TWI410685B - Light guide module, optical touch module, and method of increasing signal to noise ratio of optical touch module - Google Patents

Light guide module, optical touch module, and method of increasing signal to noise ratio of optical touch module Download PDF

Info

Publication number
TWI410685B
TWI410685B TW98138063A TW98138063A TWI410685B TW I410685 B TWI410685 B TW I410685B TW 98138063 A TW98138063 A TW 98138063A TW 98138063 A TW98138063 A TW 98138063A TW I410685 B TWI410685 B TW I410685B
Authority
TW
Taiwan
Prior art keywords
light
waveguide
touch area
convex
module
Prior art date
Application number
TW98138063A
Other languages
Chinese (zh)
Other versions
TW201107807A (en
Inventor
Hung Ching Lai
Chiang Yuan Chuang
Hui Hsuan Chen
Original Assignee
Pixart Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixart Imaging Inc filed Critical Pixart Imaging Inc
Priority to US12/719,021 priority Critical patent/US8854336B2/en
Publication of TW201107807A publication Critical patent/TW201107807A/en
Application granted granted Critical
Publication of TWI410685B publication Critical patent/TWI410685B/en

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Position Input By Displaying (AREA)

Abstract

The present invention discloses a light guide module that is applied in an optical touch module. A focusing component of the light guide module focuses the light emitted from a light guide component of the light guide module, so that all the light emitted from the light guide component can be convergently distributed in a touch area of the optical touch module. In this way, the light provided by a lighting component of the optical touch module can be effectively utilized, and the signal to noise ratio of the received signal of a sensor of the optical touch module increases. Therefore, the optical touch module can determines the location of the finger or the contacting object more correctly.

Description

波導模組、光學觸控模組以及提高光學觸控模組之訊雜比之方法Waveguide module, optical touch module and method for improving signal-to-noise ratio of optical touch module

本發明係關於一種波導模組,特別是一種適用於光學觸控模組之波導模組。The invention relates to a waveguide module, in particular to a waveguide module suitable for an optical touch module.

近年來,觸控螢幕(亦即觸控面板)由於可以直接於螢幕上直接以物體或手指經由觸控操作來取代以往機械式的按鈕操作。當使用者觸控了螢幕上的圖形時,螢幕上的觸覺反饋系統可根據預先編程的程式驅動各種連接裝置,並藉由螢幕畫面呈現生動的影音效果。In recent years, the touch screen (ie, the touch panel) has been able to replace the conventional mechanical button operation with an object or a finger directly via the touch operation directly on the screen. When the user touches the graphic on the screen, the on-screen tactile feedback system can drive various connection devices according to the pre-programmed program, and display vivid visual effects through the screen.

常見的觸控螢幕的觸控方式有電阻式、電容式、聲波式與光學式等。電阻式觸控螢幕是利用間隙物間隔開兩組銦錫氧化物(Indium Tin Oxide,ITO)導電層,當使用時利用壓力使上下電極導通以測知螢幕上的電壓變化而計算出接觸點位置進行輸入。電容式觸控螢幕是利用排列之透明電極與人體之間的靜電結合所產生之電容變化,從所產生之誘導電流來檢測其座標。聲波式觸控螢幕事先利用電訊號經由轉能器轉換成超音波,並直接傳送過觸控面板的表面,當使用觸控面板時,接觸指標物會吸收超音波造成衰減,經由比對使用前後的衰減量並計算後得出精確位置。Common touch screen touch methods are resistive, capacitive, sonic and optical. The resistive touch screen uses a spacer to separate two sets of Indium Tin Oxide (ITO) conductive layers. When used, the upper and lower electrodes are turned on by using pressure to measure the voltage change on the screen to calculate the contact point position. Make your input. The capacitive touch screen is a change in capacitance generated by the electrostatic combination between the arranged transparent electrodes and the human body, and the coordinates are detected from the induced current generated. The acoustic wave touch screen is converted into ultrasonic waves by the transducers in advance, and is directly transmitted to the surface of the touch panel. When the touch panel is used, the contact indicators absorb the ultrasonic waves and cause attenuation, and the comparison is performed before and after the comparison. The amount of attenuation is calculated and the exact position is obtained.

光學式觸控螢幕是利用光源接收遮斷原理,當光線遭遮斷時,即可得知收不到訊號接收器的位置,進而確定其精確位置。光學式觸控螢幕的組成元件,包括玻璃基板、發光裝置、光接收器與透鏡。裝置方式是將發光裝置與光接收器配放於玻璃基板的右上頂角上,並在玻璃基板的左側與下側裝置反光條。經由發光裝置照亮遠端的反光條,當手指或接觸物遮斷光線時,光接收器可以經過透鏡收集到手指或接觸物在玻璃基板的相對位置。The optical touch screen uses the light source to receive the interrupting principle. When the light is blocked, the position of the signal receiver can be unknown, and the precise position can be determined. The components of the optical touch screen include a glass substrate, a light emitting device, a light receiver, and a lens. The device is arranged by arranging the light-emitting device and the light receiver on the upper right corner of the glass substrate, and reflecting the strip on the left side and the lower side of the glass substrate. The reflective strip of the distal end is illuminated via the illumination device, and when the finger or contact intercepts the light, the light receiver can collect the relative position of the finger or contact on the glass substrate through the lens.

習知之光學式觸控螢幕由於利用反光條來反射發光裝置所發出之光線以偵測到手指或接觸物在玻璃基板的相對位置,因此容易受到環境光源的影響。同樣的反光條所反射之光線與發光裝置所發出之光線會對光接收器產生交互影響。另外,由於置放於玻璃基板右上頂角的發光裝置必須照亮遠端的反光條,因此需要較精準的對位以及較大的輸出亮度與輸出電流。Conventional optical touch screens are susceptible to ambient light sources by reflecting the light emitted by the light-emitting device using reflective strips to detect the relative position of the fingers or contacts on the glass substrate. The light reflected by the same reflective strip and the light emitted by the illumination device can have an interactive effect on the optical receiver. In addition, since the illuminating device placed on the upper right corner of the glass substrate must illuminate the reflective strip at the far end, a more accurate alignment and a large output luminance and output current are required.

本發明提供一種波導模組。該波導模組適用於一光學觸控模組。該光學觸控模組包含一觸控區域、一感測器與一發光元件。該感測器位於該觸控區域之一第一角落。該發光元件用以提供一光線。該波導模組與該發光元件設置在該觸控區域之一第一側邊,用以將該發光元件所提供之該光線均勻分佈至該觸控區域。該波導模組包含一波導元件以及一聚光元件。該波導元件用來引導該光線沿著該波導元件擴散。該波導元件包含一入光面,以及一出光面。該入光面面向該發光元件以接收該光線。該出光面面向該觸控區域。該聚光元件用來匯聚從該出光面所射出之該光線,以使該光線集中散佈於該觸控區域。The invention provides a waveguide module. The waveguide module is suitable for an optical touch module. The optical touch module includes a touch area, a sensor and a light emitting element. The sensor is located at a first corner of the touch area. The light emitting element is for providing a light. The waveguide module and the light emitting component are disposed on a first side of the touch area for uniformly distributing the light provided by the light emitting element to the touch area. The waveguide module includes a waveguide component and a concentrating component. The waveguide element is used to direct the light to diffuse along the waveguide element. The waveguide component includes a light incident surface and a light exiting surface. The light incident surface faces the light emitting element to receive the light. The light emitting surface faces the touch area. The concentrating element is configured to converge the light emitted from the illuminating surface to concentrate the light on the touch area.

本發明另提供一種光學觸控模組。該光學觸控模組包含一觸控區域、一感測器、一發光元件,以及一波導模組。該感測器位於該觸控區域之一第一角落。該發光元件設置在該觸控區域之一第一側邊,用以提供一光線。該波導模組設置在該觸控區域之該第一側邊,用以將該發光元件所提供之該光線均勻分佈至該觸控區域。該波導模組包含一波導元件,以及一聚光元件。該波導元件用來引導該光線沿著該波導元件擴散。該波導元件包含一入光面,以及一出光面。該入光面面向該發光元件以接收該光線。該出光面面向該觸控區域。該聚光元件用來匯聚從該出光面所射出之該光線,以使該光線集中散佈於該觸控區域。The invention further provides an optical touch module. The optical touch module includes a touch area, a sensor, a light emitting element, and a waveguide module. The sensor is located at a first corner of the touch area. The light emitting component is disposed on a first side of the touch area for providing a light. The waveguide module is disposed on the first side of the touch area for uniformly distributing the light provided by the light emitting element to the touch area. The waveguide module includes a waveguide component and a concentrating component. The waveguide element is used to direct the light to diffuse along the waveguide element. The waveguide component includes a light incident surface and a light exiting surface. The light incident surface faces the light emitting element to receive the light. The light emitting surface faces the touch area. The concentrating element is configured to converge the light emitted from the illuminating surface to concentrate the light on the touch area.

本發明另提供一種提高一光學觸控模組之訊雜比之方法。該光學觸控模組包含一觸控區域、一感測器、一發光元件與一波導元件。該感測器位於該觸控區域之一第一角落。該發光元件用以提供一光線。該波導元件用來引導該光線沿著該波導元件擴散。該波導元件具有一入光面與一出光面。該入光面面向該發光元件以接收該光線。該出光面面向該觸控區域。該方法包含於該波導元件之該出光面設置一聚光元件,以及該聚光元件匯聚從該出光面所射出之該光線,以使該光線集中散佈於該觸控區域,來提高該光學觸控模組之訊雜比。The invention further provides a method for improving the signal-to-noise ratio of an optical touch module. The optical touch module includes a touch area, a sensor, a light emitting element and a waveguide element. The sensor is located at a first corner of the touch area. The light emitting element is for providing a light. The waveguide element is used to direct the light to diffuse along the waveguide element. The waveguide element has a light incident surface and a light exit surface. The light incident surface faces the light emitting element to receive the light. The light emitting surface faces the touch area. The method includes a concentrating element disposed on the light emitting surface of the waveguide component, and the concentrating component converges the light emitted from the light emitting surface to concentrate the light on the touch area to enhance the optical touch The signal-to-noise ratio of the control module.

第1圖係為根據本發明第一實施例之光學觸控模組俯視圖。請參考第1圖,於此實施例,光學觸控模組可位於顯示螢幕(諸如:液晶顯示器的螢幕、陰極射線管顯示器的螢幕、電子白板等)上。1 is a top plan view of an optical touch module according to a first embodiment of the present invention. Referring to FIG. 1 , in this embodiment, the optical touch module can be located on a display screen (such as a screen of a liquid crystal display, a screen of a cathode ray tube display, an electronic whiteboard, etc.).

光學觸控模組包含有一觸控區域400、一感測器300、一發光元件100,以及一波導元件200。感測器300係設置於觸控區域400之角落。發光元件100、波導元件200與感測器300的數量可係為1個,也可以係2個以上。為了方便說明,於此實施例,發光元件100的數量係為1個、波導元件200的數量係為2個、感測器300的數量係為1個,但不以此受限。波導元件200設置在觸控區域400的至少一側邊。其中,觸控區域400可係為多邊形(諸如:四邊形、五邊形或六邊形等),且波導元件200設置於多邊形的觸控區域400的側邊。波導元件200可包含有一入光面210與一出光面220。入光面210可係面向發光元件100。換句話說,入光面210可係鄰接於發光元件100,亦即入光面210可係與發光元件100的出光表面相貼合,或入光面210與發光元件100的出光表面係間隔相對應。出光面220可係面向觸控區域400。The optical touch module includes a touch area 400, a sensor 300, a light emitting element 100, and a waveguide element 200. The sensor 300 is disposed at a corner of the touch area 400. The number of the light-emitting element 100, the waveguide element 200, and the sensor 300 may be one or two or more. For convenience of description, in this embodiment, the number of the light-emitting elements 100 is one, the number of the waveguide elements 200 is two, and the number of the sensors 300 is one, but is not limited thereto. The waveguide element 200 is disposed on at least one side of the touch area 400. The touch area 400 can be a polygon (such as a quadrangle, a pentagon, or a hexagon), and the waveguide component 200 is disposed on a side of the touch area 400 of the polygon. The waveguide component 200 can include a light incident surface 210 and a light exit surface 220. The light incident surface 210 may face the light emitting element 100. In other words, the light-incident surface 210 may be adjacent to the light-emitting element 100, that is, the light-incident surface 210 may be attached to the light-emitting surface of the light-emitting element 100, or the light-incident surface 210 may be spaced apart from the light-emitting surface of the light-emitting element 100. correspond. The light exit surface 220 can face the touch area 400.

光學觸控模組更可包括有透鏡500。透鏡500可係對應於感測器300。透鏡500可位於所對應之感測器300與觸控區域400之間。透鏡500可係鄰接於感測器300,亦即透鏡500可係與感測器300的收光表面相貼合,或透鏡500與感測器300的收光表面係間隔相對應。The optical touch module may further include a lens 500. Lens 500 may correspond to sensor 300. The lens 500 can be located between the corresponding sensor 300 and the touch area 400. The lens 500 can be adjacent to the sensor 300, that is, the lens 500 can be attached to the light-receiving surface of the sensor 300, or the lens 500 can be spaced apart from the light-receiving surface of the sensor 300.

發光元件100可位於觸控區域400相對感測器300之一角落。The light emitting element 100 can be located at a corner of the touch area 400 opposite to the sensor 300.

本實施例的觸控區域400可係為矩形(四邊形)。感測器300可係設置在觸控區域400的一角落。此時,發光元件100可與感測器300設置在觸控區域400相同或相異的角落。換句話說,感測器300可設置在觸控區域400的一角落,且發光元件100可設置在觸控區域400相對感測器300的角落,其中發光元件100設置在觸控區域400相對感測器300的角落位置可以是發光元件100設置在與感測器300相鄰的鄰角位置,也可是發光元件100設置在與感測器300間隔相對的對角位置。當發光元件100設置在與感測器300間隔相對的對角位置時,二個波導元件200可係分別設置於與發光元件100相鄰的觸控區域400的兩側邊上。波導元件200的形狀可係為靠近發光元件100的一端較厚,遠離發光元件100的一端較薄的楔型結構,也可係平板結構。The touch area 400 of this embodiment may be rectangular (quadrilateral). The sensor 300 can be disposed at a corner of the touch area 400. At this time, the light emitting element 100 may be disposed at the same or different corners of the touch area 400 as the sensor 300. In other words, the sensor 300 can be disposed at a corner of the touch area 400, and the light emitting element 100 can be disposed at a corner of the touch area 400 opposite to the sensor 300, wherein the light emitting element 100 is disposed in the touch area 400. The corner position of the detector 300 may be that the light-emitting element 100 is disposed at an adjacent angular position adjacent to the sensor 300, or the light-emitting element 100 may be disposed at a diagonal position opposite to the sensor 300. When the light emitting element 100 is disposed at a diagonal position opposite to the sensor 300, the two waveguide elements 200 may be respectively disposed on both sides of the touch area 400 adjacent to the light emitting element 100. The shape of the waveguide element 200 may be a thicker one end near the light-emitting element 100, and a thinner wedge-shaped structure away from the one end of the light-emitting element 100, or may be a flat structure.

觸控區域400亦可為五邊形以上之多邊形,此時發光元件100可係設置在與感測器300相鄰的鄰角位置,也可係發光元件100設置在與感測器300間隔相鄰的角落上,更可以係發光元件100設置在與感測器300間隔相對的對角位置。The touch area 400 can also be a polygon of a pentagon or more. In this case, the light-emitting element 100 can be disposed at an adjacent position adjacent to the sensor 300, or the light-emitting element 100 can be disposed at a distance from the sensor 300. The adjacent light-emitting elements 100 may be disposed at diagonal positions opposite to the sensor 300.

發光元件100可用以產生光線並提供光線射出發光元件100。其中,發光元件100所發出之光線可係為紅外光、可見光等。發光元件100可係為紅外線發光二極體、可見光發光二極體等。The light emitting element 100 can be used to generate light and provide light to exit the light emitting element 100. The light emitted by the light-emitting element 100 may be infrared light, visible light or the like. The light emitting element 100 may be an infrared light emitting diode, a visible light emitting diode, or the like.

入光面210可用以接收發光元件100所發射之光線。入光面210的形狀可係對應發光元件100的形狀。其中,入光面210可係為一光滑表面,用以避免發光元件100所發射之光線入射入光面210時,會因為入光面210表面的粗糙而造成光線散射等效應產生,使得光線入射入光面210的效率降低。The light incident surface 210 can be used to receive the light emitted by the light emitting element 100. The shape of the light incident surface 210 may correspond to the shape of the light emitting element 100. The light-incident surface 210 can be a smooth surface, so as to prevent the light emitted by the light-emitting element 100 from entering the light surface 210, the light is scattered due to the roughness of the surface of the light-incident surface 210, and the light is incident. The efficiency of the light incident surface 210 is lowered.

波導元件200具有與外界空氣相異的材質,亦即波導元件200的折射率與外界空氣的折射率相異。藉由折射率的差異,光線在經由入光面210進入波導元件200後,會被限制在波導元件200內傳遞。出光面220用以提供光線離開波導元件200。出光面220可具有擴散結構。擴散結構可係為光柵結構或不規則結構等,用以將由波導元件200內傳導之的光線射出至擴散結構時,不再因為全反射而在波導元件200內傳遞,而係經由擴散結構將光線經由折射等出射離開波導元件200。擴散結構可係於波導元件200的模具製作時,先行於模具上設計出擴散結構的形狀與擴散結構的位置,因此波導元件200射出成型或壓鑄成型時,擴散結構即位於出光面220上。擴散結構亦可係於波導元件200射出成型或壓鑄成型後,加工(噴沙等方式)以形成擴散結構於其上。透鏡500用以增加感測器300的收光角度A,亦即藉由透鏡500使原本收光角度較小的感測器300能接收到較大角度範圍的光線。以本實施例為例,觸控區域400係為矩形(四邊形),觸控區域400的四個角均為90度。一般的感測器300的收光角度小於90度,因此當感測器300設置於觸控區域400的一角時,只能接收局部角度範圍內的光線,並無法接收觸控區域400內全部的光線。因此當手指或其他接觸物體位於觸控區域400且位於感測器300的收光角度範圍外,感測器300無法感知手指或其他接觸物體在觸控區域400的相對位置。因此藉由在感測器300與觸控區域400之間設置透鏡500,用以提高感測器300的收光角度範圍,以本實施例為例,感測器300可經由透鏡500使感測器300可接收到大於90度角度範圍的光線,亦即當感測器300設置於觸控區域400一角落時,由於感測器300可透過對應之透鏡500接收到大於90度角度範圍的光線,因此可藉由一個感測器300結合透鏡500接收到觸控區域400內的所有光線。The waveguide element 200 has a material different from the outside air, that is, the refractive index of the waveguide element 200 is different from the refractive index of the outside air. Due to the difference in refractive index, light rays are confined within the waveguide element 200 after entering the waveguide element 200 via the light incident surface 210. The light exit surface 220 is used to provide light away from the waveguide element 200. The light exit surface 220 can have a diffusing structure. The diffusion structure may be a grating structure or an irregular structure or the like for emitting light emitted from the waveguide element 200 to the diffusion structure, and is no longer transmitted in the waveguide element 200 due to total reflection, but is transmitted through the diffusion structure. The waveguide element 200 is exited via refraction or the like. The diffusion structure may be applied to the mold of the waveguide element 200, and the shape of the diffusion structure and the position of the diffusion structure are designed on the mold. Therefore, when the waveguide element 200 is injection molded or die-cast, the diffusion structure is located on the light-emitting surface 220. The diffusion structure may also be processed (sandblasted, etc.) after the waveguide element 200 is injection molded or die cast to form a diffusion structure thereon. The lens 500 is used to increase the light-receiving angle A of the sensor 300, that is, the sensor 300 with a small light-receiving angle can receive light of a larger angle range by the lens 500. Taking the embodiment as an example, the touch area 400 is rectangular (quadrilateral), and the four corners of the touch area 400 are both 90 degrees. Generally, the light receiving angle of the sensor 300 is less than 90 degrees. Therefore, when the sensor 300 is disposed at a corner of the touch area 400, only the light within a local angle range can be received, and all the touch areas 400 cannot be received. Light. Therefore, when the finger or other contact object is located in the touch area 400 and is outside the range of the light receiving angle of the sensor 300, the sensor 300 cannot sense the relative position of the finger or other contact object in the touch area 400. Therefore, by providing the lens 500 between the sensor 300 and the touch area 400 for increasing the range of the light receiving angle of the sensor 300, the sensor 300 can be sensed via the lens 500 by taking the embodiment as an example. The illuminator 300 can receive light of an angle range of more than 90 degrees, that is, when the sensor 300 is disposed at a corner of the touch area 400, the sensor 300 can receive light of an angle range greater than 90 degrees through the corresponding lens 500. Therefore, all the light in the touch area 400 can be received by the sensor 300 in combination with the lens 500.

根據本發明所揭露之光學觸控模組,當發光元件100發出光線後,會先由面向於發光元件100的二個波導元件200的入光面210來接收發光元件100所發出的光線。藉由波導元件200與外界空氣折射率的差異,將光線限制於二個波導元件200內傳遞,最後光線會經由出光面220的擴散結構離開二個波導元件200並分佈於觸控區域400內。再由感測器300結合透鏡500來接收觸控區域400內的所有光線。當手指或其他接觸物體位於觸控區域400時,會遮斷部分由出光面220射出至觸控區域400的光線,感測器300在接收不到被遮斷光線後,會進而判斷手指或其他接觸物體位於觸控區域400的相對位置。於此,藉由二個波導元件200將發光元件100所發出之光線均勻分佈至觸控區域400,用以取代習知使用反光條反射發光元件100所發出之光線,可增加光學觸控模組對環境光源的抵抗能力、避免掉習知之發光元件100所發出之光線與反光條反射之光線對感測器300所造成的交互影響。同時,能達到降低發光元件100的發光亮度、減少電流損耗以及光學觸控模組的對位精準度。According to the optical touch module disclosed in the present invention, when the light-emitting element 100 emits light, the light emitted from the light-emitting element 100 is first received by the light-incident surface 210 of the two waveguide elements 200 facing the light-emitting element 100. The light is confined in the two waveguide elements 200 by the difference in refractive index between the waveguide element 200 and the outside air. Finally, the light exits the two waveguide elements 200 through the diffusion structure of the light exit surface 220 and is distributed in the touch region 400. The sensor 300 is then combined with the lens 500 to receive all of the light within the touch area 400. When the finger or other contact object is located in the touch area 400, the light emitted from the light exit surface 220 to the touch area 400 is blocked, and the sensor 300 determines the finger or other after receiving the blocked light. The contact object is located at a relative position of the touch area 400. In this case, the light emitted by the light-emitting element 100 is evenly distributed to the touch area 400 by the two waveguide elements 200, instead of using the reflective strip to reflect the light emitted by the light-emitting element 100, the optical touch module can be added. The resistance to the ambient light source is prevented, and the interaction between the light emitted by the conventional light-emitting element 100 and the light reflected by the reflective strip on the sensor 300 is avoided. At the same time, the brightness of the light-emitting element 100 can be reduced, the current loss can be reduced, and the alignment accuracy of the optical touch module can be achieved.

第2圖係為根據本發明第二實施例之光學觸控模組俯視圖。請參考第2圖,併合參考前述實施例。於此實施例,二個波導元件200亦可係二個波導元件200中之一設置於與發光元件100相鄰的觸控區域400的一側邊上。二個波導元件200中之另一則係設置於與發光元件100相鄰的觸控區域400的另一側邊上,其中遠離發光元件100的一端沿著觸控區域400的角落形狀轉折延伸至與發光元件100間隔相對的對角位置。在轉折延伸至與發光元件100間隔相對的對角位置的波導元件200內,於轉折的位置處可製作一反射面250,使光線能經由反射面在波導元件200內反射傳遞至與發光元件100間隔相對的對角位置。於此,藉由二個波導元件200將發光元件100所發出之光線傳導至觸控區域400的三側邊,光線會由波導元件200射出並均勻分佈於觸控區域400,用以取代習知使用反光條反射發光元件100所發出之光線,可增加光學觸控模組對環境光源的抵抗能力、避免掉習知之發光元件100所發出之光線與反光條反射之光線對感測器300所造成的交互影響。同時,能達到降低發光元件100的發光亮度、減少電流損耗以及光學觸控模組的對位精準度。2 is a top plan view of an optical touch module according to a second embodiment of the present invention. Please refer to FIG. 2 for reference to the foregoing embodiment. In this embodiment, the two waveguide elements 200 may also be disposed on one side of the touch area 400 adjacent to the light emitting element 100. The other of the two waveguide elements 200 is disposed on the other side of the touch area 400 adjacent to the light emitting element 100, wherein one end away from the light emitting element 100 extends along the corner shape of the touch area 400 to The light emitting elements 100 are spaced apart from each other by diagonal positions. In the waveguide element 200 in which the corner extends to a diagonal position opposite to the light-emitting element 100, a reflecting surface 250 can be formed at the position of the turning, so that light can be reflected and transmitted in the waveguide element 200 to the light-emitting element 100 via the reflecting surface. The opposite diagonal position of the interval. Here, the light emitted by the light-emitting element 100 is transmitted to the three sides of the touch area 400 by the two waveguide elements 200, and the light is emitted from the waveguide element 200 and uniformly distributed in the touch area 400, instead of the conventional one. The use of the reflective strip to reflect the light emitted by the light-emitting element 100 increases the resistance of the optical touch module to the ambient light source, and avoids the light emitted by the conventional light-emitting element 100 and the light reflected by the reflective strip to the sensor 300. Interaction effects. At the same time, the brightness of the light-emitting element 100 can be reduced, the current loss can be reduced, and the alignment accuracy of the optical touch module can be achieved.

第3圖係為根據本發明第三實施例之光學觸控模組俯視圖。請參考第3圖,併合參考前述實施例。於此實施例,光學觸控模組可包含有二個發光元件100與三個波導元件200。於此實施例,觸控區域400可係為矩形(四邊形)。感測器300設置在觸控區域400的一角落,且二個發光元件100中之一設置在觸控區域400相對感測器300的角落,二個發光元件100中之另一則係設置在觸控區域400相鄰感測器300的角落。三個波導元件200中之一可係設置於觸控區域400位於二個發光元件100之間的一側邊上。三個波導元件200中之二則分別設置於觸控區域400與發光元件100相鄰的另一側邊上。根據本發明所揭露之光學觸控模組,當二個發光元件100發出光線後,會分別入射面向於每一發光元件100的兩波導元件200的入光面210來接收每一發光元件100所發出的光線。藉由波導元件200與外界空氣折射率的差異,將光線限制於三個波導元件200內傳遞,最後光線會經由出光面220的擴散結構離開三個波導元件200並分佈於觸控區域400內。再由感測器300結合透鏡500來接收觸控區域400內的所有光線。當手指或其他接觸物體位於觸控區域400時,會遮斷部分由出光面220射出至觸控區域400的光線。此時感測器300在接收不到被遮斷光線後,會進而判斷手指或其他接觸物體位於觸控區域400的相對位置。於此,藉由三個波導元件200將二個發光元件100所發出之光線均勻分佈至觸控區域400,用以取代習知使用反光條反射發光元件100所發出之光線,可增加光學觸控模組對環境光源的抵抗能力、避免掉習知之發光元件100所發出之光線與反光條反射之光線對感測器300所造成的交互影響。同時,能達到降低發光元件100的發光亮度、減少電流損耗以及光學觸控模組的對位精準度。3 is a top plan view of an optical touch module according to a third embodiment of the present invention. Please refer to FIG. 3 and refer to the foregoing embodiment in conjunction. In this embodiment, the optical touch module can include two light emitting elements 100 and three waveguide elements 200. In this embodiment, the touch area 400 can be rectangular (quadrilateral). The sensor 300 is disposed at a corner of the touch area 400, and one of the two light emitting elements 100 is disposed at a corner of the touch area 400 opposite to the sensor 300, and the other of the two light emitting elements 100 is disposed at the touch The control region 400 is adjacent to the corner of the sensor 300. One of the three waveguide elements 200 may be disposed on a side of the touch area 400 between the two light emitting elements 100. Two of the three waveguide elements 200 are respectively disposed on the other side of the touch area 400 adjacent to the light emitting element 100. According to the optical touch module disclosed in the present invention, when the two light emitting elements 100 emit light, they respectively enter the light incident surface 210 of the two waveguide elements 200 facing each of the light emitting elements 100 to receive each of the light emitting elements 100. The light emitted. The light is confined in the three waveguide elements 200 by the difference in refractive index between the waveguide element 200 and the outside air. Finally, the light exits the three waveguide elements 200 through the diffusion structure of the light exit surface 220 and is distributed in the touch region 400. The sensor 300 is then combined with the lens 500 to receive all of the light within the touch area 400. When a finger or other contact object is located in the touch area 400, a portion of the light emitted from the light exit surface 220 to the touch area 400 is blocked. At this time, after receiving the blocked light, the sensor 300 further determines the relative position of the finger or other contact object in the touch area 400. In this case, the light emitted by the two light-emitting elements 100 is uniformly distributed to the touch area 400 by the three waveguide elements 200, instead of using the reflective strip to reflect the light emitted by the light-emitting element 100, the optical touch can be increased. The module resists the ambient light source, and avoids the interaction between the light emitted by the conventional light-emitting element 100 and the light reflected by the reflective strip on the sensor 300. At the same time, the brightness of the light-emitting element 100 can be reduced, the current loss can be reduced, and the alignment accuracy of the optical touch module can be achieved.

第4圖係為根據本發明第四實施例之光學觸控模組側視圖。請參考第4圖,併合參考前述實施例。於此實施例,光學觸控模組包含有基板600。基板600可位於觸控區域400下。基板600可係為印刷電路板,亦可係為銦錫氧化物(Indium Tin Oxide,ITO)玻璃。於此實施例,感測器300、觸控區域400與透鏡500可係位於液晶面板700上。其中液晶面板700可係由ITO玻璃、液晶與濾光片等所組成。發光元件100可位於ITO玻璃(基板600)面向觸控區域400的表面上。波導元件200可係鄰接發光元件100,用以將發光元件100所發出之光線經由入光面210入射至波導元件200內,由波導元件200將光線傳導至觸控區域400的一側邊上。由於ITO玻璃上具有傳導線路與電晶體以控制液晶面板700中的液晶偏轉。因此發光元件100可係於ITO玻璃的製程中一併製作於ITO玻璃上。再利用波導元件200將波導元件200所發出之光線傳導至液晶面板700上,最後使光線離開波導元件200並射出至觸控區域400。Figure 4 is a side view of an optical touch module in accordance with a fourth embodiment of the present invention. Please refer to FIG. 4 and refer to the foregoing embodiment in conjunction. In this embodiment, the optical touch module includes a substrate 600. The substrate 600 can be located under the touch area 400. The substrate 600 may be a printed circuit board or an Indium Tin Oxide (ITO) glass. In this embodiment, the sensor 300, the touch area 400, and the lens 500 can be located on the liquid crystal panel 700. The liquid crystal panel 700 may be composed of ITO glass, a liquid crystal, a filter, or the like. The light emitting element 100 may be located on a surface of the ITO glass (substrate 600) facing the touch area 400. The waveguide element 200 can be adjacent to the light-emitting element 100 for injecting light emitted by the light-emitting element 100 into the waveguide element 200 via the light-incident surface 210. The waveguide element 200 conducts light to one side of the touch area 400. Since the ITO glass has a conductive line and a transistor thereon to control the liquid crystal deflection in the liquid crystal panel 700. Therefore, the light-emitting element 100 can be fabricated on the ITO glass in the process of ITO glass. The waveguide element 200 is used to conduct the light emitted by the waveguide element 200 to the liquid crystal panel 700, and finally the light is separated from the waveguide element 200 and emitted to the touch region 400.

根據本發明所揭露之光學觸控模組,將發光元件100製作於液晶面板的ITO玻璃(基板600)上,再利用波導元件200將發光元件100所發出之光線限制於波導元件200內傳遞,最後光線會出射離開波導元件200並分佈於觸控區域400內。再由感測器300結合透鏡500來接收觸控區域400內的所有光線。當手指或其他接觸物體位於觸控區域400時,會遮斷部分由出光面220射出至觸控區域400的光線,感測器300在接收不到被遮斷光線後,會進而判斷手指或其他接觸物體位於觸控區域400的相對位置。於此,藉由將發光元件100製作於基板600上,再利用波導元件200將發光元件100所發出之光線均勻分佈至觸控區域400,可降低光學觸控模組的厚度,同時減少將發光元件另行製作於印刷電路板上等的成本。According to the optical touch module disclosed in the present invention, the light-emitting element 100 is formed on the ITO glass (substrate 600) of the liquid crystal panel, and the light emitted from the light-emitting element 100 is confined in the waveguide element 200 by the waveguide element 200. Finally, the light exits the waveguide element 200 and is distributed in the touch area 400. The sensor 300 is then combined with the lens 500 to receive all of the light within the touch area 400. When the finger or other contact object is located in the touch area 400, the light emitted from the light exit surface 220 to the touch area 400 is blocked, and the sensor 300 determines the finger or other after receiving the blocked light. The contact object is located at a relative position of the touch area 400. In this case, by forming the light-emitting element 100 on the substrate 600 and then distributing the light emitted by the light-emitting element 100 to the touch region 400 by using the waveguide element 200, the thickness of the optical touch module can be reduced, and the light emission can be reduced. The cost of the component to be separately fabricated on a printed circuit board or the like.

第5圖係為根據本發明第五實施例之波導元件與發光元件鄰接處示意圖。如第5圖所示,合併參考第四實施例。於此實施例,波導元件200可係一端具有容置發光元件100之容置區,另一端分成兩子波導元件200a、200b分別朝向觸控區域400相鄰的兩側邊延伸。其中容置發光元件100之容置區的形狀可係對應發光元件100的形狀,且容置區之內壁為入光面210。發光元件100所發出之光線會透過入光面210入射波導元件200,由波導元件的兩子波導元件200a、200b將光線傳導至觸控區域400的相鄰兩側邊。於此,藉由將發光元件100製作於基板600上,並由波導元件200的入光面210接收發光元件100所發出之光線。光線在波導元件200內會分別由兩子波導元件200a、200b將光線傳導至觸控區域400的相鄰兩側邊並射出至觸控區域400。如上所述,可降低光學觸控模組的厚度,同時減少將發光元件另行製作於印刷電路板上等的成本。根據本發明所揭露之光學觸控模組,藉由波導元件200將發光元件100所發出之光線均勻分佈至觸控區域400,可增加光學觸控模組對環境光源的抵抗能力、降低發光元件100的發光亮度、減少電流損耗以及光學觸控模組的對位精準度。Fig. 5 is a schematic view showing a vicinity of a waveguide element and a light-emitting element according to a fifth embodiment of the present invention. As shown in Fig. 5, reference is made to the fourth embodiment. In this embodiment, the waveguide element 200 may have a receiving area for accommodating the light emitting element 100 at one end, and the other end is divided into two sub-waveguide elements 200a, 200b extending toward the adjacent sides of the touch area 400, respectively. The shape of the accommodating area of the accommodating light-emitting element 100 may be corresponding to the shape of the light-emitting element 100, and the inner wall of the accommodating area is the light-incident surface 210. The light emitted by the light-emitting element 100 is incident on the waveguide element 200 through the light-incident surface 210, and the two sub-waveguide elements 200a, 200b of the waveguide element conduct light to the adjacent sides of the touch area 400. Here, the light-emitting element 100 is formed on the substrate 600, and the light emitted from the light-emitting element 100 is received by the light-incident surface 210 of the waveguide element 200. The light is transmitted from the two sub-waveguide elements 200a, 200b to the adjacent sides of the touch area 400 and emitted to the touch area 400. As described above, the thickness of the optical touch module can be reduced, and the cost of separately manufacturing the light-emitting element on the printed circuit board can be reduced. According to the optical touch module disclosed in the present invention, the light emitted by the light-emitting element 100 is evenly distributed to the touch region 400 by the waveguide component 200, thereby increasing the resistance of the optical touch module to the ambient light source and reducing the light-emitting component. 100 brightness, reduced current loss and alignment accuracy of the optical touch module.

請參考第6圖。第6圖係為說明根據本發明之第六實施例之波導模組800之示意圖。波導模組800可應用於本發明所述之光學觸控模組。波導模組800係根據前述之波導元件200加以改良,以將發光元件100所提供之光線作更有效率的利用,並同時將光線均勻分佈至觸控區域400。波導模組800包含一波導元件810,以及一聚光元件820。波導元件810之結構以及工作原理與前述之波導元件200類似。波導元件810用來引導光線沿著波導元件810擴散,波導元件810包含一入光面811以及一出光面812,入光面811面向發光元件100以接收光線。出光面812面向觸控區域400。聚光元件820,用來匯聚從出光面812所射出之光線,以使光線集中散佈於觸控區域400。此外,當發光元件100係為紅外光發光二極體(也就是說,發光元件100發出紅外光時),聚光元件820係為可透紅外光之透鏡。Please refer to Figure 6. Fig. 6 is a schematic view showing a waveguide module 800 according to a sixth embodiment of the present invention. The waveguide module 800 can be applied to the optical touch module of the present invention. The waveguide module 800 is modified in accordance with the waveguide element 200 described above to more efficiently utilize the light provided by the light-emitting element 100 while uniformly distributing the light to the touch area 400. The waveguide module 800 includes a waveguide element 810 and a concentrating element 820. The structure and operation of the waveguide element 810 is similar to that of the waveguide element 200 described above. The waveguide element 810 is used to guide the light to diffuse along the waveguide element 810. The waveguide element 810 includes a light incident surface 811 and a light exiting surface 812. The light incident surface 811 faces the light emitting element 100 to receive light. The light emitting surface 812 faces the touch area 400. The concentrating element 820 is configured to converge the light emitted from the light emitting surface 812 to concentrate the light on the touch area 400. Further, when the light-emitting element 100 is an infrared light-emitting diode (that is, when the light-emitting element 100 emits infrared light), the light-concentrating element 820 is a lens that can transmit infrared light.

請參考第7圖、第8圖、第9圖、第10圖,以及第11圖。第7圖係為說明當光線從波導元件200直接射出至觸控區域400之示意圖。第8圖、第9圖、第10圖,以及第11圖係為說明藉由不同結構之聚光元件820,波導模組800可將發光元件100所提供之光線作更有效率的利用之工作原理之示意圖。由第7圖可看出,由於當發光元件100所提供之光線直接從波導元件200射出時,光線之強度係大約呈朗伯分佈(lambertian distribution),也就是說,當光線從波導元件200射出時,光線會在各方向上皆均勻散射。然而,由於從波導元件200射出之光線會均勻分佈於垂直方向上,因此表示部份光線直接遠離觸控區域400(舉例而言,如第7圖所示之光線LA ),以及部份光線被基板600反射後,而遠離觸控區域400(舉例而言,如第7圖所示之光線LB )。換句話說,發光元件100所提供之光線無法集中於觸控區域400。如此,感測器300可接收到之光線之能量較少,因此表示感測器300所接收之訊號之訊雜比降低,而造成光學觸控模組較不易判斷手指或接觸物之位置。如第8圖、第9圖、第10圖,以及第11圖所示,聚光元件820可為凸凹透鏡、凸平透鏡、凸凸透鏡,或是平凹透鏡。更明確地說,當聚光元件820為一凸凹透鏡時(如第8圖所示),該凸凹透鏡之凸面面向出光面812,且該凸凹透鏡之凹面面向觸控區域400,因此當光線從出光面812透過聚光元件820射入觸控區域400時,光線被凸凹透鏡匯聚得更集中;當聚光元件820為一凸平透鏡時(如第9圖所示),該凸平透鏡時之凸面面向出光面812,且該凸平透鏡時之平面面向觸控區域400;當聚光元件820為一平凹透鏡時(如第11圖所示),該平凹透鏡之平面面向出光面812,且該平凹透鏡之凹面面向該觸控區域400。且由第8圖、第9圖、第10圖,以及第11圖可看出,藉由聚光元件820匯聚從波導元件810之出光面812所射出之光線,可使光線接***行入射於觸控區域400。因此,相較於波導元件200,波導模組800藉由聚光元件820匯聚從出光面812所射出之光線,可使發光元件100所提供之光線不會直接遠離觸控區域400,也不會因被基板600反射後,而遠離觸控區域400。如此一來,發光元件100所提供之光線可集中於觸控區域400,而提高感測器300所接收到之光線之能量,也就是說,提高感測器300所接受之訊號之訊雜比。因此,光學觸控模組可更正確地判斷手指或接觸物之位置。Please refer to Fig. 7, Fig. 8, Fig. 9, Fig. 10, and Fig. 11. FIG. 7 is a schematic view illustrating light emission from the waveguide element 200 directly to the touch region 400. 8 , 9 , 10 , and 11 are diagrams illustrating that the waveguide module 800 can utilize the light provided by the light-emitting element 100 for more efficient use by the concentrating elements 820 of different structures. Schematic diagram of the principle. As can be seen from Fig. 7, since the light provided by the light-emitting element 100 is directly emitted from the waveguide element 200, the intensity of the light is approximately a lambertian distribution, that is, when the light is emitted from the waveguide element 200. When the light is evenly scattered in all directions. However, since the light emitted from the waveguide element 200 is uniformly distributed in the vertical direction, it means that part of the light is directly away from the touch area 400 (for example, the light L A as shown in FIG. 7), and part of the light. After being reflected by the substrate 600, away from the touch area 400 (for example, the light ray L B as shown in FIG. 7). In other words, the light provided by the light-emitting element 100 cannot be concentrated on the touch area 400. In this way, the energy received by the sensor 300 is less, so that the signal-to-noise ratio of the signal received by the sensor 300 is reduced, and the optical touch module is less likely to determine the position of the finger or the contact. As shown in FIGS. 8 , 9 , 10 , and 11 , the concentrating element 820 may be a convex-concave lens, a convex flat lens, a convex convex lens, or a plano-concave lens. More specifically, when the concentrating element 820 is a convex-concave lens (as shown in FIG. 8), the convex surface of the convex-concave lens faces the light-emitting surface 812, and the concave surface of the convex-concave lens faces the touch area 400, so when the light is from When the light-emitting surface 812 is incident on the touch region 400 through the concentrating element 820, the light is concentrated by the convex-concave lens; when the concentrating element 820 is a convex flat lens (as shown in FIG. 9), the convex flat lens is The convex surface faces the light emitting surface 812, and the plane of the convex flat lens faces the touch area 400; when the light collecting element 820 is a plano-concave lens (as shown in FIG. 11), the plane of the plano-concave lens faces the light emitting surface 812, and The concave surface of the plano-concave lens faces the touch area 400. It can be seen from FIG. 8 , FIG. 9 , FIG. 10 , and FIG. 11 that the concentrating element 820 converges the light emitted from the light-emitting surface 812 of the waveguide element 810 to make the light approach the parallel incident. Control area 400. Therefore, compared with the waveguide component 200, the waveguide module 800 converges the light emitted from the light-emitting surface 812 by the concentrating component 820, so that the light provided by the illuminating component 100 is not directly away from the touch area 400, nor After being reflected by the substrate 600, it is away from the touch area 400. In this way, the light provided by the light-emitting component 100 can be concentrated on the touch area 400 to increase the energy of the light received by the sensor 300, that is, to improve the signal-to-noise ratio of the signal received by the sensor 300. . Therefore, the optical touch module can more accurately determine the position of the finger or the contact.

請參考第12圖。第12圖係為說明根據本發明之第七實施例之波導模組900之示意圖。相較於波導模組800,波導模組900另包含有一固定元件(holder)930,耦接至聚光元件820。固定元件930係用來包覆波導元件810,以將波導模組900固定於基板600之上。此外,在第12圖之聚光元件820係以凸凹透鏡作為舉例,然而聚光元件820也可為凸平透鏡、凸凸透鏡,或是平凹透鏡。Please refer to Figure 12. Figure 12 is a schematic view showing a waveguide module 900 according to a seventh embodiment of the present invention. The waveguide module 900 further includes a holder 930 coupled to the concentrating element 820. The fixing member 930 is used to cover the waveguide member 810 to fix the waveguide module 900 on the substrate 600. In addition, the concentrating element 820 in FIG. 12 is exemplified by a convex-concave lens, but the concentrating element 820 may also be a convex flat lens, a convex convex lens, or a plano-concave lens.

請參考第13圖。第13圖係為說明藉由如前述之波導元件包含反射面之設計,波導模組800可引導發光元件100所提供之光線從觸控區域400之多個不同之側邊射入觸控區域400之示意圖。在第13圖中,波導模組800之波導元件810另包含一反射面815。反射面815之結構與工作原理與反射面250類似。反射面815位於波導元件810之轉折處。反射面815,用來使光線能經由反射面815以在波導元件810內反射而不經由波導元件810之轉折處射出。換句話說,藉由反射面815之設計,波導模組800可設置於觸控區域400的多個側邊。舉例而言,在第13圖中,波導模組800係設置於觸控區域400之三個側邊。如此一來,表示在光學觸控模組中,僅需要一發光元件(100)以及一波導模組(800),即可將光線從觸控區域400之多個不同之側邊導入觸控區域400,而使光線均勻地散佈至觸控區域中。此外,與波導元件200類似,波導元件810的形狀,可為一楔型結構(如第1圖~第3圖所示,靠近發光元件100的一端較厚,遠離發光元件100的一端較薄),也可為一平板結構(如第13圖所示)。Please refer to Figure 13. FIG. 13 is a view illustrating that the waveguide module 800 can guide the light provided by the light emitting device 100 to enter the touch region 400 from a plurality of different sides of the touch region 400 by using a design of the waveguide component as described above. Schematic diagram. In FIG. 13, the waveguide element 810 of the waveguide module 800 further includes a reflective surface 815. The structure and working principle of the reflecting surface 815 is similar to that of the reflecting surface 250. The reflective surface 815 is located at the turn of the waveguide element 810. A reflective surface 815 is provided for enabling light to be reflected within the waveguide element 810 via the reflective surface 815 without exiting through the transition of the waveguide element 810. In other words, the waveguide module 800 can be disposed on multiple sides of the touch area 400 by the design of the reflective surface 815. For example, in FIG. 13 , the waveguide module 800 is disposed on three sides of the touch area 400 . Therefore, in the optical touch module, only one light emitting component (100) and one waveguide module (800) are needed to introduce light from different sides of the touch area 400 into the touch area. 400, and the light is evenly distributed into the touch area. In addition, similar to the waveguide element 200, the shape of the waveguide element 810 may be a wedge-shaped structure (as shown in FIGS. 1 to 3, the one end near the light-emitting element 100 is thicker, and the end away from the light-emitting element 100 is thinner). It can also be a flat structure (as shown in Figure 13).

請參考第14圖。第14圖係為說明波導元件810之結構之示意圖。波導元件810另包含一導光條813,以及一反射元件814。如第14圖所示,導光條813之表面8131用來作為入光面811。因此,導光條813之表面8131面向發光元件100。導光條813之表面8132用來作為山光面812。反射元件814包覆導光條813。反射元件814用來反射非從出光面812(導光條813之表面8132)所射出之光線回到導光條813,以使波導元件810所引導之光線皆從出光面812(導光條813之表面8132)射入觸控區域400。舉例而言,在第14圖中之光線LC 射至導光條813之表面8133時,光線LC 被反射元件814反射回導光條813。因此,最後,光線LC 從出光面812(導光條813之表面8132)射出。Please refer to Figure 14. Fig. 14 is a schematic view showing the structure of the waveguide element 810. The waveguide element 810 further includes a light guide strip 813 and a reflective element 814. As shown in FIG. 14, the surface 8131 of the light guiding strip 813 is used as the light incident surface 811. Therefore, the surface 8131 of the light guiding strip 813 faces the light emitting element 100. The surface 8132 of the light guiding strip 813 is used as a mountain surface 812. The reflective element 814 encloses the light guide strip 813. The reflecting element 814 is configured to reflect the light emitted from the light emitting surface 812 (the surface 8132 of the light guiding strip 813) back to the light guiding strip 813, so that the light guided by the waveguide element 810 is from the light emitting surface 812 (light guiding strip 813). The surface 8132) is incident on the touch area 400. For example, when the light ray L C in FIG. 14 is incident on the surface 8133 of the light guiding strip 813, the light ray L C is reflected back to the light guiding strip 813 by the reflective element 814. Therefore, finally, the light ray L C is emitted from the light emitting surface 812 (the surface 8132 of the light guiding strip 813).

請參考第15圖。第15圖係為說明波導元件之結構之另一實施例1000之示意圖。相較於第14圖之波導元件810,波導元件1000另包含一轉向結構1010。轉向結構1010係用來將入光面811轉置為面向基板600,並將自入光面811所接收之光線轉向為平行於基板,以將光線引導至導光條813。更明確地說,藉由轉向結構1010,在波導元件1000中,入光面811可面向基板600。因此,發光元件100可直接設置在基板600上,而不需透過其他連接器以將發光元件100所提供之光線轉向。舉例而言,在第15圖中,轉向結構1010係為將反射元件814與導光條813轉折以形成一三角形之結構,當發光元件100所提供之一光線LD 向上方射入轉向結構1010時,光線LD 會先經過導光條813,然後再被轉向結構1010中屬於反射元件814的部份反射,而轉向右方入射。此外,由於波導元件係為扁平形狀,因此在第14圖中導光條813之表面8131(入光面811)之面積非常小。如此,造成發光元件100所提供之光線無法有效地射入導光條813之表面8131(入光面811)。然而,在第15圖中,由於藉由轉向結構1010之設計,入光面811可面向基板600,因此即使波導元件1000為扁平形狀,入光面811之面積仍不會受到限制。如此,入光面811之面積可設計的足夠大,以有效地接收發光元件100所提供之光線。Please refer to Figure 15. Fig. 15 is a schematic view showing another embodiment 1000 of the structure of the waveguide element. The waveguide element 1000 further includes a steering structure 1010 as compared to the waveguide element 810 of FIG. The steering structure 1010 is configured to transpose the light incident surface 811 to face the substrate 600 and divert the light received from the light incident surface 811 parallel to the substrate to guide the light to the light guiding strip 813. More specifically, in the waveguide element 1000, the light incident surface 811 may face the substrate 600 by the steering structure 1010. Therefore, the light emitting element 100 can be directly disposed on the substrate 600 without passing through other connectors to steer the light provided by the light emitting element 100. For example, in FIG. 15 , the steering structure 1010 is configured to convert the reflective element 814 and the light guiding strip 813 to form a triangular structure. When the light ray L D provided by the light emitting element 100 is incident upward into the steering structure 1010 , At this time, the light ray L D passes through the light guide strip 813 and is then reflected by the portion of the steering structure 1010 belonging to the reflective element 814 and turned to the right. Further, since the waveguide element has a flat shape, the area of the surface 8131 (light incident surface 811) of the light guiding strip 813 in Fig. 14 is extremely small. Thus, the light provided by the light-emitting element 100 cannot be efficiently incident on the surface 8131 (light-incident surface 811) of the light guiding strip 813. However, in FIG. 15, since the light incident surface 811 can face the substrate 600 by the design of the steering structure 1010, even if the waveguide element 1000 has a flat shape, the area of the light incident surface 811 is not limited. As such, the area of the light incident surface 811 can be designed to be large enough to effectively receive the light provided by the light emitting element 100.

請參考第16圖。第16圖係為說明本發明利用波導模組之光學觸控模組1600之較佳實施例之俯視圖。光學觸控模組1600包含一觸控區域1610、一感測器1620、一發光元件1630,以及一波導模組1640。感測器1620位於觸控區域1610之一第一角落(在第16圖中以右上角落作為舉例)。發光元件1630設置在觸控區域1610之一第一側邊(在第16圖中以左側邊作為舉例),用以提供光線。波導模組1640,設置在觸控區域1610之三個側邊,用以將發光元件1630所提供之光線均勻分佈至觸控區域1610。利用第6圖至第15圖所述之波導模組之結構以實施波導模組1640,波導模組1640之波導元件之入光面可面向下方之基板,因此發光元件1630可直接設置於該基板上對應於波導模組1640之波導元件之入光面之位置。如此,發光元件1630所提供之光線可藉由波導模組1640之波導元件與聚光元件,以集中於觸控區域1610,而提高感測器1620所接受之訊號之訊雜比。因此,光學觸控模組1600可更正確地判斷手指或接觸物之位置。此外,在第16圖中,以光學觸控模組1600僅包含一發光元件1630為例,藉由波導元件810之反射面815之設計,波導模組1640可將發光元件1630所提供之光線引導自觸控區域1610之三個側邊射入觸控區域1610。然而,當光學觸控模組1600之發光元件之位置與數目改變時,光學觸控模組1600之波導模組之位置與數目也可根據前述說明作出對應的設計。舉例而言,光學觸控模組1600可以類似第1圖之方式實施,也就是說,兩個波導模組分設於觸控區域之兩側邊,並接收同一發光元件所提供之光線,以將光線從觸控區域之兩側邊導入;光學觸控模組1600也可以類似第2圖之方式實施,也就是說,三個波導模組分別設置於觸控區域之三側邊,以將兩發光元件所提供之光線自觸控區域之三側邊導入;或是,光學觸控模組1600也可以類似第3圖之方式實施,也就是說,一第一波導模組設置於觸控區域之第一側邊(左側邊),一第二波導模組藉由反光面之設計,以設置於觸控區域之第二側邊(下側邊)與第三側邊(右側邊),第一與第二波導模組接收同一發光元件所提供之光線,並將光線從觸控區域之第一、第二以及第三側邊導入觸控區域。Please refer to Figure 16. Figure 16 is a plan view showing a preferred embodiment of the optical touch module 1600 of the present invention using a waveguide module. The optical touch module 1600 includes a touch area 1610, a sensor 1620, a light emitting element 1630, and a waveguide module 1640. The sensor 1620 is located at a first corner of the touch area 1610 (in the upper right corner of FIG. 16 as an example). The light-emitting element 1630 is disposed on a first side of the touch area 1610 (in the 16th figure, the left side is exemplified) for providing light. The waveguide module 1640 is disposed on three sides of the touch area 1610 for uniformly distributing the light provided by the light emitting element 1630 to the touch area 1610. The waveguide module 1640 is implemented by using the structure of the waveguide module described in FIG. 6 to FIG. 15. The light incident surface of the waveguide component of the waveguide module 1640 can face the lower substrate, so that the light emitting component 1630 can be directly disposed on the substrate. The position corresponding to the light incident surface of the waveguide element of the waveguide module 1640. In this manner, the light provided by the light-emitting element 1630 can be concentrated by the waveguide element and the concentrating element of the waveguide module 1640 to concentrate on the touch area 1610, thereby increasing the signal-to-noise ratio of the signal received by the sensor 1620. Therefore, the optical touch module 1600 can more accurately determine the position of the finger or the contact. In addition, in FIG. 16 , the optical touch module 1600 includes only one light-emitting element 1630 . By the design of the reflective surface 815 of the waveguide element 810 , the waveguide module 1640 can guide the light provided by the light-emitting element 1630 . The three sides of the touch area 1610 are incident on the touch area 1610. However, when the position and number of the light-emitting elements of the optical touch module 1600 are changed, the position and number of the waveguide modules of the optical touch module 1600 can also be correspondingly designed according to the foregoing description. For example, the optical touch module 1600 can be implemented in a manner similar to that of FIG. 1 , that is, two waveguide mode components are disposed on both sides of the touch area, and receive light provided by the same light-emitting element, The light touch module 1600 can also be implemented in the manner similar to the second figure. That is, the three waveguide modules are respectively disposed on the three sides of the touch area to The light provided by the two light-emitting elements is introduced from the three sides of the touch area; or the optical touch module 1600 can be implemented in a manner similar to that of FIG. 3, that is, a first waveguide module is disposed on the touch. a first side edge (left side) of the area, a second waveguide module is disposed on the second side (lower side) and the third side (right side) of the touch area by the reflective surface design The first and second waveguide modules receive the light provided by the same light-emitting element, and direct the light from the first, second, and third sides of the touch area to the touch area.

綜上所述,本發明提供一種波導模組,可應用於光學觸控模組。本發明之波導模組,藉由聚光元件匯聚從波導元件射出之光線,可使光線集中散佈於光學觸控模組之觸控區域。如此一來,發光元件所提供之光線可被有效地利用,且提高感測器所接受之訊號之訊雜比。因此,光學觸控模組可更正確地判斷手指或接觸物之位置。此外,本發明之波導模組,藉由轉向結構之設計,可使入光面面向基板,因此入光面之面積較不受限制,可有效地接收發光元件所提供之光線,且發光元件可直接設置於基板上,帶給使用者更大的方便。In summary, the present invention provides a waveguide module that can be applied to an optical touch module. In the waveguide module of the present invention, the light emitted from the waveguide component is concentrated by the concentrating component, so that the light is concentratedly distributed in the touch area of the optical touch module. In this way, the light provided by the illuminating element can be effectively utilized, and the signal-to-noise ratio of the signal received by the sensor is improved. Therefore, the optical touch module can more accurately determine the position of the finger or the contact. In addition, the waveguide module of the present invention can make the light incident surface face the substrate by the design of the steering structure, so that the area of the light incident surface is not limited, and the light provided by the light emitting component can be effectively received, and the light emitting component can be It is directly placed on the substrate, which brings more convenience to the user.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100、1630...發光元件100, 1630. . . Light-emitting element

200a、200b...子波導元件200a, 200b. . . Sub-waveguide component

300、1620...感測器300, 1620. . . Sensor

400、1610...觸控區域400, 1610. . . Touch area

500...透鏡500. . . lens

600...基板600. . . Substrate

700...液晶面板700. . . LCD panel

800、900、1000、1640...波導模組800, 900, 1000, 1640. . . Waveguide module

810、200...波導元件810, 200. . . Waveguide component

820...聚光元件820. . . Concentrating element

811、210...入光面811, 210. . . Glossy surface

812、220...出光面812, 220. . . Glossy surface

813...導光條813. . . Light guide strip

814...反射元件814. . . Reflective element

815...反射面815. . . Reflective surface

930‧‧‧固定元件930‧‧‧Fixed components

1010‧‧‧轉向結構1010‧‧‧Steering structure

1600‧‧‧光學觸控模組1600‧‧‧Optical touch module

8131~8133‧‧‧表面8131~8133‧‧‧ surface

A‧‧‧收光角度A‧‧‧Lighting angle

LA ~LD ‧‧‧光線L A ~L D ‧‧‧Light

第1圖係為根據本發明第一實施例之光學觸控模組俯視圖。1 is a top plan view of an optical touch module according to a first embodiment of the present invention.

第2圖係為根據本發明第二實施例之光學觸控模組俯視圖。2 is a top plan view of an optical touch module according to a second embodiment of the present invention.

第3圖係為根據本發明第三實施例之光學觸控模組俯視圖。3 is a top plan view of an optical touch module according to a third embodiment of the present invention.

第4圖係為根據本發明第四實施例之光學觸控模組側視圖。Figure 4 is a side view of an optical touch module in accordance with a fourth embodiment of the present invention.

第5圖係為根據本發明第五實施例之波導元件與發光元件鄰接處的示意圖。Fig. 5 is a schematic view showing a vicinity of a waveguide element and a light-emitting element according to a fifth embodiment of the present invention.

第6圖係為說明根據本發明之第六實施例之波導模組之示意圖。Figure 6 is a schematic view showing a waveguide module according to a sixth embodiment of the present invention.

第7圖係為說明當光線從波導元件直接射出至觸控區域之示意圖。Figure 7 is a schematic diagram showing the direct emission of light from the waveguide element to the touch area.

第8圖、第9圖、第10圖,以及第11圖係為說明波導模組可將發光元件所提供之光線作更有效率的利用之工作原理之示意圖。Fig. 8, Fig. 9, Fig. 10, and Fig. 11 are schematic diagrams showing the working principle of the waveguide module for more efficient use of the light provided by the illuminating element.

第12圖係為說明根據本發明之第七實施例之波導模組之示意圖。Figure 12 is a schematic view showing a waveguide module according to a seventh embodiment of the present invention.

第13圖係為說明波導元件之反射面之示意圖。Figure 13 is a schematic view showing the reflecting surface of the waveguide element.

第14圖係為說明波導元件之結構之示意圖。Fig. 14 is a schematic view showing the structure of a waveguide element.

第15圖係為說明波導元件之結構之另一實施例之示意圖。Fig. 15 is a view showing another embodiment of the structure of the waveguide element.

第16圖係為說明利用波導模組之光學觸控模組之示意圖。Figure 16 is a schematic diagram showing an optical touch module using a waveguide module.

100...發光元件100. . . Light-emitting element

400...觸控區域400. . . Touch area

800...波導模組800. . . Waveguide module

810...波導元件810. . . Waveguide component

820...聚光元件820. . . Concentrating element

811...入光面811. . . Glossy surface

812...出光面812. . . Glossy surface

Claims (24)

一種波導模組,適用於一光學觸控模組,該光學觸控模組包含一觸控區域、一感測器與一發光元件,該感測器位於該觸控區域之一第一角落,該發光元件用以提供一光線,該波導模組與該發光元件設置在該觸控區域之一第一側邊,用以將該發光元件所提供之該光線均勻分佈至該觸控區域,該波導模組包含:一波導元件(light guide),用來引導該光線沿著該波導元件擴散,包含:一導光條,該導光條之一第一表面用來作為一入光面,面向該發光元件以接收該光線,該導光條之一第二表面用來作為一出光面,面向該觸控區域;以及一反射元件,包覆該導光條,用來反射非從該出光面所射出之該光線回到該導光條,以使該波導元件所引導之該光線從該出光面射入該觸控區域;以及一聚光元件,用來匯聚從該出光面所射出之該光線,以使該光線集中散佈於該觸控區域。 A waveguide module is applicable to an optical touch module. The optical touch module includes a touch area, a sensor and a light emitting component, and the sensor is located at a first corner of the touch area. The illuminating element is configured to provide a light, and the illuminating element is disposed on a first side of the touch area for uniformly distributing the light provided by the illuminating element to the touch area. The waveguide module includes: a light guide for guiding the light to diffuse along the waveguide element, comprising: a light guiding strip, the first surface of the light guiding strip is used as a light incident surface, facing The light-emitting element receives the light, the second surface of the light-guiding strip is used as a light-emitting surface facing the touch area, and a reflective element is coated on the light-guide strip for reflecting non-light-emitting surface Returning the light to the light guiding strip, so that the light guided by the waveguide element is incident into the touch area from the light emitting surface; and a light collecting element for collecting the light emitted from the light emitting surface Light, so that the light is concentrated in the touch Control area. 如請求項1所述之波導模組,其中該發光元件係為紅外光發光二極體,且該聚光元件係為可透紅外光之透鏡。 The waveguide module of claim 1, wherein the illuminating element is an infrared light emitting diode, and the concentrating element is a lens that can transmit infrared light. 如請求項1所述之波導模組,其中該波導模組另包含有一固定元件(holder),用來包覆該波導元件以將該波導模組固定於一基 板。 The waveguide module of claim 1, wherein the waveguide module further comprises a holder for covering the waveguide element to fix the waveguide module to a base board. 如請求項3所述之波導模組,其中該基板係為銦錫氧化物(ITO)玻璃。 The waveguide module of claim 3, wherein the substrate is indium tin oxide (ITO) glass. 如請求項3所述之波導模組,其中該發光元件位於該觸控區域之一第二側邊之一第二角落;其中該第一側邊與該第二側邊相對。 The waveguide module of claim 3, wherein the light emitting element is located at a second corner of one of the second sides of the touch area; wherein the first side is opposite the second side. 如請求項5所述之波導模組,其中該波導模組另包含一轉向結構,該轉向結構用來將該入光面轉置為面向該基板,並將自該入光面所接收之光線轉向為平行於該基板,且該發光元件設置於該基板而該發光元件對該入光面發光。 The waveguide module of claim 5, wherein the waveguide module further comprises a steering structure, the steering structure is configured to transpose the light incident surface to face the substrate, and receive light from the light incident surface The light is turned parallel to the substrate, and the light emitting element is disposed on the substrate, and the light emitting element emits light on the light incident surface. 如請求項1所述之波導模組,其中該聚光元件係為凸凹透鏡、凸平透鏡、凸凸透鏡,或是平凹透鏡。 The waveguide module of claim 1, wherein the concentrating element is a convex-concave lens, a convex flat lens, a convex convex lens, or a plano-concave lens. 如請求項7所述之波導模組,其中當該聚光元件為一凸凹透鏡時,該凸凹透鏡之凸面面向該出光面,且該凸凹透鏡之凹面面向該觸控區域;當該聚光元件為一凸平透鏡時,該凸平透鏡時之凸面面向該出光面,且該凸平透鏡時之平面面向該觸控區域;當該聚光元件為一平凹透鏡時,該平凹透鏡之平面面向該出光面,且該平凹透鏡之凹面面向該觸控區域。 The waveguide module of claim 7, wherein when the concentrating element is a convex-concave lens, the convex surface of the convex-concave lens faces the light-emitting surface, and the concave surface of the convex-concave lens faces the touch area; when the concentrating element In the case of a convex flat lens, the convex surface of the convex flat lens faces the light emitting surface, and the plane of the convex flat lens faces the touch area; when the light collecting element is a plano-concave lens, the plane of the plano-concave lens faces the a light emitting surface, and the concave surface of the plano-concave lens faces the touch area. 如請求項1所述之波導模組,其中該波導元件另包含一反射面,該反射面位於該波導元件之一轉折處,用來使該光線能經由該反射面以在該波導元件內反射而不經由該波導元件之該轉折處射出。 The waveguide module of claim 1, wherein the waveguide element further comprises a reflective surface located at a corner of the waveguide element for enabling the light to be reflected within the waveguide element via the reflective surface It is not emitted through the corner of the waveguide element. 一種光學觸控模組,包含:一觸控區域;一感測器,位於該觸控區域之一第一角落;一發光元件,設置在該觸控區域之一第一側邊,用以提供一光線;以及一波導模組,設置在該觸控區域之該第一側邊,用以將該發光元件所提供之該光線均勻分佈至該觸控區域,該波導模組包含:一波導元件,用來引導該光線沿著該波導元件擴散,包含:一導光條,該導光條之一第一表面用來作為一入光面,面向該發光元件以接收該光線,該導光條之一第二表面用來作為一出光面,面向該觸控區域;以及一反射元件,包覆該導光條,用來反射非從該出光面所射出之該光線回到該導光條,以使該波導元件所引導之該光線從該出光面射入該觸控區域;以及一聚光元件,用來匯聚從該出光面所射出之該光線,以使該光線集中散佈於該觸控區域。 An optical touch module includes: a touch area; a sensor located at a first corner of the touch area; and a light emitting element disposed on a first side of the touch area for providing And a waveguide module disposed on the first side of the touch area for uniformly distributing the light provided by the light emitting element to the touch area, the waveguide module comprising: a waveguide component And guiding the light to diffuse along the waveguide element, comprising: a light guiding strip, a first surface of the light guiding strip is used as a light incident surface facing the light emitting element to receive the light, the light guiding strip a second surface is used as a light emitting surface facing the touch area; and a reflective element is coated on the light guiding strip for reflecting the light that is not emitted from the light emitting surface to return to the light guiding strip. The light guided by the waveguide element is incident on the light receiving surface from the light emitting surface; and a light collecting element is configured to collect the light emitted from the light emitting surface to concentrate the light on the touch. region. 如請求項10所述之光學觸控模組,其中該發光元件係為紅外光發光二極體,且該聚光元件係為可透紅外光之透鏡。 The optical touch module of claim 10, wherein the light emitting element is an infrared light emitting diode, and the light collecting element is a lens that can transmit infrared light. 如請求項10所述之光學觸控模組,其中該波導模組另包含有一固定元件,用來包覆該波導元件以將該波導模組固定於一基板。 The optical touch module of claim 10, wherein the waveguide module further comprises a fixing component for covering the waveguide component to fix the waveguide module to a substrate. 如請求項12所述之光學觸控模組,其中該基板係為銦錫氧化物玻璃。 The optical touch module of claim 12, wherein the substrate is indium tin oxide glass. 如請求項12所述之光學觸控模組,其中該發光元件位於該觸控區域之一第二側邊之一第二角落;其中該第一側邊與該第二側邊相對。 The optical touch module of claim 12, wherein the light emitting element is located at a second corner of one of the second sides of the touch area; wherein the first side is opposite the second side. 如請求項14所述之光學觸控模組,其中該波導模組另包含一轉向結構,該轉向結構用來將該入光面轉置為面向該基板,並將自該入光面所接收之光線轉向為平行於該基板,且該發光元件設置於該基板而該發光元件對該入光面發光。 The optical touch module of claim 14, wherein the waveguide module further comprises a steering structure, the steering structure is configured to transpose the light incident surface to face the substrate, and receive from the light incident surface The light is turned parallel to the substrate, and the light emitting element is disposed on the substrate, and the light emitting element emits light on the light incident surface. 如請求項10所述之光學觸控模組,其中該聚光元件係為凸凹透鏡、凸平透鏡、凸凸透鏡,或是平凹透鏡。 The optical touch module of claim 10, wherein the concentrating element is a convex-concave lens, a convex flat lens, a convex convex lens, or a plano-concave lens. 如請求項16所述之光學觸控模組,其中當該聚光元件為凸凹透 鏡時,該凸凹透鏡之凸面面向該出光面,且該凸凹透鏡之凹面面向該觸控區域;當該聚光元件為凸平透鏡時,該凸平透鏡之凸面面向該出光面,且該凸平透鏡時之平面面向該觸控區域;當該聚光元件為平凹透鏡時,該平凹透鏡之平面面向該出光面,且該平凹透鏡之凹面面向該觸控區域。 The optical touch module of claim 16, wherein the concentrating element is convex and concave a convex surface of the convex-concave lens faces the light-emitting surface, and a concave surface of the convex-concave lens faces the touch area; when the light-concentrating element is a convex flat lens, a convex surface of the convex flat lens faces the light-emitting surface, and the convex The plane of the flat lens faces the touch area; when the concentrating element is a plano-concave lens, the plane of the plano-concave lens faces the light-emitting surface, and the concave surface of the plano-concave lens faces the touch area. 如請求項10所述之光學觸控模組,其中該波導元件另包含一反射面,該反射面位於該波導元件之一轉折處,用來使該光線能經由該反射面以在該波導元件內反射而不經由該波導元件之該轉折處射出。 The optical touch module of claim 10, wherein the waveguide component further comprises a reflective surface located at a corner of the waveguide component for enabling the light to pass through the reflective surface at the waveguide component The internal reflection is not emitted through the corner of the waveguide element. 一種提高一光學觸控模組之訊雜比之方法,該光學觸控模組包含一觸控區域、一感測器、一發光元件與一波導元件,該感測器位於該觸控區域之一第一角落,該發光元件用以提供一光線,該波導元件用來引導該光線沿著該波導元件擴散,該波導元件包含一導光條及一反射元件,該導光條具有一入光面與一出光面,該入光面面向該發光元件以接收該光線,該出光面面向該觸控區域,該反射元件包覆該導光條,用來反射非從該出光面所射出之該光線回到該導光條,以使該波導元件所引導之該光線從該出光面射入該觸控區域,該方法包含:於該波導元件之該出光面設置一聚光元件;以及該聚光元件匯聚從該出光面所射出之該光線,以使該光線集中散佈於該觸控區域,來提高該光學觸控模組之訊雜比。 A method for improving the signal-to-noise ratio of an optical touch module includes a touch area, a sensor, a light-emitting element, and a waveguide component, wherein the sensor is located in the touch area a light-emitting element for providing a light, the waveguide element for guiding the light to diffuse along the waveguide element, the waveguide element comprising a light guide strip and a reflective element, the light guide strip having an incoming light a light-emitting surface facing the light-emitting element to receive the light, the light-emitting surface facing the touch area, the reflective element covering the light guide strip for reflecting the light that is not emitted from the light-emitting surface Returning the light to the light guiding strip to cause the light guided by the waveguide element to enter the touch area from the light emitting surface, the method comprising: providing a light collecting element on the light emitting surface of the waveguide element; and the gathering The light component converges the light emitted from the light emitting surface to concentrate the light on the touch area to improve the signal-to-noise ratio of the optical touch module. 如請求項19所述之方法,其中該發光元件係為紅外光發光二極體,且該聚光元件係為可透紅外光之透鏡。 The method of claim 19, wherein the illuminating element is an infrared light emitting diode, and the concentrating element is an infrared permeable lens. 如請求項19所述之方法,其中該聚光元件係為凸凹透鏡、凸平透鏡、凸凸透鏡,或是平凹透鏡。 The method of claim 19, wherein the concentrating element is a convex-concave lens, a convex flat lens, a convex convex lens, or a plano-concave lens. 如請求項21所述之方法,其中於該波導元件之該出光面設置該聚光元件包含:當該聚光元件為一凸凹透鏡時,設置該凸凹透鏡之凸面面向該出光面,且該凸凹透鏡之凹面面向該觸控區域。 The method of claim 21, wherein the concentrating element is disposed on the light-emitting surface of the waveguide element, and when the concentrating element is a convex-concave lens, the convex surface of the convex-concave lens is disposed to face the light-emitting surface, and the convex-concave surface is provided. The concave surface of the lens faces the touch area. 如請求項21所述之方法,其中於該波導元件之該出光面設置該聚光元件包含:當該聚光元件為一凸平透鏡時,設置該凸平透鏡之凸面面向該出光面,且該凸平透鏡時之平面面向該觸控區域。 The method of claim 21, wherein the concentrating element is disposed on the light emitting surface of the waveguide element, and when the concentrating element is a convex flat lens, the convex surface of the convex flat lens is disposed to face the light emitting surface, and The plane of the convex flat lens faces the touch area. 如請求項23所述之方法,其中於該波導元件之該出光面設置該聚光元件包含:當該聚光元件為一平凹透鏡時,設置該平凹透鏡之平面面向該出光面,且該平凹透鏡之凹面面向該觸控區域。 The method of claim 23, wherein the concentrating element is disposed on the light emitting surface of the waveguide element, and when the concentrating element is a plano-concave lens, the plane of the plano-concave lens is disposed to face the light-emitting surface, and the plano-concave lens The concave surface faces the touch area.
TW98138063A 2009-02-25 2009-11-10 Light guide module, optical touch module, and method of increasing signal to noise ratio of optical touch module TWI410685B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/719,021 US8854336B2 (en) 2009-02-25 2010-03-08 Light guide module, optical touch module, and method of increasing a signal to noise ratio of an optical touch module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23534509P 2009-08-19 2009-08-19

Publications (2)

Publication Number Publication Date
TW201107807A TW201107807A (en) 2011-03-01
TWI410685B true TWI410685B (en) 2013-10-01

Family

ID=43786225

Family Applications (2)

Application Number Title Priority Date Filing Date
TW98138063A TWI410685B (en) 2009-02-25 2009-11-10 Light guide module, optical touch module, and method of increasing signal to noise ratio of optical touch module
TW98220814U TWM379764U (en) 2009-08-19 2009-11-10 Light guide module and optical touch module

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW98220814U TWM379764U (en) 2009-08-19 2009-11-10 Light guide module and optical touch module

Country Status (2)

Country Link
CN (1) CN101996003B (en)
TW (2) TWI410685B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423098B (en) * 2010-07-15 2014-01-11 Quanta Comp Inc Optical touch structure
TW201239710A (en) * 2011-03-29 2012-10-01 Genius Electronic Optical Co Ltd Optical touch system
TWI456460B (en) 2011-06-02 2014-10-11 Pixart Imaging Inc Light path adjusting assembly and optical touch device suing the same
CN102830853B (en) * 2011-06-14 2016-08-03 原相科技股份有限公司 Light path adjusts assembly and uses the optical touch control apparatus of this structure
CN102841709A (en) * 2011-06-22 2012-12-26 原相科技股份有限公司 Light guide assembly and optical touch module with same
WO2013014534A2 (en) * 2011-07-22 2013-01-31 Owen Drumm Optical coupler for use in an optical touch sensitive device
TWI452361B (en) * 2011-11-15 2014-09-11 Sonix Technology Co Ltd Light guide element, optical system and optical touch display module
CN203012682U (en) * 2012-11-30 2013-06-19 北京汇冠新技术股份有限公司 Infrared touch screen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060001653A1 (en) * 2004-06-30 2006-01-05 National Semiconductor Corporation Apparatus and method for a folded optical element waveguide for use with light based touch screens
TW200809285A (en) * 2006-05-01 2008-02-16 Rpo Pty Ltd Waveguide materials for optical touch screens
CN101194222A (en) * 2005-02-07 2008-06-04 Rpo私人有限公司 Waveguide design incorporating reflective optics
TW200825487A (en) * 2006-10-03 2008-06-16 Nat Semiconductor Corp Apparatus and method for an improved lens structure for polymer waveguides which maximizes free space light coupling
TWM363032U (en) * 2009-02-25 2009-08-11 Pixart Imaging Inc Optical touch control module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665240B2 (en) * 2001-06-25 2011-04-06 富士通株式会社 Optical transmission equipment
CN100498675C (en) * 2003-12-26 2009-06-10 北京汇冠新技术有限公司 Photoelectric detection positioning system and method for touch panel of computer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060001653A1 (en) * 2004-06-30 2006-01-05 National Semiconductor Corporation Apparatus and method for a folded optical element waveguide for use with light based touch screens
CN101194222A (en) * 2005-02-07 2008-06-04 Rpo私人有限公司 Waveguide design incorporating reflective optics
TW200809285A (en) * 2006-05-01 2008-02-16 Rpo Pty Ltd Waveguide materials for optical touch screens
TW200825487A (en) * 2006-10-03 2008-06-16 Nat Semiconductor Corp Apparatus and method for an improved lens structure for polymer waveguides which maximizes free space light coupling
TWM363032U (en) * 2009-02-25 2009-08-11 Pixart Imaging Inc Optical touch control module

Also Published As

Publication number Publication date
CN101996003B (en) 2012-12-26
TW201107807A (en) 2011-03-01
CN101996003A (en) 2011-03-30
TWM379764U (en) 2010-05-01

Similar Documents

Publication Publication Date Title
TWI410685B (en) Light guide module, optical touch module, and method of increasing signal to noise ratio of optical touch module
US8854336B2 (en) Light guide module, optical touch module, and method of increasing a signal to noise ratio of an optical touch module
US8884900B2 (en) Touch-sensing display apparatus and electronic device therewith
JP4513918B2 (en) Illumination device and electro-optical device
US9830019B2 (en) Touch-sensing LCD panel
US20100214269A1 (en) Optical touch module
US20150331545A1 (en) Laminated optical element for touch-sensing systems
TW201409324A (en) Touch display panel and optical touch panel thereof
TWI496058B (en) Optical touchscreen
JP5515280B2 (en) Position detecting device and electro-optical device
US8493365B2 (en) Optical touch display apparatus
TW201339925A (en) Touch screen display device
JP2009295318A (en) Lighting system and electro-optical device
TWM517370U (en) Optical touch control apparatus
CN201421600Y (en) Optical touch control module
JP3156727U (en) Optical contact module
KR101697131B1 (en) Interactive display device
TWI526898B (en) Optical touch panel and light guide module thereof
CN201489497U (en) Optical touch module
WO2013094376A1 (en) Input system
US20170123595A1 (en) Optical touch device and operation method thereof
JP5463854B2 (en) Touch panel
WO2011052379A1 (en) Light guide unit and input device
US20130170185A1 (en) Display device with optical recognition of inputting instrument
TW201430655A (en) Touch-sensing display panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees