TWI407215B - Liquid crystal display panel and method of fabricating liquid crystal display panel - Google Patents

Liquid crystal display panel and method of fabricating liquid crystal display panel Download PDF

Info

Publication number
TWI407215B
TWI407215B TW98133250A TW98133250A TWI407215B TW I407215 B TWI407215 B TW I407215B TW 98133250 A TW98133250 A TW 98133250A TW 98133250 A TW98133250 A TW 98133250A TW I407215 B TWI407215 B TW I407215B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
voltage
display panel
pixel
substrate
Prior art date
Application number
TW98133250A
Other languages
Chinese (zh)
Other versions
TW201111881A (en
Inventor
De Jiun Li
Chen Fu Mai
Original Assignee
Century Display Shenzhen Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Century Display Shenzhen Co filed Critical Century Display Shenzhen Co
Priority to TW98133250A priority Critical patent/TWI407215B/en
Publication of TW201111881A publication Critical patent/TW201111881A/en
Application granted granted Critical
Publication of TWI407215B publication Critical patent/TWI407215B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

A method of fabricating a liquid crystal display panel including the following steps is provided. A first substrate, a second substrate, and a liquid crystal (LC) layer are provided, wherein the LC layer includes a LC composition, a plurality of photosensitive molecular monomers, and a photo initiator. The LC display has a plurality of pixels, wherein each of the pixels includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel. Next, the liquid crystal composition is controlled, such that the plurality of LC molecular in the LC composition corresponding to the red sub-pixels are aligned along a first pre-tilt angle &thgr; R, the plurality of LC molecular in the LC composition corresponding to the green sub-pixels are aligned along a second pre-tilt angle &thgr; G, the plurality of LC molecular in the LC composition corresponding to the blue sub-pixels are aligned along a third pre-tilt angle &thgr; B, wherein &thgr; R ≥ &thgr; G ≥ &thgr; B. Afterward, the plurality of the plurality of photosensitive molecular monomers are polymerized, so as to form a polymer stabilized alignment layer between the liquid crystal layer and the first substrate and between the liquid crystal layer and the second substrate.

Description

液晶顯示面板及其製作方法Liquid crystal display panel and manufacturing method thereof

本發明是有關於一種顯示面板及其製作方法,且特別是有關於一種液晶顯示面板及其製作方法。The present invention relates to a display panel and a method of fabricating the same, and more particularly to a liquid crystal display panel and a method of fabricating the same.

習知的多域垂直配向式(multi-domain vertically alignment,MVA)液晶顯示面板是利用配向結構(alignment structure)的配置使不同區域內的液晶分子以不同角度傾倒,而達到廣視角的功效。配向結構包括配向凸塊(alignment protrusion)以及設置於電極上的配向狹縫(alignment slit)。然而,位於配向凸塊與配向狹縫周邊的液晶分子的傾倒方向往往不連續,而造成漏光的情形,使得液晶顯示面板的顯示對比降低。若為了降低漏光的程度,於對應於配向凸塊或配向狹縫處配置遮光層,又會使液晶顯示面板的開口率下降。The conventional multi-domain vertical alignment (MVA) liquid crystal display panel utilizes an alignment structure to make liquid crystal molecules in different regions fall at different angles to achieve a wide viewing angle. The alignment structure includes an alignment protrusion and an alignment slit disposed on the electrode. However, the tilting direction of the liquid crystal molecules located at the periphery of the alignment bump and the alignment slit is often discontinuous, resulting in light leakage, which causes the display contrast of the liquid crystal display panel to be lowered. If the light shielding layer is disposed corresponding to the alignment bump or the alignment slit in order to reduce the degree of light leakage, the aperture ratio of the liquid crystal display panel is lowered.

因此,習知提出一種聚合物穩定配向(Polymer-stabilized alignment,PSA)製程,以改善多域垂直配向式液晶顯示面板中顯示對比不佳的問題。聚合物穩定配向製程須先將具有反應性的單體摻在液晶層中,並施與液晶層一特定的電壓。在此電壓下,以光線照射液晶層或對液晶層加熱,使反應性單體聚合並固化,以於液晶層與基板的交界處形成聚合物穩定配向層。由於聚合物穩定配向層會呈現特定的排列方式,故有助於液晶分子朝向不同的方向傾倒與排列,而達到廣視角顯示效果。此外,由於聚合物穩定配向層可以取代配向凸塊以及配向狹縫的功能,使配向凸塊或配向狹縫處不會有漏光現象,故能提高液晶顯示面板的顯示對比。再者,聚合物穩定配向層可以穩定位於液晶層邊界處的液晶分子,使液晶層具有良 好的反應速度。Therefore, a polymer-stabilized alignment (PSA) process has been proposed to improve the display contrast in multi-domain vertical alignment liquid crystal display panels. The polymer stable alignment process must first incorporate a reactive monomer into the liquid crystal layer and apply a specific voltage to the liquid crystal layer. At this voltage, the liquid crystal layer is irradiated with light or the liquid crystal layer is heated to polymerize and cure the reactive monomer to form a polymer stable alignment layer at the interface between the liquid crystal layer and the substrate. Since the polymer stabilized alignment layer exhibits a specific arrangement, it helps the liquid crystal molecules to be tilted and arranged in different directions to achieve a wide viewing angle display effect. In addition, since the polymer stable alignment layer can replace the function of the alignment bump and the alignment slit, there is no light leakage phenomenon at the alignment bump or the alignment slit, so that the display contrast of the liquid crystal display panel can be improved. Furthermore, the polymer stable alignment layer can stabilize the liquid crystal molecules located at the boundary of the liquid crystal layer, so that the liquid crystal layer has a good Good reaction speed.

然而,在習知之液晶顯示面板中,各畫素中具有多個不同顏色的子畫素,且具有不同顏色之子畫素的反應時間不同。表1為習知一種針對具有不同顏色子畫素的液晶顯示面板之反應時間的測定的結果。表1中列舉液晶顯示面板中紅色子畫素R、綠色子畫素G、藍色子畫素B以及白色子畫素W與液晶顯示面板的反應速度之間的趨勢。Tr表示液晶顯示面板的穿透度由10%至90%所需要的反應時間,Tf表示液晶顯示面板的穿透度由90%至10%所需要的反應時間,而T=Tr+Tf,換句話說,T值越小,表示液晶顯示面板在該子畫素區域的反應速度越快。However, in the conventional liquid crystal display panel, each pixel has a plurality of sub-pixels of different colors, and the reaction time of the sub-pixels having different colors is different. Table 1 shows the results of a conventional measurement of the reaction time for a liquid crystal display panel having different color sub-pixels. Table 1 lists the tendency between the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, and the white sub-pixel W in the liquid crystal display panel and the reaction speed of the liquid crystal display panel. Tr represents the reaction time required for the transmittance of the liquid crystal display panel from 10% to 90%, and Tf represents the reaction time required for the transmittance of the liquid crystal display panel from 90% to 10%, and T=Tr+Tf, In other words, the smaller the T value, the faster the response speed of the liquid crystal display panel in the sub-pixel area.

由表1可知,在習知之液晶顯示面板中,紅色子畫素R、綠色子畫素G、藍色子畫素B以及白色子畫素W的反應時間相異,如此一來,將會影響液晶顯示面板整體的反應速度表現、更甚者,容易產生殘像(image sticking)等顯示不良。因此,利用聚合物穩定配向層的適當特性,以及如何製造出反應時間較為一致之具有適當的表面特性的聚合物穩定配向層為此領域所關切的問題。As can be seen from Table 1, in the conventional liquid crystal display panel, the reaction times of the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, and the white sub-pixel W are different, and thus, the influence will be affected. The reaction speed of the entire liquid crystal display panel is more or less, and display defects such as image sticking are likely to occur. Therefore, the use of a polymer to stabilize the proper characteristics of the alignment layer and how to produce a polymer stable alignment layer having a suitable reaction time with a relatively uniform reaction time is a problem of concern in the field.

本發明提供一種液晶顯示面板的製作方法,其可以依據不同顏色子畫素的特性,調變並增快其反應時間,提升顯示品質。The invention provides a method for fabricating a liquid crystal display panel, which can modulate and increase the reaction time according to the characteristics of different color sub-pixels, thereby improving the display quality.

本發明提供一種液晶顯示面板,其不同顏色之子畫素所對應的液晶層中具有不同的預傾角,可以個別調整不同顏色子畫素的反應時間,提升顯示品質。The invention provides a liquid crystal display panel, wherein different liquid crystal layers corresponding to different color sub-pixels have different pretilt angles, and the reaction time of different color sub-pixels can be individually adjusted to improve display quality.

本發明提出一種液晶顯示面板的製作方法。液晶顯示面板的製作方法包括下列步驟。首先,提供一第一基板、一第二基板以及一密封於第一基板與第二基板之間的一液晶層,其中液晶層包括一液晶組成物、一感光性分子單體以及一光起始劑,且第一基板、第二基板以及液晶層之間構成多個陣列排列的畫素,且每一畫素包括一紅色子畫素、一綠色子畫素以及一藍色子畫素。接著,控制液晶組成物,使液晶組成物中對應紅色子畫素的多個液晶分子沿一第一預傾角度θR 排列、對應綠色子畫素的多個液晶分子沿一第二預傾角度θG 排列、對應藍色子畫素的多個液晶分子沿一第三預傾角度θB 排列,其中θR 大於或等於θG ,並且θG 大於或等於θB ,並且θR 大於θB 。之後,聚合感光性分子單體,以形成一聚合物穩定配向層於液晶層與第一基板之間以及液晶層與第二基板之間。The invention provides a method for fabricating a liquid crystal display panel. The manufacturing method of the liquid crystal display panel includes the following steps. First, a first substrate, a second substrate, and a liquid crystal layer sealed between the first substrate and the second substrate, wherein the liquid crystal layer comprises a liquid crystal composition, a photosensitive molecular monomer, and a light start And a plurality of array-arranged pixels are formed between the first substrate, the second substrate, and the liquid crystal layer, and each of the pixels includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel. Next, the liquid crystal composition is controlled such that a plurality of liquid crystal molecules corresponding to the red sub-pixels in the liquid crystal composition are arranged along a first pretilt angle θ R , and a plurality of liquid crystal molecules corresponding to the green sub-pixels are along a second pretilt angle The θ G array, the plurality of liquid crystal molecules corresponding to the blue sub-pixels are arranged along a third pretilt angle θ B , wherein θ R is greater than or equal to θ G , and θ G is greater than or equal to θ B , and θ R is greater than θ B . Thereafter, the photosensitive molecular monomer is polymerized to form a polymer stable alignment layer between the liquid crystal layer and the first substrate and between the liquid crystal layer and the second substrate.

在本發明之一實施例中,上述控制液晶組成物的方法可以包括下列步驟。首先,以一第一電壓VR 對應地驅動紅色子畫素,以一第二電壓VG 對應地驅動綠色子畫素,並以一第三電壓VB 對應地驅動藍色子畫素,其中第一電壓VR 、第二電壓VG 、第三電壓VB 例如滿足下列關係:VR ≧VG 、VG ≧VB 且VR >VB 。之後,以一紫外光照射畫素。更詳細而言,上述之第一電壓VR 、第二電壓VG 以及第三電壓VB 之間的關係可以是滿足:VR >VG >VB 。或者,上述之第一電壓VR 、第二電壓VG 以及第三電壓VB 之間的關係可以滿足:VR >VG =VB 。或者,上述之第一電壓VR 、第二電壓VG 以及第三電壓VB 之間的關係也可以滿足:VR =VG >VB 。此時,第一電壓VR 、第二電壓VG 以及第三電壓VB 的範圍例如為8伏特至80伏特。此外,上述之紫外光的照射能量的範圍例如為10mW/cm2 至100mW/cm2 ,而上述之紫外光的照射時間範圍為40秒至1200秒。In an embodiment of the invention, the above method of controlling the liquid crystal composition may include the following steps. First, the red sub-pixel is driven correspondingly by a first voltage V R , the green sub-pixel is driven correspondingly by a second voltage V G , and the blue sub-pixel is driven correspondingly by a third voltage V B , wherein The first voltage V R , the second voltage V G , and the third voltage V B satisfy, for example, the following relationship: V R ≧V G , V G ≧V B and V R >V B . After that, the pixels are illuminated with an ultraviolet light. In more detail, the relationship between the first voltage V R , the second voltage V G , and the third voltage V B described above may be satisfied: V R > V G > V B . Alternatively, the relationship between the first voltage V R , the second voltage V G , and the third voltage V B described above may satisfy: V R > V G = V B . Alternatively, the relationship between the first voltage V R , the second voltage V G , and the third voltage V B described above may also satisfy: V R =V G >V B . At this time, the first voltage V R , the second voltage V G , and the third voltage V B are, for example, in the range of 8 volts to 80 volts. Further, the irradiation energy of the ultraviolet light described above is, for example, in the range of 10 mW/cm 2 to 100 mW/cm 2 , and the irradiation time of the ultraviolet light described above is in the range of 40 seconds to 1200 seconds.

在本發明之一實施例中,上述控制液晶組成物的方法也可以是包括下列步驟。首先,以一電壓驅動畫素。之後,維持電壓,以一紫外 光照射畫素,使得對應紅色子畫素的液晶層被照射一第一曝光時間TR ,對應綠色子畫素的液晶層被照射一第二曝光時間TG ,對應藍色子畫素的液晶層被照射一第三曝光時間TB ,其中TR ≧TG 、TG ≧TB 且TR >TB 。更詳細而言,上述之第一曝光時間TR 、第二曝光時間TG 以及第三曝光時間TB 之間的關係例如滿足:TR >TG >TB 。或者,上述之第一曝光時間TR 、第二曝光時間TG 以及第三曝光時間TB 之間的關係例如滿足VR >VG =VB 。或者,上述之第一曝光時間TR 、第二曝光時間TG 以及第三曝光時間TB 之間的關係滿足VR =VG >VB 。此時,電壓的範圍例如是為8伏特至80伏特。此外,上述之紫外光的照射能量範圍為10mW/cm2 至100mW/cm2 ,而第一曝光時間TR 、第二曝光時間TG 以及第三曝光時間TB 的範圍為40秒至1200秒。In an embodiment of the invention, the method for controlling the liquid crystal composition may also include the following steps. First, the pixel is driven by a voltage. Thereafter, the voltage is maintained, and the pixel is illuminated by an ultraviolet light, so that the liquid crystal layer corresponding to the red sub-pixel is irradiated for a first exposure time T R , and the liquid crystal layer corresponding to the green sub-pixel is irradiated for a second exposure time T G , The liquid crystal layer corresponding to the blue sub-pixel is illuminated for a third exposure time T B , where T R ≧T G , T G ≧T B and T R > T B . In more detail, the relationship between the first exposure time T R , the second exposure time T G , and the third exposure time T B described above satisfies, for example, T R > T G > T B . Alternatively, the relationship between the first exposure time T R , the second exposure time T G , and the third exposure time T B described above satisfies, for example, V R > V G = V B . Alternatively, the relationship between the first exposure time T R , the second exposure time T G , and the third exposure time T B described above satisfies V R =V G > V B . At this time, the range of the voltage is, for example, 8 volts to 80 volts. Further, the irradiation energy of the ultraviolet light described above ranges from 10 mW/cm 2 to 100 mW/cm 2 , and the first exposure time T R , the second exposure time T G , and the third exposure time T B range from 40 seconds to 1200 seconds. .

在本發明之一實施例中,上述之液晶組成物為垂直配向型液晶。In an embodiment of the invention, the liquid crystal composition is a vertical alignment type liquid crystal.

本發明另提供一種液晶顯示面板。此液晶顯示面板包括一第一基板、一第二基板、一液晶層以及一聚合物穩定配向層。第二基板與第一基板相對,液晶層配置於第一基板與第二基板之間。聚合物穩定配向層至少配置於液晶層與第一基板之間以及液晶層與第二基板之間。其中第一基板、第二基板以及液晶層之間構成多個陣列排列的畫素,且每一畫素包括一紅色子畫素、一綠色子畫素以及一藍色子畫素,聚合物穩定配向層中對應紅色子畫素具有一第一預傾角度θR ,聚合物穩定配向層中對應綠色子畫素具有一第二預傾角度θG ,聚合物穩定配向層中對應藍色子畫素具有一第三預傾角度θB ,其中θR ≧θG 、θG ≧θB 且θRBThe invention further provides a liquid crystal display panel. The liquid crystal display panel comprises a first substrate, a second substrate, a liquid crystal layer and a polymer stable alignment layer. The second substrate is opposite to the first substrate, and the liquid crystal layer is disposed between the first substrate and the second substrate. The polymer stable alignment layer is disposed at least between the liquid crystal layer and the first substrate and between the liquid crystal layer and the second substrate. A plurality of arrays of pixels are formed between the first substrate, the second substrate, and the liquid crystal layer, and each of the pixels includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel, and the polymer is stable. The corresponding red sub-pixel in the alignment layer has a first pre-tilt angle θ R , the corresponding green sub-pixel in the polymer stable alignment layer has a second pre-tilt angle θ G , and the corresponding blue sub-paint in the polymer stable alignment layer The element has a third pretilt angle θ B , where θ R ≧ θ G , θ G ≧ θ B and θ R > θ B .

基於上述,在本發明的液晶顯示面板及其製作方法中,藉由分別控制施加於不同顏色子畫素之驅動電壓或是藉由照射於不同顏色子畫素區域的能量,使得聚合物穩定配向層中對應不同顏色子畫素之區域具有相異的預傾角,其中聚合物穩定配向層中對應綠色子畫素具有較大的預傾角,以增快綠色子畫素區中液晶分子的反應時間,且提升各子畫素之間反應速度的均一性,並可藉此減少殘像的發生,因此,液晶顯示面板具有快速反應、低漏光、高對比以及少殘像等良好的顯示特性。Based on the above, in the liquid crystal display panel of the present invention and the method of fabricating the same, the polymer is stably aligned by controlling the driving voltage applied to the different color sub-pixels or by illuminating the energy of the different color sub-pixel regions. The regions corresponding to different color sub-pixels in the layer have different pretilt angles, wherein the corresponding green sub-pixels in the polymer stable alignment layer have a large pretilt angle to increase the reaction time of the liquid crystal molecules in the green sub-pixel region Moreover, the uniformity of the reaction speed between the sub-pixels is improved, and the occurrence of the afterimage can be reduced, so that the liquid crystal display panel has good display characteristics such as rapid response, low light leakage, high contrast, and few afterimages.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

200、200A、200B、200C、200D、200E、200F‧‧‧液晶顯示面板200, 200A, 200B, 200C, 200D, 200E, 200F‧‧‧ LCD panel

202‧‧‧第一基板202‧‧‧First substrate

202A‧‧‧基板202A‧‧‧Substrate

202B‧‧‧主動層202B‧‧‧Active layer

202C‧‧‧畫素電極層202C‧‧‧pixel electrode layer

204‧‧‧第二基板204‧‧‧second substrate

204B‧‧‧藍色濾光層204B‧‧‧Blue filter layer

204D‧‧‧共通電極204D‧‧‧Common electrode

204G‧‧‧綠色濾光層204G‧‧‧Green filter layer

204R‧‧‧紅色濾光層204R‧‧‧Red filter layer

206‧‧‧液晶層206‧‧‧Liquid layer

206a‧‧‧液晶分子206a‧‧‧liquid crystal molecules

206A‧‧‧液晶組成物206A‧‧‧Liquid composition

206B‧‧‧感光性分子單體206B‧‧‧Photosensitive molecular monomer

206C‧‧‧光起始劑206C‧‧‧Photoinitiator

208‧‧‧聚合物穩定配向層208‧‧‧Polymer stable alignment layer

210‧‧‧畫素210‧‧‧ pixels

210R‧‧‧紅色子畫素210R‧‧‧Red sub-pixel

210G‧‧‧綠色子畫素210G‧‧‧Green sub-pixel

210B‧‧‧藍色子畫素210B‧‧‧Blue sub-pixel

L‧‧‧紫外光L‧‧‧UV light

VG ‧‧‧第二電壓A second voltage V G ‧‧‧

VR ‧‧‧第一電壓V R ‧‧‧First voltage

VB ‧‧‧第三電壓V B ‧‧‧ third voltage

TG ‧‧‧第二曝光時間A second exposure time T G ‧‧‧

TR ‧‧‧第一曝光時間T R ‧‧‧First exposure time

TB ‧‧‧第三曝光時間T B ‧‧‧ third exposure time

θ‧‧‧預傾角度θ‧‧‧Pretilt angle

θR ‧‧‧第一預傾角度θ R ‧‧‧first pretilt angle

θG ‧‧‧第二預傾角度θ G ‧‧‧ second pretilt angle

θB ‧‧‧第三預傾角度θ B ‧‧‧third pretilt angle

圖1為本發明一實施例之一種液晶顯示面板的剖面示意圖。1 is a cross-sectional view showing a liquid crystal display panel according to an embodiment of the present invention.

圖2A進一步繪示圖1中液晶顯示面板在製作流程中的一步驟。FIG. 2A further illustrates a step in the manufacturing process of the liquid crystal display panel of FIG. 1.

圖2B進一步繪示圖1中液晶顯示面板的局部放大示意圖。FIG. 2B is a partially enlarged schematic view showing the liquid crystal display panel of FIG. 1. FIG.

圖3A至圖3D為本發明第一實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。3A to 3D are schematic cross-sectional views showing a process of fabricating a liquid crystal display panel according to a first embodiment of the present invention.

圖4A至圖4D為本發明第二實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。4A to 4D are schematic cross-sectional views showing a process of fabricating a liquid crystal display panel according to a second embodiment of the present invention.

圖5A至圖5D為本發明第三實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。5A to 5D are schematic cross-sectional views showing a process of fabricating a liquid crystal display panel according to a third embodiment of the present invention.

圖6A至圖6D為本發明第四實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。6A-6D are schematic cross-sectional views showing a method of fabricating a liquid crystal display panel according to a fourth embodiment of the present invention.

圖7A至圖7D為本發明第五實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。7A to 7D are schematic cross-sectional views showing a method of fabricating a liquid crystal display panel according to a fifth embodiment of the present invention.

圖8A至圖8D為本發明第六實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。8A to 8D are schematic cross-sectional views showing a method of fabricating a liquid crystal display panel according to a sixth embodiment of the present invention.

圖1為本發明一實施例之一種液晶顯示面板的剖面示意圖。請參照圖1,液晶顯示面板200A包括第一基板202、第二基板204、密封於第一基板202與第二基板204之間的液晶層206以及聚合物穩定配向層208。第一基板202例如是主動式或被動式的切換元件陣列基板,而第二基板204為與第一基板202相對設置的對向基板,例如是彩色濾光基板。液晶層206配置於第一基板202與第二基板204之間。液晶層206具有多個垂直配向的液晶分子206a,由於聚合物穩定配向層208的作用,這些液晶分子206a沿一預傾角度θ排列。1 is a cross-sectional view showing a liquid crystal display panel according to an embodiment of the present invention. Referring to FIG. 1 , the liquid crystal display panel 200A includes a first substrate 202 , a second substrate 204 , a liquid crystal layer 206 sealed between the first substrate 202 and the second substrate 204 , and a polymer stable alignment layer 208 . The first substrate 202 is, for example, an active or passive switching element array substrate, and the second substrate 204 is an opposite substrate disposed opposite the first substrate 202, such as a color filter substrate. The liquid crystal layer 206 is disposed between the first substrate 202 and the second substrate 204. The liquid crystal layer 206 has a plurality of vertically aligned liquid crystal molecules 206a which are aligned along a pretilt angle θ due to the action of the polymer stabilizing alignment layer 208.

更詳細而言,圖2A進一步繪示圖1中液晶顯示面板在製作流程中的一步驟,而圖2B進一步繪示圖1中液晶顯示面板的局部放大示意圖。請參照圖2A與圖2B,液晶層206包括液晶組成物206A、感光性分子單體206B以及一光起始劑206C。第一基板202、第二基板204以及液晶層206之間具有多個陣列排列的畫素210,且每一畫素210包括紅色子畫素210R、綠色子畫素210G以及藍色子畫素210B,更詳細而言,第一基板例如為主動元件陣列基板,而第二基板例如為彩色濾光基板,每一子畫素包括位於第一基板的主動元件以及與主動元件電性連接的畫素電極、液晶層以及位於第二基板上的濾光層,當濾光層的顏色為紅色時,該子畫素為紅色子畫素210R;當濾光層的顏色為綠色時,該子畫素為綠色子畫素210G;當濾光層的顏色為藍色時,該子畫素為藍色子畫素210B,且紅色子畫素210R、綠色子畫素210G以及藍色子畫素210B構成一個畫素210。在進行感光性分子單體206B的聚合反應之時,控制液晶組成物206A使液晶組成物206A中對應不同顏色子畫素210的區域的液晶分子206a沿著不同的預傾角度θ排列,如圖2A所示,對應紅色子畫素210R的液晶分子206a沿第一預傾角度θR 排列、對應綠色子畫素210G的液晶分子206a沿第二預傾角度θG 排列、而對應藍色子畫素210B的多個液晶分子206a沿第三預傾角度θB 排列,並令第一預傾角度θR 大於等於第二預傾角度θG ,且第二預傾角度θG 大於等於第三預傾角度θBR ≧θG ≧θB )。In more detail, FIG. 2A further illustrates a step in the manufacturing process of the liquid crystal display panel of FIG. 1, and FIG. 2B further illustrates a partial enlarged view of the liquid crystal display panel of FIG. Referring to FIGS. 2A and 2B, the liquid crystal layer 206 includes a liquid crystal composition 206A, a photosensitive molecular monomer 206B, and a photoinitiator 206C. A plurality of arrays of pixels 210 are arranged between the first substrate 202, the second substrate 204, and the liquid crystal layer 206, and each pixel 210 includes a red sub-pixel 210R, a green sub-pixel 210G, and a blue sub-pixel 210B. In more detail, the first substrate is, for example, an active device array substrate, and the second substrate is, for example, a color filter substrate, and each sub-pixel includes an active component on the first substrate and a pixel electrically connected to the active device. The electrode, the liquid crystal layer and the filter layer on the second substrate, when the color of the filter layer is red, the sub-pixel is red sub-pixel 210R; when the color of the filter layer is green, the sub-pixel It is a green sub-pixel 210G; when the color of the filter layer is blue, the sub-pixel is blue sub-pixel 210B, and the red sub-pixel 210R, the green sub-pixel 210G, and the blue sub-pixel 210B constitute A pixel 210. At the time of the polymerization reaction of the photosensitive molecular monomer 206B, the liquid crystal composition 206A is controlled so that the liquid crystal molecules 206a of the liquid crystal composition 206A corresponding to the regions of the different color sub-pixels 210 are arranged along different pretilt angles θ, as shown in the figure. As shown in FIG. 2A, the liquid crystal molecules 206a corresponding to the red sub-pixel 210R are arranged along the first pre-tilt angle θ R , and the liquid crystal molecules 206a corresponding to the green sub-pixel 210G are arranged along the second pre-tilt angle θ G and correspond to the blue sub-picture. The plurality of liquid crystal molecules 206a of the element 210B are arranged along the third pretilt angle θ B , and the first pretilt angle θ R is greater than or equal to the second pretilt angle θ G , and the second pretilt angle θ G is greater than or equal to the third pre Tilt angle θ BR ≧ θ G ≧ θ B ).

其中,控制液晶組成物206A使液晶組成物206A中對應不同顏色子畫素210的區域的液晶分子206a沿著不同的預傾角度排列的方式例如是使驅動紅色子畫素210G的第一電壓VR ≧驅動綠色子畫素210G的第二電壓VG ≧驅動藍色子畫素210B的第三電壓VB 。或者是使紅色子畫素210R的第一曝光時間TR ≧綠色子畫素210G的第二曝光時間TG ≧藍色子畫素210B的第三曝光時間TB 。有關控制液晶組成物206A中液晶分子206a排列的方法將於後文中詳細說明。Wherein, the liquid crystal composition 206A is controlled such that the liquid crystal molecules 206a of the liquid crystal composition 206A corresponding to the regions of the different color sub-pixels 210 are arranged along different pretilt angles, for example, the first voltage V for driving the red sub-pixel 210G. R ≧ drives the second voltage V G绿色 of the green sub-pixel 210G to drive the third voltage V B of the blue sub-pixel 210B. Alternatively, the first exposure time T R of the red sub-pixel 210R 第二 the second exposure time T G of the green sub-pixel 210G 第三 the third exposure time T B of the blue sub-pixel 210B. A method of controlling the arrangement of the liquid crystal molecules 206a in the liquid crystal composition 206A will be described in detail later.

如圖2B所示,在上述的情況下,進行感光性分子單體206B的聚合反應,以在聚合反應之後於液晶層206與第一基板202之間以及液晶 層206與第二基板204之間形成聚合物穩定配向層208,特別的是,聚合物穩定配向層208中對應紅色子畫素210R的預傾角度θR 大於等於對應綠色子畫素210G的預傾角度θG ,並且聚合物穩定配向層208中對應綠色子畫素210G的預傾角度θG 大於等於對應藍色子畫素210B的預傾角度θBAs shown in FIG. 2B, in the above case, polymerization of the photosensitive molecular monomer 206B is performed to be between the liquid crystal layer 206 and the first substrate 202 and between the liquid crystal layer 206 and the second substrate 204 after the polymerization reaction. Forming the polymer stable alignment layer 208, in particular, the pretilt angle θ R of the corresponding red subpixel 210R in the polymer stable alignment layer 208 is greater than or equal to the pretilt angle θ G of the corresponding green subpixel 210G, and the polymer is stable. The pretilt angle θ G of the corresponding green sub-pixel 210G in the alignment layer 208 is greater than or equal to the pretilt angle θ B of the corresponding blue sub-pixel 210B.

聚合物穩定配向層208對液晶分子206a具有配向能力,因此,液晶分子206a在沒有電壓的存在下,會沿其該區域的預傾角度θ排列。在本實施例中,液晶顯示面板200A例如是多域垂直配向型液晶顯示面板200A,因此,相較於習知技術僅配置配向凸塊與配向狹縫的液晶顯示面板200A而言,聚合物穩定配向層208可以避免位於配向凸塊與配向狹縫周邊的液晶分子206a的傾倒方向不連續而造成漏光的情形發生,故液晶顯示面板200A具有較佳的顯示對比。The polymer-stabilized alignment layer 208 has an alignment ability to the liquid crystal molecules 206a, and therefore, the liquid crystal molecules 206a are arranged along the pretilt angle θ of the region in the absence of a voltage. In the present embodiment, the liquid crystal display panel 200A is, for example, a multi-domain vertical alignment type liquid crystal display panel 200A. Therefore, the polymer is stabilized compared to the liquid crystal display panel 200A in which only the alignment bump and the alignment slit are disposed in the prior art. The alignment layer 208 can prevent the light leakage of the liquid crystal molecules 206a located in the periphery of the alignment bump and the alignment slit from being discontinuous, thereby causing light leakage. Therefore, the liquid crystal display panel 200A has a better display contrast.

在本實施例中,由於將聚合物穩定配向層208中對應不同顏色子畫素210的預傾角度θ適當地控制為,其中θR 大於或等於θG ,並且θG 大於或等於θBR ≧θG ≧θB ),因此,液晶顯示面板200A具有反應速度較為均一、低漏光、高對比以及少殘像等良好的顯示特性。In the present embodiment, since the pretilt angle θ corresponding to the different color sub-pixels 210 in the polymer stable alignment layer 208 is appropriately controlled as, where θ R is greater than or equal to θ G and θ G is greater than or equal to θ B ( Since θ R ≧ θ G ≧ θ B ), the liquid crystal display panel 200A has excellent display characteristics such as uniform reaction speed, low light leakage, high contrast, and small afterimage.

為了清楚說明本發明之液晶顯示面板200A中控制液晶組成物206A的方式,以下將以圖2A與圖2B所示之液晶顯示面板200A為例,列舉些許實施例搭配圖式詳細說明本發明之液晶顯示面板200A的製作方法,但本發明並不以下述實施例為限。In order to clearly explain the manner of controlling the liquid crystal composition 206A in the liquid crystal display panel 200A of the present invention, the liquid crystal display panel 200A shown in FIG. 2A and FIG. 2B will be taken as an example, and some embodiments will be described in detail with reference to the liquid crystal of the present invention. The method of manufacturing the display panel 200A is not limited to the following embodiments.

第一實施例First embodiment

圖3A至圖3D為本發明第一實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。3A to 3D are schematic cross-sectional views showing a process of fabricating a liquid crystal display panel according to a first embodiment of the present invention.

請參照圖3A,首先,提供第一基板202、第二基板204以及一密封於第一基板202與第二基板204之間的一液晶層206。第一基板202例如是主動元件陣列基板,第二基板204例如是彩色濾光基板。第一基板202包括基板202A、主動層202B與畫素電極層202C。第二基板204包括紅色濾光層204R、綠色濾光層204G、藍色濾光層204B以及共通電極204D。液晶層206包括液晶組成物206A、感光性分子單體206B以及光起始劑 206C。如此,第一基板202、第二基板204以及液晶層206之間構成多個陣列排列的畫素210,其中包含紅色濾光層204R之區域為紅色子畫素210R,包含綠色濾光層204G之區域為綠色子畫素210G,而包含藍色濾光層204B之區域為藍色子畫素210B。Referring to FIG. 3A , first, a first substrate 202 , a second substrate 204 , and a liquid crystal layer 206 sealed between the first substrate 202 and the second substrate 204 are provided. The first substrate 202 is, for example, an active device array substrate, and the second substrate 204 is, for example, a color filter substrate. The first substrate 202 includes a substrate 202A, an active layer 202B, and a pixel electrode layer 202C. The second substrate 204 includes a red filter layer 204R, a green filter layer 204G, a blue filter layer 204B, and a common electrode 204D. The liquid crystal layer 206 includes a liquid crystal composition 206A, a photosensitive molecular monomer 206B, and a photoinitiator 206C. Thus, a plurality of arrays of pixels 210 are formed between the first substrate 202, the second substrate 204, and the liquid crystal layer 206, wherein the region including the red filter layer 204R is a red sub-pixel 210R, and the green filter layer 204G is included. The area is the green sub-pixel 210G, and the area containing the blue filter layer 204B is the blue sub-pixel 210B.

接著,請參照圖3B,在本實施例中,以不同驅動電壓來驅動不同顏色子畫素210所對應之液晶組成物206A中的液晶分子206a。詳言之,以一第一電壓VR 對應地驅動紅色子畫素210R,以一第二電壓VG 對應地驅動綠色子畫素210G,並以一第三電壓VB 對應地驅動藍色子畫素210B,在本實施例中,第一電壓VR 、第二電壓VG 、第三電壓VB 滿足下列關係:VR >VG >VB 。詳言之,第一電壓VR 、第二電壓VG 、第三電壓VB 的範圍較佳為8伏特至80伏特。值得一提的是,由於在本實施例中,液晶組成物206A為垂直配向型液晶,而液晶分子206a的傾斜角度與驅動電壓成正比,換言之,液晶組成物206A中的液晶分子206a隨著施加電壓的增加而遞增。因此,藉由調整驅動電壓滿足第二電壓VR >第一電壓VG >第三電壓VB 的關係,可使液晶組成物206A中對應紅色子畫素210R的多個液晶分子206a沿一第一預傾角度θR 排列、對應綠色子畫素210G的多個液晶分子206a沿一第二預傾角度θG 排列、對應藍色子畫素210B的多個液晶分子206a沿一第三預傾角度θB 排列,滿足θR 大於θG ,並且θG 大於θBRGB )的關係,如圖3B所示。Next, referring to FIG. 3B, in the present embodiment, the liquid crystal molecules 206a in the liquid crystal composition 206A corresponding to the different color sub-pixels 210 are driven with different driving voltages. In detail, the red sub-pixel 210R is driven correspondingly by a first voltage V R , the green sub-pixel 210G is driven correspondingly by a second voltage V G , and the blue sub-correspondingly driven by a third voltage V B In the pixel 210B, in the present embodiment, the first voltage V R , the second voltage V G , and the third voltage V B satisfy the following relationship: V R > V G > V B . In detail, the first voltage V R , the second voltage V G , and the third voltage V B preferably range from 8 volts to 80 volts. It is to be noted that, in the present embodiment, the liquid crystal composition 206A is a vertical alignment type liquid crystal, and the tilt angle of the liquid crystal molecules 206a is proportional to the driving voltage, in other words, the liquid crystal molecules 206a in the liquid crystal composition 206A are applied. The voltage increases as the voltage increases. Therefore, by adjusting the driving voltage to satisfy the relationship of the second voltage V R > the first voltage V G > the third voltage V B , the plurality of liquid crystal molecules 206a corresponding to the red sub-pixel 210R in the liquid crystal composition 206A can be formed along the first a pre-tilt angle θ R are arranged, 210G corresponding to the green sub-pixel 206a of the liquid crystal molecules in a second alignment pre-tilt angle θ G, the blue sub-pixel corresponding to a plurality of liquid crystal molecules 206a 210B along a third pretilt The angle θ B is arranged to satisfy the relationship that θ R is larger than θ G and θ G is larger than θ BR > θ G > θ B ) as shown in Fig. 3B.

之後,請參照圖3C,在對不同顏色畫素210之液晶分子206a施加不同電場的同時,對液晶層206中的感光性分子單體206B以及光起始劑206C進行紫外光L的照射製程,以聚合感光性分子單體206B,而分別於液晶層206與第一基板202之間及液晶層206與第二基板204之間形成聚合物穩定配向層208。詳言之,在本實施例中,紫外光L的照射能量的範圍例如為10mW/cm2 至100mW/cm2 ,而紫外光L的照射時間範圍例如為40秒至1200秒。Thereafter, referring to FIG. 3C, while applying different electric fields to the liquid crystal molecules 206a of the different color pixels 210, the photosensitive molecular monomer 206B and the photoinitiator 206C in the liquid crystal layer 206 are irradiated with ultraviolet light L, A polymer stable alignment layer 208 is formed between the liquid crystal layer 206 and the first substrate 202 and between the liquid crystal layer 206 and the second substrate 204, respectively, by polymerizing the photosensitive molecular monomer 206B. In detail, in the present embodiment, the irradiation energy of the ultraviolet light L is, for example, in the range of 10 mW/cm 2 to 100 mW/cm 2 , and the irradiation time of the ultraviolet light L is, for example, 40 seconds to 1200 seconds.

之後,請參照圖3D,在形成聚合物穩定配向層208後,移除電場,其中由於聚合物穩定配向層208的作用,可使液晶分子206a維持 上述的預傾角度排列,使得液晶顯示面板200A具有廣視角的特性。Thereafter, referring to FIG. 3D, after forming the polymer stable alignment layer 208, the electric field is removed, wherein the liquid crystal molecules 206a can be maintained due to the action of the polymer stable alignment layer 208. The pretilt angle arrangement described above makes the liquid crystal display panel 200A have a wide viewing angle characteristic.

在本實施例中,由於在第一基板202與第二基板204上配置有聚合物穩定配向層208,且將聚合物穩定配向層208對應紅色子畫素210R的預傾角度、對應綠色子畫素210G的預傾角度以及對應藍色子畫素210B的預傾角度控制為θR 大於θG ,並且θG 大於θBRGB )的關係,因此可以提升紅色子畫素210R以及綠色子畫素210G的反應時間,使得液晶顯示面板200A具有快速反應、高顯示均勻性、低漏光、高對比以及少殘像等的良好顯示特性。In this embodiment, since the polymer stable alignment layer 208 is disposed on the first substrate 202 and the second substrate 204, and the pre-tilt angle of the polymer stable alignment layer 208 corresponding to the red sub-pixel 210R, corresponding to the green sub-picture The pretilt angle of the element 210G and the pretilt angle of the corresponding blue subpixel 210B are controlled such that θ R is larger than θ G and θ G is larger than θ BR > θ G > θ B ), so that the red sub-elevation can be improved. The reaction time of the pixel 210R and the green sub-pixel 210G makes the liquid crystal display panel 200A have good display characteristics such as rapid response, high display uniformity, low light leakage, high contrast, and few afterimages.

第二實施例Second embodiment

圖4A至圖4D為本發明第二實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。其中,本實施例之液晶顯示面板200B的製作方法的流程與第一實施例類似,惟,在本實施例之液晶顯示面板200A的製作方法中,用以驅動紅色子畫素210R、綠色子畫素210G以及藍色子畫素210B的電壓關係不同。4A to 4D are schematic cross-sectional views showing a process of fabricating a liquid crystal display panel according to a second embodiment of the present invention. The flow of the method for fabricating the liquid crystal display panel 200B of the present embodiment is similar to that of the first embodiment. However, in the method for fabricating the liquid crystal display panel 200A of the present embodiment, the red sub-pixel 210R and the green sub-picture are driven. The voltage relationship between the element 210G and the blue sub-pixel 210B is different.

