TWI409979B - 熱電材料的製造方法 - Google Patents

熱電材料的製造方法 Download PDF

Info

Publication number
TWI409979B
TWI409979B TW099106968A TW99106968A TWI409979B TW I409979 B TWI409979 B TW I409979B TW 099106968 A TW099106968 A TW 099106968A TW 99106968 A TW99106968 A TW 99106968A TW I409979 B TWI409979 B TW I409979B
Authority
TW
Taiwan
Prior art keywords
thermoelectric
semiconductor material
thermoelectric material
powder
material powder
Prior art date
Application number
TW099106968A
Other languages
English (en)
Other versions
TW201131840A (en
Inventor
wei sheng Su
Chia Hung Kuo
Ya Wen Chou
Jie Ren Ku
Ming Shan Jeng
Chii Shyang Hwang
Zong Hao Wu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099106968A priority Critical patent/TWI409979B/zh
Priority to US12/845,779 priority patent/US8277904B2/en
Publication of TW201131840A publication Critical patent/TW201131840A/zh
Application granted granted Critical
Publication of TWI409979B publication Critical patent/TWI409979B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

熱電材料的製造方法
本發明是有關於一種熱電材料的製造方法,且特別是有關於一種可以製造出具有高熱電優值(thermoelectric figure of merit,ZT)的熱電材料的方法。
由於熱電材料可以藉由電子移動而不需利用機械的方式來進行熱能及電能的轉換,因此熱電材料具有應用於廢熱發電、可攜式電源及空調系統的潛力。
熱電材料的能源轉換效率與熱電優值ZT有密切的關係。熱電優值ZT=S2 σ/k,其中S為席貝克(Seebeck)係數;σ為電傳導率;k為熱傳導率。當ZT值越高,則熱電致冷器與熱電發電器的效率愈佳。目前,國際上各研究單位皆朝向以不同的方法開發具奈米結構的熱電材料(ZT>2.0),以突破目前市售的熱電材料(ZT<1.0)的技術瓶頸。
由於優良的熱電材料必須具有高熱電優值,亦即必須具有較大的席貝克係數、低熱傳導率以及高電傳導率。然而低熱傳導率與高電傳導率卻是兩個互相衝突的材料性質。一般來說,具有高電傳導率的材料(例如金屬)通常具有良好的導熱性,而具低熱傳導率的材料(例如高分子和部分的陶瓷材料)則通常是絕緣體。因此,材料本質上的限制阻礙了熱電優值的提昇。
為了提高熱電優值,目前的主要研究方向大都集中在具有小能帶間隙的半導體材料且朝奈米結構的方向進展。亦即,藉由改變所摻雜的雜質的比例以及改變材料的微結構,使席貝克係數、與熱傳導率與電傳導率之間取得一個最佳的平衡,以達到最大的熱電優值。
本發明提供一種熱電材料的製造方法,其可製造出具有高熱電優值的熱電材料。
本發明另提供一種熱電材料的製造方法,其製造出的熱電材料的電傳輸特性可被大幅地提升。
本發明提出一種熱電材料的製造方法,首先,提供半導體材料粉體。然後,進行無電鍍(electroless plating)製程,以將奈米金屬粒子披覆於半導體材料粉體上。之後,進行通電燒結(electrical current activated sintering)製程,以形成具有晶界的熱電材料。
依照本發明實施例所述之熱電材料的製造方法,上述之半導體材料粉體的晶粒尺寸例如小於200nm。
依照本發明實施例所述之熱電材料的製造方法,上述之半導體材料粉體的顆粒直徑例如小於100μm。
依照本發明實施例所述之熱電材料的製造方法,上述之半導體材料粉體例如是藉由熔煉(melting)、化學合成或對半導體材料進行研磨製程而形成。
依照本發明實施例所述之熱電材料的製造方法,上述之研磨製程例如為高能球磨(high energy ball milling)製程。
依照本發明實施例所述之熱電材料的製造方法,上述之奈米金屬粒子的材料例如為銀、錫、銅或鈀。
依照本發明實施例所述之熱電材料的製造方法,上述在進行通電燒結製程之後,部分的奈米金屬粒子可用以調整熱電材料的熱電性能。
依照本發明實施例所述之熱電材料的製造方法,上述在進行通電燒結製程之後,部分的奈米金屬粒子存在於晶界上而產生奈米異質邊界(heterojunction boundary)。
依照本發明實施例所述之熱電材料的製造方法,上述之通電燒結製程例如為火花電漿燒結(spark plasma sintering)製程。
本發明另提出一種製作熱電材料的方法,首先,將半導體材料粉體進行敏化處理。然後,將含有奈米金屬離子的溶液與經敏化處理的半導體材料粉體混合形成混合物,其中部分或全部奈米金屬離子吸附於半導體材料粉體上。接著,加入還原劑於混合物中,使吸附於半導體材料粉體上的奈米金屬離子還原成奈米金屬粒子。之後,進行通電燒結製程,以形成具有晶界的熱電材料。
基於上述,由於本發明在製造熱電材料的過程中,先進行無電鍍製程以於半導體材料粉體上披覆奈米金屬粒子,然後再進行通電燒結製程,因此所形成的熱電材料可以具有較佳的席貝克係數以及較高電傳導率與較低的熱傳導率,因而具有較高的熱電優值。
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1為依照本發明實施例所繪示的熱電材料之製造流程圖。請參照圖1,首先,在步驟100中,提供半導體材料粉體。半導體材料粉體的晶粒尺寸例如小於200nm,顆粒直徑例如小於100μm。半導體材料粉體的材料例如為PbTe。在一實施例中,半導體材料粉體的形成方法例如是將整塊的半導體材料研磨成粉體。研磨的方法例如是進行高能球磨(high energy ball milling)製程。此外,在另一實施例中,半導體材料粉體也可以直接藉由熔煉或化學合成的方式來形成。熔煉或化學合成的方式為本領域技術人員所熟知,於此不另行說明。
然後,在步驟102中,進行無電鍍製程,以將奈米金屬粒子披覆於半導體材料粉體上。奈米金屬粒子的材料例如為銀、錫、銅或鈀。奈米金屬粒子的材料可視所欲形成的熱電材料的導電型態來選擇。舉例來說,若所需的熱電材料為N型,則可選擇銀來作為奈米金屬粒子的材料;若所需的熱電材料為P型,則可選擇錫來作為奈米金屬粒子的材料。
以下將以銀奈米粒子為例來對本發明中的無電鍍製程做說明。首先,將步驟100中所提供的半導體材料粉體進行敏化(sensitization)處理。然後,將半導體材料粉體離心收集。接著,將所收集的半導體材料粉體浸入銀氨水溶液中,以使銀離子吸附於半導體材料粉體上。而後,將半導體材料粉體離心收集。繼之,將所收集的半導體材料粉體浸入還原液中,使吸附於半導體材料粉體上的銀離子還原成銀粒子,以於半導體材料粉體上形成銀奈米粒子。之後,進行離心收集與水洗。特別一提的是,在此無電鍍製程中,還原液是在銀離子吸附於半導體材料粉體上之後加入,但在另一種無電鍍製程中,還原液也可以在將半導體材料粉體浸入銀氨水溶液時加入。
由於在進行無電鍍製程時,可選用含有對半導體材料粉體具有良好吸附能力的還原離子的溶液來作為還原液,以使半導體材料粉體表面官能基化而吸引更多的奈米金屬粒子沈降於半導體材料粉體表面,因此可以避免奈米金屬粒子分佈不均的現象。
之後,在步驟104中,對奈米金屬粒子披覆於其上的半導體材料粉體進行通電燒結製程,以形成具有晶界的熱電材料。通電燒結製程例如為火花電漿燒結製程。在進行通電燒結製程之後,一部分的奈米金屬粒子會摻雜至熱電材料中,以調整熱電材料的導電型態,進而調整熱電材料的熱電性能。此外,另一部分的奈米金屬粒子仍會存在於晶界上而產生奈米異質邊界,如圖2所示。在圖2中,熱電材料200具有晶界202,而奈米金屬粒子204存在於晶界202上。
由於在進行通電燒結的過程中,一部分的奈米金屬粒子可與半導體材料粉體產生固溶,因而增加了載子濃度,且提高了熱電功率因子。此外,由於進行燒結時的溫度較進行傳統熔煉法時的溫度低,且燒結時間較短,因此可以降低原子擴散效應(atomic diffusion effect),進而改善了傳統熔煉法無法保持材料中細晶結構(microcrystalline structure)的缺點。另外,一部分的奈米金屬粒子存在於晶界上而產生奈米異質邊界,可造成類似量子效應(quantum effect)的效果,因而可以提高席貝克係數。再者,由於在進行通電燒結時,存在於晶界上的奈米金屬粒子可對聲子產生散射效應(scattering effect),且奈米金屬粒子可以抑制半導體材料的晶粒成長而維持其奈米晶粒,亦可有效地降低熱傳導率。
以無電鍍製程將奈米金屬粒子披覆在熱電材料粉體表面,再使用通電燒結製程進行燒結,製作熱電材料。在一些實施例中,可以使奈米金屬粒子均勻分佈於半導體材料粉體表面、提高熱電功率因子、保持材料中細晶結構、提高席貝克係數以及降低熱傳導率。
以下將以實驗例對本發明之熱電材料的製造方法進行說明。
實驗例
首先,將PbTe粉體浸入由HCl和SnCl2 所形成的溶液中,並利用磁石攪拌石在室溫下攪拌五分鐘,使Sn2+ 吸附在PbTe粉體上,以完成PbTe粉體的敏化處理。然後,將PbTe粉體離心收集。接著,將所收集的PbTe粉體浸入由NaOH、NH4 OH和AgNO3 所形成的銀氨水溶液中。此時,PbTe粉體上的Sn2+ 會將Ag+ 吸附在PbTe粉體上。而後,將PbTe粉體離心收集。繼之,將所收集的PbTe粉體浸入含有C6 H12 O6 的還原液中,將吸附在PbTe粉體上的Ag+ 還原成銀粒子,以於PbTe粉體上形成銀奈米粒子。隨後,將形成有銀奈米粒子的PbTe粉體在100MPa的壓力以及大於300℃的溫度下進行火花電漿燒結製程。之後,進行降溫,以得到熱電材料。
比較例
首先,進行高能球磨製程,將PbTe材料研磨成PbTe粉體。接著,將PbTe粉體在100MPa的壓力以及大於300℃的溫度下進行火花電漿燒結製程。之後,進行降溫,以得到熱電材料。
以下將實驗例的熱電材料(製作時使用無電鍍製程與通電燒結製程)與比較例的熱電材料(製作時未使用無電鍍製程)進行比較。
圖3為溫度與熱電材料的席貝克係數之關係圖。由圖3可知,本發明的熱電材料的席貝克係數為負值,亦即說明本發明的製程可將原為p型的半導體材料調整為n型的半導體材料。此外,與比較例的熱電材料相比,實驗例的熱電材料在進行無電鍍製程之後,在通電燒結製程中席貝克係數可被提升。
圖4為溫度與熱電材料的電傳導率之關係圖。由圖4可知,隨著溫度上升,實驗例的熱電材料的電傳導率的上升程度明顯大於比較例的熱電材料的電傳導率的上升程度。也就是說,實驗例的熱電材料具有較高的電傳導率。
圖5為溫度與熱電材料的熱電功率因子之關係圖。由圖5可知,隨著溫度上升,實驗例的熱電材料的熱電功率因子隨之上升,但比較例的熱電材料的熱電功率因子則隨之下降。也就是說,實驗例的熱電材料具有較高熱電功率因子,且與比較例的熱電材料相比,熱電功率因子提升了454%。
由上述可知,本發明依序利用無電鍍製程與通電燒結製程來形成熱電材料,因此使得所形成的熱電材料可以具有較佳的席貝克係數以及較高電傳導率與熱電功率因子。亦即,以本發明之方法所形成的熱電材料可以具有較高的熱電優值。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100~104‧‧‧步驟
200‧‧‧熱電材料
202‧‧‧晶界
204‧‧‧奈米金屬粒子
圖1為依照本發明實施例所繪示的熱電材料之製造流程圖。
圖2為依照本發明實施例所繪示的熱電材料之結構示意圖。
圖3為溫度與熱電材料的席貝克係數之關係圖。
圖4為溫度與熱電材料的電傳導率之關係圖。
圖5為溫度與熱電材料的熱電功率因子之關係圖。
100~104...步驟

Claims (9)

  1. 一種熱電材料的製造方法,包括:提供一半導體材料粉體,該半導體材料粉體包括PbTe;進行一無電鍍製程,以將一奈米金屬粒子披覆於該半導體材料粉體上,其中該奈米金屬粒子的材料包括銀、錫、銅或鈀;以及進行一通電燒結製程,以形成具有一晶界的一熱電材料。
  2. 如申請專利範圍第1項所述之該熱電材料的製造方法,其中該半導體材料粉體的晶粒尺寸小於200 nm。
  3. 如申請專利範圍第1項所述之該熱電材料的製造方法,其中該半導體材料粉體的顆粒直徑小於100 μm。
  4. 如申請專利範圍第1項所述之該熱電材料的製造方法,其中該半導體材料粉體是藉由熔煉、化學合成或對一半導體材料進行一研磨製程而形成。
  5. 如申請專利範圍第4項所述之該熱電材料的製造方法,其中該研磨製程包括高能球磨製程。
  6. 如申請專利範圍第1項所述之該熱電材料的製造方法,其中在進行通電燒結製程之後,部分該奈米金屬粒子用以調整該熱電材料的熱電性能。
  7. 如申請專利範圍第1項所述之該熱電材料的製造方法,其中在進行通電燒結製程之後,部分該奈米金屬粒子存在於該晶界上而產生奈米異質邊界。
  8. 如申請專利範圍第1項所述之該熱電材料的製造方法,其中該通電燒結製程包括火花電漿燒結製程。
  9. 一種製作熱電材料的方法,包括:將一半導體材料粉體進行一敏化處理,該半導體材料粉體包括PbTe;將含有一金屬離子的溶液與經敏化處理的該半導體材料粉體混合形成一混合物,其中部分或全部該金屬離子吸附於該半導體材料粉體上,該金屬離子包括銀離子、錫離子、銅離子或鈀離子;加入一還原劑於該混合物中,使吸附於該半導體材料粉體上的該金屬離子還原成奈米金屬粒子;以及進行一通電燒結製程,以形成具有晶界的熱電材料。
TW099106968A 2010-03-10 2010-03-10 熱電材料的製造方法 TWI409979B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099106968A TWI409979B (zh) 2010-03-10 2010-03-10 熱電材料的製造方法
US12/845,779 US8277904B2 (en) 2010-03-10 2010-07-29 Method for producing thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099106968A TWI409979B (zh) 2010-03-10 2010-03-10 熱電材料的製造方法

Publications (2)

Publication Number Publication Date
TW201131840A TW201131840A (en) 2011-09-16
TWI409979B true TWI409979B (zh) 2013-09-21

Family

ID=44560255

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099106968A TWI409979B (zh) 2010-03-10 2010-03-10 熱電材料的製造方法

Country Status (2)

Country Link
US (1) US8277904B2 (zh)
TW (1) TWI409979B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560142B (en) * 2013-10-17 2016-12-01 Lg Chemical Ltd Thermoelectric materials and their manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104001930B (zh) * 2014-05-04 2016-03-30 昆明理工大学 高温电子浆料用铅/银核壳复合粉的制备方法
JP6892786B2 (ja) * 2017-05-10 2021-06-23 株式会社日立製作所 熱電変換材料及び熱電変換モジュール
CN110544741A (zh) * 2018-05-29 2019-12-06 中国科学院上海硅酸盐研究所 一种提高快离子导体热电材料服役稳定性的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793875B1 (en) * 1997-09-24 2004-09-21 The University Of Connecticut Nanostructured carbide cermet powders by high energy ball milling
US20010055685A1 (en) * 2000-05-15 2001-12-27 Masami Kaneyoshi Conductive filler and making method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Carrier transport and non-equilibrium phenomena in doped PbTe and related materials, B.A. Akimov et al, Phys, Stat. Sol. (a), vol. 137, pp.9~12, 1993 *
Enhencement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Joseph P. Heremans et al, Sxience, vol. 321, pp.554~557, July 25, 2008 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560142B (en) * 2013-10-17 2016-12-01 Lg Chemical Ltd Thermoelectric materials and their manufacturing method

Also Published As

Publication number Publication date
TW201131840A (en) 2011-09-16
US8277904B2 (en) 2012-10-02
US20110223350A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP4900061B2 (ja) 熱電変換素子及びその製造方法
JP5214695B2 (ja) 熱電材料とそれを原料とした複合材料及びその製造方法
US10460850B2 (en) Thermoelectric composite material and method for preparing thermoelectric composite material
JP5024393B2 (ja) ナノコンポジット熱電変換材料およびその製造方法
CN107681043B (zh) 一种柔性热电器件的碲化铋基复合热电材料及制备方法
US8753547B2 (en) Ternary thermoelectric material containing nanoparticles and process for producing the same
TWI409979B (zh) 熱電材料的製造方法
KR20130084120A (ko) 나노복합체형 열전재료, 이를 포함하는 열전모듈과 열전장치
JP2016216820A (ja) 銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法
JP2012006819A (ja) ナノカーボンと金属又はセラミックとの複合材料の生産方法
JP2011003741A (ja) ナノコンポジット熱電変換材料およびその製造方法
JP2009164595A (ja) 熱電変換素子の製造方法
JP2015196902A (ja) Ag/SnO2電気接点用粉末、Ag/SnO2電気接点材料及びそれらの製造方法
Luo et al. Fabrication of W–Cu/La2O3 composite powder with a novel pretreatment prepared by electroless plating and its sintering characterization
JP2009194085A (ja) 熱電変換素子及びその製造方法
US20130140507A1 (en) Ternary thermoelectric material containing nanoparticles and process for producing the same
JP2010093024A (ja) BiTe/セラミックス・ナノコンポジット熱電材料の製造方法
CN104953020A (zh) 声子散射材料、纳米复合热电材料及其制造方法
JP2013074051A (ja) ナノコンポジット熱電変換材料の製造方法およびそれにより製造されたナノコンポジット熱電変換材料
KR20110051814A (ko) 열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체
KR20110080282A (ko) 열전재료 및 화학적 공정에 의한 열전재료 제조방법
JP2013058531A (ja) 熱電変換材料
KR20170071235A (ko) 고효율 열전 소재 및 그 제조 방법
WO2015005065A1 (ja) ナノコンポジット熱電変換材料の製造方法
JP2014165260A (ja) 熱電変換材料の製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees