TWI402927B - Method and inspection system for inspection conditions of semiconductor wafer appearance inspection device - Google Patents

Method and inspection system for inspection conditions of semiconductor wafer appearance inspection device Download PDF

Info

Publication number
TWI402927B
TWI402927B TW99100171A TW99100171A TWI402927B TW I402927 B TWI402927 B TW I402927B TW 99100171 A TW99100171 A TW 99100171A TW 99100171 A TW99100171 A TW 99100171A TW I402927 B TWI402927 B TW I402927B
Authority
TW
Taiwan
Prior art keywords
inspection
wafer
condition data
data
camera
Prior art date
Application number
TW99100171A
Other languages
Chinese (zh)
Other versions
TW201036082A (en
Inventor
Hidekazu Ohmi
Hisashi Yamamoto
Original Assignee
Toray Eng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Eng Co Ltd filed Critical Toray Eng Co Ltd
Publication of TW201036082A publication Critical patent/TW201036082A/en
Application granted granted Critical
Publication of TWI402927B publication Critical patent/TWI402927B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

半導體晶圓外觀檢查裝置的檢查條件資料產生方法及檢查系統Inspection condition data generation method and inspection system for semiconductor wafer visual inspection device

本發明是關於進行半導體晶圓(semiconductor wafer)的外觀檢查的裝置中的檢查條件資料產生方法及檢查系統。The present invention relates to an inspection condition data generation method and an inspection system in an apparatus for performing an appearance inspection of a semiconductor wafer.

半導體晶片(semiconductor chip)是在被稱為半導體晶圓的基板(substrate)上積層形成有幾層電路圖案(circuit pattern)而被製造。該半導體晶片在製造過程中被交互進行規定次數電路圖案形成與檢查,之後由晶圓切出半導體晶片成規定的尺寸而完成。在該電路圖案形成過程中,針對晶圓上的瑕疵或異物、電路圖案的倒塌等的缺陷的有無,進行使用半導體晶圓外觀檢查裝置的檢查。A semiconductor chip is manufactured by laminating a plurality of circuit patterns on a substrate called a semiconductor wafer. The semiconductor wafer is interactively subjected to a predetermined number of circuit pattern formation and inspections during the manufacturing process, and then the semiconductor wafer is cut out of the wafer to a predetermined size. In the formation of the circuit pattern, inspection using a semiconductor wafer visual inspection device is performed for the presence or absence of defects such as flaws or foreign matter on the wafer and collapse of the circuit pattern.

在前述半導體晶圓外觀檢查中,根據登記有如下的檢查條件資料而進行檢查:被檢查的半導體晶片的品種及成為定位的基準的標記(mark)的位置資訊、成為檢查對象的晶片的場所或排列、使用的透鏡的倍率、檢查時的焦點位置及照明的亮度等的檢查條件的資訊群。該檢查條件資料 每當成為檢查對象的晶圓的品種被追加,就使用檢查的裝置進行檢討、決定、登記。然後在實際的檢查過程中,根據該檢查條件資料對照拍攝電路圖案而得的影像與預先登記的基準影像,進行該半導體晶片為良品或不良品的判定。In the semiconductor wafer visual inspection, the inspection is performed based on the following inspection condition data: the type of the semiconductor wafer to be inspected, the position information of the mark to be the reference for positioning, the location of the wafer to be inspected, or A group of information of inspection conditions such as the magnification of the lens to be arranged and used, the focus position at the time of inspection, and the brightness of illumination. Inspection condition data Whenever the type of the wafer to be inspected is added, the inspection device is used for review, determination, and registration. Then, in the actual inspection process, the semiconductor wafer is judged to be a good or defective product based on the inspection condition data and the image obtained by the imaging circuit pattern and the reference image registered in advance.

檢查多數片晶圓的情形,因可在一台的檢查裝置中於規定的時間內檢查的晶圓的片數有上限,故複數台的檢查裝置被使用。In the case of checking a plurality of wafers, since the number of wafers that can be inspected in a single inspection apparatus within a predetermined time has an upper limit, a plurality of inspection apparatuses are used.

依照專利文獻1,揭示有在半導體的檢查方法及裝置中使用標準試樣求所要的檢查參數值,估計缺陷部的電阻值之手段(means)。According to Patent Document 1, there is disclosed a means for estimating a resistance value of a defective portion by using a standard sample to obtain a desired inspection parameter value in a semiconductor inspection method and apparatus.

[專利文獻1]日本國特開2004-319721號[Patent Document 1] Japanese Special Opening No. 2004-319721

習知的檢查裝置是根據裝置規格被設計,各部尺寸預先被當作設計值決定,根據該設計值被製作。但是,零件加工或組裝作業通常是在被稱為一般公差或公差指定的精度的範圍內被進行。因此,在完成的檢查裝置的各部尺寸若與設計值比較,則包含有以前述公差為起因的尺寸的差。而且,若比較複數台檢查裝置彼此,則前述尺寸的差在裝置間互相也有差,每一裝置的設計值與前述尺寸的差被稱為機差。The conventional inspection device is designed according to the device specifications, and the size of each portion is determined in advance as a design value, and is produced based on the design value. However, part machining or assembly operations are typically performed within a range of precision known as general tolerances or tolerances. Therefore, if the size of each part of the completed inspection apparatus is compared with the design value, the difference in size due to the aforementioned tolerance is included. Further, when a plurality of inspection apparatuses are compared with each other, the difference in size is also different between the apparatuses, and the difference between the design value of each apparatus and the aforementioned size is referred to as a machine difference.

該等機差在裝置外觀上無問題,在使用某一台裝置檢查同一品種的晶圓的情形下也不被視為有問題。但是,使用複數台裝置檢查的情形,在使檢查條件資料共同化進行 良品或不良品的判定上,前述機差的大小為無法忽視的尺寸。因此,前述機差在使用複數台裝置進行檢查時,成為使檢查條件資料共同化而使用的阻礙之因素。These differences are not problematic in terms of the appearance of the device, and are not considered to be problematic in the case of using one device to inspect wafers of the same type. However, in the case of using a plurality of devices to check, the inspection condition data is shared. In the determination of a good product or a defective product, the magnitude of the aforementioned difference is a size that cannot be ignored. Therefore, the above-described machine difference is a factor that hinders the use of the inspection condition data when the inspection is performed using a plurality of devices.

由於前述理由,使用複數台習知的檢查裝置,檢查同一品種的晶圓的情形,以各自的檢查裝置個別作成檢查條件資料,登記資料,進行檢查。For the above reasons, a plurality of conventional inspection apparatuses are used to inspect the wafers of the same type, and inspection condition data are individually created by the respective inspection apparatuses, and the materials are registered and inspected.

針對習知的檢查條件資料產生程序,一邊顯示於圖,一邊說明。The conventional inspection condition data generation program will be described while being shown in the figure.

圖9是顯示習知的檢查條件資料產生程序之流程圖。首先,晶圓外觀檢查裝置1根據裝置規格被設計,各部尺寸預先被當作設計值決定(S201)。Fig. 9 is a flow chart showing a conventional inspection condition data generating program. First, the wafer visual inspection device 1 is designed in accordance with the device specifications, and the size of each portion is determined in advance as a design value (S201).

然後,裝置A被製作(S202),使用檢查裝置A作成對品種#N(N=1,2,3…)之裝置A的檢查條件資料#Na(N=1,2,3…)(S203)。Then, the device A is created (S202), and the inspection condition data #Na(N=1, 2, 3...) of the device A of the variety #N (N=1, 2, 3...) is created using the inspection device A (S203) ).

根據該檢查條件資料#Na,使用裝置A進行對品種#N的檢查(S204)。而且然後,另一台的裝置B被製作(S205),使用檢查裝置B作成對品種#N(N=1,2,3…)之裝置B的檢查條件資料#Nb(N=1,2,3…)(S206)。Based on the inspection condition data #Na, the inspection of the item #N is performed using the apparatus A (S204). Then, another device B is created (S205), and the inspection condition data #Nb (N=1, 2, for the device B of the pair #N (N=1, 2, 3...) is created using the inspection device B. 3...) (S206).

根據該檢查條件資料#Nb,使用裝置B進行對品種#N的檢查(S207)。然後針對裝置C也以同樣的程序製作裝置,每一裝置作成檢查條件資料,進行檢查(S208~S210)。Based on the inspection condition data #Nb, the inspection of the item #N is performed using the device B (S207). Then, the device is also created in the same procedure for the device C, and each device creates inspection condition data and performs inspection (S208 to S210).

如前述,即使複數台的裝置根據相同的設計值被製作,因有以前述公差為起因的機差,故各自被以別的裝置處理,在檢查同一品種的晶圓中也各自進行檢查條件資料 的作成。As described above, even if a plurality of devices are manufactured based on the same design value, since there is a machine difference due to the aforementioned tolerance, each device is processed by another device, and inspection condition data is also separately performed in the wafers of the same type. Made.

因此,若成為檢查對象的晶圓的品種數或檢查裝置的台數增加,則需對各個檢查裝置登記為了檢查相同晶圓的檢查條件資料。因此,檢查條件資料的登記作業需要很大的時間與勞力。而且,產生檢查裝置的系統故障等檢查條件資料喪失的情形,針對登記的品種全部需再度重新登記檢查條件資料。因此,檢查條件資料的再登記作業需要很大的時間與勞力。Therefore, when the number of types of wafers to be inspected or the number of inspection apparatuses increases, it is necessary to register inspection condition data for checking the same wafer for each inspection apparatus. Therefore, it takes a lot of time and labor to check the registration of condition data. Further, in the case where the inspection condition data such as the system failure of the inspection device is lost, it is necessary to re-register the inspection condition data for all the registered varieties. Therefore, it takes a lot of time and labor to re-register the inspection condition data.

因此,本發明的目的為提供一種晶圓檢查條件產生方法,產生檢查形成於晶圓上的半導體晶片的外觀的檢查裝置的檢查條件資料,能以短時間產生考慮機差的每一裝置的檢查條件資料之方法及檢查系統。Accordingly, it is an object of the present invention to provide a method of generating a wafer inspection condition, which generates inspection condition data of an inspection apparatus for inspecting an appearance of a semiconductor wafer formed on a wafer, and can generate inspection of each device considering a machine difference in a short time. Method and inspection system for conditional data.

為了解決以上的課題,申請專利範圍第1項的發明是一種晶圓檢查條件產生方法,產生檢查形成於晶圓上的半導體晶片的外觀的複數個檢查裝置的檢查條件資料,包含:每一晶圓檢查裝置算出對設計值的機差,接著登記機差補正資料之機差補正資料登記步驟;在被選擇的任一台晶圓檢查裝置中,使用晶圓產生檢查條件資料之第一檢查條件資料產生步驟;由前述檢查條件資料與前述被選擇的任一台晶圓檢查裝置的前述機差補正資料產生共同檢查條件資料之共同檢查條件資料產生步驟;以及由前述共同檢查條件資料與每一晶圓檢查裝置的前述機差補正資料產生每一晶圓檢查裝置的檢查條件資料之第 二檢查條件資料產生步驟。In order to solve the above problems, the invention of claim 1 is a method for generating a wafer inspection condition, which generates inspection condition data for a plurality of inspection apparatuses for inspecting an appearance of a semiconductor wafer formed on a wafer, and includes: each crystal The circle inspection device calculates a machine difference to the design value, and then registers the machine difference correction data registration step of the machine difference correction data; and uses the wafer to generate the first inspection condition of the inspection condition data in any of the selected wafer inspection devices a data generation step; a common inspection condition data generation step of generating the common inspection condition data by the aforementioned inspection condition data and the machine difference correction data of the selected one of the wafer inspection apparatuses; and the common inspection condition data and each The aforementioned difference correction data of the wafer inspection device generates the inspection condition data of each wafer inspection device Second, check the condition data generation steps.

申請專利範圍第2項的發明是在申請專利範圍第1項的發明中,前述機差補正資料至少包含如下的任一個誤差資料:配設於晶圓檢查裝置之承載晶圓的台子(table)的檢查平台的原點位置,與檢查晶圓的檢查攝影機的中心位置及承載於前述檢查平台的晶圓的中心位置的誤差資料;檢查晶圓的檢查攝影機的對焦位置(focus position)的誤差資料;包含於前述檢查攝影機的透鏡的觀察倍率的誤差資料;以及包含於前述檢查攝影機的照明用光源的對所要亮度之設定值的誤差資料。According to the invention of claim 2, in the invention of claim 1, the differential correction data includes at least one of the following error data: a table on which the wafer is placed on the wafer inspection device. Checking the origin position of the platform, checking the center position of the inspection camera of the wafer, and the error data of the center position of the wafer carried on the inspection platform; checking the error data of the focus position of the inspection camera of the wafer The error data included in the observation magnification of the lens of the inspection camera; and the error data of the set value of the desired brightness included in the illumination light source of the inspection camera.

申請專利範圍第3項的發明是一種晶圓檢查系統,產生檢查形成於晶圓上的半導體晶片的外觀的複數個檢查裝置的檢查條件資料,包含:每一晶圓檢查裝置算出對設計值的機差,接著登記機差補正資料之機差補正資料登記手段;在被選擇的任一台晶圓檢查裝置中,使用晶圓產生檢查條件資料之第一檢查條件資料產生手段;由前述檢查條件資料與前述被選擇的任一台晶圓檢查裝置的前述機差補正資料產生共同檢查條件資料之共同檢查條件資料產生手段;以及由前述共同檢查條件資料與每一晶圓檢查裝置的前述 機差補正資料產生每一晶圓檢查裝置的檢查條件資料之第二檢查條件資料產生手段。The invention of claim 3 is a wafer inspection system that generates inspection condition data for a plurality of inspection apparatuses that inspect an appearance of a semiconductor wafer formed on a wafer, and includes: each wafer inspection apparatus calculates a design value a machine difference, followed by a machine difference correction data registration means for registering the machine difference correction data; a first inspection condition data generation means for generating inspection condition data using the wafer in any of the selected wafer inspection apparatuses; And a common inspection condition data generating means for generating the common inspection condition data with the machine difference correction data of the selected one of the wafer inspection apparatuses; and the aforementioned common inspection condition data and each of the wafer inspection apparatuses The machine difference correction data generates a second inspection condition data generation means for the inspection condition data of each wafer inspection device.

申請專利範圍第4項的發明是在申請專利範圍第3項的發明中,前述機差補正資料至少包含如下的任一個誤差資料:配設於晶圓檢查裝置之承載晶圓的台子的檢查平台的原點位置,與檢查晶圓的檢查攝影機的中心位置及承載於前述檢查平台的晶圓的中心位置的誤差資料;檢查晶圓的檢查攝影機的對焦位置的誤差資料;包含於前述檢查攝影機的透鏡的觀察倍率的誤差資料;以及包含於前述檢查攝影機的照明用光源的對所要亮度之設定值的誤差資料。The invention of claim 4 is the invention of claim 3, wherein the machine difference correction data includes at least one of the following error data: an inspection platform of the wafer carrying device supporting the wafer inspection device The origin position, the error information of the center position of the inspection camera for inspecting the wafer and the center position of the wafer carried on the inspection platform; the error data of the in-focus position of the inspection camera of the inspection wafer; included in the aforementioned inspection camera The error data of the observation magnification of the lens; and the error data of the set value of the desired brightness included in the illumination source for the inspection camera.

依照本發明的晶圓檢查條件產生方法及檢查系統,因由與對設計值的各晶圓檢查裝置的機差,每一晶圓檢查裝置求出機差補正資料並登記,使用複數台晶圓檢查裝置的任一台作成檢查條件資料,故可產生可在其他的裝置使用的共同的檢查條件資料,因由該共同的檢查條件資料與每一晶圓檢查裝置的機差補正資料產生有每一晶圓檢查裝置的檢查條件資料,故可節省再度重新作成檢查條件資料的勞力時間。According to the wafer inspection condition generation method and inspection system of the present invention, the machine difference correction data is registered and registered for each wafer inspection device due to the difference from the wafer inspection device for the design value, and a plurality of wafer inspections are used. Any one of the devices is configured to check the condition data, so that common inspection condition data that can be used in other devices can be generated, because each common inspection condition data and the machine correction data of each wafer inspection device are generated. By checking the inspection condition data of the device, it is possible to save labor time for re-making the inspection condition data.

據此,即使是使用複數台裝置檢查多數片晶圓的情 形,也能以短時間產生共同的複數品種的檢查條件資料,可節省各自重新作成資料的時間與勞力。According to this, even if a plurality of wafers are inspected using a plurality of devices The shape can also generate the inspection data of the common plural varieties in a short time, which can save the time and labor for re-creating the materials.

針對本發明的實施形態,一邊顯示於圖,一邊進行說明。Embodiments of the present invention will be described while being shown in the drawings.

圖1是本發明的晶圓外觀檢查裝置之斜視圖。圖2是本發明的晶圓外觀檢查裝置之構成圖,顯示主要機器的構成。在各圖中以正交座標系的3軸為X、Y、Z,以XY平面為水平面,以Z方向為鉛直方向。而且,設以Z方向為中心旋轉的方向為θ方向。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view of a wafer appearance inspection device of the present invention. Fig. 2 is a view showing the configuration of a wafer appearance inspection device according to the present invention, showing the configuration of a main machine. In each of the figures, the three axes of the orthogonal coordinate system are X, Y, and Z, and the XY plane is a horizontal plane, and the Z direction is a vertical direction. Further, the direction in which the Z direction is rotated is the θ direction.

在本發明的晶圓外觀檢查裝置1包含有:承載成為檢查對象的晶圓10並使其移動於XY方向之檢查平台部2;都載設包含有拍攝晶圓10上的至少一部分的範圍之攝影光學單元3,包含有為了統括控制檢查平台部2及攝影光學單元3,連接於檢查平台部2與攝影光學單元3的機器之控制部4。而且,在晶圓外觀檢查裝置1包含有為了將成為檢查對象的晶圓10承載於檢查平台部而運送至規定的位置,檢查後為了搬出晶圓10的晶圓運送部5。而且,在晶圓外觀檢查裝置1並設有收納檢查前的晶圓或檢查後的晶圓之晶圓匣盒(cassette)61及晶圓匣盒承載台62。In the wafer appearance inspection device 1 of the present invention, the inspection platform unit 2 that carries the wafer 10 to be inspected and moves in the XY direction is included; both of them include a range including at least a part of the imaging wafer 10 The photographic optical unit 3 includes a control unit 4 that is connected to the inspection platform unit 2 and the photographic optical unit 3 in order to integrally control the inspection platform unit 2 and the photographic optical unit 3. In addition, the wafer visual inspection device 1 includes a wafer transport unit 5 that transports the wafer 10 to the wafer 10 in order to carry the wafer 10 to be inspected to the inspection platform and transport it to a predetermined position. Further, the wafer visual inspection device 1 is provided with a cassette 61 and a wafer cassette carrier 62 for storing the wafer before inspection or the wafer after inspection.

其次,針對構成檢查裝置的各主要部詳細地說明。Next, each main part constituting the inspection apparatus will be described in detail.

[晶圓][wafer]

圖3是顯示圖案形成於晶圓10上的半導體晶片的一例之圖。圖3(a)是顯示晶圓全體之圖,圖3(b)是擴大晶圓的 一部分之圖。如圖3(a)所示,在晶圓10的一端有被稱為定向平邊(orientation flat)11的平坦部分,作為使晶圓10的方向一致的基準而被使用。其他為了使晶圓10的方向一致的基準除了前述定向平邊11外,也有使用被稱為缺口(notch)的在附於晶圓圓周上的一部分的凹部的情形。FIG. 3 is a view showing an example of a semiconductor wafer in which a pattern is formed on the wafer 10. Figure 3 (a) is a diagram showing the entire wafer, and Figure 3 (b) is an enlarged wafer Part of the map. As shown in FIG. 3(a), a flat portion called an orientation flat 11 is provided at one end of the wafer 10, and is used as a reference for matching the directions of the wafers 10. Others in order to make the direction of the wafer 10 coincide with each other in addition to the above-described oriented flat side 11, there is also a case where a recess called a notch is attached to a part of the circumference of the wafer.

在晶圓10之上圖案形成有:對準標記(alignment mark)12;半導體晶片的電氣配線或絕緣膜等的電路圖案13。如圖3(b)所示,在半導體晶片的電氣配線或絕緣膜等的電路圖案13包含有:每一晶片的對準標記12a;電路部14;電極部15,電路部14與電極部15在電路圖案13內連接。On the wafer 10, an alignment mark 12, an electric wiring of the semiconductor wafer, or a circuit pattern 13 such as an insulating film is formed. As shown in FIG. 3(b), the circuit pattern 13 such as an electric wiring or an insulating film of a semiconductor wafer includes an alignment mark 12a for each wafer, a circuit portion 14, an electrode portion 15, a circuit portion 14, and an electrode portion 15. Connected within the circuit pattern 13.

圖3(c)是顯示別的品種的晶圓全體之圖,圖3(d)是擴大前述別的品種的晶圓的一部分之圖。在以圖3(c)顯示的晶圓10之上圖案形成有:對準標記12;由複數個半導體晶片的電氣配線或絕緣膜等構成的電路圖案群16。如圖3(d)所示,在半導體晶片的電氣配線或絕緣膜等的電路圖案13包含有:每一晶片的對準標記12a;電路部14;電極部15,電路部14與電極部15在電路圖案13內連接。Fig. 3(c) is a view showing the entire wafer of another type, and Fig. 3(d) is a view showing a part of the wafer of the other type expanded. On the wafer 10 shown in FIG. 3(c), an alignment mark 12, a circuit pattern group 16 composed of electrical wiring or an insulating film of a plurality of semiconductor wafers, and the like are patterned. As shown in FIG. 3(d), the circuit pattern 13 such as an electric wiring or an insulating film of a semiconductor wafer includes an alignment mark 12a for each wafer, a circuit portion 14, an electrode portion 15, a circuit portion 14, and an electrode portion 15. Connected within the circuit pattern 13.

在本發明的晶圓外觀檢查裝置1中檢查如前述的晶圓上的電路圖案13的電路部14或電極部15的外觀形狀。In the wafer appearance inspection device 1 of the present invention, the appearance of the circuit portion 14 or the electrode portion 15 of the circuit pattern 13 on the wafer as described above is inspected.

對準標記12成為顯示晶圓上的各晶片及電路圖案等的位置座標的基準。晶圓10上的對準標記12的位置及電路圖案13對對準標記12的相對位置是每一品種預先規定,成為決定的值。The alignment mark 12 serves as a reference for displaying position coordinates of each wafer and circuit pattern on the wafer. The position of the alignment mark 12 on the wafer 10 and the relative position of the circuit pattern 13 to the alignment mark 12 are predetermined for each type and become a determined value.

[檢查平台部][Check Platform Department]

檢查平台部2是藉由如下構件構成:配置於裝置底座21上的X軸平台22;配置於X軸平台22上的Y軸平台23;配置於Y軸平台23上的θ軸平台24;配置於θ軸平台24上的台子25。X軸平台22是在可使配置於其上的Y軸平台23移動於X方向的狀態下被配置於裝置底座21上。而且,前述Y軸平台23是在可使配置於其上的θ軸平台24及台子25移動於Y方向的狀態下被配置於X軸平台22上。因此,台子25可在裝置底座21上移動於XY θ方向。The inspection platform unit 2 is configured by an X-axis platform 22 disposed on the device base 21, a Y-axis platform 23 disposed on the X-axis platform 22, and a θ-axis platform 24 disposed on the Y-axis platform 23; The table 25 on the θ-axis platform 24. The X-axis stage 22 is placed on the apparatus base 21 in a state in which the Y-axis stage 23 disposed thereon can be moved in the X direction. Further, the Y-axis stage 23 is disposed on the X-axis stage 22 in a state in which the θ-axis stage 24 and the table 25 disposed thereon can be moved in the Y direction. Therefore, the table 25 can be moved in the XY θ direction on the device base 21.

晶圓10被承載於台子25之上,檢查中不會因真空吸附等的方法而位置偏移,另一方面,若檢查結束則真空吸附被解除,可由台子25簡單地卸下。The wafer 10 is placed on the table 25, and the position is not shifted by vacuum suction or the like during the inspection. On the other hand, when the inspection is completed, the vacuum suction is released, and the table 25 can be easily removed.

X軸平台22與Y軸平台23與θ軸平台24是與控制部4的控制用電腦41連接,可使承載有晶圓10的台子25移動至規定的位置或使其靜止。The X-axis stage 22, the Y-axis stage 23, and the θ-axis stage 24 are connected to the control computer 41 of the control unit 4, and the table 25 carrying the wafer 10 can be moved to a predetermined position or left still.

[攝影光學單元][Photographic Optical Unit]

在攝影光學單元3包含有:與晶圓10具有一定的間隔,被朝向晶圓10之物鏡31;與物鏡31接鄰而被載設,使透過物鏡31觀察的晶圓10上的影像成像於檢查攝影機34之光學系統33;接鄰於光學系統33而被載設,將拍攝的影像轉換成電信號之檢查攝影機34。The photographing optical unit 3 includes an objective lens 31 that faces the wafer 10 at a constant interval from the wafer 10, and is placed adjacent to the objective lens 31 to image an image on the wafer 10 viewed through the objective lens 31. The optical system 33 of the camera 34 is inspected; the inspection camera 34 is mounted adjacent to the optical system 33 to convert the captured image into an electrical signal.

物鏡31被準備複數個,俾可切換觀察晶圓10時的倍率,被安裝於被稱為旋轉器機構(revolver mechanism)32的旋轉切換機構,且被安裝於攝影光學單元3。The objective lens 31 is prepared in plural, and the magnification when the wafer 10 is observed can be switched, and is attached to a rotation switching mechanism called a revolver mechanism 32, and is attached to the photographing optical unit 3.

攝影光學單元驅動部35被載設於支柱部37,該支柱部37被載設於載設有承載有晶圓10的檢查平台部2的裝置底座21。在攝影光學單元驅動部35,攝影光學單元3可移動於Z方向而被安裝。而且,在攝影光學單元3包含有為了測定晶圓10與物鏡31的距離的測距感測器(未圖示)。The photographic optical unit drive unit 35 is placed on the column portion 37, and the column portion 37 is placed on the device base 21 on which the inspection platform unit 2 carrying the wafer 10 is placed. In the photographic optical unit drive unit 35, the photographic optical unit 3 can be mounted in the Z direction. Further, the photographing optical unit 3 includes a distance measuring sensor (not shown) for measuring the distance between the wafer 10 and the objective lens 31.

在攝影光學單元3的光學系統33連接有照明,在前述照明連接有照明用光源36。藉由變更照明用光源36的亮度設定,可調節晶圓10的觀察時的亮度。Illumination is connected to the optical system 33 of the photographic optical unit 3, and the illumination light source 36 is connected to the illumination. By changing the brightness setting of the illumination light source 36, the brightness at the time of observation of the wafer 10 can be adjusted.

因晶圓外觀檢查裝置1成這種裝置構成,故能以檢查攝影機34拍攝晶圓10的至少一部分。光學系統33成為如下的構造:包含有至少一片以上的凸透鏡或凹透鏡,透過物鏡31將來自照明用光源36的光朝向晶圓10,可使藉由晶圓10反射的光由物鏡31照射到檢查攝影機34。Since the wafer visual inspection device 1 is configured as such a device, at least a part of the wafer 10 can be imaged by the inspection camera 34. The optical system 33 has a structure including at least one or more convex lenses or concave lenses, and the light from the illumination light source 36 is transmitted through the objective lens 31 toward the wafer 10, so that the light reflected by the wafer 10 can be irradiated to the inspection by the objective lens 31. Camera 34.

[控制部][Control Department]

在控制部4包含有:連接於檢查平台部2的X軸平台22與Y軸平台23與θ軸平台24與攝影光學單元驅動部35與照明用光源36的控制用電腦41;為了保存檢查條件資料及檢查結果資料的資料管理用電腦42;連接於檢查攝影機34與控制用電腦41與資料管理用電腦42的影像處理用電腦43。The control unit 4 includes a control computer 41 connected to the X-axis stage 22, the Y-axis stage 23, the θ-axis stage 24, the photographic optical unit drive unit 35, and the illumination light source 36 of the inspection platform unit 2; A data management computer 42 for data and inspection result data; and a video processing computer 43 connected to the inspection camera 34, the control computer 41, and the data management computer 42.

在前述控制用電腦41連接有為了記錄關於所連接的機器的控制之被稱為參數的各種資料的資訊記錄媒體46a。而且,在前述資料管理用電腦42連接有為了記錄被 稱為檢查條件資料的每一檢查對象的檢查條件及檢查的結果等的資料之資訊記錄媒體46b。而且,在前述影像處理用電腦43連接有為了記錄判定檢查的合格或不合格用的基準影像等的資料之資訊記錄媒體46c。前述資訊記錄媒體46a、46b、46c可舉例說明以磁碟或磁光碟(magneto optical disk)或光碟等的磁性或光的變化為資料記錄的記錄媒體或半導體記憶體等。An information recording medium 46a called a variety of materials called parameters for recording control of the connected device is connected to the control computer 41. Moreover, the aforementioned data management computer 42 is connected for recording purposes. The information recording medium 46b is a material called the inspection condition of each inspection object and the result of the inspection. Further, the image processing computer 43 is connected to the information processing medium 46c for recording data such as a reference image for passing or failing the inspection. The information recording mediums 46a, 46b, and 46c can exemplify a recording medium or a semiconductor memory or the like which is recorded on a magnetic disk, a magneto optical disk, or a magnet or the like.

在前述資訊記錄媒體46c登記有成為為了判定檢查的合格或不合格的基準的影像,在影像處理用電腦43中比較成為前述基準的影像與成為檢查對象的影像,依照預先規定的判定基準進行檢查的合格或不合格的判定。In the image processing medium 46c, the image to be inspected is compared with the image to be inspected, and the image is processed in accordance with a predetermined criterion. Qualified or unqualified judgment.

在前述控制用電腦41與前述資料管理用電腦42,為了顯示裝置的運轉狀況及異常履歷資訊、檢查條件資料的值等的資訊顯示手段44a是透過顯示切換手段44c連接。而且,在前述影像處理用電腦43連接有為了顯示在檢查時拍攝的影像及檢查結果、不良處等的資訊顯示手段44b。資訊顯示手段44a、44b可舉例說明使用布朗管(braun tube)或液晶顯示器(liquid crystal display)或電漿顯示器(plasma display)、有機EL或發光二極體(light emitting diode)等的發光元件的顯示器等。In the control computer 41 and the data management computer 42, the information display means 44a for displaying the operation state of the device, the abnormal history information, the value of the inspection condition data, and the like are connected via the display switching means 44c. Further, the image processing computer 43 is connected with an information display means 44b for displaying an image captured during the inspection, an inspection result, a defect, and the like. The information display means 44a, 44b can exemplify a light-emitting element using a braun tube or a liquid crystal display or a plasma display, an organic EL or a light emitting diode. Display, etc.

在前述控制用電腦41與前述資料管理用電腦42與前述影像處理用電腦43,為了輸入或編輯檢查條件資料的設定值的資訊輸入手段45是透過輸入切換手段45a連接。前述資訊顯示手段44a、44b與前述顯示切換手段44c與前述 資訊輸入手段45與前述輸入切換手段45a與前述資訊記錄媒體46a、46b、46c包含於控制部4。In the control computer 41, the data management computer 42 and the image processing computer 43, the information input means 45 for inputting or editing the set value of the inspection condition data is connected via the input switching means 45a. The information display means 44a, 44b and the display switching means 44c and the foregoing The information input means 45 and the input switching means 45a and the information recording media 46a, 46b, 46c are included in the control unit 4.

在控制部4的資料管理用電腦42包含有進行與外部裝置的資料存取之資料存取手段47。記錄於前述資訊記錄媒體46a、46b、46c的前述共同檢查條件資料及前述檢查條件、前述基準影像等的各種資料可透過資料存取手段47進行與其他的裝置的資料交換,或保存於裝置外以防萬一出故障。資料存取手段47可舉例說明使用可拆卸的磁碟或半導體記憶體等的資料記錄媒體之手段或利用電信號或光信號或電波的資料通信的手段等。The data management computer 42 of the control unit 4 includes a material access means 47 for performing material access with an external device. The common inspection condition data recorded in the information recording media 46a, 46b, and 46c, and various materials such as the inspection conditions and the reference video can be exchanged with other devices via the data access means 47, or stored outside the device. Just in case something goes wrong. The data access means 47 can exemplify a means for recording a medium using a detachable magnetic disk or a semiconductor memory or a means for data communication using an electric signal or an optical signal or an electric wave.

[運送部/晶圓匣盒/預對準裝置部(prealigner part)][Transportation unit/wafer cassette/prealigner part]

晶圓運送部5包含有:接鄰於檢查平台部2而被配置,具備為了運送晶圓10的可動機構之機械手臂(robot)51;保持晶圓10的手部(hand part)52。The wafer transfer unit 5 includes a robot 51 that is disposed adjacent to the inspection platform unit 2, and includes a movable mechanism for transporting the wafer 10, and a hand part 52 that holds the wafer 10.

手部52與機械手臂51的可動機構連結,在保持晶圓10下或未保持晶圓10的狀態下可自在地移動於XYZ方向。而且,在機械手臂51也具備移動於X方向的機構及使手部旋轉於θ方向的機構。The hand 52 is coupled to the movable mechanism of the robot arm 51, and is freely movable in the XYZ direction while holding the wafer 10 or not holding the wafer 10. Further, the robot arm 51 also includes a mechanism that moves in the X direction and a mechanism that rotates the hand in the θ direction.

而且,晶圓運送部5也接鄰於為了承載收納晶圓10的晶圓匣盒61的晶圓匣盒承載台62或預對準裝置部7而被配置。預對準裝置部7具有重新對準晶圓10的中心位置於規定的位置,或使定向平邊11或缺口的方向於規定的方向一致之預對準功能。如前述,構成本發明的晶圓外觀檢查裝置1。Further, the wafer transfer unit 5 is also disposed adjacent to the wafer cassette stage 62 or the pre-alignment unit 7 for carrying the wafer cassette 61 in which the wafer 10 is housed. The pre-alignment device portion 7 has a pre-alignment function in which the center position of the wafer 10 is realigned at a predetermined position, or the direction of the orientation flat edge 11 or the notch is aligned in a predetermined direction. As described above, the wafer appearance inspection device 1 of the present invention is constructed.

其次,針對晶圓外觀檢查裝置1中的代表的檢查流程,依序說明。Next, the representative inspection flow in the wafer visual inspection device 1 will be described in order.

[作成檢查條件資料][Create inspection condition data]

在晶圓10的檢查之前,作成檢查條件資料。Before the inspection of the wafer 10, inspection condition data is created.

檢查條件資料包含:為了管理檢查條件資料的管理號碼(品種#N,N=1、2、3…);晶圓10上的對準標記12的位置;前述對準標記12的影像;晶圓10上的座標;使用於第一個檢查的晶片的基準影像;攝影倍率;照明的亮度設定值;檢查開始位置;檢查途徑。更進一步對相同晶圓10再度變更觀察倍率並繼續檢查的情形包含:使用於第n(n=2、3、4…)個檢查的晶片的基準影像;攝影倍率;照明的亮度設定值;檢查開始位置;檢查途徑。The inspection condition data includes: a management number (variety #N, N=1, 2, 3...) for managing the inspection condition data; a position of the alignment mark 12 on the wafer 10; an image of the alignment mark 12; Coordinates on 10; reference image of the wafer used for the first inspection; photographing magnification; brightness setting value of illumination; inspection start position; inspection path. Further changing the observation magnification and continuing the inspection on the same wafer 10 includes: a reference image of the wafer used for the nth (n=2, 3, 4...) inspection; a photographing magnification; a brightness setting value of the illumination; Start position; check the route.

接著,選擇包含有以良品處理的半導體晶片之晶圓10。以預對準裝置部7使定向平邊的方向一致,將前述晶圓10承載於晶圓外觀檢查裝置1的台子25上。其次,使X軸平台22與Y軸平台23移動到能以檢查攝影機34拍攝圖案形成於前述晶圓10上的對準標記12的位置。接著,以檢查攝影機34觀察前述晶圓10上的對準標記12,由與預先登記的基準位置的差計算XY θ方向的位置偏移量,進行定位動作,俾與前述基準位置匹配。Next, the wafer 10 containing the semiconductor wafer processed by the good product is selected. The wafer 10 is placed on the stage 25 of the wafer visual inspection device 1 by the pre-alignment unit 7 being aligned in the direction of the orientation flat side. Next, the X-axis stage 22 and the Y-axis stage 23 are moved to a position where the alignment mark 12 formed on the wafer 10 can be inspected by the inspection camera 34. Next, the inspection camera 34 observes the alignment mark 12 on the wafer 10, calculates a positional shift amount in the XYθ direction from the difference from the reference position registered in advance, performs a positioning operation, and matches the reference position.

由圖案形成於前述晶圓10上的半導體晶片之中選擇以良品處理的半導體晶片,使X軸平台22與Y軸平台23移動到能以檢查攝影機34拍攝該半導體晶片的位置。The semiconductor wafer processed by the pattern is formed from among the semiconductor wafers patterned on the wafer 10, and the X-axis stage 22 and the Y-axis stage 23 are moved to a position at which the inspection camera 34 can image the semiconductor wafer.

透鏡倍率是由半導體晶片的大小與缺陷的大小的程度 適宜選擇決定。照明的亮度是藉由所拍攝的影像亮度,因此是藉由半導體晶圓10上的晶片圖案的反射率或對比(contrast)適宜調整決定。決定拍攝影像的透鏡倍率及照明的亮度設定值後,以該條件藉由檢查攝影機34拍攝以良品處理的半導體晶片的影像。The lens magnification is the extent of the size of the semiconductor wafer and the size of the defect The choice is appropriate. The brightness of the illumination is determined by the brightness of the image being captured, and is therefore suitably adjusted by the reflectance or contrast of the wafer pattern on the semiconductor wafer 10. After determining the lens magnification of the captured image and the brightness setting value of the illumination, the image of the semiconductor wafer processed by the inspection camera 34 is captured under the condition.

[選擇檢查條件資料][Select check condition data]

接著,在晶圓外觀檢查裝置1中選擇對檢查的晶圓10的檢查條件資料。前述檢查條件資料是由預先登記的資料之中選擇使用。如果是前述檢查條件資料未被預先登記的情形則重新登記。Next, the inspection condition data for the wafer 10 to be inspected is selected in the wafer visual inspection device 1. The aforementioned inspection condition data is selected and used among the pre-registered materials. If it is the case that the aforementioned inspection condition data is not registered in advance, it is re-registered.

[運送晶圓/預對準/承載晶圓][Transport Wafer / Pre-Alignment / Carrier Wafer]

接著,使用晶圓運送部5的機械手臂51由前述晶圓匣盒61抽出一片檢查的晶圓10。此時,被由晶圓匣盒61抽出的晶圓10是在前述定向平邊或缺口的方向不定的狀態下被收納於晶圓匣盒61內。Next, the robot wafer 51 using the wafer transfer unit 5 extracts one wafer 10 to be inspected from the wafer cassette 61. At this time, the wafer 10 taken out by the wafer cassette 61 is housed in the wafer cassette 61 in a state in which the direction of the directional flat side or the notch is not constant.

因檢查的晶圓10需預先使方向一致而進行檢查,故首先被運送到預對準裝置部7。在該預對準裝置部7中以晶圓10的約略中央為旋轉中心,一邊使其旋轉於θ方向,一邊檢測前述定向平邊或缺口,使晶圓10的中心位置一致,朝規定的方向保持前述定向平邊或缺口。Since the wafer 10 to be inspected needs to be inspected in advance in order to be aligned, it is first transported to the pre-alignment device unit 7. In the pre-alignment device unit 7, the center of the wafer 10 is rotated about the center of rotation, and the orientation flat or notch is detected while rotating in the θ direction, so that the center position of the wafer 10 is aligned in a predetermined direction. Maintain the aforementioned directional flat edges or notches.

接著,使用晶圓運送部5的機械手臂51由預對準裝置部7將預對準結束的晶圓10運送到檢查平台部2的台子25。據此,可使晶圓10的前述定向平邊或缺口的方向一致,承載於台子25。Next, the robot arm 51 using the wafer transfer unit 5 transports the pre-aligned wafer 10 to the table 25 of the inspection platform unit 2 by the pre-alignment device unit 7. Accordingly, the direction of the directional flat side or the notch of the wafer 10 can be made uniform and carried on the stage 25.

[標記對準(mark alignment)][mark alignment]

檢查的晶圓10被承載於台子25,朝對準標記讀取位置移動。此時,根據預先登記的檢查條件資料,藉由旋轉器機構32切換物鏡31,調節來自照明用光源36的光的亮度,藉由攝影光學單元驅動部35調節晶圓10與物鏡31的距離。然後,藉由攝影光學單元3的檢查攝影機34拍攝對準標記12。The inspected wafer 10 is carried on the stage 25 and moved toward the alignment mark reading position. At this time, the objective lens 31 is switched by the rotator mechanism 32 to adjust the brightness of the light from the illumination light source 36 based on the inspection condition data registered in advance, and the distance between the wafer 10 and the objective lens 31 is adjusted by the photographic optical unit drive unit 35. Then, the alignment mark 12 is photographed by the inspection camera 34 of the photographing optical unit 3.

晶圓10雖然使用機械手臂51被承載於台子25上,惟在一連串的遞送動作中實際的承載位置會有一些滑動變化。該承載位置的差的因素顯示有:預對準裝置部7的定位精度或機械手臂51的運送位置精度或承載晶圓10於台子25時的側滑等。Although the wafer 10 is carried on the table 25 using the robotic arm 51, there is some sliding change in the actual load bearing position during a series of delivery actions. The difference in the bearing position is displayed by the positioning accuracy of the pre-alignment device portion 7 or the conveyance position accuracy of the robot arm 51 or the side slip when the wafer 10 is placed on the table 25.

為了補正前述晶圓的承載位置的差,在承載晶圓10於台子25後讀取晶圓10上的對準標記12的位置,算出檢查攝影機34的視野內的基準點與前述對準標記12的基準位置的相對位置的差分。由該被算出的值與拍攝對準標記12時使用的物鏡31的攝影倍率與光學系統33的攝影倍率與檢查攝影機34的攝影部的尺寸,對正規的位置運算並算出偏移多少呢。In order to correct the difference in the carrying position of the wafer, the position of the alignment mark 12 on the wafer 10 is read after the wafer 10 is carried on the stage 25, and the reference point in the field of view of the inspection camera 34 and the alignment mark 12 are calculated. The difference in the relative position of the reference position. From the calculated value and the imaging magnification of the objective lens 31 used when the alignment mark 12 is photographed, the imaging magnification of the optical system 33, and the size of the imaging unit of the inspection camera 34, the normal position is calculated and the offset is calculated.

晶圓10的承載時的θ方向的角度的差是藉由θ軸平台24補正角度。因此,即使晶圓10包含角度的差而被承載於台子25上,在以檢查攝影機34拍攝的影像也不包含有θ方向的角度的差。The difference in the angle of the θ direction when the wafer 10 is loaded is corrected by the θ-axis stage 24. Therefore, even if the wafer 10 is carried on the stage 25 including the difference in angle, the image captured by the inspection camera 34 does not include the difference in angle in the θ direction.

[取得/檢查晶片影像][Get/Check Wafer Image]

接著,使檢查的晶片10朝檢查開始位置移動。此時,根據預先登記的檢查條件資料切換物鏡31,調節來自照明用光源36的光的亮度。Next, the wafer 10 to be inspected is moved toward the inspection start position. At this time, the objective lens 31 is switched based on the inspection condition data registered in advance, and the brightness of the light from the illumination light source 36 is adjusted.

檢查中的晶圓10的動作有像被稱為步進與重複(step and repeat)之如下的方法:在檢查位置中使晶圓10靜止,以檢查攝影機34拍攝,攝影結束的話移動到下一個檢查位置,再度使晶圓10靜止,以檢查攝影機34拍攝,再度移動到下一個位置,重複該等一連串的動作。而且另一方面,有一邊使晶圓10連續移動,一邊如閃光儀(strobo)般斷斷續續地使照明發光只有非常短的時間,在疑似的靜止狀態下拍攝的情形。The operation of the wafer 10 under inspection has a method called step and repeat as follows: the wafer 10 is stopped in the inspection position to check the camera 34, and the shooting is finished, and then moved to the next The position is checked and the wafer 10 is again brought to a standstill to inspect the camera 34 for shooting, again moving to the next position, and repeating the series of actions. On the other hand, there is a case where the wafer 10 is continuously moved while the illumination is intermittently turned off, such as a strobo, for a very short period of time, and is photographed in a suspected still state.

晶圓10的移動位置與使用的物鏡31的倍率、照明的亮度、物鏡31與晶圓10的距離一樣登記在檢查條件資料。The moving position of the wafer 10 is registered in the inspection condition data in the same manner as the magnification of the objective lens 31 used, the brightness of the illumination, and the distance between the objective lens 31 and the wafer 10.

藉由如前述的機構及手段使晶圓10移動,就圖案形成於晶圓10的半導體晶片上的任意的場所以檢查攝影機34拍攝,以影像處理用電腦43進行對所拍攝的影像之合格或不合格的判定。By moving the wafer 10 by the mechanism and means as described above, the image is formed on the semiconductor wafer of the wafer 10 at an arbitrary position on the semiconductor wafer, and the image is processed by the image processing computer 43 or passed by the image processing computer 43. Unqualified judgment.

[搬出晶圓][Moving out the wafer]

檢查結束的晶圓10在被承載於台子25上的情形下朝晶圓遞送位置移動。然後,藉由機械手臂51搬出,收納於晶圓匣盒61。到此為止是晶圓外觀檢查裝置1中的代表的檢查流程。The wafer 104 that has been inspected is moved toward the wafer delivery position while being carried on the stage 25. Then, it is carried out by the robot arm 51 and stored in the wafer cassette 61. Up to this point, it is a representative inspection flow in the wafer visual inspection device 1.

接著,針對檢查條件資料產生程序一邊使用圖,一邊說明。圖4是顯示本發明的檢查條件資料產生程序之流程 圖。Next, the inspection condition data generation program will be described using the map. Figure 4 is a flow chart showing the inspection condition data generation program of the present invention. Figure.

在裝置製作之前設計值被決定(S101),根據該設計值,裝置A被製作(S102)。製作複數台的裝置的情形是根據相同的設計值製作裝置B與裝置C。(S103、S104)The design value is determined before the device is produced (S101), and based on the design value, the device A is created (S102). The case of making a plurality of devices is to fabricate device B and device C based on the same design values. (S103, S104)

接著,取得對設計值的裝置A的機差資料,算出設計值與裝置A的機差(S105)。Next, the machine difference data of the device A of the design value is obtained, and the difference between the design value and the device A is calculated (S105).

該機差顯示有如下:The difference between the machines is as follows:

(1)、對為了使承載晶圓的台子移動到XY方向的規定的位置的X軸平台及Y軸平台的原點位置之檢查攝影機的視野的中心位置與晶圓中心位置的相對位置的差。(1) The difference between the center position of the field of view of the camera and the center position of the wafer in order to move the stage on which the wafer is loaded to the X-axis stage and the Y-axis stage at a predetermined position in the XY direction .

(2)、包含有拍攝晶圓的檢查攝影機的攝影單元中的檢查攝影機的焦點位置調整機構的原點位置與檢查攝影機的對焦位置的相對位置的差。(2) A difference between the origin position of the focus position adjustment mechanism of the inspection camera and the relative position of the focus position of the inspection camera in the photographing unit of the inspection camera that photographs the wafer.

(3)、包含於拍攝晶圓的檢查攝影機的物鏡或光學系統的觀察倍率的差。(3) The difference in observation magnification of the objective lens or the optical system of the inspection camera included in the imaging wafer.

(4)、包含於拍攝晶圓的檢查攝影機的照明用光源之對晶圓攝影時的所要亮度的設定值的差。(4) The difference between the set values of the desired brightness at the time of wafer photographing of the illumination light source of the inspection camera included in the photographing wafer.

由前述機差造成的前述差是當作誤差資料藉由後述的程序算出,當作機差補正資料被登記於連接於裝置A的控制用電腦41的資訊記錄媒體46a(S106)。The difference caused by the above-described machine difference is calculated as an error data by a program to be described later, and the difference correction data is registered as the information recording medium 46a connected to the control computer 41 of the device A (S106).

其次,關於裝置B及裝置C也以同樣的程序製作裝置,算出與設計值的機差,登記機差補正資料(S107~S110)。Next, the device B and the device C are also produced by the same program, and the machine difference from the design value is calculated, and the machine difference correction data is registered (S107 to S110).

接著,在晶圓的檢查之前使用檢查裝置A(相當於申請專利範圍之第一檢查條件資料產生手段、共同檢查條件資 料產生手段、第二檢查條件資料產生手段)作成對品種# N(N=1、2、3…)之裝置A的檢查條件資料# Na(N=1、2、3…)(S111)。Next, the inspection apparatus A is used before the inspection of the wafer (corresponding to the first inspection condition data generation means of the patent application scope, and the joint inspection condition The material generation means and the second inspection condition data generation means create inspection condition data #Na (N = 1, 2, 3, ...) of the apparatus A of the type #N (N = 1, 2, 3, ...) (S111).

由在S111作成的裝置A的檢查條件資料# Na與裝置A固有的機差補正資料產生對品種# N(N=1、2、3…)之共同檢查條件資料# N(N=1、2、3…)(S112)。The common inspection condition data #N (N=1, 2) for the variety #N (N=1, 2, 3...) is generated from the inspection condition data #Na of the device A created in S111 and the machine difference correction data inherent to the device A. , 3...) (S112).

然後,由共同檢查條件資料# N與裝置A固有的機差補正資料產生對品種# N之裝置A用的檢查條件資料# Na(N=1、2、3…)(S113)。Then, the inspection condition data #Na (N = 1, 2, 3, ...) for the device A of the product #N is generated by the common inspection condition data #N and the machine difference correction data unique to the device A (S113).

根據前述檢查條件資料# Na,使用裝置A進行對品種#N的檢查(S114)。According to the aforementioned inspection condition data # Na, the inspection of the variety #N is performed using the apparatus A (S114).

然後,由共同檢查條件資料# N與裝置B固有的機差補正資料產生對品種# N之裝置B用的檢查條件資料# Nb(N=1、2、3…)(S115)。Then, the inspection condition data #Nb (N = 1, 2, 3, ...) for the device B of the article #N is generated from the common condition information #N and the machine difference correction data unique to the device B (S115).

然後,根據前述檢查條件資料# Nb,使用裝置B進行對品種#N的檢查(S116)。Then, based on the aforementioned inspection condition data #Nb, the inspection of the item #N is performed using the device B (S116).

更進一步使用裝置C的情形也一樣,由共同檢查條件資料# N與裝置C固有的機差補正資料產生對品種# N之裝置C用的檢查條件資料# Nc(N=1、2、3…)(S117)。The same applies to the case where the device C is further used, and the inspection condition data #Nc (N=1, 2, 3... for the device C of the product #N is generated from the common difference condition data #N and the machine difference correction data inherent to the device C. ) (S117).

然後,根據前述檢查條件資料# Nc,使用裝置C進行對品種#N的檢查(S118)。Then, based on the aforementioned inspection condition data # Nc, the inspection of the item #N is performed using the device C (S118).

藉由經由前述的程序,由以裝置A作成的檢查條件資料與裝置A的機差資料產生在裝置B與裝置C也能使用的共同檢查條件資料,由共同檢查條件資料與裝置B的機差 資料產生裝置B的檢查條件資料,由共同檢查條件資料與裝置C的機差資料產生裝置C的檢查條件資料。By the above-described procedure, the common condition condition data that can be used also by the apparatus B and the apparatus C is generated from the inspection condition data created by the apparatus A and the machine difference data of the apparatus A, and the difference between the condition data and the apparatus B is jointly checked. The inspection condition data of the data generation device B is generated by the common inspection condition data and the condition data of the device C of the device C.

在前述S101~S118中是顯示使用3台的裝置的例子。裝置台數更增加的情形,可藉由對必要台數的裝置以同樣的程序進行作業,使檢查條件資料的共有化具體化。In the above S101 to S118, an example in which three devices are used is displayed. In the case where the number of devices is increased, the sharing of the inspection condition data can be realized by operating the same program for the necessary number of devices.

而且,即使是設置有複數台的裝置之內的任一台發生故障的情形,若算出及登記裝置固有的機差補正資料,則可由其他裝置所具有的共同的檢查條件資料產生檢查條件資料。Further, even if any one of the devices provided with the plurality of devices fails, if the machine difference correction data unique to the device is calculated and registered, the inspection condition data can be generated from the common inspection condition data of the other devices.

一邊顯示於圖,一邊針對各機差詳細地說明。The details of each machine difference will be described in detail while being shown in the figure.

[關於晶圓中心位置的機差][About the machine center position of the wafer]

機差因素之一可顯示如下者:為了使承載有晶圓10的台子25移動於XY方向之X軸平台22的原點位置220與Y軸平台23的原點位置230,與承載晶圓10的台子上的晶圓10的中心位置的相對位置的差。One of the factors of the difference may be as follows: in order to move the stage 25 carrying the wafer 10 to the origin position 220 of the X-axis stage 22 in the XY direction and the origin position 230 of the Y-axis stage 23, and the carrier wafer 10 The difference in the relative position of the center position of the wafer 10 on the stage.

被承載於晶圓外觀檢查裝置1的台子25上的晶圓10的設計上的中心位置100是在設計上被決定,與檢查攝影機34的設計上的視野的中心位置340一致。但是,實際上被承載於台子25上的晶圓10的位置由於預對準裝置部7的定位精度或機械手臂51的運送位置精度或承載晶圓10於台子25時的側滑等而產生位置的變化,故在晶圓10的承載時會變化而不穩定。The design center position 100 of the wafer 10 carried on the table 25 of the wafer visual inspection device 1 is designed to coincide with the center position 340 of the visual field of view of the inspection camera 34. However, the position of the wafer 10 actually carried on the stage 25 is generated by the positioning accuracy of the pre-alignment device portion 7 or the conveyance position accuracy of the robot arm 51 or the side slip when the wafer 10 is placed on the table 25, and the like. The change is unstable and unstable during the loading of the wafer 10.

因此,在晶圓外觀檢查裝置1中,以檢查攝影機34檢測出晶圓10上的對準標記12的位置,以控制部4的控制 用電腦41運算相對位置的差分,調節θ軸平台24的角度,使檢查時的晶圓10的角度的差消失而進行補正。Therefore, in the wafer visual inspection device 1, the position of the alignment mark 12 on the wafer 10 is detected by the inspection camera 34, and is controlled by the control unit 4. The computer 41 calculates the difference in the relative position, adjusts the angle of the θ-axis stage 24, and corrects the difference in the angle of the wafer 10 at the time of inspection.

前述在晶圓10的θ方向的角度的差被補正的狀態下之檢查攝影機34的實際的中心位置341與晶圓10的實際的中心位置101的相對位置的差需以機差算出,當作機差補正資料。The difference between the actual center position 341 of the inspection camera 34 and the actual position of the actual center position 101 of the wafer 10 in the state where the difference in the angle of the wafer 10 in the θ direction is corrected is calculated by the machine difference, and is regarded as Machine correction data.

圖5是顯示本發明的晶圓外觀檢查裝置1中的X軸平台22與Y軸平台23與各部的位置關係之俯視圖。圖5(a)是顯示設計上的各部位置關係。Fig. 5 is a plan view showing the positional relationship between the X-axis stage 22 and the Y-axis stage 23 and the respective parts in the wafer appearance inspection device 1 of the present invention. Fig. 5(a) shows the positional relationship of each part in the design.

X軸平台22的原點位置220與Y軸平台23的原點位置230是顯示該場所為XY平面中的[零點]的位置。設計值是假設在由前述原點位置220使X軸平台22於X方向僅移動X0的位置221,且在由前述原點位置230使Y軸平台23於Y方向僅移動Y0的位置231之台子25的設計上的台子中心位置250,與被承載於台子25的晶圓10的設計上的中心位置100,與檢查攝影機34的設計上的視野的中心位置340一致。The origin position 220 of the X-axis stage 22 and the origin position 230 of the Y-axis stage 23 are positions indicating that the place is [zero point] in the XY plane. The design value is a table 231 at a position 221 at which the X-axis stage 22 is moved by X0 in the X direction by the aforementioned origin position 220, and at a position 231 where the Y-axis stage 23 is moved only by Y0 in the Y direction by the aforementioned origin position 230. The table center position 250 on the design of 25 coincides with the central position 100 of the design of the wafer 10 carried on the table 25, and the center position 340 of the visual field of view of the design of the inspection camera 34.

圖5(b)是顯示在實際被製作的裝置承載有晶圓的狀態中的各部位置關係之俯視圖。此時,顯示θ方向的角度的差已經被補正,僅留下XY方向的位置的差的狀態。Fig. 5(b) is a plan view showing the positional relationship of each part in a state in which a wafer is actually carried in a device to be fabricated. At this time, the difference in the angle in which the θ direction is displayed has been corrected, and only the state of the difference in the position in the XY direction is left.

在實際被製作的裝置中,X軸平台22的原點位置220與Y軸平台23的原點位置230,與檢查攝影機34之在被載設於實際被製作的裝置的狀態下的視野331的中心位置341的距離因有公差造成的差,故與設計上的視野的中心 位置340的距離不一致。In the actually fabricated apparatus, the origin position 220 of the X-axis stage 22 and the origin position 230 of the Y-axis stage 23, and the field of view 331 of the inspection camera 34 in the state of being mounted on the actually manufactured apparatus. The distance from the center position 341 is due to the tolerance caused by the tolerance, so the center of the design view The distance of position 340 is inconsistent.

設在由X軸平台22的原點位置220與Y軸平台23的原點位置230使X軸平台22於X方向僅移動X1的位置222,且在使Y軸平台23於Y方向僅移動Y1的位置232之台子25的實際的台子中心位置,與檢查攝影機34的實際的視野的中心位置341一致。於是,變成檢查攝影機34的設計上的視野的中心位置340與實際的視野的中心位置341的相對位置在X方向偏移X1,在Y方向偏移Y1。The X-axis stage 22 is moved by the origin position 220 of the X-axis stage 22 and the origin position 230 of the Y-axis stage 23 by only the position 222 of the X-axis in the X direction, and the Y-axis stage 23 is moved only by the Y1 in the Y direction. The actual table center position of the table 25 of position 232 coincides with the center position 341 of the actual field of view of the inspection camera 34. Then, the relative position of the center position 340 which becomes the design visual field of the inspection camera 34 and the center position 341 of the actual visual field shifts by X1 in the X direction and Y1 in the Y direction.

實際上被承載於台子25上的晶圓10的位置由於產生預對準裝置部7的定位精度或機械手臂51的運送位置精度,更進一步由於承載晶圓10於台子25時的側滑等的位置的變化,故在晶圓10的承載時會變化而不穩定。Actually, the position of the wafer 10 carried on the stage 25 is due to the positioning accuracy of the pre-alignment device portion 7 or the conveyance position accuracy of the robot arm 51, and further, due to the side slip of the wafer 10 when the wafer 25 is carried. The change in position is variable and unstable during the loading of the wafer 10.

因此,實際的台子中心位置與被承載的晶圓10的實際的中心位置101不一致。因此,為了求對晶圓10的近似圓,以檢查攝影機34拍攝晶圓10的圓周上,使用影像處理用電腦43,由所得到的晶圓10的外形位置資訊運算並算出晶圓10的實際的中心位置101。Therefore, the actual center position of the table does not coincide with the actual center position 101 of the wafer 10 being carried. Therefore, in order to obtain an approximate circle of the wafer 10, the image processing computer 43 is used to inspect the circumference of the wafer 10 by the inspection camera 34, and the actual shape information of the wafer 10 is calculated and the actual life of the wafer 10 is calculated. The central location is 101.

設此時的台子25上的晶圓10的實際的中心位置101與檢查攝影機34的實際的視野331的視野中心位置341的差於X方向為X2,於Y方向為Y2。The difference between the actual center position 101 of the wafer 10 on the stage 25 at this time and the field of view center position 341 of the actual field of view 331 of the inspection camera 34 is X2 in the X direction and Y2 in the Y direction.

以前述差分X1、Y1、X2、Y2當作關於攝影機中心位置與晶圓中心位置的機差補正資料登記。The difference X1, Y1, X2, and Y2 are registered as the difference correction data regarding the center position of the camera and the center position of the wafer.

[攝影光學單元的原點與對焦位置的機差][The difference between the origin of the photographic optical unit and the focus position]

機差的因素之一可顯示攝影光學單元3中的攝影光學 單元驅動部35之朝原點位置移動時的原點位置,與物鏡31的對焦位置的距離的差。前述距離的差是意味著在Z方向中顯示前述原點位置的[零點]與到物鏡31對焦於晶圓10上的對焦位置的距離的差。One of the factors of the machine difference can show the photographic optics in the photographic optical unit 3. The difference between the origin position when the unit drive unit 35 moves toward the origin position and the distance from the focus position of the objective lens 31. The difference in the aforementioned distance means the difference in the distance between the [zero point] at which the aforementioned origin position is displayed in the Z direction and the focus position at which the objective lens 31 is focused on the wafer 10.

如果對焦位置偏移,影像不鮮明,就無法得到正確的檢查結果。因此,使前述Z方向的[零點]與到對焦位置的距離一致在觀察並檢查晶圓10上的情形下變的重要。但是,若前述原點位置與檢查攝影機34的對焦位置有機差,則在某裝置中即使是對焦位置的座標值,在其他的裝置中發出移動指令給晶圓,使晶圓移動到相同的對焦位置的座標值也不會對焦。If the focus position is shifted and the image is not sharp, the correct result will not be obtained. Therefore, it is important to make the aforementioned [zero point] in the Z direction coincide with the distance to the in-focus position in the case where the wafer 10 is observed and inspected. However, if the origin position is organically different from the focus position of the inspection camera 34, even if it is the coordinate value of the focus position in a certain device, a movement command is issued to the wafer in the other device to move the wafer to the same focus. The coordinate value of the position will also not be in focus.

因此,需就Z方向的原點位置與檢查攝影機34的對焦位置的距離算出設計上的值與實際的值的差,當作關於攝影光學單元上下位置的機差補正資料登記。Therefore, it is necessary to calculate the difference between the design value and the actual value with respect to the distance between the origin position in the Z direction and the in-focus position of the inspection camera 34, and register as the difference correction data regarding the vertical position of the photographing optical unit.

圖6是顯示本發明的晶圓外觀檢查裝置1中的攝影光學單元3與各部的位置關係之側視圖。圖6(a)是顯示設計上的各部位置關係。前述攝影光學單元驅動部35的原點位置350是顯示該場所為Z方向中的[零點]的位置。Fig. 6 is a side view showing the positional relationship between the photographing optical unit 3 and the respective portions in the wafer appearance inspection device 1 of the present invention. Fig. 6(a) shows the positional relationship of each part on the design. The origin position 350 of the photographic optical unit drive unit 35 is a position indicating that the position is [zero point] in the Z direction.

設計值是由前述原點位置朝Z方向向下僅使攝影光學單元驅動部35移動Z0時,物鏡31對焦,以此時的攝影光學單元驅動部35的位置當作設計上的透鏡對焦位置310。設前述設計上的透鏡對焦位置310與晶圓的設計上的表面位置100z的距離為D0。When the design value is shifted from the origin position to the Z direction only when the photographing optical unit driving portion 35 is moved by Z0, the objective lens 31 is in focus, and the position of the photographing optical unit driving portion 35 at this time is regarded as the designed lens in-focus position 310. . The distance between the lens in-focus position 310 of the aforementioned design and the designed surface position 100z of the wafer is set to D0.

圖6(b)是顯示實際被製作的裝置中的各部位置關係之 側視圖。在實際被製作的裝置中,設設計上的透鏡對焦位置310與晶圓的實際的表面位置101z的距離為D1。在實際被製作的裝置中,由於前述D0與D1有因公差造成的差,故不一致。因此,由前述攝影光學單元驅動部的原點位置350朝Z方向向下僅移動Z0的距離之在前述設計上的透鏡對焦位置310中不對焦。Fig. 6(b) is a view showing the positional relationship of each part in the device actually produced. Side view. In the actually fabricated apparatus, the distance between the designed lens focus position 310 and the actual surface position 101z of the wafer is set to D1. In the device actually manufactured, since D0 and D1 have a difference due to tolerance, they are inconsistent. Therefore, the distance from the origin position 350 of the photographic optical unit driving portion to the Z direction downward only by Z0 is not focused in the lens focus position 310 of the aforementioned design.

假設晶圓的實際的表面位置101z對晶圓的設計上的表面位置100z是以朝Z方向向上僅偏移Z1。此情形,實際的透鏡對焦位置311位於由設計上的透鏡對焦位置310朝Z方向向上僅移動Z1的距離的位置。亦即,D0與D1的差、Z1成為攝影光學單元上下位置的機差。It is assumed that the actual surface position 101z of the wafer versus the designed surface position 100z of the wafer is shifted only Z1 upward in the Z direction. In this case, the actual lens focus position 311 is located at a position shifted by Z1 from the designed lens focus position 310 toward the Z direction upward. That is, the difference between D0 and D1 and Z1 become the difference between the upper and lower positions of the photographic optical unit.

該Z1當使用複數個物鏡31時,在各個物鏡31實際的透鏡對焦位置311不同。因此,就所有的物鏡31的對焦位置算出設計上的值與實際的值的差,當作關於攝影光學單元的原點與對焦位置的機差補正資料登記。When Z1 uses a plurality of objective lenses 31, the actual lens focus position 311 of each objective lens 31 is different. Therefore, the difference between the design value and the actual value is calculated for the in-focus position of all the objective lenses 31, and is registered as the difference correction data regarding the origin and the focus position of the photographing optical unit.

[物鏡或光學系統的觀察倍率的機差][The difference in the observation magnification of the objective lens or optical system]

機差的因素之一可顯示攝影時使用的物鏡31或光學系統33或檢查攝影機34中的實際的倍率及縱橫比。因在被使用於物鏡31或光學系統33的透鏡包含有加工時或組裝時的尺寸誤差,故有因設計上的倍率及縱橫比與實際的倍率及縱橫比而產生差的情形。亦即,有影像辨識(image recognition)以某裝置的檢查攝影機34拍攝的晶圓10上的已知尺寸的基準標記的情形的像素數,與在其他的裝置影像辨識前述基準標記的情形的像素數不一致的情形。因 此,需算出觀察規定尺寸時的設計上的像素數與實際的像素數的差,當作關於觀察倍率的機差補正資料登記。One of the factors of the machine difference can indicate the actual magnification and aspect ratio in the objective lens 31 or the optical system 33 used in photographing or in the inspection camera 34. Since the lens used in the objective lens 31 or the optical system 33 includes a dimensional error during processing or assembly, there is a case where the design magnification and the aspect ratio are different from the actual magnification and the aspect ratio. That is, there are image recognition images of the case where the reference mark of a known size on the wafer 10 is taken by the inspection camera 34 of a certain device, and the pixel of the case where the reference mark is recognized by another device image. The number is inconsistent. because Therefore, it is necessary to calculate the difference between the number of pixels on the design and the actual number of pixels when the predetermined size is observed, and to register the difference correction data regarding the observation magnification.

圖7是顯示本發明的晶圓外觀檢查裝置中的光學系統尺寸與各部尺寸的關係之俯視圖。圖7(a)是顯示在設計上的晶圓外觀檢查裝置1中使用攝影光學單元3拍攝已知尺寸的前述尺寸基準標記17的狀態之俯視圖。Fig. 7 is a plan view showing the relationship between the size of the optical system and the size of each part in the wafer appearance inspection device of the present invention. Fig. 7 (a) is a plan view showing a state in which the above-described size reference mark 17 of a known size is imaged by the photographing optical unit 3 in the design of the wafer visual inspection device 1.

物鏡31與光學系統33往往是各自使用複數個透鏡而構成,惟在本說明中各自以一片透鏡圖化進行說明。The objective lens 31 and the optical system 33 are often constituted by using a plurality of lenses, respectively, but in the description, each lens is illustrated.

首先,選擇被圖案形成於晶圓10上的已知尺寸的前述尺寸基準標記17。前述尺寸基準標記17透過物鏡31與光學系統33當作被拍攝於檢查攝影機34的設計上的視野330a內的尺寸基準標記170被拍攝。此時,晶圓上的設計上的視野330b成為以圖顯示的範圍。First, the aforementioned size reference mark 17 of a known size patterned on the wafer 10 is selected. The size reference mark 17 is imaged by the objective lens 31 and the optical system 33 as the size reference mark 170 captured in the visual field 330a of the design of the inspection camera 34. At this time, the design field of view 330b on the wafer is in the range shown in the figure.

前述尺寸基準標記17的尺寸為已知,設X方向的尺寸為Mx0,Y方向的尺寸為My0。此時,設被拍攝於前述視野330a內的尺寸基準標記170的X方向的像素數為Qx0,Y方向的像素數為Qy0。The size of the aforementioned size reference mark 17 is known, and the size in the X direction is Mx0, and the size in the Y direction is My0. At this time, the number of pixels in the X direction of the size reference mark 170 captured in the field of view 330a is Qx0, and the number of pixels in the Y direction is Qy0.

而且,若定義X方向的影像解析度(image resolution)為α x0,Y方向的影像解析度為α y0,則能以公式(1)、(2)表示。Further, if the image resolution in the X direction is defined as α x0 and the image resolution in the Y direction is α y0 , it can be expressed by equations (1) and (2).

[公式2] [Formula 2]

前述影像解析度是意味著對檢查攝影機34的攝影元件1像素之被攝影物的設計上的尺寸。The image resolution is a design size that means that the object of the image of the imaging element 1 of the inspection camera 34 is inspected.

圖7(b)是顯示在實際的晶圓外觀檢查裝置1中使用攝影光學單元3拍攝前述尺寸基準標記17的狀態之俯視圖。FIG. 7(b) is a plan view showing a state in which the size reference mark 17 is imaged by the photographing optical unit 3 in the actual wafer visual inspection device 1.

晶圓10上的前述尺寸基準標記17透過物鏡31與光學系統33當作被拍攝於檢查攝影機34的實際的視野331a內的尺寸基準標記171被拍攝。前述尺寸基準標記17的尺寸為已知,設X方向的尺寸為Mx0,Y方向的尺寸為My0。此時,設被拍攝於前述檢查攝影機34的實際的視野331a內的尺寸基準標記171的X方向的像素數為Qx1,Y方向的像素數為Qy1。而且,晶圓上的實際的視野331b成為以圖顯示的範圍。The size reference mark 17 on the wafer 10 is imaged by the objective lens 31 and the optical system 33 as the size reference mark 171 captured in the actual field of view 331a of the inspection camera 34. The size of the aforementioned size reference mark 17 is known, and the size in the X direction is Mx0, and the size in the Y direction is My0. At this time, the number of pixels in the X direction of the size reference mark 171 captured in the actual field of view 331a of the inspection camera 34 is Qx1, and the number of pixels in the Y direction is Qy1. Moreover, the actual field of view 331b on the wafer is in the range shown in the figure.

若設尺寸為未知的標記17a的X方向的尺寸為Mx2,Y方向的尺寸為My2,被拍攝於前述檢查攝影機34的實際的視野331a內的尺寸為未知的標記17a的實際的X方向的像素數為Qx2,Y方向的像素數為Qy2,則關係式能以公式(3)~(8)表示。If the size of the mark 17a having the unknown size is Mx2 and the size of the Y direction is My2, the pixel in the actual X direction of the mark 17a whose size is unknown in the actual field of view 331a of the inspection camera 34 is taken. The number is Qx2, and the number of pixels in the Y direction is Qy2, and the relation can be expressed by the formulas (3) to (8).

[公式3]Mx2:Qx2=Mx0:Qx1[Formula 3] Mx2: Qx2 = Mx0: Qx1

[公式4]My2:Qy2=My0:Qy1[Formula 4] My2: Qy2=My0: Qy1

[公式5] [Formula 5]

而且,若定義X方向的影像解析度為α x1,Y方向的影像解析度為α y1,則能以公式(7)、(8)表示。Further, if the image resolution in the X direction is defined as α x1 and the image resolution in the Y direction is α y1 , it can be expressed by equations (7) and (8).

前述影像解析度是意味著對檢查攝影機34的攝影元件1像素之被攝影物的實際的尺寸。該影像解析度是因物鏡31或光學系統33的組合而不同。因此,在前述物鏡31與前述光學系統33的全部的組合中算出觀察規定尺寸時的設計上的像素數與實際的像素數的差,當作與觀察倍率有關的機差補正資料登記。The image resolution is the actual size of the object to be imaged by the imaging element 1 of the inspection camera 34. This image resolution differs depending on the combination of the objective lens 31 or the optical system 33. Therefore, in the combination of the objective lens 31 and the optical system 33, the difference between the number of pixels on the design and the actual number of pixels when the predetermined size is observed is calculated, and the difference correction data relating to the observation magnification is registered.

[照明用光源的亮度設定值與亮度的機差][The difference between the brightness setting value of the light source for illumination and the brightness]

機差的因素之一可顯示使用於攝影的光源中的光量調整用設定值與實際的亮度的差。One of the factors of the machine difference can show the difference between the set value for adjusting the amount of light used in the light source for photography and the actual brightness.

在晶圓外觀檢查裝置1中藉由來自控制用電腦41的控制信號進行照明用光源36的亮度設定。在控制用電腦41 內因前述控制信號為數值,亦即數位信號,故不會產生機差。In the wafer visual inspection device 1, the brightness of the illumination light source 36 is set by a control signal from the control computer 41. In the control computer 41 The internal control signal is a numerical value, that is, a digital signal, so that no machine difference is generated.

但是,來自控制用電腦41對照明用光源36或者對照明用光源36內的照明調光部是以類比信號進行亮度的控制。而且,即使亮度控制的類比信號的值相同,也因照明各個的偏差或照明至物鏡的光的透射率(transmission factor)或由物鏡經光學系統到檢查攝影機的光的透射率而每一裝置成為機差。因此,在複數台晶圓外觀檢查裝置1中即使令以控制用電腦41設定的亮度的設定值相同,也會有實際的亮度產生機差的情形。However, the control computer 41 controls the brightness of the illumination light source 36 or the illumination light control unit in the illumination light source 36 with an analog signal. Moreover, even if the value of the analog signal of the brightness control is the same, each device becomes a difference due to the deviation of the illumination or the transmission factor of the light that is illuminated to the objective lens or the transmittance of the light from the objective lens to the inspection camera through the optical system. Machine difference. Therefore, even if the set values of the brightness set by the control computer 41 are the same in the plurality of wafer visual inspection devices 1, there is a case where the actual brightness is poor.

因此,需使用預先成為基準的晶圓,一邊慢慢地改變照明的亮度的設定值,一邊測定實際的亮度算出為了得到規定的亮度之設計上的設定值與實際的設定值的差,當作關於亮度與設定值的機差補正資料登記。Therefore, it is necessary to calculate the difference between the design setting value for obtaining the predetermined brightness and the actual setting value by measuring the actual brightness while slowly changing the setting value of the brightness of the illumination using the wafer which is the standard. Registration of the difference correction data about the brightness and the set value.

圖8(a)是顯示照明用光源的亮度設定值與設計上的亮度的關係之圖表。縱軸成為亮度B,橫軸成為照明用光源的亮度設定值A。Fig. 8(a) is a graph showing the relationship between the brightness setting value of the illumination light source and the design brightness. The vertical axis is the brightness B, and the horizontal axis is the brightness setting value A of the illumination light source.

若設以當作暗點的亮度設定值DA0的設計上的亮度為DP0,以當作明點的亮度設定值BA0的設計上的亮度為BP0,則照明用光源的亮度設定值與設計上的亮度變成如以BC0圖示的以公式(9)、(10)表示的關係式。If the brightness of the design of the brightness setting value DA0 as the dark point is DP0, and the brightness of the design of the brightness setting value BA0 as the bright point is BP0, the brightness setting value of the illumination source and the design are The luminance becomes a relation expressed by the formulas (9) and (10) as illustrated by BC0.

亦即 that is

使用前述公式(10),可算出對所要的亮度B之設計上的照明用光源的亮度設定值A。Using the above formula (10), the brightness setting value A of the illumination light source for the desired brightness B can be calculated.

圖8(b)是顯示照明用光源的亮度設定值與實際的亮度的關係之圖表。縱軸成為亮度B,橫軸成為照明用光源的亮度設定值A。Fig. 8(b) is a graph showing the relationship between the brightness setting value of the illumination light source and the actual brightness. The vertical axis is the brightness B, and the horizontal axis is the brightness setting value A of the illumination light source.

如當作暗點的亮度DP0的實際的照明用光源的亮度設定值成為DA1,如當作明點的亮度BP0的實際的照明用光源的亮度設定值成為BA1。因此,照明用光源的亮度設定值與實際的亮度變成如以BC1圖示的以公式(11)、(12)表示的關係式。The brightness setting value of the actual illumination light source of the brightness DP0 which is a dark spot is DA1, and the brightness setting value of the actual illumination light source which is the brightness BP0 which is a bright point becomes BA1. Therefore, the brightness setting value and the actual brightness of the illumination light source become a relational expression expressed by the formulas (11) and (12) as shown by BC1.

亦即 that is

使用前述公式(12),可算出對所要的亮度B之實際的照明用光源的亮度設定值A。Using the above formula (12), the brightness setting value A of the actual illumination light source for the desired brightness B can be calculated.

在前述公式(10)、(12)中,成為所要的亮度之設計上 的設定值與實際的設定值的差為每一實際製作的裝置不同,成為機差。而且,會因使用的物鏡31或光學系統33、檢查攝影機34的組合而不同。In the above formulas (10) and (12), the design of the desired brightness is achieved. The difference between the set value and the actual set value is different for each device actually produced, and becomes a machine difference. Further, it differs depending on the combination of the objective lens 31 used, the optical system 33, and the inspection camera 34.

因此,在使用的物鏡31或光學系統33、檢查攝影機34全部的組合中,算出對所要的亮度之設計上的亮度設定值與實際的亮度設定值的差,當作關於照明亮度的機差補正資料登記。Therefore, in the combination of the objective lens 31, the optical system 33, and the inspection camera 34, the difference between the design brightness setting value of the desired brightness and the actual brightness setting value is calculated as the machine difference correction with respect to the illumination brightness. Registration of information.

透過依照前述的程序,每一裝置算出機差,以裝置固有的機差補正資料登記,由在某裝置作成的檢查條件資料產生可在其他的裝置使用的共同檢查條件資料。然後在其他的裝置中,由前述機差補正資料與前述共同檢查條件資料產生有該裝置用的檢查條件資料。According to the above-described procedure, each device calculates a machine difference, registers the machine-specific difference correction data, and generates common inspection condition data that can be used in other devices from the inspection condition data created by the device. Then, in other devices, the inspection condition data for the device is generated from the aforementioned difference correction data and the aforementioned common inspection condition data.

因此,無須如以習知的裝置進行的以全部的裝置進行作成每一品種的檢查條件資料的作業,也無須在發生系統故障等的情形下進行的檢查條件資料的再登記作業。Therefore, it is not necessary to perform the work of preparing the inspection condition data for each type with all the devices as in the conventional device, and it is not necessary to re-register the inspection condition data in the case of a system failure or the like.

其結果,能以短時間產生共同的複數品種的檢查條件資料,可節省各自重新作成資料的時間與勞力。As a result, the inspection condition data of a common plural variety can be generated in a short time, and the time and labor for re-creating the materials can be saved.

1‧‧‧晶圓外觀檢查裝置1‧‧‧ Wafer visual inspection device

2‧‧‧檢查平台部2‧‧‧Check Platform Department

3‧‧‧攝影光學單元3‧‧‧Photographic optical unit

4‧‧‧控制部4‧‧‧Control Department

5‧‧‧晶圓運送部5‧‧‧ Wafer Transport Department

10‧‧‧晶圓10‧‧‧ wafer

11‧‧‧定向平邊11‧‧‧ orientation flat

12‧‧‧對準標記12‧‧‧ alignment mark

12a‧‧‧每一晶片的對準標記12a‧‧‧ Alignment marks for each wafer

13‧‧‧半導體晶片電路圖案13‧‧‧Semiconductor chip circuit pattern

14‧‧‧半導體晶片電路部14‧‧‧Semiconductor Chip Circuit Division

15‧‧‧半導體晶片電極部15‧‧‧Semiconductor wafer electrode

16‧‧‧半導體晶片群16‧‧‧Semiconductor wafer group

17、17a‧‧‧已知尺寸的尺寸基準標記17, 17a‧‧‧ Size reference marks of known sizes

21‧‧‧裝置底座21‧‧‧Device base

22‧‧‧X軸平台22‧‧‧X-axis platform

23‧‧‧Y軸平台23‧‧‧Y-axis platform

24‧‧‧θ軸平台24‧‧‧theta axis platform

25‧‧‧台子25‧‧‧Table

31‧‧‧物鏡31‧‧‧ Objective lens

32‧‧‧旋轉器機構32‧‧‧Rotator mechanism

33‧‧‧光學系統33‧‧‧Optical system

34‧‧‧檢查攝影機34‧‧‧Check camera

35‧‧‧攝影光學單元驅動部35‧‧‧Photographic Optical Unit Drive Department

36‧‧‧照明用光源36‧‧‧Light source for illumination

37‧‧‧支柱部37‧‧‧ Pillars

41‧‧‧控制用電腦41‧‧‧Control computer

42‧‧‧資料管理用電腦42‧‧‧Computer for data management

43‧‧‧影像處理用電腦43‧‧‧Computer for image processing

44a、44b‧‧‧資訊顯示手段44a, 44b‧‧‧Information display means

44c‧‧‧顯示切換手段44c‧‧‧Display switching means

45‧‧‧資訊輸入手段45‧‧‧Information input means

45a‧‧‧輸入切換手段45a‧‧‧Input switching means

46a、46b、46c‧‧‧資訊記錄媒體46a, 46b, 46c‧‧‧Information recording media

47‧‧‧資料存取手段47‧‧‧Information access means

51‧‧‧機械手臂51‧‧‧ Robotic arm

52‧‧‧手部52‧‧‧Hands

61‧‧‧晶圓匣盒61‧‧‧ wafer cassette

62‧‧‧晶圓匣盒承載台62‧‧‧ Wafer cassette carrier

100‧‧‧晶圓的設計上的中心位置100‧‧‧Center position on the design of the wafer

100z‧‧‧晶圓的設計上的表面位置100z‧‧‧ Surface position on the design of the wafer

101‧‧‧晶圓的實際的中心位置101‧‧‧The actual center position of the wafer

101z‧‧‧晶圓的實際的表面位置101z‧‧‧ actual surface position of the wafer

170‧‧‧被拍攝於檢查攝影機的設計上的視野內的尺寸基準標記170‧‧‧ Dimensional fiducial marks taken in the field of view of the design of the inspection camera

171‧‧‧被拍攝於檢查攝影機的實際的視野內的尺寸基準標記171‧‧‧ Dimensional fiducial marks taken in the actual field of view of the inspection camera

220‧‧‧X軸平台的原點位置220‧‧‧X-axis platform origin position

221‧‧‧由原點位置使X軸平台於X方向僅移動X0的位置221‧‧‧The position of the X-axis platform moving only X0 in the X direction from the origin position

222‧‧‧由原點位置使X軸平台於X方向僅移動X1的位置222‧‧‧The X-axis platform is moved by X1 only in the X direction from the origin position

230‧‧‧Y軸平台的原點位置230‧‧‧Home position of the Y-axis platform

231‧‧‧由原點位置使Y軸平台於Y方向僅移動Y0的位置231‧‧‧The position of the Y-axis platform moving only Y0 in the Y direction from the origin position

232‧‧‧由原點位置使Y軸平台於Y方向僅移動Y1的位置232‧‧‧The position of the Y-axis platform moving only Y1 in the Y direction from the origin position

250‧‧‧設計上的台子中心位置250‧‧‧Design of the center of the table

310‧‧‧設計上的透鏡對焦位置310‧‧‧Design lens focus position

311‧‧‧實際的透鏡對焦位置311‧‧‧ Actual lens focus position

330、330a、330b‧‧‧檢查攝影機的設計上的視野330, 330a, 330b‧‧‧Check the visual field of view of the camera

331、331a、331b‧‧‧檢查攝影機的實際的視野331, 331a, 331b‧‧‧Check the actual field of view of the camera

340‧‧‧檢查攝影機的設計上的視野的中心位置340‧‧‧Check the center of the field of view of the camera design

341‧‧‧檢查攝影機的實際的視野的中心位置341‧‧‧Check the center position of the actual field of view of the camera

350‧‧‧攝影光學單元驅動部的原點位置350‧‧‧Home position of the photographic optical unit drive

圖1是本發明的晶圓外觀檢查裝置之斜視圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view of a wafer appearance inspection device of the present invention.

圖2是本發明的晶圓外觀檢查裝置之構成圖。Fig. 2 is a view showing the configuration of a wafer appearance inspection device of the present invention.

圖3是顯示圖案形成於晶圓上的半導體晶片的一例之圖。3 is a view showing an example of a semiconductor wafer in which a pattern is formed on a wafer.

圖4是顯示本發明的檢查條件資料產生程序之流程圖。Fig. 4 is a flow chart showing the inspection condition data generation program of the present invention.

圖5是顯示本發明的晶圓外觀檢查裝置中的X軸平台與Y軸平台與各部的位置關係之俯視圖。Fig. 5 is a plan view showing a positional relationship between an X-axis stage and a Y-axis stage and respective parts in the wafer appearance inspection device of the present invention.

圖6是顯示本發明的晶圓外觀檢查裝置中的攝影光學單元3與各部的位置關係之側視圖。Fig. 6 is a side view showing the positional relationship between the photographing optical unit 3 and the respective portions in the wafer appearance inspection device of the present invention.

圖7是顯示本發明的晶圓外觀檢查裝置中的光學系統尺寸與各部尺寸的關係之俯視圖。Fig. 7 is a plan view showing the relationship between the size of the optical system and the size of each part in the wafer appearance inspection device of the present invention.

圖8是顯示本發明的晶圓外觀檢查裝置中的照明用光源的設定值與亮度的關係之圖表。8 is a graph showing the relationship between the set value of the illumination light source and the brightness in the wafer appearance inspection device of the present invention.

圖9是顯示習知的檢查條件資料產生程序之流程圖。Fig. 9 is a flow chart showing a conventional inspection condition data generating program.

Claims (4)

一種晶圓檢查條件產生方法,產生檢查形成於晶圓上的半導體晶片的外觀的複數個檢查裝置的檢查條件資料,包含:每一晶圓檢查裝置算出對設計值的機差,接著登記機差補正資料之機差補正資料登記步驟;在被選擇的任一台晶圓檢查裝置中,使用晶圓產生檢查條件資料之第一檢查條件資料產生步驟;由該檢查條件資料與該被選擇的任一台晶圓檢查裝置的該機差補正資料產生共同檢查條件資料之共同檢查條件資料產生步驟;以及由該共同檢查條件資料與每一晶圓檢查裝置的該機差補正資料產生每一晶圓檢查裝置的檢查條件資料之第二檢查條件資料產生步驟。 A wafer inspection condition generating method for generating inspection condition data of a plurality of inspection apparatuses for inspecting an appearance of a semiconductor wafer formed on a wafer, comprising: calculating, by each wafer inspection apparatus, a machine difference from a design value, and then registering a machine difference Correcting the machine difference correction data registration step; in the selected wafer inspection device, using the wafer to generate the inspection condition data first inspection condition data generation step; the inspection condition data and the selected one The machine difference correction data of a wafer inspection device generates a common inspection condition data generation step of the common inspection condition data; and each wafer is generated from the common inspection condition data and the machine difference correction data of each wafer inspection device The second inspection condition data generation step of the inspection condition data of the inspection device. 如申請專利範圍第1項之晶圓檢查條件產生方法,其中該機差補正資料至少包含如下的任一個誤差資料:配設於晶圓檢查裝置之承載晶圓的台子的檢查平台的原點位置,與檢查晶圓的檢查攝影機的中心位置及承載於該檢查平台的晶圓的中心位置的誤差資料;檢查晶圓的檢查攝影機的對焦位置的誤差資料;包含於該檢查攝影機的透鏡的觀察倍率的誤差資料;以及包含於該檢查攝影機的照明用光源的對所要亮度之設定值的誤差資料。 The method for generating a wafer inspection condition according to the first aspect of the patent application, wherein the difference correction data includes at least one of the following error data: an origin position of an inspection platform disposed on a wafer carrying device of the wafer inspection device And an error data of the center position of the inspection camera for inspecting the wafer and the center position of the wafer carried on the inspection platform; an error data of the in-focus position of the inspection camera of the inspection wafer; and an observation magnification of the lens included in the inspection camera The error data; and the error data of the set value of the desired brightness included in the illumination light source of the inspection camera. 一種晶圓檢查系統,產生檢查形成於晶圓上的半導體晶片的外觀的複數個檢查裝置的檢查條件資料,包含:每一晶圓檢查裝置算出對設計值的機差,接著登記機差補正資料之機差補正資料登記手段;在被選擇的任一台晶圓檢查裝置中,使用晶圓產生檢查條件資料之第一檢查條件資料產生手段;由該檢查條件資料與該被選擇的任一台晶圓檢查裝置的該機差補正資料產生共同檢查條件資料之共同檢查條件資料產生手段;以及由該共同檢查條件資料與每一晶圓檢查裝置的該機差補正資料產生每一晶圓檢查裝置的檢查條件資料之第二檢查條件資料產生手段。 A wafer inspection system for generating inspection condition data of a plurality of inspection devices for inspecting an appearance of a semiconductor wafer formed on a wafer, comprising: calculating, by each wafer inspection device, a machine difference from a design value, and then registering the machine correction data The machine difference correction data registration means; in any of the selected wafer inspection apparatuses, the first inspection condition data generation means for generating the inspection condition data using the wafer; and the inspection condition data and the selected one of the selected The machine difference correction data of the wafer inspection device generates a common inspection condition data generation means for jointly checking condition data; and each wafer inspection device is generated from the common inspection condition data and the machine difference correction data of each wafer inspection device The second inspection condition data generation means of the inspection condition data. 如申請專利範圍第3項之晶圓檢查系統,其中該機差補正資料至少包含如下的任一個誤差資料:配設於晶圓檢查裝置之承載晶圓的台子的檢查平台的原點位置,與檢查晶圓的檢查攝影機的中心位置及承載於該檢查平台的晶圓的中心位置的誤差資料;檢查晶圓的檢查攝影機的對焦位置的誤差資料;包含於該檢查攝影機的透鏡的觀察倍率的誤差資料;以及包含於該檢查攝影機的照明用光源的對所要亮度之設定值的誤差資料。 For example, in the wafer inspection system of claim 3, wherein the difference correction data includes at least one of the following error data: an origin position of an inspection platform disposed on the wafer carrying device of the wafer inspection device, and Checking the center position of the inspection camera of the wafer and the error data of the center position of the wafer carried on the inspection platform; checking the error data of the focus position of the inspection camera of the wafer; the error of the observation magnification of the lens included in the inspection camera Data; and error data of the set value of the desired brightness included in the illumination source for the inspection camera.
TW99100171A 2009-03-31 2010-01-06 Method and inspection system for inspection conditions of semiconductor wafer appearance inspection device TWI402927B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087456A JP5193112B2 (en) 2009-03-31 2009-03-31 Inspection condition data generation method and inspection system for semiconductor wafer appearance inspection apparatus

Publications (2)

Publication Number Publication Date
TW201036082A TW201036082A (en) 2010-10-01
TWI402927B true TWI402927B (en) 2013-07-21

Family

ID=42827704

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99100171A TWI402927B (en) 2009-03-31 2010-01-06 Method and inspection system for inspection conditions of semiconductor wafer appearance inspection device

Country Status (4)

Country Link
JP (1) JP5193112B2 (en)
CN (1) CN102349142B (en)
TW (1) TWI402927B (en)
WO (1) WO2010113386A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460029B (en) * 2011-03-25 2015-08-19 东丽工程株式会社 appearance inspection method and device thereof
JP5854501B2 (en) * 2011-11-17 2016-02-09 東レエンジニアリング株式会社 Automatic visual inspection equipment
JP5818651B2 (en) * 2011-11-22 2015-11-18 株式会社キーエンス Image processing device
CN102937594B (en) * 2012-11-02 2015-01-21 上海华力微电子有限公司 Defect detecting system and method
JP6063313B2 (en) 2013-03-22 2017-01-18 株式会社東芝 Electronic device manufacturing support system, manufacturing support method, and manufacturing support program
JP6142655B2 (en) * 2013-05-09 2017-06-07 株式会社島津製作所 Appearance inspection apparatus and appearance inspection method
CN103489817B (en) * 2013-09-30 2016-01-27 上海华力微电子有限公司 defect detecting system and method
JP6012655B2 (en) * 2014-03-28 2016-10-25 東レエンジニアリング株式会社 Inspection condition data generation method and inspection condition data generation system for wafer inspection apparatus
KR20150114795A (en) 2014-04-02 2015-10-13 삼성전자주식회사 A method of testing a semiconductor memory device, a test device, and compurter readable recording media recording test program for a semiconductor memory device
JP6802081B2 (en) * 2017-02-10 2020-12-16 東レエンジニアリング株式会社 Wafer type chip tray and visual inspection equipment
JP6337179B2 (en) * 2017-05-10 2018-06-06 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Apparatus and method for determining alignment error
JP6777604B2 (en) 2017-08-28 2020-10-28 ファナック株式会社 Inspection system and inspection method
JP6740288B2 (en) * 2018-07-13 2020-08-12 ファナック株式会社 Object inspection apparatus, object inspection system, and method for adjusting inspection position
CN115346904A (en) * 2022-08-08 2022-11-15 魅杰光电科技(上海)有限公司 Wafer conveying and measuring system
WO2024053198A1 (en) * 2022-09-06 2024-03-14 株式会社ジャパンディスプレイ Method for inspecting luminescent elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060091309A1 (en) * 2004-10-29 2006-05-04 Mayuka Oosaki Scanning electron microscope, method for measuring a dimension of a pattern using the same, and apparatus for correcting difference between scanning electron microscopes
TW200624798A (en) * 2004-11-30 2006-07-16 Shinko Engineering Co Ltd Visual appearance inspection device and carrier thereof
TW200737301A (en) * 2006-02-03 2007-10-01 Nikon Corp Substrate processing method, substrate processing system, program, and recording medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048148A (en) * 1996-08-05 1998-02-20 Sony Corp Object inspection apparatus
JP2002353104A (en) * 2001-05-24 2002-12-06 Hitachi Ltd Exposure method of semiconductor device, aligner and program thereof
JP4812318B2 (en) * 2004-10-29 2011-11-09 株式会社日立ハイテクノロジーズ Method for measuring pattern dimensions using a scanning electron microscope
JP4638800B2 (en) * 2005-10-27 2011-02-23 株式会社日立ハイテクノロジーズ Machine difference management system and method in scanning electron microscope apparatus
JP2008128651A (en) * 2006-11-16 2008-06-05 Olympus Corp Pattern alignment method, and pattern inspecting device and system
JP5264118B2 (en) * 2007-07-31 2013-08-14 株式会社日立ハイテクノロジーズ Electron microscope and sample management method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060091309A1 (en) * 2004-10-29 2006-05-04 Mayuka Oosaki Scanning electron microscope, method for measuring a dimension of a pattern using the same, and apparatus for correcting difference between scanning electron microscopes
TW200624798A (en) * 2004-11-30 2006-07-16 Shinko Engineering Co Ltd Visual appearance inspection device and carrier thereof
TW200737301A (en) * 2006-02-03 2007-10-01 Nikon Corp Substrate processing method, substrate processing system, program, and recording medium

Also Published As

Publication number Publication date
CN102349142B (en) 2013-07-03
JP5193112B2 (en) 2013-05-08
JP2010239041A (en) 2010-10-21
TW201036082A (en) 2010-10-01
WO2010113386A1 (en) 2010-10-07
CN102349142A (en) 2012-02-08

Similar Documents

Publication Publication Date Title
TWI402927B (en) Method and inspection system for inspection conditions of semiconductor wafer appearance inspection device
JP2008128651A (en) Pattern alignment method, and pattern inspecting device and system
JP5895332B2 (en) Position detection apparatus, overlay apparatus, position detection method, and device manufacturing method
TWI633279B (en) Substrate measuring device and laser processing system
US9140546B2 (en) Apparatus and method for three dimensional inspection of wafer saw marks
JP2006329714A (en) Lens inspection apparatus
KR20210088424A (en) Substrate processing apparatus and substrate processing method
JP4289961B2 (en) Positioning device
JP2007059640A (en) Visual inspection equipment
JPH11214900A (en) Method a and system for correcting deviation of camera positions and dummy part for correcting camera positions
CN117524911B (en) Position deviation compensation method caused by temperature change of image sensor
JPH09306977A (en) Positioning wafer in wafer tester, etc.
US6963394B2 (en) Inspecting device for semiconductor wafer
TW201537309A (en) Displacement detection method, displacement detection apparatus, drawing apparatus and substrate inspection apparatus
JP2022061127A (en) Exterior appearance inspection device and method
JP6976205B2 (en) Chip position measuring device
JP7440355B2 (en) Alignment equipment, film forming equipment, alignment method, electronic device manufacturing method, program and storage medium
CN115628685A (en) Method and equipment for measuring critical dimension and method for positioning critical dimension in grading manner
KR20220097139A (en) Semiconductor package inspection unit and semiconductor package sawing and sorting apparatus including the same
JP2008014650A (en) Surface defect inspection apparatus
KR20220097138A (en) Semiconductor package sawing and sorting apparatus
JP2006261501A (en) Wafer id reader and wafer id reading method
JP4334917B2 (en) Alignment device
JP2007292606A (en) Surface inspection device
JP2003148930A (en) Substrate inspection device