詳細而言,圖4A與第一實施例之圖3A類似,不再贅述。請接著參照圖4B,在本實施例中,第一電壓VR 、第二電壓VG 、第三電壓VB 例如滿足下列關係:VR >VG =VB ,其中第一電壓VR 、第二電壓VG 、第三電壓VB 的範圍較佳為8伏特至80伏特。因此,藉由調整驅動電壓滿足第一電壓VR >第二電壓VG =第三電壓VB 的關係,可使液晶組成物206A中對應紅色子畫素210R的多個液晶分子206a沿一第一預傾角度θR 排列、對應綠色子畫素210G的多個液晶分子206a沿一第二預傾角度θG 排列、對應藍色子畫素210B的多個液晶分子206a沿一第三預傾角度θB 排列,滿足θR 大於θG ,並且θG 等於θBRGB )的關係,如圖4B所示。In detail, FIG. 4A is similar to FIG. 3A of the first embodiment and will not be described again. Referring to FIG. 4B, in the embodiment, the first voltage V R , the second voltage V G , and the third voltage V B satisfy the following relationship, for example, V R >V G =V B , where the first voltage V R , The second voltage V G and the third voltage V B preferably range from 8 volts to 80 volts. Therefore, by adjusting the relationship that the driving voltage satisfies the first voltage V R > the second voltage V G = the third voltage V B , the plurality of liquid crystal molecules 206a corresponding to the red sub-pixel 210R in the liquid crystal composition 206A can be formed along the first a pre-tilt angle θ R are arranged, 210G corresponding to the green sub-pixel 206a of the liquid crystal molecules in a second alignment pre-tilt angle θ G, the blue sub-pixel corresponding to a plurality of liquid crystal molecules 206a 210B along a third pretilt The angle θ B is arranged to satisfy the relationship that θ R is larger than θ G and θ G is equal to θ BR > θ G = θ B ) as shown in Fig. 4B.

之後,請參照圖4C與圖4D,與第一實施例之圖3C與圖3D類似,在對不同顏色畫素210之液晶分子206a施加不同電場的同時,對液晶層206中的感光性分子單體206B以及光起始劑206C進行紫外光L的照射製程,以聚合感光性分子單體206B,而分別於液晶層206與第一基板202之間及液晶層206與第二基板204之間形成聚合物穩定配向層208,其餘設 計考量與第一實施例類似,不再贅述。4C and FIG. 4D, similar to FIG. 3C and FIG. 3D of the first embodiment, while applying different electric fields to the liquid crystal molecules 206a of different color pixels 210, the photosensitive molecules in the liquid crystal layer 206 are single. The body 206B and the photoinitiator 206C are irradiated with the ultraviolet light L to polymerize the photosensitive molecular monomer 206B, and are formed between the liquid crystal layer 206 and the first substrate 202 and between the liquid crystal layer 206 and the second substrate 204, respectively. Polymer stabilized alignment layer 208, the rest The amount of measurement is similar to that of the first embodiment and will not be described again.

在本實施例中,由於在第一基板202與第二基板204上配置有聚合物穩定配向層208,且將聚合物穩定配向層208對應紅色子畫素210R的預傾角度、對應綠色子畫素210G的預傾角度以及對應藍色子畫素210B的預傾角度控制為θR 大於θG ,並且θG 等於θBRGB )的關係,因此可以提升紅色子畫素210R的反應時間,以改善液晶顯示面板200B的整體反應時間,使得液晶顯示面板200B具有快速反應、高顯示均勻性、低漏光、高對比以及少殘像等的良好顯示特性。In this embodiment, since the polymer stable alignment layer 208 is disposed on the first substrate 202 and the second substrate 204, and the pre-tilt angle of the polymer stable alignment layer 208 corresponding to the red sub-pixel 210R, corresponding to the green sub-picture The pretilt angle of the element 210G and the pretilt angle of the corresponding blue subpixel 210B are controlled such that θ R is larger than θ G and θ G is equal to θ BR > θ G = θ B ), so that the red color can be improved. The reaction time of the pixel 210R is to improve the overall reaction time of the liquid crystal display panel 200B, so that the liquid crystal display panel 200B has good display characteristics such as rapid response, high display uniformity, low light leakage, high contrast, and few afterimages.

第三實施例Third embodiment

圖5A至圖5D為本發明第三實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。其中,本實施例之液晶顯示面板200C的製作方法的流程與第一實施例液晶顯示面板200A類似,惟,在本實施例之液晶顯示面板200C的製作方法中,用以驅動紅色子畫素210R、綠色子畫素210G以及藍色子畫素210B的電壓關係不同。5A to 5D are schematic cross-sectional views showing a process of fabricating a liquid crystal display panel according to a third embodiment of the present invention. The flow of the method for fabricating the liquid crystal display panel 200C of the present embodiment is similar to that of the liquid crystal display panel 200A of the first embodiment. However, in the method for fabricating the liquid crystal display panel 200C of the present embodiment, the red sub-pixel 210R is driven. The voltage relationship between the green sub-pixel 210G and the blue sub-pixel 210B is different.

詳細而言,圖5A與第一實施例之圖3A類似,不再贅述。請接著參照圖5B,在本實施例中,第一電壓VR 、第二電壓VG 、第三電壓VB 例如滿足下列關係:VR =VG >VB ,其中第一電壓VR 、第二電壓VG 、第三電壓VB 的範圍較佳為8伏特至80伏特。因此,藉由調整驅動電壓滿足第一電壓VR =第二電壓VG >第三電壓VB 的關係,可使液晶組成物206A中對應紅色子畫素210R的多個液晶分子206a沿第一預傾角度θR 排列、對應綠色子畫素210G的多個液晶分子206a沿第二預傾角度θG 排列、對應藍色子畫素210B的多個液晶分子206a沿第三預傾角度θB 排列,滿足θR 等於θG ,並且θG 大於θBRGB )的關係,如圖5B所示。In detail, FIG. 5A is similar to FIG. 3A of the first embodiment and will not be described again. Referring to FIG. 5B, in the embodiment, the first voltage V R , the second voltage V G , and the third voltage V B satisfy, for example, the following relationship: V R =V G >V B , where the first voltage V R , The second voltage V G and the third voltage V B preferably range from 8 volts to 80 volts. Therefore, by adjusting the driving voltage to satisfy the relationship of the first voltage V R = the second voltage V G > the third voltage V B , the plurality of liquid crystal molecules 206a corresponding to the red sub-pixel 210R in the liquid crystal composition 206A can be first The pretilt angle θ R is arranged, and the plurality of liquid crystal molecules 206a corresponding to the green subpixel 210G are arranged along the second pretilt angle θ G , and the plurality of liquid crystal molecules 206 a corresponding to the blue subpixel 210B are along the third pretilt angle θ B The arrangement satisfies the relationship that θ R is equal to θ G and θ G is larger than θ BR = θ G > θ B ) as shown in FIG. 5B.

之後,請參照圖5C與圖5D,與第一實施例之圖3C與圖3D類似,在對不同顏色畫素210之液晶分子206a施加不同電場的同時,對液晶層206中的感光性分子單體206B以及光起始劑206C進行紫外光L的照射製程,以聚合感光性分子單體206B,而分別於液晶層206與第一基板202之間及液晶層206與第二基板204之間形成聚合物穩定配向層208,其餘設 計考量與第一實施例類似,不再贅述。5C and FIG. 5D, similar to FIG. 3C and FIG. 3D of the first embodiment, while applying different electric fields to the liquid crystal molecules 206a of different color pixels 210, the photosensitive molecules in the liquid crystal layer 206 are single. The body 206B and the photoinitiator 206C are irradiated with the ultraviolet light L to polymerize the photosensitive molecular monomer 206B, and are formed between the liquid crystal layer 206 and the first substrate 202 and between the liquid crystal layer 206 and the second substrate 204, respectively. Polymer stabilized alignment layer 208, the rest The amount of measurement is similar to that of the first embodiment and will not be described again.

同樣地,在本實施例之液晶顯示面板200C的製作方法中,將聚合物穩定配向層208對應紅色子畫素210R的預傾角度、對應綠色子畫素210G的預傾角度以及對應藍色子畫素210B的預傾角度控制為θR 等於θG ,並且θG 大於θBRGB )的關係,因此可以使得液晶顯示面板200C具有快速反應、高顯示均勻性、低漏光、高對比以及少殘像等的良好顯示特性。Similarly, in the manufacturing method of the liquid crystal display panel 200C of the present embodiment, the pre-tilt angle of the polymer stable alignment layer 208 corresponding to the red sub-pixel 210R, the pre-tilt angle corresponding to the green sub-pixel 210G, and the corresponding blue sub- The pretilt angle control of the pixel 210B is such that θ R is equal to θ G and θ G is larger than θ BR = θ G > θ B ), so that the liquid crystal display panel 200C can have a fast response, high display uniformity, Good display characteristics such as low light leakage, high contrast, and few afterimages.

第四實施例Fourth embodiment

圖6A至圖6D為本發明第四實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。其中,本實施例之液晶顯示面板200D的製作方法的流程與前述實施例的差異在於控制液晶組成物206A的方法,前述實施例主要是利用電壓來控制液晶組成物206A中不同區域之液晶分子206a的排列方向。惟,在本實施例之液晶顯示面板200D的製作方法中,控制液晶組成物206A的方法是利用調整紫外光L的曝光時間來控制液晶組成物206A中不同區域之液晶分子206a的排列方向。6A-6D are schematic cross-sectional views showing a method of fabricating a liquid crystal display panel according to a fourth embodiment of the present invention. The flow of the method for fabricating the liquid crystal display panel 200D of the present embodiment differs from the previous embodiment in the method of controlling the liquid crystal composition 206A. The foregoing embodiment mainly uses the voltage to control the liquid crystal molecules 206a of different regions in the liquid crystal composition 206A. The direction of the arrangement. However, in the method of fabricating the liquid crystal display panel 200D of the present embodiment, the method of controlling the liquid crystal composition 206A is to control the arrangement direction of the liquid crystal molecules 206a in different regions of the liquid crystal composition 206A by adjusting the exposure time of the ultraviolet light L.

圖6A與第一實施例之圖3A類似,不再贅述,相同構件以相同符號表示,並且其設計考量請參照前述第一實施例的描述。FIG. 6A is similar to FIG. 3A of the first embodiment, and the same components are denoted by the same reference numerals, and the design considerations thereof refer to the description of the foregoing first embodiment.

接著,請參照圖6B,在本實施例中,以相同的驅動電壓來驅動不同顏色子畫素210所對應之液晶組成物206A中的液晶分子206a。詳言之,此電壓的範圍較佳為8伏特至80伏特。Next, referring to FIG. 6B, in the present embodiment, the liquid crystal molecules 206a in the liquid crystal composition 206A corresponding to the different color sub-pixels 210 are driven by the same driving voltage. In detail, the voltage is preferably in the range of 8 volts to 80 volts.

之後,請參照圖6C,在對不同顏色畫素210之液晶分子206a施加不同電場的同時,對液晶層206中的感光性分子單體206B以及光起始劑206C進行紫外光L的照射製程,以聚合感光性分子單體206B。特別的是,以不同曝光時間來照射不同顏色子畫素210所對應之液晶組成物206A中的液晶分子206a。具體而言,在維持電壓的同時,使對應紅色子畫素210R的液晶層206被照射一第一曝光時間TR,並使對應綠色子畫素210G的液晶層206被照射一第二曝光時間TG ,且使對應藍色子畫素210B的液晶層206被照射一第三曝光時間TB ,在本實施例中,第一曝光時間TR 、第二曝光時 間TG 以及第三曝光時間TB 之間滿足TR >TG >TB 的關係。值得一提的是,由於在本實施例中,液晶分子206a的傾斜角度與照射時間成正比。因此,藉由調整照射時間滿足第一曝光時間TR >第二曝光時間TG >第三曝光時間TB 的關係,可使液晶組成物206A中對應紅色子畫素210R的多個液晶分子206a沿一第一預傾角度θR 排列、對應綠色子畫素210G的多個液晶分子206a沿一第二預傾角度θG 排列、對應藍色子畫素210B的多個液晶分子206a沿一第三預傾角度θB 排列,滿足θR 大於θG ,並且θG 大於θBRGB )的關係,如圖6C所示。此外,在本實施例中,紫外光L的照射能量的範圍例如為10mW/cm2 至100mW/cm2 ,而紫外光L的照射時間範圍例如為40秒至1200秒。Thereafter, referring to FIG. 6C, the ultraviolet light L is irradiated to the photosensitive molecular monomer 206B and the photoinitiator 206C in the liquid crystal layer 206 while applying different electric fields to the liquid crystal molecules 206a of the different color pixels 210. The photosensitive molecular monomer 206B is polymerized. In particular, the liquid crystal molecules 206a in the liquid crystal composition 206A corresponding to the different color sub-pixels 210 are irradiated with different exposure times. Specifically, while maintaining the voltage, the liquid crystal layer 206 corresponding to the red sub-pixel 210R is irradiated with a first exposure time TR, and the liquid crystal layer 206 corresponding to the green sub-pixel 210G is irradiated for a second exposure time T. G , and the liquid crystal layer 206 corresponding to the blue sub-pixel 210B is irradiated for a third exposure time T B , in the present embodiment, the first exposure time T R , the second exposure time T G , and the third exposure time T The relationship between T R > T G > T B is satisfied between B. It is worth mentioning that, in the present embodiment, the tilt angle of the liquid crystal molecules 206a is proportional to the irradiation time. Therefore, by adjusting the relationship that the irradiation time satisfies the first exposure time T R >the second exposure time T G >the third exposure time T B , the plurality of liquid crystal molecules 206a corresponding to the red sub-pixel 210R in the liquid crystal composition 206A can be obtained. A plurality of liquid crystal molecules 206a corresponding to the green sub-pixel 210G are arranged along a first pretilt angle θ R along a second pretilt angle θ G , and a plurality of liquid crystal molecules 206a corresponding to the blue sub-pixel 210B are arranged along the first The three pretilt angles θ B are arranged to satisfy the relationship that θ R is larger than θ G and θ G is larger than θ BR > θ G > θ B ) as shown in Fig. 6C. Further, in the present embodiment, the irradiation energy of the ultraviolet light L is, for example, in the range of 10 mW/cm 2 to 100 mW/cm 2 , and the irradiation time of the ultraviolet light L is, for example, 40 seconds to 1200 seconds.

之後,請參照圖6D,在形成聚合物穩定配向層208後,移除電場,其中由於聚合物穩定配向層208的作用,可使液晶分子206a維持上述的預傾角度排列,使得液晶顯示面板200D具有廣視角的特性。Thereafter, referring to FIG. 6D, after forming the polymer stable alignment layer 208, the electric field is removed, wherein the liquid crystal molecules 206a can maintain the above-described pretilt angle arrangement due to the action of the polymer stable alignment layer 208, so that the liquid crystal display panel 200D Features a wide viewing angle.

在本實施例中,由於在第一基板202與第二基板204上配置有聚合物穩定配向層208,且將聚合物穩定配向層208對應紅色子畫素210R的預傾角度、對應綠色子畫素210G的預傾角度以及對應藍色子畫素210B的預傾角度控制為θR 大於θG ,並且θG 大於θBRGB )的關係,因此可以提升紅色子畫素210R以及綠色子畫素210G的反應時間,使得液晶顯示面板200D具有快速反應、高顯示均勻性、低漏光、高對比以及少殘像等的良好顯示特性。In this embodiment, since the polymer stable alignment layer 208 is disposed on the first substrate 202 and the second substrate 204, and the pre-tilt angle of the polymer stable alignment layer 208 corresponding to the red sub-pixel 210R, corresponding to the green sub-picture The pretilt angle of the element 210G and the pretilt angle of the corresponding blue subpixel 210B are controlled such that θ R is larger than θ G and θ G is larger than θ BR > θ G > θ B ), so that the red sub-elevation can be improved. The reaction time of the pixel 210R and the green sub-pixel 210G makes the liquid crystal display panel 200D have good display characteristics such as rapid response, high display uniformity, low light leakage, high contrast, and few afterimages.

第五實施例Fifth embodiment

圖7A至圖7D為本發明第五實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。其中,本實施例之液晶顯示面板200E的製作方法的流程與第四實施例類似,惟,在本實施例之液晶顯示面板200E的製作方法中,照射於紅色子畫素210R的第一曝光時間、照射於綠色子畫素210G的第二曝光時間以及照射於藍色子畫素210B的第三曝光時間關係不同。7A to 7D are schematic cross-sectional views showing a method of fabricating a liquid crystal display panel according to a fifth embodiment of the present invention. The flow of the method for fabricating the liquid crystal display panel 200E of the present embodiment is similar to that of the fourth embodiment. However, in the method of fabricating the liquid crystal display panel 200E of the present embodiment, the first exposure time of the red sub-pixel 210R is irradiated. The second exposure time irradiated to the green sub-pixel 210G and the third exposure time relationship irradiated to the blue sub-pixel 210B are different.

詳細而言,圖7A與前述實施例類似,不再贅述。另外,圖 7B與第四實施例之圖6B類似,以相同的驅動電壓來驅動不同顏色子畫素210所對應之液晶組成物206A中的液晶分子206a。In detail, FIG. 7A is similar to the foregoing embodiment and will not be described again. In addition, the map 7B is similar to FIG. 6B of the fourth embodiment, and drives the liquid crystal molecules 206a in the liquid crystal composition 206A corresponding to the different color sub-pixels 210 with the same driving voltage.

之後,請參照圖7C,在本實施例中,第一曝光時間TR 、第二曝光時間TG 以及第三曝光時間TB 之間滿足TR >TG =TB 的關係。如此一來,可使液晶組成物206A中對應紅色子畫素210R的多個液晶分子206a沿一第一預傾角度θR 排列、對應綠色子畫素210G的多個液晶分子206a沿一第二預傾角度θG 排列、對應藍色子畫素210B的多個液晶分子206a沿一第三預傾角度θB 排列,滿足θRGB 的關係。此外,在本實施例中,紫外光L的照射能量的範圍例如為10mW/cm2 至100mW/cm2 ,而紫外光L的照射時間範圍例如為40秒至1200秒。Thereafter, referring to FIG. 7C, in the present embodiment, the relationship between T R >T G =T B is satisfied between the first exposure time T R , the second exposure time T G , and the third exposure time T B . In this way, the plurality of liquid crystal molecules 206a corresponding to the red sub-pixel 210R in the liquid crystal composition 206A can be arranged along a first pre-tilt angle θ R , and the plurality of liquid crystal molecules 206a corresponding to the green sub-pixel 210G can be along a second The plurality of liquid crystal molecules 206a corresponding to the blue sub-pixel 210B are arranged at a pretilt angle θ G and arranged along a third pretilt angle θ B to satisfy the relationship of θ R > θ G = θ B . Further, in the present embodiment, the irradiation energy of the ultraviolet light L is, for example, in the range of 10 mW/cm 2 to 100 mW/cm 2 , and the irradiation time of the ultraviolet light L is, for example, 40 seconds to 1200 seconds.

之後,請參照圖7D,在形成聚合物穩定配向層208後,移除電場,其中由於聚合物穩定配向層208的作用,可使液晶分子206a維持上述的預傾角度排列,使得液晶顯示面板200E具有廣視角的特性。Thereafter, referring to FIG. 7D, after forming the polymer stable alignment layer 208, the electric field is removed, wherein the liquid crystal molecules 206a can maintain the above-described pretilt angle arrangement due to the action of the polymer stable alignment layer 208, so that the liquid crystal display panel 200E Features a wide viewing angle.

在本實施例中,由於在第一基板202與第二基板204上配置有聚合物穩定配向層208,且將聚合物穩定配向層208對應紅色子畫素210R的預傾角度、對應綠色子畫素210G的預傾角度以及對應藍色子畫素210B的預傾角度控制為θR 大於θG ,並且θG 等於θBRGB )的關係,因此可以提升紅色子畫素210R的反應時間,使得液晶顯示面板200E具有快速反應、高顯示均勻性、低漏光、高對比以及少殘像等的良好顯示特性。In this embodiment, since the polymer stable alignment layer 208 is disposed on the first substrate 202 and the second substrate 204, and the pre-tilt angle of the polymer stable alignment layer 208 corresponding to the red sub-pixel 210R, corresponding to the green sub-picture The pretilt angle of the element 210G and the pretilt angle of the corresponding blue subpixel 210B are controlled such that θ R is larger than θ G and θ G is equal to θ BR > θ G = θ B ), so that the red color can be improved. The reaction time of the pixel 210R makes the liquid crystal display panel 200E have good display characteristics such as rapid response, high display uniformity, low light leakage, high contrast, and few afterimages.

第六實施例Sixth embodiment

圖8A至圖8D為本發明第六實施例之一種液晶顯示面板的製作方法的流程剖面示意圖。其中,本實施例之液晶顯示面板200F的製作方法的流程與第四實施例類似,惟,在本實施例之液晶顯示面板200F的製作方法中,照射於紅色子畫素210R的第一曝光時間、照射於綠色子畫素210G的第二曝光時間以及照射於藍色子畫素210B的第三曝光時間關係不同。8A to 8D are schematic cross-sectional views showing a method of fabricating a liquid crystal display panel according to a sixth embodiment of the present invention. The flow of the method for fabricating the liquid crystal display panel 200F of the present embodiment is similar to that of the fourth embodiment. However, in the method of fabricating the liquid crystal display panel 200F of the present embodiment, the first exposure time of the red sub-pixel 210R is irradiated. The second exposure time irradiated to the green sub-pixel 210G and the third exposure time relationship irradiated to the blue sub-pixel 210B are different.

詳細而言,圖8A與前述實施例類似,不再贅述。另外,圖8B與第四實施例之圖6B類似,以相同的驅動電壓來驅動不同顏色子畫素 210所對應之液晶組成物206A中的液晶分子206a。In detail, FIG. 8A is similar to the foregoing embodiment and will not be described again. In addition, FIG. 8B is similar to FIG. 6B of the fourth embodiment, and drives different color sub-pixels with the same driving voltage. The liquid crystal molecules 206a in the liquid crystal composition 206A corresponding to 210.

之後,請參照圖8C,在本實施例中,第一曝光時間TR 、第二曝光時間TG 以及第三曝光時間TB 之間滿足TR =TG >TB 的關係。如此一來,可使液晶組成物206A中對應紅色子畫素210R的多個液晶分子206a沿一第一預傾角度θR 排列、對應綠色子畫素210G的多個液晶分子206a沿一第二預傾角度θG 排列、對應藍色子畫素210B的多個液晶分子206a沿一第三預傾角度θB 排列,滿足θR 等於θG ,並且θG 大於θBRGB )的關係。此外,在本實施例中,紫外光L的照射能量的範圍例如為10mW/cm2 至100mW/cm2 ,而紫外光L的照射時間範圍例如為40秒至1200秒。Next, referring to Figure 8C, in the present embodiment, a first exposure time T R, satisfies = T G> T R T B is the relationship between the exposure time of the second and third exposure time T G T B. In this way, the plurality of liquid crystal molecules 206a corresponding to the red sub-pixel 210R in the liquid crystal composition 206A can be arranged along a first pre-tilt angle θ R , and the plurality of liquid crystal molecules 206a corresponding to the green sub-pixel 210G can be along a second The pretilt angle θ G is arranged, and the plurality of liquid crystal molecules 206a corresponding to the blue sub-pixel 210B are arranged along a third pretilt angle θ B , satisfying that θ R is equal to θ G and θ G is greater than θ BR = θ GB ) relationship. Further, in the present embodiment, the irradiation energy of the ultraviolet light L is, for example, in the range of 10 mW/cm 2 to 100 mW/cm 2 , and the irradiation time of the ultraviolet light L is, for example, 40 seconds to 1200 seconds.

之後,請參照圖8D,在形成聚合物穩定配向層208後,移除電場,其中由於聚合物穩定配向層208的作用,可使液晶分子206a維持上述的預傾角度排列,使得液晶顯示面板200F具有廣視角的特性。Thereafter, referring to FIG. 8D, after forming the polymer stable alignment layer 208, the electric field is removed, wherein the liquid crystal molecules 206a can maintain the above-described pretilt angle arrangement due to the action of the polymer stable alignment layer 208, so that the liquid crystal display panel 200F Features a wide viewing angle.

同理,在本實施例中,由於在第一基板202與第二基板204上配置有聚合物穩定配向層208,且將聚合物穩定配向層208對應紅色子畫素210R的預傾角度、對應綠色子畫素210G的預傾角度以及對應藍色子畫素210B的預傾角度控制為θRGB 的關係,因此可以提升紅色子畫素210R以及綠色子畫素210G的反應時間,使得液晶顯示面板200F具有快速反應、高顯示均勻性、低漏光、高對比以及少殘像等的良好顯示特性。Similarly, in the present embodiment, the polymer stable alignment layer 208 is disposed on the first substrate 202 and the second substrate 204, and the pretilt angle of the polymer stable alignment layer 208 corresponding to the red sub-pixel 210R is corresponding. The pretilt angle of the green subpixel 210G and the pretilt angle of the corresponding blue subpixel 210B are controlled as θ R = θ G > θ B , so that the reaction of the red subpixel 210R and the green subpixel 210G can be improved. The time makes the liquid crystal display panel 200F have good display characteristics such as rapid response, high display uniformity, low light leakage, high contrast, and few afterimages.

以下將上述實施例之實驗結果整理於下表2中。相較於習知之液晶顯示面板,由表2可知,本發明之液晶顯示面板200A、200B、200C、200D、200E、200F藉由前述實施例的製作方式可以得到具有快速反應、高顯示均勻性的液晶顯示面板。The experimental results of the above examples are summarized in Table 2 below. Compared with the conventional liquid crystal display panel, as can be seen from Table 2, the liquid crystal display panels 200A, 200B, 200C, 200D, 200E, and 200F of the present invention can be quickly reacted and have high display uniformity by the manufacturing method of the foregoing embodiment. LCD panel.

綜上所述,在本發明的液晶顯示面板中,將配置於基板與液晶層之間的聚合物穩定配向層的預傾角度依據不同顏色子畫素而控制為紅色子畫素的預傾角度、對應綠色子畫素的預傾角度以及對應藍色子畫素的預傾角度控制為紅色子畫素的預傾角度θR ≧綠色子畫素的預傾角度θG ≧藍色子畫素的預傾角度θB 的關係,以增快綠色子畫素的反應反應速度,使得液晶顯示面板的各子畫素間反應時間較為均勻,提升液晶顯示面板的反應速度、顯示均勻度以及減少殘像的發生。In summary, in the liquid crystal display panel of the present invention, the pretilt angle of the polymer stable alignment layer disposed between the substrate and the liquid crystal layer is controlled to be a pretilt angle of the red subpixel according to different color subpixels. The pretilt angle corresponding to the green sub-pixel and the pre-tilt angle corresponding to the blue sub-pixel are controlled as the pre-tilt angle θ R of the red sub-pixel ≧ the pre-tilt angle θ G of the green sub-pixel ≧ blue sub-pixel The relationship of the pretilt angle θ B is to increase the reaction speed of the green sub-pixel, so that the reaction time between the sub-pixels of the liquid crystal display panel is relatively uniform, and the reaction speed, display uniformity and reduction of the liquid crystal display panel are improved. The occurrence of the image.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

200‧‧‧液晶顯示面板200‧‧‧LCD panel

202‧‧‧第一基板202‧‧‧First substrate

204‧‧‧第二基板204‧‧‧second substrate

206‧‧‧液晶層206‧‧‧Liquid layer

206a‧‧‧液晶分子206a‧‧‧liquid crystal molecules

206A‧‧‧液晶組成物206A‧‧‧Liquid composition

208‧‧‧聚合物穩定配向層208‧‧‧Polymer stable alignment layer

210R‧‧‧紅色子畫素210R‧‧‧Red sub-pixel

210G‧‧‧綠色子畫素210G‧‧‧Green sub-pixel

210B‧‧‧藍色子畫素210B‧‧‧Blue sub-pixel

Claims (17)

一種液晶顯示面板的製作方法,包括:提供一第一基板、一第二基板以及密封於該第一基板與該第二基板之間的一液晶層,其中該液晶層包括一液晶組成物、一感光性分子單體以及一光啟始劑,且該第一基板、該第二基板以及該液晶層之間構成多個陣列排列的畫素,且每一畫素包括一紅色子畫素、一綠色子畫素以及一藍色子畫素;控制該液晶組成物,使該液晶組成物中對應該些紅色子畫素的多個液晶分子沿一第一預傾角度θR 排列、對應該些綠色子畫素的多個液晶分子沿一第二預傾角度θG 排列、對應該些藍色子畫素的多個液晶分子沿一第三預傾角度θB 排列,其中θR ≧θG 、θG ≧θB 且θRB ;聚合該感光性分子單體,以形成一聚合物穩定配向層於該液晶層與該第一基板之間以及該液晶層與該第二基板之間,其中該聚合物穩定配向層具有對應該些紅色子畫素的第一預傾角度θR 、對應該些綠色子畫素的第二預傾角度θG 、對應該些藍色子畫素的第三預傾角度θB ,滿足:θR ≧θG 、θG ≧θB 且θRBA method for fabricating a liquid crystal display panel, comprising: providing a first substrate, a second substrate, and a liquid crystal layer sealed between the first substrate and the second substrate, wherein the liquid crystal layer comprises a liquid crystal composition, a photosensitive molecular monomer and a photo-starting agent, and a plurality of array-arranged pixels are formed between the first substrate, the second substrate, and the liquid crystal layer, and each pixel includes a red sub-pixel, and a pixel a green sub-pixel and a blue sub-pixel; controlling the liquid crystal composition such that a plurality of liquid crystal molecules corresponding to the red sub-pixels in the liquid crystal composition are arranged along a first pre-tilt angle θ R The plurality of liquid crystal molecules of the green sub-pixel are arranged along a second pretilt angle θ G , and the plurality of liquid crystal molecules corresponding to the blue sub-pixels are arranged along a third pretilt angle θ B , where θ R ≧ θ G θ G ≧ θ B and θ R > θ B ; polymerizing the photosensitive molecular monomer to form a polymer stable alignment layer between the liquid crystal layer and the first substrate and between the liquid crystal layer and the second substrate Between, wherein the polymer stabilizes the alignment layer to have some Pixel dice first pretilt angle θ R, the green sub-pixels of these should be a second pretilt angle θ G, should some of the blue sub-pixel of the third pretilt angle θ B, satisfy: θ R ≧θ G , θ G ≧ θ B and θ R > θ B . 如申請專利範圍第1項所述之液晶顯示面板的製作方法,其中控制該些液晶組成物的方法包括:以一第一電壓VR 對應地驅動該些紅色子畫素、以一第二電壓VG 對應地驅動該些綠色子畫素,以一第三電壓VB 對應地驅動該些藍色子畫素,其中VR ≧VG 、VG ≧VB 且VR >VB ;以及在維持該第一電壓VR 、該第二電壓VG 以及該第三電壓VB 的同時,以一紫外光照射該些畫素。The method for fabricating a liquid crystal display panel according to claim 1, wherein the method for controlling the liquid crystal compositions comprises: driving the red sub-pixels correspondingly with a second voltage by a first voltage V R V G correspondingly drives the green sub-pixels, and drives the blue sub-pixels correspondingly by a third voltage V B , where V R ≧V G , V G ≧V B and V R >V B ; While maintaining the first voltage V R , the second voltage V G , and the third voltage V B , the pixels are illuminated by an ultraviolet light. 如申請專利範圍第2項所述之液晶顯示面板的製作方法,其中該第一電壓VR 、該第二電壓VG 以及該第三電壓VB 之間的關係滿足:VR >VG >VBThe method for fabricating a liquid crystal display panel according to claim 2, wherein the relationship between the first voltage V R , the second voltage V G and the third voltage V B satisfies: V R >V G > V B . 如申請專利範圍第2項所述之液晶顯示面板的製作方法,其中該第一電壓VR 、該第二電壓VG 以及該第三電壓VB 之間的關係滿 足:VR >VG =VBThe method of fabricating a liquid crystal display panel according to claim 2, wherein the relationship between the first voltage V R , the second voltage V G and the third voltage V B is satisfied: V R >V G = V B . 如申請專利範圍第2項所述之液晶顯示面板的製作方法,其中該第一電壓VR 、該第二電壓VG 以及該第三電壓VB 之間的關係滿足:VR =VG >VBThe method of fabricating a liquid crystal display panel according to claim 2, wherein the relationship between the first voltage V R , the second voltage V G and the third voltage V B is satisfied: V R =V G > V B . 如申請專利範圍第2項所述之液晶顯示面板的製作方法,其中該第一電壓VR 、該第二電壓VG 以及該第三電壓VB 的範圍為8伏特至80伏特。The method for fabricating a liquid crystal display panel according to claim 2, wherein the first voltage V R , the second voltage V G , and the third voltage V B range from 8 volts to 80 volts. 如申請專利範圍第2項所述之液晶顯示面板的製作方法,該紫外光的照射能量範圍為10mW/cm2 至100mW/cm2The method for fabricating a liquid crystal display panel according to claim 2, wherein the ultraviolet light has an irradiation energy ranging from 10 mW/cm 2 to 100 mW/cm 2 . 如申請專利範圍第2項所述之液晶顯示面板的製作方法,該紫外光的照射時間範圍為40秒至1200秒。 The method for fabricating a liquid crystal display panel according to claim 2, wherein the ultraviolet light irradiation time ranges from 40 seconds to 1200 seconds. 如申請專利範圍第1項所述之液晶顯示面板的製作方法,其中控制該些液晶組成物的方法包括:以一電壓驅動該些畫素;以及在維持該電壓的同時,以一紫外光照射該些畫素,使得對應該些紅色子畫素的該液晶層被照射一第一曝光時間TR ,對應該些綠色子畫素的該液晶層被照射一第二曝光時間TG ,對應該些藍色子畫素的該液晶層被照射一第三曝光時間TB ,其中滿足以下關係:TR ≧TG 、TG ≧TB 且TR >TBThe method for fabricating a liquid crystal display panel according to claim 1, wherein the method for controlling the liquid crystal compositions comprises: driving the pixels with a voltage; and irradiating with an ultraviolet light while maintaining the voltage The pixels are such that the liquid crystal layer corresponding to the red sub-pixels is illuminated for a first exposure time T R , and the liquid crystal layer corresponding to the green sub-pixels is illuminated by a second exposure time T G , corresponding to The liquid crystal layer of the blue sub-pixels is irradiated for a third exposure time T B , wherein the following relationship is satisfied: T R ≧T G , T G ≧T B and T R > T B . 如申請專利範圍第9項所述之液晶顯示面板的製作方法,其中該第一曝光時間TR 、第二曝光時間TG 以及該第三曝光時間TB 之間的關係滿足TR >TG >TBThe method of fabricating a liquid crystal display panel according to claim 9, wherein the relationship between the first exposure time T R , the second exposure time T G , and the third exposure time T B satisfies T R > T G >T B . 如申請專利範圍第9項所述之液晶顯示面板的製作方法,其中第一曝光時間TR 、第二曝光時間TG 以及該第三曝光時間TB 之間的關係滿足TR >TG =TBThe method of fabricating a liquid crystal display panel according to claim 9, wherein the relationship between the first exposure time T R , the second exposure time T G , and the third exposure time T B satisfies T R > T G = T B . 如申請專利範圍第9項所述之液晶顯示面板的製作方法,其中第一曝光時間TR 、第二曝光時間TG 以及該第三曝光時間TB 之間的關係滿足TR =TG >TBThe method of fabricating a liquid crystal display panel according to claim 9, wherein the relationship between the first exposure time T R , the second exposure time T G , and the third exposure time T B satisfies T R =T G > T B . 如申請專利範圍第9項所述之液晶顯示面板的製作方法,其中 該電壓的範圍為8伏特至80伏特。 The method for fabricating a liquid crystal display panel according to claim 9, wherein This voltage ranges from 8 volts to 80 volts. 如申請專利範圍第9項所述之液晶顯示面板的製作方法,該紫外光的照射能量範圍為10mW/cm2 至100mW/cm2The method for fabricating a liquid crystal display panel according to claim 9, wherein the ultraviolet light has an irradiation energy ranging from 10 mW/cm 2 to 100 mW/cm 2 . 如申請專利範圍第2項所述之液晶顯示面板的製作方法,該第一曝光時間TR 、第二曝光時間TG 以及該第三曝光時間TB 的範圍為40秒至1200秒。The method of fabricating the liquid crystal display panel of claim 2, wherein the first exposure time T R , the second exposure time T G , and the third exposure time T B range from 40 seconds to 1200 seconds. 如申請專利範圍第1項所述之液晶顯示面板的製作方法,其中該液晶組成物為垂直配向型液晶。 The method for fabricating a liquid crystal display panel according to claim 1, wherein the liquid crystal composition is a vertical alignment type liquid crystal. 一種液晶顯示面板,包括:一第一基板;一第二基板,與該第一基板相對;一液晶層,配置於該第一基板與該第二基板之間;以及一聚合物穩定配向層,配置於該液晶層與該第一基板之間以及該液晶層與該第二基板之間,其中,該第一基板、該第二基板以及該液晶層之間構成多個陣列排列的畫素,且每一畫素包括一紅色子畫素、一綠色子畫素以及一藍色子畫素,該聚合物穩定配向層中對應該些紅色子畫素具有一第一預傾角度θR ,該聚合物穩定配向層中對應該些綠色子畫素具有一第二預傾角度θG ,該聚合物穩定配向層中對應該些藍色子畫素具有一第三預傾角度θB ,其中θR ≧θG 、θG ≧θB 且θRBA liquid crystal display panel comprising: a first substrate; a second substrate opposite to the first substrate; a liquid crystal layer disposed between the first substrate and the second substrate; and a polymer stable alignment layer, Between the liquid crystal layer and the first substrate, and between the liquid crystal layer and the second substrate, wherein the first substrate, the second substrate, and the liquid crystal layer form a plurality of arrays of pixels. And each pixel includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel. The polymer stable alignment layer has a first pre-tilt angle θ R corresponding to the red sub-pixels. The polymer stable alignment layer has a second pretilt angle θ G corresponding to the green sub-pixels, and the polymer stable alignment layer has a third pretilt angle θ B corresponding to the blue sub-pixels, wherein θ R ≧ θ G , θ G ≧ θ B and θ R > θ B .
TW98133250A 2009-09-30 2009-09-30 Liquid crystal display panel and method of fabricating liquid crystal display panel TWI407215B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98133250A TWI407215B (en) 2009-09-30 2009-09-30 Liquid crystal display panel and method of fabricating liquid crystal display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98133250A TWI407215B (en) 2009-09-30 2009-09-30 Liquid crystal display panel and method of fabricating liquid crystal display panel

Publications (2)

Publication Number Publication Date
TW201111881A TW201111881A (en) 2011-04-01
TWI407215B true TWI407215B (en) 2013-09-01

Family

ID=44909047

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98133250A TWI407215B (en) 2009-09-30 2009-09-30 Liquid crystal display panel and method of fabricating liquid crystal display panel

Country Status (1)

Country Link
TW (1) TWI407215B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465821B (en) * 2011-09-09 2014-12-21 Au Optronics Corp Display panel and alignment method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027772A (en) * 1996-12-30 2000-02-22 Samsung Display Devices Co., Ltd. Optical alignment composition, alignment layer formed using the same and LCD having the alignment layer
TW594121B (en) * 2001-03-30 2004-06-21 Fujitsu Display Tech Liquid crystal display
TW200834159A (en) * 2006-11-17 2008-08-16 Sony Corp Liquid crystal display and method of manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027772A (en) * 1996-12-30 2000-02-22 Samsung Display Devices Co., Ltd. Optical alignment composition, alignment layer formed using the same and LCD having the alignment layer
TW594121B (en) * 2001-03-30 2004-06-21 Fujitsu Display Tech Liquid crystal display
TW200834159A (en) * 2006-11-17 2008-08-16 Sony Corp Liquid crystal display and method of manufacturing same

Also Published As

Publication number Publication date
TW201111881A (en) 2011-04-01

Similar Documents

Publication Publication Date Title
US20190250467A1 (en) Liquid crystal display and manufacturing method thereof
JP4387276B2 (en) Liquid crystal display
US20120229739A1 (en) Liquid crystal display device and manufacturing method therefor
WO2010079703A1 (en) Liquid crystal display device and composition for forming liquid crystal layer
JP2008076950A (en) Liquid crystal display panel and manufacturing method thereof
JP4460488B2 (en) Liquid crystal display device and manufacturing method thereof
JP2009265308A (en) Liquid crystal display
JP2010191475A (en) Liquid crystal display device
JP2011107492A (en) Liquid crystal display device and method for manufacturing the same
JP2012220831A (en) Liquid crystal display device and method of manufacturing the same
TW200428085A (en) Liquid crystal display apparatus and manufacturing method therefor
WO2012014803A1 (en) Liquid crystal display device and method for producing same
WO2011013649A1 (en) Liquid crystal display device and method for manufacturing same
US20100124623A1 (en) Liquid crystal composition for use in liquid crystal display
CN101699334A (en) Liquid crystal display panel and manufacturing method thereof
WO2012121330A1 (en) Liquid crystal display device
CN110824783A (en) Preparation method of liquid crystal display panel and liquid crystal display panel
JP2006139046A (en) Liquid crystal display device and method for manufacturing the same
WO2010109804A1 (en) Liquid crystal display apparatus
WO2010098063A1 (en) Liquid crystal display device
TWI407215B (en) Liquid crystal display panel and method of fabricating liquid crystal display panel
US10216030B2 (en) Color filter on array type liquid crystal panel and manufacturing method for the same
JP2013109366A (en) Liquid crystal display device and method for manufacturing the same
JP2010286817A (en) Liquid crystal panel, and defect correction method therefor
WO2010098059A1 (en) Liquid crystal display device and manufacturing method therefor