TWI401477B - Optical filter for compensating for color shift and display device having the same - Google Patents

Optical filter for compensating for color shift and display device having the same Download PDF

Info

Publication number
TWI401477B
TWI401477B TW098131794A TW98131794A TWI401477B TW I401477 B TWI401477 B TW I401477B TW 098131794 A TW098131794 A TW 098131794A TW 98131794 A TW98131794 A TW 98131794A TW I401477 B TWI401477 B TW I401477B
Authority
TW
Taiwan
Prior art keywords
filter
green
film layer
layer
absorbing
Prior art date
Application number
TW098131794A
Other languages
Chinese (zh)
Other versions
TW201013236A (en
Inventor
Seong Sik Park
Seung Won Park
Sung Nim Jo
In Sung Sohn
Sang Cheol Jung
Ji Yoon Yeom
Eui Soo Kim
Original Assignee
Samsung Corning Prec Mat Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Corning Prec Mat Co filed Critical Samsung Corning Prec Mat Co
Publication of TW201013236A publication Critical patent/TW201013236A/en
Application granted granted Critical
Publication of TWI401477B publication Critical patent/TWI401477B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/286Interference filters comprising deposited thin solid films having four or fewer layers, e.g. for achieving a colour effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10449Wavelength selective transmission
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

用於補償顏色偏移之濾光器及具有其之顯示裝置Filter for compensating color shift and display device therewith

本申請案主張以下韓國專利申請案之優先權:2008年9月22日申請之韓國專利申請案第10-2008-0092655號、2008年9月22日申請之韓國專利申請案第10-2008-0092656號、2008年9月22日申請之韓國專利申請案第10-2008-0092657號、2008年10月7日申請之韓國專利申請案第10-2008-0098120號、2009年2月6日申請之韓國專利申請案第10-2009-0009883號,及2009年9月17日申請之韓國專利申請案第10-2009-0087906號,該等申請案之全部內容出於所有目的均以引用之方式併入本文。The present application claims the priority of the following Korean Patent Application: Korean Patent Application No. 10-2008-0092655, filed on Sep. 22, 2008, and Korean Patent Application No. 10-2008, filed on Sep. 22, 2008 Application No. 0092656, Korean Patent Application No. 10-2008-0092657, filed on Sep. 22, 2008, and Korean Patent Application No. 10-2008-0098120, filed on Oct. 7, 2008, filed on Feb. 6, 2009 The Korean Patent Application No. 10-2009-0009883, and the Korean Patent Application No. 10-2009-0087906, filed on Sep. 17, 2009, the entire contents of each of Incorporated herein.

本發明係關於一種用於補償顏色偏移之濾光器,尤相關於一種提供於一顯示面板之前以最小化根據視角增加之顏色偏移之濾光器,且係關於一種具有其之顯示裝置。The present invention relates to a filter for compensating for color shift, and more particularly to a filter provided before a display panel to minimize color shift according to viewing angle, and relates to a display device having the same .

因應高階資訊社會之最近出現,與影像顯示器有關之組件及裝置正得以顯著改良且迅速分佈。其中,待用於電視、個人電腦之監視器等之影像顯示裝置正得以廣泛分佈。此外,嘗試擴大顯示裝置之大小同時減小其厚度。In response to the recent emergence of high-level information society, components and devices related to image displays are being significantly improved and rapidly distributed. Among them, image display devices to be used for monitors for televisions, personal computers, and the like are widely distributed. In addition, attempts have been made to increase the size of the display device while reducing its thickness.

一般而言,液晶顯示器(LCD)為使用液晶顯示影像之一種類型之平板顯示器。LCD廣泛用於工業中,因為其與其他顯示裝置相比具有諸如重量輕、驅動電壓低及功率消耗低的優點。In general, a liquid crystal display (LCD) is a type of flat panel display that uses liquid crystal display images. LCDs are widely used in the industry because they have advantages such as light weight, low driving voltage, and low power consumption compared to other display devices.

第1圖為示意性圖示LCD 100之基本結構及操作原理的概念圖。FIG. 1 is a conceptual diagram schematically illustrating the basic structure and operation principle of the LCD 100.

舉例而言,慣用垂直對準(VA)LCD包括兩個極化膜110及120,其光軸彼此垂直。具有雙折射特性之液晶分子150配置於兩個透明基板130之間,該兩個透明基板130塗有透明電極140。當自電源單元180施加電場時,液晶分子移動且對準成垂直於電場。For example, a conventional vertical alignment (VA) LCD includes two polarizing films 110 and 120 whose optical axes are perpendicular to each other. The liquid crystal molecules 150 having birefringence characteristics are disposed between the two transparent substrates 130, and the two transparent substrates 130 are coated with the transparent electrodes 140. When an electric field is applied from the power supply unit 180, the liquid crystal molecules move and are aligned perpendicular to the electric field.

自背光單元發射之光在傳遞通過第一極化膜120後線性極化。Light emitted from the backlight unit is linearly polarized after being transmitted through the first polarizing film 120.

如第1圖之左側所示,液晶在電源切斷時保持垂直於基板。液晶在此狀態下可能不對光之極化具有任何效應。結果,維持線性極化狀態之光被第二極化膜110阻擋,第二極化膜110之光軸垂直於第一極化膜120之光軸。As shown on the left side of Figure 1, the liquid crystal remains perpendicular to the substrate when the power is turned off. The liquid crystal may not have any effect on the polarization of light in this state. As a result, the light maintaining the linear polarization state is blocked by the second polarizing film 110, and the optical axis of the second polarizing film 110 is perpendicular to the optical axis of the first polarizing film 120.

如第1圖之右側所示,當施加電壓時,液晶回應於電場而在兩個正交極化膜110及120之間偏移至平行於基板之水平位置。因此,來自第一極化膜之線性極化光轉換為另一線性極化光,該另一線性極化光之極化方向垂直於自該第一極化膜傳遞之線性極化光、圓形極化光或橢圓極化光之極化方向,同時在其恰好到達第二極化膜之前傳遞通過液晶分子。轉換光接著能夠傳遞通過第二極化膜。有可能藉由調整電場之強度將液晶之定向自垂直位置逐漸改變至水平位置,且藉此控制光發射之強度。As shown on the right side of Fig. 1, when a voltage is applied, the liquid crystal is shifted between the two orthogonally polarizing films 110 and 120 to a horizontal position parallel to the substrate in response to an electric field. Therefore, the linearly polarized light from the first polarizing film is converted into another linearly polarized light whose polarization direction is perpendicular to the linearly polarized light, the circle transmitted from the first polarizing film. The direction of polarization of the polarized or elliptically polarized light is transmitted through the liquid crystal molecules just before it reaches the second polarized film. The converted light can then be passed through the second polarizing film. It is possible to gradually change the orientation of the liquid crystal from the vertical position to the horizontal position by adjusting the intensity of the electric field, and thereby control the intensity of the light emission.

第2圖為圖示取決於視角之液晶之定向及透光率的概念圖。Fig. 2 is a conceptual diagram illustrating the orientation and transmittance of liquid crystal depending on the viewing angle.

當液晶分子在像素220中在預定方向上對準時,液晶分子之定向根據視角看起來彼此不同。When liquid crystal molecules are aligned in a predetermined direction in the pixel 220, the orientations of the liquid crystal molecules appear to be different from each other depending on the viewing angle.

當沿著線210自左上側觀看時,液晶分子看起來如同其在大體上水平定向212上對準,且影像相對較亮。當沿著線230自上方觀看時,液晶分子被觀察為在定向232上對準,該定向232與像素220內之液晶分子之實際定向相同。此外,當沿著線250自右上側觀看時,液晶分子看起來如同其在大體上水平定向252上對準,且影像相對較暗。When viewed along the line 210 from the upper left side, the liquid crystal molecules appear as if they are aligned in a generally horizontal orientation 212 and the image is relatively bright. When viewed from above along line 230, the liquid crystal molecules are observed to be aligned on orientation 232, which is the same as the actual orientation of the liquid crystal molecules within pixel 220. Moreover, when viewed from the upper right side along line 250, the liquid crystal molecules appear to align as they are in a generally horizontal orientation 252, and the image is relatively dark.

因此,LCD之視角與自發地發光之其他顯示器相比極大地受限,因為LCD之光之強度及顏色根據視角之改變而變化。為了改良視角,已進行許多研究。Therefore, the viewing angle of the LCD is greatly limited compared to other displays that emit light spontaneously, because the intensity and color of the light of the LCD vary depending on the viewing angle. Many studies have been conducted to improve the perspective.

第3圖為圖示減少取決於視角之對比度之變化及顏色偏移的慣用做法的概念圖。Figure 3 is a conceptual diagram illustrating a conventional practice of reducing the variation in contrast and color shift depending on the viewing angle.

參考第3圖,一像素分成兩個像素部分,亦即,第一像素部分320及第二像素部分340,其液晶之定向彼此對稱。可看見第一像素部分320中之液晶之定向與第二像素部分340中之液晶之定向兩者。到達使用者之光之強度為來自兩個像素部分之光的總強度。Referring to FIG. 3, one pixel is divided into two pixel portions, that is, the first pixel portion 320 and the second pixel portion 340 whose liquid crystal orientations are symmetrical to each other. Both the orientation of the liquid crystal in the first pixel portion 320 and the orientation of the liquid crystal in the second pixel portion 340 can be seen. The intensity of the light reaching the user is the total intensity of the light from the two pixel portions.

當沿著線310自左上側觀看時,第一像素部分320中之液晶分子看起來如同其在水平定向312上對準,且第二像素部分320中之液晶分子看起來如同其在垂直定向314上對準。繼而,第一像素部分320可看起來亮。同樣,當沿著線350自右上側觀看時,第一像素部分320中之液晶分子看起來如同其在垂直定向352上對準,且第二像素部分340中之液晶分子看起來如同其在水平定向354上對準。繼而,第二像素部分340可看起來亮。此外,當自上方沿著線330觀看時,液晶分子被觀察為在定向332及334上對準,定向332及334與像素部分320及340內之液晶分子之實際定向相同。因此,使用者觀察到之影像之亮度甚至在視角改變且關於影像之垂直中心線對稱時亦保持相同或相似。因此,此使得有可能減少取決於視角之對比度之變化及顏色偏移。When viewed along the line 310 from the upper left side, the liquid crystal molecules in the first pixel portion 320 appear to align as if they were in the horizontal orientation 312, and the liquid crystal molecules in the second pixel portion 320 appear as if they were in the vertical orientation 314. Aligned on. In turn, the first pixel portion 320 can appear bright. Likewise, when viewed from the upper right side along line 350, the liquid crystal molecules in the first pixel portion 320 appear to align as they are in the vertical orientation 352, and the liquid crystal molecules in the second pixel portion 340 appear as if they are horizontal. The orientation 354 is aligned. In turn, the second pixel portion 340 can appear bright. Moreover, as viewed from above along line 330, the liquid crystal molecules are observed to be aligned on orientations 332 and 334, which are the same as the actual orientation of the liquid crystal molecules within pixel portions 320 and 340. Thus, the brightness of the image observed by the user remains the same or similar even when the viewing angle changes and is symmetric about the vertical centerline of the image. Therefore, this makes it possible to reduce variations in contrast and color shift depending on the viewing angle.

第4圖為圖示減少取決於視角之對比度之變化及顏色偏移的另一慣用做法的概念圖。Figure 4 is a conceptual diagram illustrating another conventional practice of reducing the variation in contrast and color shift depending on the viewing angle.

參考第4圖,添加具有雙折射特性之光學膜420。光學膜420之雙折射特性與LCD面板之像素440內之液晶分子的雙折射特性相同且具有與液晶分子之定向對稱的定向。歸因於像素440內之液晶分子與光學膜之雙折射材料兩者的定向,到達使用者之光之強度為傳遞通過光學膜420與像素440兩者之光的總強度。Referring to Fig. 4, an optical film 420 having birefringence characteristics is added. The birefringence characteristic of the optical film 420 is the same as that of the liquid crystal molecules in the pixel 440 of the LCD panel and has an orientation symmetrical with the orientation of the liquid crystal molecules. Due to the orientation of both the liquid crystal molecules within the pixel 440 and the birefringent material of the optical film, the intensity of light reaching the user is the total intensity of light transmitted through both the optical film 420 and the pixel 440.

具體而言,當沿著線410自左上側觀看時,像素440內之液晶分子看起來如同其在水平定向414上對準且光學膜420之假想液晶分子看起來如同其在垂直定向412上對準。光之合成強度為傳遞通過光學膜420與像素440兩者之光的總強度。同樣,當沿著線450自右上側觀看 時,像素440內之液晶分子看起來如同其在垂直定向454上對準且光學膜420之假想液晶分子看起來如同其在水平定向452上對準。光之合成強度為傳遞通過光學膜420與像素440兩者之光的總強度。此外,當自上方沿著線430觀看時,液晶分子被觀察為在定向434及432上對準,定向434及432分別與像素440內之液晶分子及光學膜420之假想液晶分子之定向相同。In particular, as viewed from the upper left side along line 410, the liquid crystal molecules within pixel 440 appear to align as they are in horizontal orientation 414 and the imaginary liquid crystal molecules of optical film 420 appear as if they were in vertical orientation 412. quasi. The resultant intensity of light is the total intensity of light transmitted through both optical film 420 and pixel 440. Again, when viewed from the upper right side along line 450 At this point, the liquid crystal molecules within pixel 440 appear to align as they are in vertical orientation 454 and the imaginary liquid crystal molecules of optical film 420 appear as if they were aligned in horizontal orientation 452. The resultant intensity of light is the total intensity of light transmitted through both optical film 420 and pixel 440. Moreover, when viewed from above along line 430, the liquid crystal molecules are observed to be aligned on orientations 434 and 432, which are the same orientation as the liquid crystal molecules in pixel 440 and the imaginary liquid crystal molecules of optical film 420, respectively.

然而,即使應用第3圖與第4圖中所示之做法,顏色偏移仍因為視角存在,且因此顏色隨視角增加而改變。However, even if the methods shown in FIGS. 3 and 4 are applied, the color shift is still due to the angle of view, and thus the color changes as the angle of view increases.

章節中所揭示之資訊僅用於增強對先前技術之理解,且不應被視為認可或以任何形式暗示此資訊形成熟習此項技術者已知之先前技術。The information disclosed in the section is only for enhancement of understanding of the prior art and should not be considered as an admission or in any way suggesting that the information is prior art known to those skilled in the art.

本發明之各種態樣提供一種能夠確保廣視角且藉由最小化根據視角增加之顏色偏移來改良顯示裝置之影像品質的濾光器。Various aspects of the present invention provide a filter capable of ensuring a wide viewing angle and improving the image quality of the display device by minimizing the color shift depending on the viewing angle.

本發明之各種態樣亦提供一種能夠在視角增加時關於全部複合顏色最小化顏色偏移的濾光器,該等全部複合顏色包括基於紅色之複合顏色(諸如,索尼紅及中度紅)及基於藍色之複合顏色(諸如,索尼藍、紫色及紫藍色)。Various aspects of the present invention also provide a filter capable of minimizing color shift with respect to all composite colors as the viewing angle is increased, the composite colors including red based composite colors (such as Sony Red and Medium Red) and A composite color based on blue (such as Sony Blue, Purple, and Violet Blue).

在本發明之一態樣中,提供於一顯示裝置之顯示面板之前的用於補償顏色偏移之濾光器可包括:一背景層;及一在該背景層上具備一厚度的綠色波長吸收圖案。該綠色波長吸收圖案可吸收一綠色波長之光。In one aspect of the present invention, a filter for compensating for color shift before a display panel of a display device may include: a background layer; and a green wavelength absorption having a thickness on the background layer pattern. The green wavelength absorption pattern absorbs light of a green wavelength.

該綠色波長吸收圖案可含有一吸收在510nm至560nm之範圍中的一綠色波長之光的綠色波長吸收材料。The green wavelength absorbing pattern may contain a green wavelength absorbing material that absorbs light of a green wavelength in the range of 510 nm to 560 nm.

該綠色波長吸收圖案可進一步含有一白光吸收材料。The green wavelength absorbing pattern may further comprise a white light absorbing material.

該濾光器可進一步包括一吸收一與綠色互補之波長之光的綠色互補色吸收部分。The filter may further comprise a green complementary color absorbing portion that absorbs light of a wavelength complementary to green.

該綠色互補色吸收部分可含有選自由以下各者組成之群中之至少一者:一吸收在440nm至480nm之範圍中的一藍色波長之光的藍色波長吸收材料及一吸收在600nm至650nm之範圍中的一紅色波長之光的紅色波長吸收材料。The green complementary color absorbing portion may contain at least one selected from the group consisting of: a blue wavelength absorbing material that absorbs light of a blue wavelength in the range of 440 nm to 480 nm and an absorption at 600 nm to A red wavelength absorbing material of light of a red wavelength in the range of 650 nm.

該濾光器可進一步包括一第一厚膜層、一第一薄膜層及一第二厚膜層,其以上述次序彼此堆疊。The filter may further include a first thick film layer, a first film layer, and a second thick film layer stacked on each other in the above-described order.

根據如上所述之本發明之示範性實施例,該濾光器可確保廣視角且藉由使用該綠色波長吸收圖案最小化根據視角之增加之顏色偏移來改良顯示裝置之影像品質。According to an exemplary embodiment of the present invention as described above, the filter can ensure a wide viewing angle and improve the image quality of the display device by minimizing the color shift according to the viewing angle by using the green wavelength absorbing pattern.

此外,本發明之示範性實施例亦可隨著視角增加關於全部複合顏色最小化顏色偏移,該等全部複合顏色包括基於紅色之複合顏色(諸如,索尼紅及中度紅)及基於藍色之複合顏色(諸如,索尼藍、紫色及紫藍色)。Moreover, exemplary embodiments of the present invention may also minimize color shift with respect to all composite colors as the viewing angle increases, including all composite colors based on red (such as Sony Red and Medium Red) and based on blue Composite colors (such as Sony Blue, Purple, and Violet Blue).

此外,該綠色波長吸收圖案經提供以補償根據視角增加之顏色偏移,且該綠色互補色吸收部分經提供以防止自顯示器前向方向上發射之光的顏色改變,以使得顯示器之原始顏色可得以維持。Furthermore, the green wavelength absorbing pattern is provided to compensate for an increase in color shift according to viewing angle, and the green complementary color absorbing portion is provided to prevent color change of light emitted from the front direction of the display such that the original color of the display is It is maintained.

本發明之方法及設備具有其他特徵及優點,該等特徵及優點將自併入本文中的隨附圖式及以下【實施方式】(其共同用於解釋本發明之特定原理)顯而易見或較詳細地陳述於其中。Other features and advantages of the present invention will be apparent from the accompanying drawings and the <RTIgt; Stated in it.

現將詳細參考本發明之各種實施例,其實例圖示於隨附圖式中並於下文描述。雖然本發明將結合示範性實施例加以描述,但應理解本說明書不欲將本發明限於彼等示範性實施例。相反,本發明意欲不僅涵蓋該等示範性實施例且涵蓋各種替代、修改、均等物及其他實施例,各種替代、修改、均等物及其他實施例可包括於如由隨附申請專利範圍界定之本發明之精神與範疇內。Reference will now be made in detail to the preferred embodiments embodiments While the invention will be described in conjunction with the exemplary embodiments, the invention On the contrary, the invention is intended to cover the invention, the invention, and the Within the spirit and scope of the present invention.

比較實施例Comparative example

第5圖為圖示當慣用LCD被應用第3圖與第4圖中所示之補償顏色偏移之做法兩者後以全灰階顯示白光時光譜根據視角增加之變化的一對圖表。Fig. 5 is a pair of graphs showing changes in the spectrum according to the increase in viewing angle when white light is displayed in full gray scale after the conventional LCD is applied with the compensated color shift shown in Figs. 3 and 4.

如該圖中所示,光譜之強度與視角成反比逐漸降低。當藉由將該等光譜中之每一者除以其最大值來正規化該等光譜以便根據波長範圍準確地檢查降低程度時,可瞭解正規化光譜之強度根據視角之增加在400nm至500nm之藍色波長範圍中降低,即使強度根據視角之增加在其他波長範圍內相同亦如此。此指示光之光譜之強度根據視角之增加在400nm至500nm之藍色波長範圍中比在其他波長範圍中降低得多。因此,與藍色互補之黃色隨著視角增加而增加。此顏色改變使影像品質降級。As shown in the figure, the intensity of the spectrum gradually decreases in inverse proportion to the viewing angle. When the spectra are normalized by dividing each of the spectra by their maximum values to accurately check the degree of decrease according to the wavelength range, it can be understood that the intensity of the normalized spectrum is increased from 400 nm to 500 nm depending on the viewing angle. The blue wavelength range is reduced, even if the intensity is the same in other wavelength ranges depending on the increase in viewing angle. The intensity of the spectrum of this indicator light is much lower in the blue wavelength range from 400 nm to 500 nm depending on the viewing angle than in the other wavelength ranges. Therefore, the yellow complementary to blue increases as the viewing angle increases. This color change degrades the image quality.

第6圖為圖示本申請人之先前申請之申請案中所提議的用於補償顏色偏移之濾光器700的橫截面圖。Figure 6 is a cross-sectional view of a filter 700 for compensating for color shifts as proposed in the applicant's prior application.

第6圖中所示之濾光器700包括一薄膜層742及第一厚膜層744與第二厚膜層746以便減少根據視角之增加的顏色偏移。薄膜層742具有780nm或更小之厚度及一第一折射率。第一厚膜層744提供於薄膜層742之一表面上,厚於薄膜層742且具有一第二折射率。第二厚膜層746提供於薄膜層742之相對表面上,厚於薄膜層742且具有一第三折射率。The filter 700 shown in Fig. 6 includes a film layer 742 and a first thick film layer 744 and a second thick film layer 746 to reduce the color shift depending on the viewing angle. The film layer 742 has a thickness of 780 nm or less and a first refractive index. A first thick film layer 744 is provided on one surface of the film layer 742, thicker than the film layer 742 and having a second index of refraction. A second thick film layer 746 is provided on the opposite surface of the film layer 742, thicker than the film layer 742 and having a third index of refraction.

濾光器可減少根據LCD之視角之增加的在300nm至500nm之波長範圍中的相對較大之明度降低,該降低在光傳遞通過液晶時發生。濾光器可藉此減少根據視角之增加的、白光在全灰階下之顏色偏移。The filter can reduce a relatively large decrease in brightness in the wavelength range of 300 nm to 500 nm according to an increase in the viewing angle of the LCD, which occurs when light is transmitted through the liquid crystal. The filter can thereby reduce the color shift of the white light at full gray level according to the increase in viewing angle.

第7圖為圖示第6圖中所示之濾光器補償顏色偏移之原理的簡圖。Fig. 7 is a diagram showing the principle of the filter for compensating for the color shift shown in Fig. 6.

薄膜層742之厚度相同於或小於可見光之波長範圍。因此,薄膜層742之厚度為780nm或更小。若薄膜層742之厚度大於780nm,則在可見光範圍中不發生相長或相消干涉。The thickness of the film layer 742 is the same as or smaller than the wavelength range of visible light. Therefore, the thickness of the film layer 742 is 780 nm or less. If the thickness of the thin film layer 742 is greater than 780 nm, no constructive or destructive interference occurs in the visible light range.

此外,該第一厚膜層744與該第二厚膜層與746厚於該薄膜層742。因此,厚膜層744與746之厚度大於780nm且可甚至為若干mm。該第一厚膜層744與該第二厚膜層與746可具有相同厚度或不同厚度。In addition, the first thick film layer 744 and the second thick film layer 746 are thicker than the thin film layer 742. Thus, the thick film layers 744 and 746 have a thickness greater than 780 nm and may even be a few mm. The first thick film layer 744 and the second thick film layer 746 may have the same thickness or different thicknesses.

該薄膜層742、該第一厚膜層744及該第二厚膜層746分別具有第一、第二及第三折射率。該第一折射率可低於或高於該第二折射率及/或該第三折射率。The film layer 742, the first thick film layer 744 and the second thick film layer 746 have first, second and third refractive indices, respectively. The first index of refraction may be lower or higher than the second index of refraction and/or the third index of refraction.

可藉由將具有較低折射率之薄膜層夾在具有較高折射率之厚膜層之間來製造濾光器。舉例而言,該第一厚膜層744與該第二厚膜層746之折射率可在2至4之範圍中,且該薄膜層之折射率可在1至2之範圍中。The filter can be fabricated by sandwiching a thin film layer having a lower refractive index between thick film layers having a higher refractive index. For example, the refractive index of the first thick film layer 744 and the second thick film layer 746 may be in the range of 2 to 4, and the refractive index of the thin film layer may be in the range of 1 to 2.

相反的,具有較高折射率之薄膜層可夾在具有較低折射率之厚膜層之間。在此情況下,該等厚膜層中之一或多者可由玻璃製成。若基底基板由強化玻璃製成,則其可用作具有較低折射率之厚膜層,因為強化玻璃具有約1.5之折射率。除基底基板外,黏著劑層或空氣層亦可用作具有較低折射率之厚膜層。當然,諸如防反射膜、防眩光膜及防霧膜之功能膜亦可用作厚膜層。Conversely, a thin film layer having a higher refractive index can be sandwiched between thick film layers having a lower refractive index. In this case, one or more of the thick film layers may be made of glass. If the base substrate is made of tempered glass, it can be used as a thick film layer having a lower refractive index because the tempered glass has a refractive index of about 1.5. In addition to the base substrate, the adhesive layer or the air layer can also be used as a thick film layer having a lower refractive index. Of course, a functional film such as an antireflection film, an antiglare film, and an antifogging film can also be used as the thick film layer.

因而,該第一厚膜層、該第二厚膜層及該薄膜層之折射率可加以不同地修改以便調整光之透射率及反射率。Thus, the refractive indices of the first thick film layer, the second thick film layer, and the thin film layer can be modified differently to adjust the transmittance and reflectance of light.

該薄膜層742之折射率用n表示,且該第一厚膜層744與該第二厚膜層746之折射率用nt 表示。為便利起見,假設該第一厚膜層744與該第二厚膜層746具有相同折射率,但本發明不限於此。該第一厚膜層之折射率及該第二厚膜層之折射率可較佳為相同的或具有1或更小的差。The refractive index of the film layer 742 is denoted by n, and the refractive index of the first thick film layer 744 and the second thick film layer 746 is represented by n t . For the sake of convenience, it is assumed that the first thick film layer 744 and the second thick film layer 746 have the same refractive index, but the invention is not limited thereto. The refractive index of the first thick film layer and the refractive index of the second thick film layer may preferably be the same or have a difference of 1 or less.

