一氧化碳和水被轉化為二氧化碳和氫氣。 The method of claim 9, wherein the gas is supplied to a conversion reactor in which carbon monoxide and water are converted to carbon dioxide and hydrogen. 如申請專利範圍第10項的方法,其中空氣分離單 元產生的氮氣被供應到至少一個所述的CO2 除去步驟,並將所述氣體供應到聯合式循環功率產生系統。The method of claim 10, wherein the nitrogen produced by the air separation unit is supplied to at least one of said CO 2 removal steps and supplied to the combined cycle power generation system. 如申請專利範圍第10項的方法,其中所述爐被供應混合物,其中包括氧氣、蒸汽和至少一種CO、CO2 和H2 ,並且所述氣體實質上無氮氣。The method of claim 10, wherein the furnace is supplied with a mixture comprising oxygen, steam and at least one of CO, CO 2 and H 2 , and the gas is substantially free of nitrogen. 如申請專利範圍第6項的方法,其中離開所述蒸汽渦輪機的排氣是實質上無CO2 的。Method according to Claim 6 of patentable scope, wherein the exhaust gas leaving the steam turbine is substantially free of CO 2. 如申請專利範圍第6項的方法,其中至少一部分所述爐頂氣體是在來自ASU的氧氣的存在下在所述熱回收蒸汽產生器的燃燒器中燃燒的。 The method of claim 6, wherein at least a portion of the top gas is combusted in a combustor of the heat recovery steam generator in the presence of oxygen from the ASU. 一種用於製鐵和產生功率的整合的系統,包括:製鐵鼓風爐和用於接收來自所述製鐵鼓風爐的爐頂氣體的爐頂氣體系統,輸送煤的系統,該系統用於將煤供應到所述製鐵鼓風爐,二氧化碳除去系統,該系統用於除去所述爐頂氣體系統所接收的氣體中的二氧化碳,聯合式循環功率產生系統,輸送蒸汽的系統,用於將來自聯合式循環功率產生系統的蒸汽供應到所述製鐵鼓風爐;和, 空氣分離單元和用於將來自所述單元的氧氣供應到所述鼓風爐並將來自所述單元的氮氣供應到所述聯合式循環功率產生系統的輸送系統。 An integrated system for iron making and power generation, comprising: an iron blast furnace and a top gas system for receiving a top gas from the iron blast furnace, a system for transporting coal, the system for supplying coal To the iron blast furnace, a carbon dioxide removal system for removing carbon dioxide from the gas received by the top gas system, a combined cycle power generation system, and a system for delivering steam for use from combined cycle power Producing a system of steam supply to the ironmaking blast furnace; and, An air separation unit and a delivery system for supplying oxygen from the unit to the blast furnace and supplying nitrogen from the unit to the combined cycle power generation system. 如申請專利範圍第16項的系統,其中含包括水轉化反應器,該水轉化反應器接收來自所述爐頂氣體系統的爐頂氣體並產生氫氣。 A system of claim 16 wherein the system comprises a water conversion reactor that receives the top gas from the top gas system and produces hydrogen. 如申請專利範圍第1項的方法,其中所述溫度低於大約850℃。 The method of claim 1, wherein the temperature is less than about 850 °C. 如申請專利範圍第1項的方法,其中所述比例大於或等於大約0.45千克。The method of claim 1, wherein the ratio is greater than or equal to about 0.45 kg.
TW099104039A 2009-12-03 2010-02-09 Blast furnace iron production with integrated power generation TWI412596B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/630,256 US20100146982A1 (en) 2007-12-06 2009-12-03 Blast furnace iron production with integrated power generation

Publications (2)

Publication Number Publication Date
TW201120220A TW201120220A (en) 2011-06-16
TWI412596B true TWI412596B (en) 2013-10-21

Family

ID=45045058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099104039A TWI412596B (en) 2009-12-03 2010-02-09 Blast furnace iron production with integrated power generation

Country Status (1)

Country Link
TW (1) TWI412596B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480814B (en) * 2012-01-13 2015-04-11 China Steel Corp Decision support system for determining production of oxygen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1007160B (en) * 1985-07-26 1990-03-14 日本纲管株式会社 Method of operating blast furnace
US5268019A (en) * 1991-03-11 1993-12-07 The Boc Group Plc Air separation method and apparatus combined with a blast furnace
US20090223229A1 (en) * 2006-12-19 2009-09-10 Hua Wang Method and System for Using Low BTU Fuel Gas in a Gas Turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1007160B (en) * 1985-07-26 1990-03-14 日本纲管株式会社 Method of operating blast furnace
US5268019A (en) * 1991-03-11 1993-12-07 The Boc Group Plc Air separation method and apparatus combined with a blast furnace
US20090223229A1 (en) * 2006-12-19 2009-09-10 Hua Wang Method and System for Using Low BTU Fuel Gas in a Gas Turbine

Also Published As

Publication number Publication date
TW201120220A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
US8557173B2 (en) Blast furnace iron production with integrated power generation
US20100146982A1 (en) Blast furnace iron production with integrated power generation
CN105518112B (en) Include the CO of power generator flue gas2The power generator and methanation process of methanation
JP4981771B2 (en) Coal gasification combined power generation facility
JP2007254270A (en) Method of treating gaseous mixture comprising hydrogen and carbon dioxide
KR101534589B1 (en) Method of operating regenerative heaters in blast furnace plant
CN101063050B (en) Coal gas production method
US20080134658A1 (en) Integrated coal gasification combined cycle plant
US9222042B2 (en) Process for regulating joule value of offgases from plants for pig iron production or of synthesis gas
US20100024432A1 (en) Method for improved efficiency for IGCC
CN103980941B (en) Gasifier start-up method, gasification device, and integrated gasification combined cycle facility
JP2013501138A (en) Reduction method based on reformer gas with reduced nitrogen oxide emissions
US20130047627A1 (en) Method for operating an igcc power plant process having integrated co2 separation
KR20090129603A (en) Process for the recovery of carbon dioxide using oxy-combustion gas turbine combined cycle power generation from synthesis gas of the iron making process of finex or corex
TWI412596B (en) Blast furnace iron production with integrated power generation
CN106459789A (en) Gasifier equipment, integrated gasification combined cycle facility, and method for starting gasifier equipment
JPH066710B2 (en) Coal gasification method
KR102328125B1 (en) Device for manufacturing hydogen using by-product gas
US20140191162A1 (en) Method and apparatus for biomass gasification
CN114667357A (en) Method for operating a blast furnace and associated installation
WO2009071800A2 (en) Combined cycle with water-cooled oxycombustion ceramic membrane reactor
CN116667423A (en) Frequency modulation power supply and power generation system based on internal combustion engine
JPH11106760A (en) Wet-feed-type gasification oven