該第一厚膜層744定位成面對顯示面板,且該第二厚膜層746定位成面對使用者。入射於該第一厚膜層744上之光滿足自司乃耳(Snell)定律導出的等式1。The first thick film layer 744 is positioned to face the display panel, and the second thick film layer 746 is positioned to face the user. The light incident on the first thick film layer 744 satisfies Equation 1 derived from Snell's law.

nt sinθt =n0 sinθ0 ... 等式1n t sin θ t = n 0 sin θ 0 ... Equation 1

當光880穿過該第一厚膜層744與該薄膜層742之間的界面自該顯示面板進入該薄膜層742時,光880之一部分在其通過界面時折射,而光880之另一部分在該界面處反射。在等式(1)中,θt 表示光880相對於界面之法線之角度(入射角),且θ表示進入該薄膜層之折射光881相對於界面之法線之角度(折射角)。When light 880 passes through the interface between the first thick film layer 744 and the film layer 742 from the display panel into the film layer 742, one portion of the light 880 is refracted as it passes through the interface, while another portion of the light 880 is Reflected at this interface. In equation (1), θ t represents the angle (incident angle) of light 880 with respect to the normal to the interface, and θ represents the angle (refraction angle) of the refracted light 881 entering the film layer with respect to the normal to the interface.

在該薄膜層742與該第二厚膜層746之界面處,光881再次分為透射光882(其在傳遞通過界面時折射)及反射光883(其在界面處反射)。透射光882相對於該薄膜層742與該第二厚膜層746之間的界面之法線的角度係由該薄膜層742之折射率與該第二厚膜層746之折射率之間的差確定。只要該第一厚膜層744與該第二厚膜層746具有相同折射率,進入該第二厚膜層746之光882相對於該薄膜層742與該第二厚膜層746之間的界面之法線的角度為θt 。基於司乃耳定律,角度θt 可由自顯示面板入射於濾光器上之光889的角度θ0 、厚膜層之折射率nt 及空氣之折射率n0 (=1)表達。At the interface of the film layer 742 and the second thick film layer 746, the light 881 is again divided into transmitted light 882 (which is refracted as it passes through the interface) and reflected light 883 (which is reflected at the interface). The angle of the transmitted light 882 relative to the normal to the interface between the film layer 742 and the second thick film layer 746 is the difference between the refractive index of the film layer 742 and the refractive index of the second thick film layer 746. determine. As long as the first thick film layer 744 and the second thick film layer 746 have the same refractive index, the interface between the light 882 entering the second thick film layer 746 and the second thick film layer 746 The angle of the normal is θ t . Based on the Snell's law, the angle θ t can be expressed by the angle θ 0 of the light 889 incident on the filter from the display panel, the refractive index n t of the thick film layer, and the refractive index n 0 (=1) of the air.

當來自顯示面板之光889傳遞通過濾光器時,根據司乃耳定律,離開濾光器之光之角度與入射角θ0 相同。因此,入射角θ0 對應於使用者之視角。When light 889 from the display panel is passed through the filter, the angle of the light exiting the filter is the same as the angle of incidence θ 0 according to Snell's law. Therefore, the incident angle θ 0 corresponds to the viewing angle of the user.

各別界面處的反射率可由下文等式2及3表達。The reflectance at each interface can be expressed by Equations 2 and 3 below.

Rp =[(nt cosθ-ncosθt )/(nt cosθ+ncosθt )]2 ... 等式2R p =[(n t cosθ-ncosθ t )/(n t cosθ+ncosθ t )] 2 Equation 2

Rs =[(ncosθ-nt cosθt )/(ncosθ+nt cosθt )]2 ... 等式3R s =[(ncosθ-n t cosθ t )/(ncosθ+n t cosθ t )] 2 Equation 3

在上文等式2及3中,Rp 表示p極化光之反射率,且Rs 表示s極化光之反射率。可瞭解,反射率Rp 及反射率Rs 根據薄膜層之折射率n、厚膜層之折射率nt 、入射角θt 及折射角θ而變化。In the above Equations 2 and 3, R p represents the reflectance of p-polarized light, and R s represents the reflectance of s-polarized light. It can be understood that the reflectance R p and the reflectance R s vary depending on the refractive index n of the thin film layer, the refractive index n t of the thick film layer, the incident angle θ t , and the refraction angle θ.

在下文等式4中,反射率R為等式2之Rp 及等式3之Rs 之平均值。In Equation 4 below, the reflectance R is the average of R p of Equation 2 and R s of Equation 3.

反射光883再次分為光線887(其在界面處折射)及光線884(其在界面處反射)。界面處之此折射與反射過程得以重複。The reflected light 883 is again divided into a light ray 887 (which is refracted at the interface) and a light ray 884 (which is reflected at the interface). This refraction and reflection process at the interface is repeated.

在下文等式4中,透射率T為透射光882之透射率T1 與透射光885之透射率T2 之總和。雖然在第7圖中僅展示兩條折射光線,但反射與折射在界面處重複發生,且透射率T為所有折射光線之總透射率。In the following Equation 4, the transmitted light transmittance T of the transmittance T 882. 1 T 2 the sum of 885 and the transmittance of the transmitted light. Although only two refracted rays are shown in Fig. 7, reflection and refraction occur repeatedly at the interface, and the transmittance T is the total transmittance of all the refracted rays.

在下文等式4中,界面之反射率R為光887之反射率R1與光888之反射率R2之總和。同樣,雖然在第7圖中僅展示兩條反射光線,但反射率R為自界面反射之所有光線之總反射率。In Equation 4 below, the reflectance R of the interface is the sum of the reflectance R1 of the light 887 and the reflectance R2 of the light 888. Similarly, although only two reflected rays are shown in Figure 7, the reflectance R is the total reflectance of all rays reflected from the interface.

在光被由該第一厚膜層744、該薄膜層742及該第二厚膜層746界定之兩個界面重複反射的過程中,透射率可歸因於干涉而根據波長變化。During repeated reflection of light by the two interfaces defined by the first thick film layer 744, the film layer 742, and the second thick film layer 746, the transmittance may vary depending on the wavelength due to interference.

為了補償根據視角之增加的具有高灰階之白光的顏色偏移,該薄膜層之厚度、該薄膜層之折射率n及該第一厚膜層與該薄膜層之間的界面處的反射率R經調整以使得根據等式4之透射率T之平均值可在藍色波長範圍中得以最大化。In order to compensate for the color shift of white light having a high gray level according to an increase in viewing angle, the thickness of the film layer The refractive index n of the film layer and the reflectance R at the interface between the first thick film layer and the film layer are adjusted such that the average value of the transmittance T according to Equation 4 can be in the blue wavelength range. Maximize.

T=(1-R)2 /(1+R2 -2Rcosδ)... 等式4T=(1-R) 2 /(1+R 2 -2Rcosδ)... Equation 4

在等式4中,δ表示光882與光885之間的相差,光882與光885兩者均傳遞通過該薄膜層,如下文等式5中所表達。In Equation 4, δ represents the phase difference between light 882 and light 885, and both light 882 and light 885 pass through the film layer, as expressed in Equation 5 below.

在等式5中,相差δ係由折射率n、厚度、折射角θ及波長λ確定。In Equation 5, the phase difference δ is determined by the refractive index n and the thickness. , the angle of refraction θ and the wavelength λ are determined.

可根據相差發生相長或相消干涉。當光882與光885(兩者均傳遞通過該薄膜層)之間的光學路徑長度差為波長之整數倍時,可獲得最大透射率。Constructive or destructive interference can occur depending on the phase difference. The maximum transmission is obtained when the optical path length difference between light 882 and light 885 (both passed through the film layer) is an integer multiple of the wavelength.

當針對特定波長範圍確定該薄膜層之折射率n、厚度及折射角θ時相差δ得以確定。此處,折射角θ為在設定該薄膜層之折射率n、該等厚膜層之折射率nt 及視角θ0 時自動得以確定之值。Determining the refractive index n and thickness of the film layer for a specific wavelength range The phase difference δ is determined at the angle of refraction θ. Here, the refraction angle θ is a value that is automatically determined when the refractive index n of the thin film layer, the refractive index n t of the thick film layers, and the viewing angle θ 0 are set.

可自上文等式1至3瞭解,反射率根據薄膜層之折射率n及厚膜層之折射率nt 以及視角θ0 而變化。因此,可藉由相對於視角θ0 調整薄膜層之折射率n及厚膜層之折射率nt 來確定反射率。It can be understood from the above Equations 1 to 3 that the reflectance varies depending on the refractive index n of the film layer and the refractive index n t of the thick film layer and the viewing angle θ 0 . Therefore, the reflectance can be determined by adjusting the refractive index n of the thin film layer and the refractive index n t of the thick film layer with respect to the viewing angle θ 0 .

如自上文等式4所見,在設定反射率R及相差δ時透射率T得以確定。因此,可藉由選擇薄膜層之折射率n及厚膜層之折射率nt 以及薄膜層之厚度來調整相對於特定視角及特定波長之光的透射率。As seen from the above Equation 4, the transmittance T is determined when the reflectance R and the phase difference δ are set. Therefore, the refractive index n of the film layer and the refractive index n t of the thick film layer and the thickness of the film layer can be selected. To adjust the transmittance of light with respect to a specific viewing angle and a specific wavelength.

舉例而言,可藉由將薄膜層之厚度選擇為780nm或更小且將該薄膜層之折射率設定在1至2之範圍中並將厚膜層之折射率設定在2至4之範圍中來增加特定波長之光在大視角下的透射率。若調換折射率設定(其中,該薄膜層之折射率設定在2至4之範圍中且該等厚膜層之折射率設定在1至2之範圍中),則可獲得相同結果。For example, the thickness of the film layer can be selected to be 780 nm or less and the refractive index of the film layer can be set in the range of 1 to 2 and the refractive index of the thick film layer can be set in the range of 2 to 4. To increase the transmittance of light of a specific wavelength at a large viewing angle. The same result can be obtained by changing the refractive index setting in which the refractive index of the film layer is set in the range of 2 to 4 and the refractive indices of the thick film layers are set in the range of 1 to 2.

在具有厚膜/薄膜/厚膜結構之濾光器中,在380nm至780nm之可見光之波長範圍中的最小透射率與最大透射率之比可在0.5至0.9之範圍中。In a filter having a thick film/film/thick film structure, the ratio of the minimum transmittance to the maximum transmittance in the wavelength range of visible light of 380 nm to 780 nm may be in the range of 0.5 to 0.9.

因此,多光束干涉使得有可能補償光之強度根據視角之增加在藍色波長範圍中以相對較大量降低的現象。具體而言,在高達約80度之大視角範圍中,透射率歸因於相長干涉在藍色波長範圍中升高,但歸因於相消干涉在綠色及紅色波長範圍中降低。此可藉由將光強度之遞減量調整為在整個波長範圍內相同或相似來補償甚至在大視角下藍色波長範圍之不平衡。第6圖中所示之具有厚膜/薄膜/厚膜結構的濾光器可有效地補償根據視角之增加、白光在全灰階下的顏色偏移。Therefore, multi-beam interference makes it possible to compensate for the phenomenon that the intensity of light is reduced by a relatively large amount in the blue wavelength range in accordance with an increase in the viewing angle. In particular, in a wide viewing angle range of up to about 80 degrees, the transmittance is attributed to the increase in constructive interference in the blue wavelength range, but is due to the destructive interference decreasing in the green and red wavelength ranges. This can compensate for the imbalance of the blue wavelength range even at large viewing angles by adjusting the decreasing amount of light intensity to be the same or similar over the entire wavelength range. The filter having a thick film/film/thick film structure shown in Fig. 6 can effectively compensate for the color shift of white light at full gray level according to an increase in viewing angle.

然而,第6圖中所示之濾光器無法最小化根據視角之增加的全部顏色的顏色偏移。However, the filter shown in Fig. 6 cannot minimize the color shift of all colors according to the increase in viewing angle.

第8圖為圖示當慣用LCD被應用第3圖與第4圖中所示之補償顏色偏移之做法兩者後以低灰階顯示白光時光譜根據視角增加之變化的一對圖表。Fig. 8 is a pair of graphs showing changes in the spectrum according to the increase in the angle of view when white light is displayed in a low gray scale when the conventional LCD is applied with the compensated color shift shown in Figs. 3 and 4.

因為LCD在再現實際影像或移動圖片時表現出各種顏色以及白色,所以顏色偏移補償對確保廣視角起重要作用。Since the LCD exhibits various colors and white when reproducing an actual image or moving a picture, color offset compensation plays an important role in ensuring a wide viewing angle.

顯示器工業通常使用諸如白色、紅色、藍色、綠色、膚色、索尼紅、索尼藍、索尼綠、青色、紫色、黃色、中度紅及紫藍色的十三個(13)顏色作為評估標準。第6圖中所示之濾光器無法單獨最小化全部顏色之顏色偏移。The display industry typically uses thirteen (13) colors such as white, red, blue, green, skin tones, Sony Red, Sony Blue, Sony Green, Cyan, Purple, Yellow, Medium Red, and Violet Blue as the evaluation criteria. The filter shown in Figure 6 cannot minimize the color shift of all colors individually.

此係因為當自顯示面板發射高灰階下之光時,光之明度根據視角之增加在整個波長範圍中降低,特定言之,在藍色波長範圍中降低更多,但在綠色波長範圍中降低相對較少。然而,當發射低灰階之光時,光之明度在整個波長範圍內升高,特定言之,在綠色波長範圍中升高更多。This is because when the light in the high gray level is emitted from the display panel, the brightness of the light decreases in the entire wavelength range according to the increase of the viewing angle, in particular, more in the blue wavelength range, but lower in the green wavelength range. Relatively small. However, when low-gray light is emitted, the lightness of the light rises over the entire wavelength range, in particular, more in the green wavelength range.

可藉由以如下文表1中之所示之各種灰階組合綠光、紅光及藍光來獲得具有複合顏色之光。因此,有必要補償根據視角之增加的各種複合顏色之顏色偏移。Light having a composite color can be obtained by combining green light, red light, and blue light with various gray scales as shown in Table 1 below. Therefore, it is necessary to compensate for the color shift of various composite colors according to an increase in the viewing angle.

第9圖為圖示慣用LCD中的根據視角θ之改變的十三個(13)複合顏色之顏色偏移△u'v'(θ)的圖表,且第10圖為圖示使用第6圖中所示之濾光器之LCD中的根據視角θ之改變的十三個(13)複合顏色之顏色偏移△u'v'(θ)的圖表。Fig. 9 is a graph showing the color shift Δu'v' (θ) of thirteen (13) composite colors according to the change in the viewing angle θ in the conventional LCD, and Fig. 10 is a diagram showing the use of Fig. 6 A graph of the color shift Δu'v' (θ) of thirteen (13) composite colors in accordance with the change in viewing angle θ in the LCD of the filter shown.

△u'v'(θ)表示0度視角之顏色坐標(u0 ,v0 )與各別視角θ之顏色坐標(uθ ,vθ )之間的長度,且可由以下等式表達:△u'v'(θ)=[(u0 -uθ )2 +(v0 -vθ )2 ]1/2Δu'v'(θ) represents the length between the color coordinates (u 0 , v 0 ) of the 0 degree angle of view and the color coordinates (u θ , v θ ) of the respective viewing angles θ, and can be expressed by the following equation: Δ U'v'(θ)=[(u 0 -u θ ) 2 +(v 0 -v θ ) 2 ] 1/2 .

在上述圖表中,水平軸表示水平視角。In the above chart, the horizontal axis represents the horizontal viewing angle.

如第9圖與第10圖之圖表中所示,當使用第6圖中所示之濾光器時,基於藍色之複合顏色以60°之水平(右/左)視角展示如由H1與H2表示的顏色偏移之減少△u'v'。相比而言,基於紅色之複合顏色以60°之水平視角展示如由T1與T2表示的顏色偏移之增加△u'v'。因此,第6圖中所示之濾光器無法補償全部13個複合顏色之顏色偏移。As shown in the graphs of Figures 9 and 10, when the filter shown in Fig. 6 is used, the composite color based on blue is displayed at a horizontal (right/left) angle of 60° as by H1 and The decrease in color shift represented by H2 is Δu'v'. In contrast, the composite color based on red exhibits an increase in the color shift Δu'v' as indicated by T1 and T2 at a horizontal viewing angle of 60°. Therefore, the filter shown in Fig. 6 cannot compensate for the color shift of all 13 composite colors.

第一實施例First embodiment

第11圖為示意性圖示根據本發明之第一示範性實施例的用於補償顏色偏移之濾光器的透視圖。Fig. 11 is a perspective view schematically illustrating a filter for compensating for color shift according to the first exemplary embodiment of the present invention.

根據本發明之第一示範性實施例的濾光器提供於一顯示裝置之顯示面板之前。此實施例之濾光器通常適用於LCD,但本發明不限於此。The filter according to the first exemplary embodiment of the present invention is provided in front of a display panel of a display device. The filter of this embodiment is generally applicable to an LCD, but the invention is not limited thereto.

如第11圖中所示,該濾光器包括一背景層10及一綠色波長吸收圖案20。As shown in FIG. 11, the filter includes a background layer 10 and a green wavelength absorbing pattern 20.

在第11圖中,該綠色波長吸收圖案20提供於面對該顯示面板之背景層10之一表面上。該綠色波長吸收圖案20包含複數個綠色波長吸收條紋,其以預定間隔彼此分開以彼此平行。該綠色波長吸收圖案亦可提供於面對使用者之背景層之另一表面上或提供於背景層之兩個相對表面上。In Fig. 11, the green wavelength absorbing pattern 20 is provided on a surface of the background layer 10 facing the display panel. The green wavelength absorption pattern 20 includes a plurality of green wavelength absorption stripes which are separated from each other at a predetermined interval to be parallel to each other. The green wavelength absorbing pattern can also be provided on the other surface facing the user's background layer or on two opposing surfaces of the background layer.

該綠色波長吸收圖案20在該背景層10上具備一預定厚度。The green wavelength absorbing pattern 20 has a predetermined thickness on the background layer 10.

該綠色波長吸收圖案可具備各種形狀,只要其具有可吸收以預定視角發射之綠色波長之光的厚度。舉例而言,該綠色波長吸收圖案可包括但不限於具有楔形橫截面之條紋、具有楔形橫截面之波紋、具有楔形橫截面之矩陣、具有楔形橫截面之蜂巢結構、具有四邊形橫截面之條紋、具有四邊形橫截面之波紋、具有四邊形橫截面之矩陣或具有四邊形橫截面之蜂巢結構。第11圖圖示包含具有楔形橫截面之條紋的綠色波長吸收圖案20。楔形橫截面包括三角形橫截面與梯形橫截面。The green wavelength absorption pattern may have various shapes as long as it has a thickness that absorbs light of a green wavelength emitted at a predetermined angle of view. For example, the green wavelength absorption pattern may include, but is not limited to, a stripe having a wedge-shaped cross section, a corrugation having a wedge-shaped cross section, a matrix having a wedge-shaped cross section, a honeycomb structure having a wedge-shaped cross section, a stripe having a quadrangular cross section, A corrugated structure having a quadrangular cross section, a matrix having a quadrangular cross section, or a honeycomb structure having a quadrangular cross section. Figure 11 illustrates a green wavelength absorbing pattern 20 comprising stripes having a wedge-shaped cross section. The wedge-shaped cross section includes a triangular cross section and a trapezoidal cross section.

該綠色波長吸收圖案可相對於使用者在各種方向上定向,諸如在水平及垂直方向上定向。該綠色波長吸收圖案可在水平方向上定向時有效地補償根據垂直視角的顏色偏移,且在垂直方向上定向時有效地補償根據水平視角的顏色偏移。該綠色波長吸收圖案20可具備相對於背景層之較長邊的預定偏角以便防止莫耳(Moire)現象。The green wavelength absorbing pattern can be oriented in various directions relative to the user, such as in horizontal and vertical directions. The green wavelength absorption pattern can effectively compensate for the color shift according to the vertical viewing angle when oriented in the horizontal direction, and effectively compensates for the color shift according to the horizontal viewing angle when oriented in the vertical direction. The green wavelength absorbing pattern 20 may have a predetermined off angle with respect to the longer side of the background layer to prevent the Moire phenomenon.

該綠色波長吸收圖案吸收一綠色波長之光。該綠色波長吸收圖案提供於背景層10之一表面上以藉由根據視角之增加在整個波長範圍內增加光之吸收(特定言之,在510nm至560nm之綠色波長範圍內大幅增加光吸收)來最小化根據視角之增加的具有複合顏色之光的顏色偏移。The green wavelength absorption pattern absorbs light of a green wavelength. The green wavelength absorption pattern is provided on one surface of the background layer 10 to increase light absorption over the entire wavelength range by increasing the viewing angle (specifically, greatly increasing light absorption in a green wavelength range of 510 nm to 560 nm). Minimizes the color shift of light with a composite color based on an increase in viewing angle.

當自顯示面板發射之光具有低灰階時,明度根據視角之增加在整個波長範圍中增加,且綠色波長範圍中之明度增加更多。因為藉由以各種灰階組合綠光、紅光及藍光來獲得具有複合顏色之光,所以難以僅使用如第6圖中所示之用於補償顏色偏移之膜來補償所有類型之複合顏色之顏色偏移。因此,有可能藉由根據視角之增加逐漸增加在所有波長範圍中之光的吸收(特定言之,根據視角之增加,大幅增加綠色波長之光之吸收)來最小化根據視角之增加的複合顏色之顏色偏移。When the light emitted from the display panel has a low gray level, the brightness increases over the entire wavelength range according to the increase in the viewing angle, and the brightness in the green wavelength range increases more. Since light having a composite color is obtained by combining green light, red light, and blue light in various gray scales, it is difficult to compensate for all types of composite colors using only the film for compensating color shift as shown in FIG. The color is offset. Therefore, it is possible to minimize the absorption of light in all wavelength ranges by increasing the viewing angle (specifically, increasing the absorption of light of the green wavelength according to the increase in the viewing angle) to minimize the composite color according to the increase in the viewing angle. The color is offset.

為了吸收綠色波長,該綠色波長吸收圖案20可含有一可吸收在510nm至560nm之範圍中的綠色波長之光的綠色波長吸收材料。該綠色波長吸收材料可(例如)為一可吸收在510nm至560nm之範圍中的綠色波長之光的無機或有機材料。較佳地,可使用粉紅色著色劑。In order to absorb the green wavelength, the green wavelength absorption pattern 20 may contain a green wavelength absorbing material that absorbs light of a green wavelength in the range of 510 nm to 560 nm. The green wavelength absorbing material can, for example, be an inorganic or organic material that absorbs light of a green wavelength in the range of 510 nm to 560 nm. Preferably, a pink colorant can be used.

可藉由用含有綠色波長吸收材料之紫外線(UV)固化樹脂填充背景層之一表面中形成之溝槽並用UV射線照射溝槽中之綠色波長吸收材料來產生該綠色波長吸收圖案20。The green wavelength absorbing pattern 20 can be produced by filling a trench formed in the surface of one of the background layers with an ultraviolet (UV) curable resin containing a green wavelength absorbing material and irradiating the green wavelength absorbing material in the trench with UV rays.

該背景層形成一層,且通常由透明聚合物樹脂製成。背景層10可藉由(例如)使用UV固化樹脂之卷軸方法、使用熱塑樹脂之熱壓方法或使用熱固樹脂之射出成型方法製成為板之形式。The background layer forms a layer and is typically made of a transparent polymer resin. The background layer 10 can be formed into a sheet form by, for example, a reel method using a UV curable resin, a hot pressing method using a thermoplastic resin, or an injection molding method using a thermosetting resin.

背景層10之厚度T可較佳設定於50μm至1mm之範圍中。只要可確保背景層之機械性質及耐熱性,背景層10之厚度T設定為50μm或更多以便獲得較可撓之特性及較薄輪廓。此外,只要可確保背景層之可撓性、薄輪廓及透光率,背景層10之厚度T設定為1mm或更小以使得背景層之機械性質具有卓越品質。The thickness T of the background layer 10 can preferably be set in the range of 50 μm to 1 mm. The thickness T of the background layer 10 is set to 50 μm or more in order to obtain a more flexible property and a thinner profile as long as the mechanical properties and heat resistance of the background layer are ensured. Further, as long as the flexibility, thin profile, and light transmittance of the background layer can be ensured, the thickness T of the background layer 10 is set to 1 mm or less to give the background layer a superior quality of mechanical properties.

背景層10可由基本上允許光傳遞通過之任何高度透明材料製成。舉例而言,背景層10可由選自由以下各者組成之群的一者製成:聚酯、丙烯酸系化合物、纖維素、聚烴、聚氯乙烯(PVC)、聚碳酸酯(PC)、酚及胺基甲酸酯,其係輕的、便宜的且可容易製造的。The background layer 10 can be made of any highly transparent material that substantially allows light to pass therethrough. For example, the background layer 10 can be made of one selected from the group consisting of polyester, acrylic, cellulose, polyhydrocarbon, polyvinyl chloride (PVC), polycarbonate (PC), phenol And urethanes, which are light, inexpensive, and easy to manufacture.

濾光器亦可具有一背襯層(未圖示),其提供於背景層之一表面上以支撐背景層。The filter may also have a backing layer (not shown) provided on one of the surface layers to support the background layer.

該背襯層充當一支撐件,背景層10可在製造過程中形成於該支撐件上。該背襯層可較佳由透UV之透明樹脂膜製成。該背襯層可由(例如)聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚氯乙烯(PVC)或類似者製成。The backing layer acts as a support on which the background layer 10 can be formed during the manufacturing process. The backing layer may preferably be made of a UV transparent resin film. The backing layer can be made of, for example, polyethylene terephthalate (PET), polycarbonate (PC), polyvinyl chloride (PVC), or the like.

第12圖為圖示使用第11圖中所示之濾光器之顯示裝置中的根據視角之改變的十三個複合顏色之顏色偏移的圖表。Fig. 12 is a graph showing the color shift of thirteen composite colors according to the change in the viewing angle in the display device using the filter shown in Fig. 11.

如第12圖中所示,十三個複合顏色之顏色偏移係在使用根據本發明之第一示範性實施例之濾光器的顯示裝置中根據視角之增加來量測。As shown in Fig. 12, the color shift of the thirteen composite colors is measured in accordance with the increase in the viewing angle in the display device using the filter according to the first exemplary embodiment of the present invention.

具體而言,根據本發明之第一示範性實施例之濾光器藉由根據視角之增加吸收相對大量之綠色波長的光來最小化基於紅色之複合顏色(例如,索尼紅、中度紅等)及基於藍色之複合顏色(例如,索尼藍、紫色、紫藍色等)之顏色偏移。因此,此可最終最小化所有複合顏色之顏色偏移。In particular, the filter according to the first exemplary embodiment of the present invention minimizes a composite color based on red by absorbing a relatively large amount of green wavelength light according to an increase in viewing angle (for example, Sony Red, Medium Red, etc.) And the color shift of the composite color based on blue (for example, Sony blue, purple, purple blue, etc.). Therefore, this can ultimately minimize the color shift of all composite colors.

特定言之,與第10圖中具有高達0.085之值的顏色偏移Δu'v'相比,13個複合顏色之顏色偏移Δu'v'可藉由使用第11圖中所示之濾光器減少至0.06或更小。因為0.085之顏色偏移Δu'v'可通過裸眼看到,所以影像品質根據視角之增加而降級。相比而言,0.06或更小之顏色偏移△u'v'可很難通過裸眼看到。因此,此使得有可能根據視角之增加改良影像品質。In particular, the color shift Δu'v' of 13 composite colors can be filtered by using the color shift Δu'v' of the composite color in Fig. 10 as compared with the color shift Δu'v' having a value of up to 0.085 in Fig. 10. The device is reduced to 0.06 or less. Since the color shift Δu'v' of 0.085 can be seen by the naked eye, the image quality is degraded according to the increase in the angle of view. In contrast, a color shift of Δu'v' of 0.06 or less can be difficult to see through the naked eye. Therefore, this makes it possible to improve image quality in accordance with an increase in viewing angle.

第13圖為圖示當被應用第11圖中所示之濾光器的顯示裝置以全灰階顯示白光時的根據視角之增加的正規化光譜之變化的圖表。Fig. 13 is a graph showing changes in the normalized spectrum according to an increase in viewing angle when the display device to which the filter shown in Fig. 11 is applied displays white light in full gray scale.

如第13圖中所示,根據視角之增加的光譜之遞減量在整個波長範圍內大體上相同。因此,大體上移除根據視角之增加的顏色偏移。As shown in Fig. 13, the decreasing amount of the spectrum according to the increase in the viewing angle is substantially the same over the entire wavelength range. Therefore, the color shift according to the increase in the viewing angle is substantially removed.

第14圖為用於解釋該綠色波長吸收圖案20的參考圖。Fig. 14 is a reference diagram for explaining the green wavelength absorption pattern 20.

具有含有綠色波長吸收材料之綠色波長吸收圖案20的濾光器安裝在LCD TV中,且在前方且以60°之視角用全白影像量測顏色坐標。A filter having a green wavelength absorbing pattern 20 containing a green wavelength absorbing material is mounted in the LCD TV, and the color coordinates are measured with a full white image at the front and at a viewing angle of 60°.

當具有楔形橫截面之該綠色波長吸收圖案用綠色波長吸收材料填充時,綠色波長吸收材料之顏色根據視角之增加看起來更濃,且顏色坐標在CIE 1976 UCS顏色坐標系統u'v'中移向粉紅色。此外,當圖案除用綠色波長吸收材料外亦用炭黑或青色波長吸收材料及桔色波長吸收材料(將稍後加以描述)填充時,顏色坐標在顏色坐標系統u'v'中移向紫粉紅色。When the green wavelength absorbing pattern having a wedge-shaped cross section is filled with a green wavelength absorbing material, the color of the green wavelength absorbing material appears to be more intense depending on the viewing angle, and the color coordinates are shifted in the CIE 1976 UCS color coordinate system u'v'. To the pink. In addition, when the pattern is filled with a carbon black or cyan wavelength absorbing material and an orange wavelength absorbing material (which will be described later) in addition to the green wavelength absorbing material, the color coordinates move to the purple color in the color coordinate system u'v'. Pink.

在顏色坐標系統中,值△v'/△u'(亦即,(v'60 -v'0 )/(u'60 -u'0 ))可較佳在tan(-15°)至tan(45°)之範圍中。(u'0 及v'0 為在前方量測之顏色坐標且u'60 及v'60 為以60°之視角量測的顏色坐標值。)In the color coordinate system, the value Δv'/Δu' (that is, (v' 60 - v' 0 ) / (u' 60 - u' 0 )) may preferably be tan (-15°) to tan. In the range of (45°). (u' 0 and v' 0 are the color coordinates measured in the front and u' 60 and v' 60 are the color coordinate values measured at a viewing angle of 60°.)

具體而言,若光吸收圖案23僅用綠色波長吸收材料填充,則顏色坐標之改變的斜率可較佳在顏色坐標系統u'v'中在15°至45°之範圍中。若光吸收圖案23用炭黑與綠色波長吸收材料填充,則顏色坐標之改變的斜率可較佳在-15°至15°之範圍中。若光吸收圖案23用青色波長吸收材料及桔色波長吸收材料與綠色波長吸收材料填充,則顏色坐標之改變的斜率可較佳在-15°至15°之範圍中。Specifically, if the light absorbing pattern 23 is filled only with the green wavelength absorbing material, the slope of the change in the color coordinates may preferably be in the range of 15 to 45 in the color coordinate system u'v'. If the light absorbing pattern 23 is filled with carbon black and a green wavelength absorbing material, the slope of the change in color coordinates may preferably be in the range of -15 to 15 . If the light absorbing pattern 23 is filled with the cyan wavelength absorbing material and the orange wavelength absorbing material and the green wavelength absorbing material, the slope of the change in the color coordinates may preferably be in the range of -15 to 15 .

第15圖與第16圖為圖示具有綠色波長吸收圖案之濾光器中的折射率對顏色偏移之效應的一對圖表,其中第15圖展示在背景層之折射率與綠色波長吸收圖案之折射率相同之情況下的根據視角之顏色偏移,且第16圖展示在背景層之折射率比綠色波長吸收圖案之折射率大0.06之情況下的根據視角之顏色偏移。15 and 16 are a pair of graphs illustrating the effect of refractive index on color shift in a filter having a green wavelength absorption pattern, wherein FIG. 15 shows the refractive index and green wavelength absorption pattern in the background layer. The color shift according to the viewing angle in the case where the refractive index is the same, and FIG. 16 shows the color shift according to the viewing angle in the case where the refractive index of the background layer is larger than the refractive index of the green wavelength absorption pattern by 0.06.

在背景層上形成有包括綠色波長吸收材料之綠色波長吸收圖案的膜中,在所有其他條件設定為相同的情況下量測折射率對顏色偏移之效應。In the film in which the green wavelength absorption pattern including the green wavelength absorbing material is formed on the background layer, the effect of the refractive index on the color shift is measured under the condition that all other conditions are set to be the same.

如第15圖與第16圖中所示,顏色偏移△u'v'在背景層之折射率與綠色波長吸收圖案之折射率相同時為約0.042且在背景層之折射率與綠色波長吸收圖案之折射率之間的差為0.06時為約0.045。在顏色偏移之間不存在實質差異。As shown in FIGS. 15 and 16, the color shift Δu'v' is about 0.042 when the refractive index of the background layer is the same as the refractive index of the green wavelength absorbing pattern, and the refractive index at the background layer and the green wavelength are absorbed. When the difference between the refractive indices of the patterns is 0.06, it is about 0.045. There is no substantial difference between the color shifts.

相比而言,如下文表2中所示,在存在折射率之間的差異的情況下的前透射率大於在不存在折射率之間的差異的情況下的前透射率。In contrast, as shown in Table 2 below, the front transmittance in the case where there is a difference between the refractive indexes is larger than the front transmittance in the case where there is no difference between the refractive indexes.

在上文表2中,根據自顯示裝置發射之光的量,4%之透射率差可具有不同意義。舉例而言,若自LCD發射之光的亮度為50 nit(亦即,攜帶型電話的位凖),則差為約2 nit,其很難由肉眼區別出。相比而言,若亮度為500 nit或更多(亦即,LCD TV之位凖),則差為約20 nit,其可由肉眼區別出。考慮到LCD TV之亮度正不斷增加,透射率增加4%對自身具有重要技術意義。In Table 2 above, a transmittance difference of 4% may have different meanings depending on the amount of light emitted from the display device. For example, if the brightness of the light emitted from the LCD is 50 nit (i.e., the position of the portable telephone), the difference is about 2 nit, which is difficult to distinguish by the naked eye. In contrast, if the brightness is 500 nit or more (that is, the position of the LCD TV is 凖), the difference is about 20 nit, which can be distinguished by the naked eye. Considering that the brightness of LCD TVs is increasing, a 4% increase in transmittance is of great technical significance to itself.

第15圖與第16圖及表2展示自背景層之折射率大於綠色波長吸收圖案之折射率的濾光器獲得的測試結果。相比而言,綠色波長之折射率可大於背景層之折射率。Fig. 15 and Fig. 16 and Table 2 show test results obtained from filters of the background layer having a refractive index greater than that of the green wavelength absorption pattern. In contrast, the green wavelength can have a refractive index greater than the refractive index of the background layer.

該綠色波長吸收圖案與該背景層之間的折射率差可較佳在0.001至0.1之範圍中。The difference in refractive index between the green wavelength absorption pattern and the background layer may preferably be in the range of 0.001 to 0.1.

第二實施例Second embodiment

第17圖為圖示具有根據本發明之第二實施例之濾光器的顯示裝置中根據視角之改變的十三個(13)顏色之顏色偏移的圖表。Figure 17 is a graph illustrating the color shift of thirteen (13) colors according to the change in viewing angle in the display device having the filter according to the second embodiment of the present invention.

根據第二實施例之濾光器具有一綠色波長吸收圖案,其含有一能夠吸收整個波長範圍之可見光的白光吸收材 料以及一綠色波長吸收材料。The filter according to the second embodiment has a green wavelength absorption pattern containing a white light absorbing material capable of absorbing visible light over the entire wavelength range And a green wavelength absorbing material.

該白光吸收材料可為具有阻擋顏色的無機材料、有機材料及/或金屬。更佳地,該白光吸收材料可為炭黑。The white light absorbing material may be an inorganic material, an organic material, and/or a metal having a blocking color. More preferably, the white light absorbing material may be carbon black.

該綠色波長吸收圖案20可由含有一綠色波長吸收材料及一白光吸收材料之UV固化樹脂製成。The green wavelength absorption pattern 20 can be made of a UV curable resin containing a green wavelength absorbing material and a white light absorbing material.

舉例而言,該綠色波長吸收圖案20可包括UV固化樹脂中所含有的約1 wt%之綠色波長吸收材料及約0.5 wt%之白光吸收材料。For example, the green wavelength absorption pattern 20 may include about 1 wt% of a green wavelength absorbing material and about 0.5 wt% of a white light absorbing material contained in the UV curable resin.

由綠色波長吸收圖案20之間距、厚度、較大寬度、較小寬度及傾斜表面之斜率確定透射率及視角。The transmittance and viewing angle are determined by the distance between the green wavelength absorption patterns 20, the thickness, the larger width, the smaller width, and the slope of the inclined surface.

若該綠色波長吸收圖案20之厚度、寬度及吸光率減小,則根據視角補償顏色偏移之效應增加。然而,光之透射率根據視角顯著減小,因為該綠色波長吸收圖案20亦吸收傳遞通過濾光器之光。If the thickness, width, and absorbance of the green wavelength absorption pattern 20 are reduced, the effect of compensating for the color shift according to the viewing angle is increased. However, the transmittance of light is significantly reduced depending on the viewing angle because the green wavelength absorbing pattern 20 also absorbs light transmitted through the filter.

若該綠色波長吸收圖案20之厚度增加,則背景層10之厚度亦增加,其使得難以彎曲背景層10。因為背景層10可能會在彎曲達特定程度時碎裂,所以不易於藉由輥壓成型法來製造背景層10。此外,所製成之背景層10不易於以捲筒之形式纏繞,藉此導致儲存問題。If the thickness of the green wavelength absorbing pattern 20 is increased, the thickness of the background layer 10 is also increased, which makes it difficult to bend the background layer 10. Since the background layer 10 may be broken when bent to a certain extent, it is not easy to manufacture the background layer 10 by roll forming. Moreover, the resulting background layer 10 is not easily wound in the form of a roll, thereby causing storage problems.

此外,增加該綠色波長吸收圖案之寬度導致開口比(其確定傳遞通過濾光器之光的量)減小,藉此減小光之透射率。此外,增加白光吸收材料之含量以增強阻擋白光之效應亦導致圖案中所含有之混合物之黏度增加,其使得難以將混合物注射至溝槽中。因此,應將最佳值給予 該綠色波長吸收圖案20之厚度、寬度及吸光率。Furthermore, increasing the width of the green wavelength absorption pattern results in a reduction in the aperture ratio (which determines the amount of light transmitted through the filter), thereby reducing the transmittance of light. In addition, increasing the content of the white light absorbing material to enhance the effect of blocking white light also results in an increase in the viscosity of the mixture contained in the pattern, which makes it difficult to inject the mixture into the grooves. Therefore, the best value should be given The green wavelength absorption pattern 20 has a thickness, a width, and an absorbance.

該綠色波長吸收圖案之寬度可較佳在1 μm至50 μm之範圍中。The width of the green wavelength absorption pattern may preferably be in the range of 1 μm to 50 μm.

在該綠色波長吸收圖案,楔形橫截面之底邊之寬度(亦即,較大寬度)可為間距之40%或更小,且傾斜表面之斜率可為10°。In the green wavelength absorption pattern, the width of the bottom side of the wedge-shaped cross section (i.e., the larger width) may be 40% or less of the pitch, and the slope of the inclined surface may be 10°.

第三實施例Third embodiment

第18圖為示意性圖示根據本發明之第三示範性實施例之濾光器的橫截面圖。Figure 18 is a cross-sectional view schematically showing a filter according to a third exemplary embodiment of the present invention.

雖然自顯示面板正前向方向上發射之光傳遞通過濾光器,但顯示器之影像之顏色可由綠色波長吸收圖案之綠色波長吸收材料改變。因此,提供綠色互補色吸收部分,其含有紅色波長吸收材料及藍色波長吸收材料作為顏色校正著色劑。此組態用以將在正前向方向上發射之光的顏色校正為相似於原始顏色。Although the light emitted from the front side of the display panel passes through the filter, the color of the image of the display can be changed by the green wavelength absorbing material of the green wavelength absorbing pattern. Therefore, a green complementary color absorbing portion containing a red wavelength absorbing material and a blue wavelength absorbing material as a color correction colorant is provided. This configuration is used to correct the color of the light emitted in the forward direction to be similar to the original color.

第18圖展示該綠色互補色吸收部分為綠色互補色吸收層40的示範性實施例。Fig. 18 shows an exemplary embodiment in which the green complementary color absorbing portion is the green complementary color absorbing layer 40.

綠色互補色吸收層40堆疊於背景層10之一表面上。綠色互補色吸收層含有綠色互補色吸收材料,該綠色互補色吸收材料含有一吸收與綠色互補之特定波長之光。綠色互補色吸收材料可為吸收600 nm至650 nm之紅色波長範圍同時允許綠色波長範圍傳遞通過的紅色波長吸收材料及/或吸收440 nm至480 nm之藍色波長範圍同時允許綠色波長範圍傳遞通過的藍色波長吸收材料(例 如,黃色著色劑)。The green complementary color absorbing layer 40 is stacked on one surface of the background layer 10. The green complementary color absorbing layer contains a green complementary color absorbing material containing a light absorbing a specific wavelength complementary to green. The green complementary color absorbing material can be a red wavelength absorbing material that absorbs the red wavelength range from 600 nm to 650 nm while allowing the green wavelength range to pass through and/or absorbs the blue wavelength range from 440 nm to 480 nm while allowing the green wavelength range to pass through. Blue wavelength absorbing material (example For example, a yellow colorant).

綠色互補色吸收層可實施為膜或黏著劑層之形式。若綠色互補色吸收層為獨立膜,則其為可專用於吸收綠色互補色的獨立膜或具有其他功能之功能膜。舉例而言,將在下文描述之一第一厚膜層、一薄膜層及一第二厚膜層中的至少一者可藉由在其中含有綠色互補色吸收層材料而用作綠色互補色吸收層。The green complementary color absorbing layer can be embodied in the form of a film or adhesive layer. If the green complementary color absorbing layer is a separate film, it is a separate film that can be dedicated to absorbing green complementary colors or a functional film having other functions. For example, at least one of the first thick film layer, the thin film layer, and the second thick film layer, which will be described below, can be used as a green complementary color absorption by containing a green complementary color absorbing layer material therein. Floor.

雖然第18圖圖示綠色互補色吸收層與背景層10表面接觸的示範性實施例,但在背景層與綠色互補色吸收層之間可夾有另一層。Although FIG. 18 illustrates an exemplary embodiment in which the green complementary color absorbing layer is in surface contact with the background layer 10, another layer may be sandwiched between the background layer and the green complementary color absorbing layer.

若綠色互補色吸收層提供為含有顏色校正著色劑之黏著劑層或背景層而非獨立膜之形式,則有可能簡化濾光器之結構及其製造方法。If the green complementary color absorbing layer is provided in the form of an adhesive layer or a background layer containing a color correction colorant instead of a separate film, it is possible to simplify the structure of the filter and the method of manufacturing the same.

第19圖為圖示在提供一濾光器時的根據視角之增加的顏色坐標之變化的圖表,該濾光器僅包括綠色波長吸收圖案而不包括綠色互補色吸收部分,且第20圖為圖示在提供一濾光器時的根據視角之增加的顏色坐標之變化的圖表,該濾光器包括綠色波長吸收圖案與綠色互補色吸收部分兩者。Fig. 19 is a graph illustrating a change in color coordinates according to an increase in viewing angle when a filter is provided, the filter including only a green wavelength absorbing pattern and not including a green complementary color absorbing portion, and Fig. 20 is A graph illustrating a change in color coordinates according to an increase in viewing angle when a filter is provided, the filter including both a green wavelength absorbing pattern and a green complementary color absorbing portion.

如第19圖與第20圖中所示,可瞭解,第20圖中所示之實例可進一步補償複合顏色之顏色偏移。As shown in Figures 19 and 20, it can be appreciated that the example shown in Figure 20 can further compensate for the color shift of the composite color.

下文表3展示關於離開顯示器之白光的顏色坐標之測試結果(在前方以0°之視角量測)。Table 3 below shows the test results for the color coordinates of the white light leaving the display (measured in the front with a 0° viewing angle).

表3 table 3

如上文表3中所示,當僅提供綠色波長吸收圖案時,白光具有顏色而非展示原始非彩色顏色。相比而言,當亦提供該綠色互補色吸收部分時,白光可維持原始非彩色顏色。As shown in Table 3 above, when only the green wavelength absorption pattern is provided, the white light has a color instead of displaying the original achromatic color. In contrast, when the green complementary color absorbing portion is also provided, the white light can maintain the original achromatic color.

第四實施例Fourth embodiment

第21圖為示意性圖示根據本發明之第四示範性實施例之濾光器的透視圖。Figure 21 is a perspective view schematically illustrating a filter according to a fourth exemplary embodiment of the present invention.

如第21圖中所示,綠色互補色吸收部分可在綠色波長吸收圖案20之一側上提供為綠色互補色吸收片41之形式。在第21圖中,該綠色互補色吸收部分提供於綠色波長吸收圖案之背表面(亦即,楔形橫截面之底邊)上。As shown in Fig. 21, the green complementary color absorbing portion may be provided in the form of a green complementary color absorbing sheet 41 on one side of the green wavelength absorbing pattern 20. In Fig. 21, the green complementary color absorbing portion is provided on the back surface of the green wavelength absorbing pattern (i.e., the bottom side of the wedge-shaped cross section).

可藉由刮漿法形成綠色波長吸收圖案及綠色互補色吸收片。舉例而言,在形成綠色波長吸收圖案後,可藉由將含有綠色互補色吸收材料之UV固化樹脂塗敷至凹陷溝槽內之綠色波長吸收圖案之基底上且接著使UV固化樹脂固化來形成綠色互補色吸收片41。A green wavelength absorption pattern and a green complementary color absorption sheet can be formed by a doctor blade method. For example, after the green wavelength absorbing pattern is formed, the UV curable resin containing the green complementary color absorbing material may be applied onto the substrate of the green wavelength absorbing pattern in the recessed trench and then the UV curable resin is cured. Green complementary color absorption sheet 41.

此實施例之濾光器有利地具有比根據該第三示範性實 施例之上述濾光器卓越之透光率。The filter of this embodiment advantageously has a ratio according to the third exemplary embodiment The above-mentioned filter of the embodiment has excellent light transmittance.

第五實施例Fifth embodiment

綠色波長吸收圖案可進一步含有一吸收桔色波長光之材料及一吸收青色波長光之材料,該桔色波長光及該青色波長光根據視角對顏色偏移具有不良效應。該桔色波長吸收材料及/或該青色波長吸收材料可含有於獨立樹脂膜、含有於黏著劑層或含有於背景層中。The green wavelength absorbing pattern may further comprise a material for absorbing orange wavelength light and a material for absorbing cyan wavelength light, the orange wavelength light and the cyan wavelength light having an adverse effect on the color shift depending on the viewing angle. The orange wavelength absorbing material and/or the cyan wavelength absorbing material may be contained in a separate resin film, in an adhesive layer, or in a background layer.

第六實施例Sixth embodiment

第22圖為示意性圖示根據本發明之第六示範性實施例之濾光器的透視圖。Figure 22 is a perspective view schematically illustrating a filter according to a sixth exemplary embodiment of the present invention.

如第22圖中所示,該濾光器包括一第一厚膜層12、一第一薄膜層14及一第二厚膜層16,該等層以上述次序彼此堆疊。作為另一示範性實施例,該濾光器可進一步包括一第二薄膜層及一第三厚膜層,其繼該第一厚膜層、該第一薄膜層及該第二厚膜層之後以上述次序堆疊。As shown in Fig. 22, the filter includes a first thick film layer 12, a first film layer 14, and a second thick film layer 16, which are stacked on each other in the above-described order. As another exemplary embodiment, the filter may further include a second film layer and a third thick film layer, after the first thick film layer, the first film layer and the second thick film layer Stacked in the above order.

該等厚膜層中之至少一者可為一背景層、一支撐用於補償顏色偏移之濾光器之基底基板、該顯示面板之一前基板、一防眩光膜、一極化膜、一延遲膜、一擴散膜、一黏著劑層、一空氣層,或其一均等物,但本發明不限於此。At least one of the thick film layers may be a background layer, a base substrate supporting a filter for compensating for color shift, a front substrate of the display panel, an anti-glare film, a polarizing film, A retardation film, a diffusion film, an adhesive layer, an air layer, or an equivalent thereof, but the invention is not limited thereto.

第23圖為圖示使用第22圖中所示之濾光器之顯示裝置中的根據視角之改變的十三個複合顏色之顏色偏移的圖表。Fig. 23 is a graph showing the color shift of thirteen composite colors according to the change in the viewing angle in the display device using the filter shown in Fig. 22.

藉由在玻璃之基底基板上形成具有210 nm之厚度的 Nb2 O5 薄膜且使用壓敏黏著劑(PSA)將藉由用1 wt%綠色波長吸收材料(例如,粉紅色著色劑)填充背景層之凹陷溝槽形成的具有綠色波長吸收圖案之膜附著在Nb2 O5 薄膜上來製造濾光器。此處,玻璃之基底基板充當厚膜,Nb2 O5 薄膜充當薄膜且PSA層充當厚膜。By forming a Nb 2 O 5 film having a thickness of 210 nm on a base substrate of glass and using a pressure sensitive adhesive (PSA), the background is filled with a 1 wt% green wavelength absorbing material (for example, a pink colorant). A film having a green wavelength absorption pattern formed by the depressed trench of the layer is attached to the Nb 2 O 5 film to fabricate a filter. Here, the base substrate of the glass serves as a thick film, the Nb 2 O 5 film serves as a film, and the PSA layer serves as a thick film.

量測根據水平視角之增加的顏色偏移△u'v'。如第23圖中所示,可瞭解,與第9圖與第10圖中所示之圖表相比,13個複合顏色之顏色偏移均勻減少。The color shift Δu'v' according to the increase in the horizontal viewing angle is measured. As shown in Fig. 23, it can be understood that the color shift of the 13 composite colors is uniformly reduced as compared with the graphs shown in Figs. 9 and 10.

第七實施例Seventh embodiment

第24圖為示意性圖示根據本發明之第七示範性實施例之濾光器的橫截面圖。Figure 24 is a cross-sectional view schematically illustrating an optical filter according to a seventh exemplary embodiment of the present invention.

如第24圖中所示,包括一背景層及一形成於該背景層上之綠色波長吸收圖案之膜可用作厚膜層。As shown in Fig. 24, a film including a background layer and a green wavelength absorption pattern formed on the background layer can be used as a thick film layer.

如上所述,根據本發明之示範性實施例之濾光器可作為用於補償顏色偏移之濾光器來加以提供且可作為具有複合功能之複合濾光器來提供,該複合濾光器係藉由將該濾光器及另一類型之功能濾光器(例如,防霧膜、防反射膜、防眩光膜、基底基板等)彼此堆疊來製造。As described above, the filter according to an exemplary embodiment of the present invention can be provided as a filter for compensating for color shift and can be provided as a composite filter having a composite function, the composite filter This is manufactured by stacking the filter and another type of functional filter (for example, an antifogging film, an antireflection film, an antiglare film, a base substrate, and the like) on each other.

此外,根據本發明之示範性實施例之濾光器可與顯示面板分開或藉由黏著劑附著至顯示面板。Further, the optical filter according to an exemplary embodiment of the present invention may be attached to the display panel separately from the display panel or by an adhesive.

雖然已參考本發明之特定示範性實施例來展示並描述本發明,但熟習此項技術者將理解,可對其進行形式與細節之各種改變而不背離如由隨附申請專利範圍及其均等物界定之本發明之精神與範疇。While the invention has been shown and described with respect to the specific embodiments of the embodiments of the invention The spirit and scope of the invention as defined by the object.

10‧‧‧背景層10‧‧‧Background layer

12‧‧‧第一厚膜層12‧‧‧First thick film

14‧‧‧第一薄膜層14‧‧‧First film layer

16‧‧‧第二厚膜層16‧‧‧Second thick film

20‧‧‧綠色波長吸收圖案20‧‧‧Green wavelength absorption pattern

40‧‧‧綠色互補色吸收層40‧‧‧Green complementary color absorbing layer

41‧‧‧綠色互補色吸收片41‧‧‧Green complementary color absorption film

100‧‧‧LCD100‧‧‧LCD

110‧‧‧極化膜110‧‧‧Polarized film

120‧‧‧極化膜120‧‧ ‧ polarized film

130‧‧‧透明基板130‧‧‧Transparent substrate

140‧‧‧透明電極140‧‧‧Transparent electrode

150‧‧‧液晶分子150‧‧‧liquid crystal molecules

180‧‧‧電源單元180‧‧‧Power unit

210‧‧‧線210‧‧‧ line

212‧‧‧水平定向212‧‧‧Horizontal orientation

220‧‧‧像素220‧‧ ‧ pixels

230‧‧‧線Line 230‧‧

232‧‧‧定向232‧‧‧Orientation

250‧‧‧線250‧‧‧ line

252‧‧‧水平定向252‧‧‧Horizontal orientation

310‧‧‧線Line 310‧‧‧

312‧‧‧水平定向312‧‧‧Horizontal orientation

314‧‧‧垂直定向314‧‧‧Vertical orientation

320‧‧‧第一像素部分320‧‧‧First pixel section

330‧‧‧線330‧‧‧ line

332‧‧‧定向332‧‧‧Orientation

334‧‧‧定向334‧‧‧Orientation

340‧‧‧第二像素部分340‧‧‧second pixel section

350‧‧‧線Line 350‧‧

352‧‧‧垂直定向352‧‧‧Vertical orientation

354‧‧‧水平定向354‧‧‧Horizontal orientation

410‧‧‧線410‧‧‧ line

412‧‧‧垂直定向412‧‧‧Vertical orientation

414‧‧‧水平定向414‧‧‧Horizontal orientation

420‧‧‧光學膜420‧‧‧Optical film

430‧‧‧線430‧‧‧ line

432‧‧‧定向432‧‧‧Orientation

434‧‧‧定向434‧‧‧Orientation

440‧‧‧像素440‧‧ ‧ pixels

450‧‧‧線450‧‧‧ line

452‧‧‧水平定向452‧‧‧Horizontal orientation

454‧‧‧垂直定向454‧‧‧Vertical orientation

742‧‧‧薄膜層742‧‧‧film layer

744‧‧‧第一厚膜層744‧‧‧First thick film

746‧‧‧第二厚膜層746‧‧‧second thick film

880‧‧‧光880‧‧‧Light

881‧‧‧折射光881‧‧‧Refracted light

882‧‧‧透射光882‧‧‧transmitted light

883‧‧‧反射光883‧‧‧ reflected light

884‧‧‧光線884‧‧‧Light

885‧‧‧透射光885‧‧‧transmitted light

887‧‧‧光線887‧‧‧Light

888‧‧‧光888‧‧‧Light

889‧‧‧來自顯示面板之光889‧‧‧Light from the display panel

R1‧‧‧光887之反射率Reflectivity of R1‧‧‧Light 887

R2‧‧‧光888之反射率Reflectivity of R2‧‧‧光888

T1‧‧‧透射光882之透射率Transmittance of T1‧‧‧ transmitted light 882

T2‧‧‧透射光885之透射率Transmittance of T2‧‧‧ transmitted light 885

n‧‧‧薄膜層742之折射率n‧‧‧Refractive index of film layer 742

nt ‧‧‧第一厚膜層744與第二厚膜層746之折射率n t ‧‧‧Refractive index of the first thick film layer 744 and the second thick film layer 746

θ‧‧‧進入薄膜層之折射光881相對於界面之法線之角度(折射角)θ‧‧‧An angle of the refracted light 881 entering the film layer with respect to the normal to the interface (refraction angle)

θt ‧‧‧光880相對於界面之法線之角度(入射角)θ t ‧‧‧ Angle of light 880 relative to the normal of the interface (incident angle)

θ0 ‧‧‧自顯示面板入射於濾光器上之光889的角度θ 0 ‧‧‧ Angle of light 889 from the display panel incident on the filter

l ‧‧‧薄膜層之厚度 l ‧‧‧Thickness of the film layer

第1圖為示意性圖示LCD之基本結構及操作原理的概念圖;第2圖為圖示根據視角之液晶之定向及透光率的概念圖;第3圖為圖示減少取決於視角之對比度之變化及顏色偏移的慣用做法的概念圖;第4圖為圖示減少取決於視角之對比度之變化及顏色偏移的另一慣用嘗試的概念圖;第5圖為圖示當慣用LCD被應用第3圖與第4圖中所示之補償顏色偏移之做法兩者後以全灰階顯示白光時光譜根據視角增加的變化的一對圖表;第6圖為圖示本申請人之先前申請之申請案中所提議的用於補償顏色偏移之濾光器的橫截面圖;第7圖為圖示第6圖中所示之濾光器補償顏色偏移之原理的簡圖;第8圖為圖示當慣用LCD被應用第3圖與第4圖中所示之補償顏色偏移之做法兩者後以低灰階顯示白光時光譜根據視角增加之變化的一對圖表;第9圖為圖示慣用LCD中的根據視角θ之改變的十三個(13)複合顏色之顏色偏移△u'v'(θ)的圖表;第10圖為圖示使用第6圖中所示之濾光器之LCD中的根據視角θ之改變的十三個(13)複合顏色之顏色偏 移△u'v'(θ)的圖表;第11圖為示意性圖示根據本發明之第一示範性實施例的用於補償顏色偏移之濾光器的透視圖;第12圖為圖示使用第11圖中所示之濾光器之顯示裝置中的根據視角之改變的十三個複合顏色之顏色偏移的圖表;第13圖為圖示當被應用第11圖中所示之濾光器的顯示裝置以全灰階顯示白光時的根據視角之增加的正規化光譜之變化的圖表;第14圖為用於解釋該綠色波長吸收圖案的參考圖;第15圖與第16圖為圖示具有提供於背景層上之綠色波長吸收圖案之濾光器中的折射率對顏色偏移之效應的一對圖表,其中第15圖展示在背景層之折射率與綠色波長吸收圖案之折射率相同之情況下的根據視角之顏色偏移,且第16圖展示在背景層之折射率比綠色波長吸收圖案之折射率大0.06之情況下的根據視角之顏色偏移;第17圖為圖示具有根據本發明之第二實施例之濾光器的顯示裝置中的根據視角之改變的十三個(13)顏色之顏色偏移的圖表;第18圖為示意性圖示根據本發明之第三示範性實施例之濾光器的橫截面圖;第19圖為圖示在提供一濾光器時的根據視角之增加的顏色坐標之變化的圖表,該濾光器僅包括綠色波長吸收圖案而不包括綠色互補色吸收部分; 第20圖為圖示在提供一濾光器時的根據視角增加的顏色坐標之變化的圖表,該濾光器包括綠色波長吸收圖案與綠色互補色吸收部分兩者;第21圖為示意性圖示根據本發明之第四示範性實施例之濾光器的透視圖;第22圖為示意性圖示根據本發明之第六示範性實施例之濾光器的透視圖;及第23圖為圖示使用第22圖中所示之濾光器之顯示裝置中的根據視角之改變的十三個複合顏色之顏色偏移的圖表;及第24圖為示意性圖示根據本發明之第七示範性實施例之濾光器的橫截面圖。1 is a conceptual diagram schematically illustrating the basic structure and operation principle of the LCD; FIG. 2 is a conceptual diagram illustrating the orientation and transmittance of the liquid crystal according to the viewing angle; and FIG. 3 is a diagram illustrating the reduction depending on the viewing angle. A conceptual diagram of a conventional practice of contrast change and color shift; Figure 4 is a conceptual diagram illustrating another conventional attempt to reduce the contrast and color shift depending on the viewing angle; Figure 5 is a diagram showing the conventional LCD A pair of graphs showing changes in the spectrum according to the increase in viewing angle when white light is displayed in full gray scale after applying the method of compensating color shift shown in FIGS. 3 and 4; FIG. 6 is a diagram illustrating the applicant's A cross-sectional view of a filter for compensating for color shift proposed in the prior application; FIG. 7 is a diagram illustrating the principle of the filter for compensating color shift shown in FIG. 6; Figure 8 is a pair of graphs showing changes in the spectrum according to the increase in viewing angle when white light is displayed in low gray scale when the conventional LCD is applied with the compensated color shift shown in Figs. 3 and 4; Figure 9 is a diagram showing the thirteen (13) complexes in the conventional LCD according to the change in the viewing angle θ. a graph of the color shift of the color Δu'v' (θ); FIG. 10 is a graph showing thirteen (13) composites according to the change in the viewing angle θ in the LCD using the filter shown in FIG. Color color deviation A diagram of shifting Δu'v' (θ); FIG. 11 is a perspective view schematically illustrating a filter for compensating for color shift according to the first exemplary embodiment of the present invention; FIG. 12 is a diagram a graph showing the color shift of thirteen composite colors according to a change in viewing angle in the display device using the filter shown in FIG. 11; FIG. 13 is a diagram showing the application shown in FIG. The display device of the filter displays a graph of the change of the normalized spectrum according to the increase of the viewing angle when the white light is displayed in full gray scale; FIG. 14 is a reference diagram for explaining the green wavelength absorption pattern; FIG. 15 and FIG. To illustrate a pair of graphs of the effect of refractive index versus color shift in a filter having a green wavelength absorption pattern provided on a background layer, wherein Figure 15 shows the refractive index of the background layer and the green wavelength absorption pattern. The color shift according to the viewing angle in the case where the refractive index is the same, and FIG. 16 shows the color shift according to the viewing angle in the case where the refractive index of the background layer is larger than the refractive index of the green wavelength absorption pattern by 0.06; The illustration has a filter according to a second embodiment of the invention A chart of color shifts of thirteen (13) colors according to a change in viewing angle in a display device of an optical device; FIG. 18 is a view schematically showing a horizontal direction of a filter according to a third exemplary embodiment of the present invention a cross-sectional view; FIG. 19 is a graph illustrating a change in color coordinates according to an increase in viewing angle when a filter is provided, the filter including only a green wavelength absorption pattern and not including a green complementary color absorbing portion; Figure 20 is a graph illustrating a change in color coordinates according to a viewing angle when a filter is provided, the filter including both a green wavelength absorbing pattern and a green complementary color absorbing portion; and Fig. 21 is a schematic view A perspective view showing a filter according to a fourth exemplary embodiment of the present invention; Fig. 22 is a perspective view schematically showing a filter according to a sixth exemplary embodiment of the present invention; and Fig. 23 is a view A graph showing the color shift of thirteen composite colors according to a change in viewing angle in the display device using the filter shown in FIG. 22; and FIG. 24 is a schematic diagram showing the seventh according to the present invention. A cross-sectional view of a filter of an exemplary embodiment.

10...背景層10. . . Background layer

20...綠色波長吸收圖案20. . . Green wavelength absorption pattern

Claims (23)

一種用於補償顏色偏移之濾光器,其提供於一顯示裝置之一顯示面板之前,該濾光器包含:一背景層;及一綠色波長吸收圖案,該綠色波長吸收圖案在該背景層上具備一厚度,其中該綠色波長吸收圖案吸收一綠色波長之光,其中顏色坐標中之顏色偏移△v'/△u'相對於前方成一60°之視角係介於tan(-15°)至tan(45°)之範圍中。 A filter for compensating for color shifting, which is provided before a display panel of a display device, the filter comprising: a background layer; and a green wavelength absorbing pattern in the background layer Having a thickness, wherein the green wavelength absorbing pattern absorbs light of a green wavelength, wherein the color shift Δv'/Δu' in the color coordinate is 60° with respect to the front is tan (-15°) To the range of tan (45 °). 如申請專利範圍第1項之濾光器,其中該綠色波長吸收圖案包含:具有一楔形橫截面之條紋、具有一楔形橫截面之波紋、一具有一楔形橫截面之矩陣、一具有一楔形橫截面之蜂巢結構、具有一四邊形橫截面之條紋、具有一四邊形橫截面之波紋、一具有一四邊形橫截面之矩陣、或一具有一四邊形橫截面之蜂巢結構。 The filter of claim 1, wherein the green wavelength absorption pattern comprises: a stripe having a wedge-shaped cross section, a corrugation having a wedge-shaped cross section, a matrix having a wedge-shaped cross section, and a wedge-shaped cross section. A honeycomb structure of a cross section, a stripe having a quadrilateral cross section, a corrugation having a quadrilateral cross section, a matrix having a quadrilateral cross section, or a honeycomb structure having a quadrangular cross section. 如申請專利範圍第1項之濾光器,其中該綠色波長吸收圖案包含一綠色波長吸收材料,其吸收在510 nm至560 nm之範圍中的一綠色波長之光。 The filter of claim 1, wherein the green wavelength absorbing pattern comprises a green wavelength absorbing material that absorbs light of a green wavelength in the range of 510 nm to 560 nm. 如申請專利範圍第3項之濾光器,其中該綠色波長吸收材料包含一粉紅色著色劑,其吸收在510 nm至560 nm之範圍中的一綠色波長之光。 A filter according to claim 3, wherein the green wavelength absorbing material comprises a pink colorant that absorbs light of a green wavelength in the range of 510 nm to 560 nm. 如申請專利範圍第1項之濾光器,其另包含一背襯層,其被提供於該背景層之一表面上以支撐該背景層。 The filter of claim 1, further comprising a backing layer provided on a surface of the background layer to support the background layer. 如申請專利範圍第1項之濾光器,其中該顯示裝 置為一液晶顯示器。 For example, the filter of claim 1 of the patent scope, wherein the display device Set it as a liquid crystal display. 如申請專利範圍第1項之濾光器,其中該綠色波長吸收圖案另包含一白光吸收材料。 The filter of claim 1, wherein the green wavelength absorbing pattern further comprises a white light absorbing material. 如申請專利範圍第7項之濾光器,其中該白光吸收材料包含一黑色材料。 The filter of claim 7, wherein the white light absorbing material comprises a black material. 如申請專利範圍第8項之濾光器,其中該白光吸收材料包含炭黑。 The filter of claim 8, wherein the white light absorbing material comprises carbon black. 如申請專利範圍第1項之濾光器,其中該背景層之折射率與該綠色波長吸收圖案之折射率之間的一差係自0.001至0.1。 The filter of claim 1, wherein a difference between a refractive index of the background layer and a refractive index of the green wavelength absorption pattern is from 0.001 to 0.1. 如申請專利範圍第1項之濾光器,其另包含一綠色互補色吸收部分,其吸收與綠色互補之一波長之光。 The filter of claim 1, further comprising a green complementary color absorbing portion that absorbs light of one wavelength complementary to green. 如申請專利範圍第11項之濾光器,其中該綠色互補色吸收部分包含一綠色互補色吸收層,其為一樹脂層,其中一綠色互補色吸收材料混合至該樹脂層中。 The filter of claim 11, wherein the green complementary color absorbing portion comprises a green complementary color absorbing layer which is a resin layer, wherein a green complementary color absorbing material is mixed into the resin layer. 如申請專利範圍第12項之濾光器,其中該綠色互補色吸收層包含一黏著劑層,該綠色互補色吸收材料混合至該黏著劑層中。 The filter of claim 12, wherein the green complementary color absorbing layer comprises an adhesive layer, and the green complementary color absorbing material is mixed into the adhesive layer. 如申請專利範圍第12項之濾光器,其中該背景層包含一綠色互補色吸收材料,其吸收與綠色互補之一波長之光以使該背景層充當該綠色互補色吸收層。 The filter of claim 12, wherein the background layer comprises a green complementary color absorbing material that absorbs light of one wavelength complementary to green to cause the background layer to act as the green complementary color absorbing layer. 如申請專利範圍第11項之濾光器,其中該綠色互補色吸收部分包含一綠色互補色吸收片,其形成於該綠色波長吸收圖案之一側上。 The filter of claim 11, wherein the green complementary color absorbing portion comprises a green complementary color absorbing sheet formed on one side of the green wavelength absorbing pattern. 如申請專利範圍第15項之濾光器,其中該綠色互補色吸收片形成於該綠色波長吸收圖案之一背表面上。 The filter of claim 15, wherein the green complementary color absorbing sheet is formed on one of the back surfaces of the green wavelength absorbing pattern. 如申請專利範圍第15項之濾光器,其中該綠色波長吸收圖案具有一楔形橫截面,且該綠色互補色吸收片形成於該綠色波長吸收圖案之該楔形橫截面之一底邊上。 The filter of claim 15, wherein the green wavelength absorbing pattern has a wedge-shaped cross section, and the green complementary color absorbing sheet is formed on one of the bottom sides of the wedge-shaped cross section of the green wavelength absorbing pattern. 如申請專利範圍第11項之濾光器,其中該綠色互補色吸收部分包含選自由以下各者組成之群中之至少一者:一藍色波長吸收材料,其吸收在440 nm至480 nm之範圍中的一藍色波長之光;及一紅色波長吸收材料,其吸收在600 nm至650 nm之範圍中的一紅色波長之光。 The filter of claim 11, wherein the green complementary color absorbing portion comprises at least one selected from the group consisting of: a blue wavelength absorbing material absorbing from 440 nm to 480 nm a blue wavelength light in the range; and a red wavelength absorbing material that absorbs a red wavelength of light in the range of 600 nm to 650 nm. 如申請專利範圍第11項之濾光器,其另包含一第一厚膜層、一第一薄膜層及一第二厚膜層,其以上述次序彼此堆疊,其中該第一薄膜層具有一不超過780 nm之厚度,且該第一厚膜層與該第二厚膜層具有一大於該第一薄膜層之該厚度的厚度,及其中該第一厚膜層、該第一薄膜層及該第二厚膜層中之至少一者係該綠色互補色吸收部分。 The filter of claim 11, further comprising a first thick film layer, a first film layer and a second thick film layer stacked on each other in the above-described order, wherein the first film layer has a Not exceeding a thickness of 780 nm, and the first thick film layer and the second thick film layer have a thickness greater than the thickness of the first film layer, and the first thick film layer, the first film layer and At least one of the second thick film layers is the green complementary color absorbing portion. 如申請專利範圍第1項之濾光器,其另包含一第一厚膜層、一第一薄膜層及一第二厚膜層,其以上述次序彼此堆疊,其中該第一薄膜層具有一不超過780 nm之厚度,且該第一厚膜層與該第二厚膜層具有一大於該第一薄膜層之該厚度的厚度。 The filter of claim 1, further comprising a first thick film layer, a first film layer and a second thick film layer stacked on each other in the above-described order, wherein the first film layer has a Not exceeding a thickness of 780 nm, and the first thick film layer and the second thick film layer have a thickness greater than the thickness of the first film layer. 如申請專利範圍第20項之濾光器,其另包含一第二薄膜層及一第三厚膜層,其繼該第一厚膜層、該第一薄膜層及該第二厚膜層之後以上述次序堆疊。 The filter of claim 20, further comprising a second film layer and a third thick film layer, after the first thick film layer, the first film layer and the second thick film layer Stacked in the above order. 如申請專利範圍第20項之濾光器,其中該第一厚膜層與該第二厚膜層中之至少一者包含:一背景層、一支撐該用於補償顏色偏移之濾光器的基底基板、該顯示面板之一前基板、一防眩光膜、一極化膜、一延遲膜、一擴散膜、一黏著劑層、或一空氣層。 The filter of claim 20, wherein at least one of the first thick film layer and the second thick film layer comprises: a background layer, a filter for supporting the color shift compensation a base substrate, a front substrate of the display panel, an anti-glare film, a polarizing film, a retardation film, a diffusion film, an adhesive layer, or an air layer. 一種顯示裝置,包含如申請專利範圍第1項所述之用於補償顏色偏移之濾光器。 A display device comprising the filter for compensating for color shift as described in claim 1 of the patent application.
TW098131794A 2008-09-22 2009-09-21 Optical filter for compensating for color shift and display device having the same TWI401477B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20080092655 2008-09-22
KR20080092656 2008-09-22
KR20080092657 2008-09-22
KR20080098120 2008-10-07
KR20090009883 2009-02-06
KR1020090087906A KR101195849B1 (en) 2008-09-22 2009-09-17 Optical filter for compensating color shift and display device having the same

Publications (2)

Publication Number Publication Date
TW201013236A TW201013236A (en) 2010-04-01
TWI401477B true TWI401477B (en) 2013-07-11

Family

ID=42182687

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098131794A TWI401477B (en) 2008-09-22 2009-09-21 Optical filter for compensating for color shift and display device having the same

Country Status (3)

Country Link
JP (1) JP5319467B2 (en)
KR (1) KR101195849B1 (en)
TW (1) TWI401477B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10690823B2 (en) 2007-08-12 2020-06-23 Toyota Motor Corporation Omnidirectional structural color made from metal and dielectric layers
KR101200772B1 (en) * 2009-10-16 2012-11-13 삼성코닝정밀소재 주식회사 Optical filter for display device and display device having the same
KR101200770B1 (en) * 2011-01-11 2012-11-13 삼성코닝정밀소재 주식회사 Optical film for reducing color shift and lcd device having the same
TWI459359B (en) * 2011-07-27 2014-11-01 Chunghwa Picture Tubes Ltd Circuit for compensating color shift of a color sequential display method and method thereof
JP2014059474A (en) * 2012-09-18 2014-04-03 Dic Corp Protective film and manufacturing method for the same
CN106461834B (en) 2014-04-01 2021-01-15 丰田自动车工程及制造北美公司 Color-shifting free multilayer structure
DE102016110314A1 (en) * 2015-07-07 2017-01-12 Toyota Motor Engineering & Manufacturing North America, Inc. OMNIDIRECTIONAL RED STRUCTURAL COLOR HIGH CHROMA WITH COMBINATION OF SEMICONDUCTOR ABSORBER AND DIELECTRIC ABSORBENT LAYERS
KR102520718B1 (en) * 2017-10-19 2023-04-11 삼성전자주식회사 Display apparatus
JP2020067652A (en) * 2018-10-24 2020-04-30 デクセリアルズ株式会社 Optical filter and light emitting device
WO2020085387A1 (en) * 2018-10-24 2020-04-30 デクセリアルズ株式会社 Optical filter and light emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884695A (en) * 1973-11-02 1975-05-20 Gte Sylvania Inc Process for fabricating a color cathode ray tube screen structure having superimposed optical filter means therein
TW200736670A (en) * 2006-02-13 2007-10-01 Koninkl Philips Electronics Nv Colour filter for display application

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521726A (en) * 1994-08-26 1996-05-28 Alliedsignal Inc. Polarizer with an array of tapered waveguides
JP4142568B2 (en) * 2003-12-19 2008-09-03 インターナショナル・ビジネス・マシーンズ・コーポレーション OPTICAL ELEMENT AND COLOR DISPLAY DEVICE USING THE OPTICAL ELEMENT
JP2006178092A (en) 2004-12-21 2006-07-06 Dainippon Printing Co Ltd Light diffusion member and translucent type screen
JP4121997B2 (en) * 2004-12-28 2008-07-23 大日本印刷株式会社 Viewing angle control sheet and image display apparatus using the same
KR100709985B1 (en) * 2005-01-04 2007-04-23 삼성코닝 주식회사 Filter for display apparatus and display apparatus having the same
JP2007316156A (en) * 2006-05-23 2007-12-06 Sony Corp Liquid crystal panel, liquid crystal display apparatus and optical element
JP2008134579A (en) * 2006-10-24 2008-06-12 Nippon Zeon Co Ltd Optical filter, polarizing plate, illumination device and liquid crystal display device
KR20080064485A (en) * 2007-01-05 2008-07-09 삼성코닝정밀유리 주식회사 Optical sheet and display opctical filter
US8208097B2 (en) * 2007-08-08 2012-06-26 Samsung Corning Precision Materials Co., Ltd. Color compensation multi-layered member for display apparatus, optical filter for display apparatus having the same and display apparatus having the same
JP5034909B2 (en) * 2007-12-03 2012-09-26 大日本印刷株式会社 Optical sheet and display device
JP2009192983A (en) * 2008-02-18 2009-08-27 Nippon Zeon Co Ltd Selective reflection element and liquid crystal display device
JP4471014B2 (en) * 2008-04-04 2010-06-02 ソニー株式会社 Liquid crystal display device, backlight light source and optical film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884695A (en) * 1973-11-02 1975-05-20 Gte Sylvania Inc Process for fabricating a color cathode ray tube screen structure having superimposed optical filter means therein
TW200736670A (en) * 2006-02-13 2007-10-01 Koninkl Philips Electronics Nv Colour filter for display application

Also Published As

Publication number Publication date
KR101195849B1 (en) 2012-11-05
JP2010072653A (en) 2010-04-02
KR20100033935A (en) 2010-03-31
JP5319467B2 (en) 2013-10-16
TW201013236A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
TWI401477B (en) Optical filter for compensating for color shift and display device having the same
US8427768B2 (en) Optical filter for compensating for color shift provided in front of a display panel of a display device and display device having the same
US8493526B2 (en) Lighting device and display device
US8208097B2 (en) Color compensation multi-layered member for display apparatus, optical filter for display apparatus having the same and display apparatus having the same
US7841730B2 (en) Light source device and crystal display device
TW200827840A (en) Liquid crystal panel comprising liquid crystal cell having multigap structure, and liquid crystal display
KR101557267B1 (en) Optical filter for display device and display device having the same
KR101221467B1 (en) Color compensation diffusion filter and display device having the same
CN113614592B (en) Circular polarizing plate for anti-reflection and image display device using the same
WO2015147287A1 (en) Liquid crystal panel, liquid crystal display device, polarizing plate, and polarizing plate protective film
US20120194765A1 (en) Integrated o film for improving viewing angle of tn-lcd, and polarizer plate and tn-lcd including the same
CN101363929B (en) Color compensation multi-layered member for display apparatus, optical filter and display apparatus
US20110205632A1 (en) Optical filter for display device and display device having the same
JP2008242350A (en) Optical element, polarizer, retardation plate, illuminator, and liquid crystal display
US20100283940A1 (en) Liquid crystal display
KR101150192B1 (en) Optical filter for display device and display device having the same
JP2008058386A (en) Optical element and polarizing plate having the same, and liquid crystal display device
KR101221469B1 (en) Color compensation optical film for display device and optical filter for display device having the same
KR101094406B1 (en) Color compensation polarizing filter and display device having the same
KR101208637B1 (en) Color compensation optical film for display device and optical filter for display device having the same
KR101181951B1 (en) Color shift compensation filter and display device having the same
KR101200771B1 (en) Color shift compensation filter and display device having the same
KR102089405B1 (en) Liquid crystal display
CN113219721A (en) Display device and display terminal
CN113219722A (en) Display device and display terminal

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees