TWI398972B - Electrostrictive composite material and method for making the same - Google Patents

Electrostrictive composite material and method for making the same Download PDF

Info

Publication number
TWI398972B
TWI398972B TW97123095A TW97123095A TWI398972B TW I398972 B TWI398972 B TW I398972B TW 97123095 A TW97123095 A TW 97123095A TW 97123095 A TW97123095 A TW 97123095A TW I398972 B TWI398972 B TW I398972B
Authority
TW
Taiwan
Prior art keywords
composite material
electrostrictive composite
electrostrictive
flexible polymer
carbon nanotube
Prior art date
Application number
TW97123095A
Other languages
Chinese (zh)
Other versions
TW201001764A (en
Inventor
Lu-Zhuo Chen
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97123095A priority Critical patent/TWI398972B/en
Publication of TW201001764A publication Critical patent/TW201001764A/en
Application granted granted Critical
Publication of TWI398972B publication Critical patent/TWI398972B/en

Links

Description

電致伸縮複合材料及其製備方法 Electrostrictive composite material and preparation method thereof

本發明涉及一種電致伸縮複合材料及其製備方法,尤其涉及一種包含有奈米碳管的電致伸縮複合材料及其製備方法。 The invention relates to an electrostrictive composite material and a preparation method thereof, in particular to an electrostrictive composite material comprising a carbon nanotube and a preparation method thereof.

電致伸縮複合材料係在電場的作用下能產生伸縮運動,從而實現電能-機械能轉換的一種材料。電致伸縮複合材料由於其電能-機械能轉換中類似肌肉的運動形式又被稱為人工肌肉材料。先前技術中的基於電致伸縮複合材料的電能-機械能轉化的材料和器件中,所述的電致伸縮複合材料主要係以單組分的材料形成,其驅動電壓較高、輸出應力較小,使得其性能與肌肉相比還有較大的差距。 An electrostrictive composite material is a material that can generate telescopic motion under the action of an electric field, thereby realizing electrical-mechanical energy conversion. Electrostrictive composites are also referred to as artificial muscle materials due to their muscle-like motion patterns in electrical-mechanical energy conversion. In the materials and devices for electro-mechanical energy conversion based on electrostrictive composite materials in the prior art, the electrostrictive composite materials are mainly formed of a single-component material, which has a high driving voltage and a small output stress. Therefore, there is still a big gap between its performance and muscle.

奈米碳管紙(請參見“Carbon Nanotube Actuators”,Ray H.Baughman,et al.,Sciencc,vol 284,p1340(1999))或含有奈米碳管的複合材料等經常被用來製備所述電致伸縮複合材料。請參閱圖1,為先前技術的奈米柔性電熱材料10。所述奈米柔性電熱材料包括柔性高分子基底材料14及分散在柔性高分子基底材料14中的大量奈米碳管12。奈米碳管12互相搭接在柔性高分子基底材料14中形成大量導電網絡,從而奈米柔性電熱材料10可以導電,通電以後可發熱,發熱後,所述的奈米柔性電熱材料10體積發生膨脹。其中,在沿奈米柔性電熱材料10的電流流過的方向上,會產生一較大的形變。然,上述的奈米柔性電熱材料10通常採用將分散 好的奈米碳管溶液與所述的高分子材料的預聚物溶液混合,之後通過聚合固化形成。然而,由於在所述奈米柔性電熱材料10中的奈米碳管12易發生團聚,從而使得奈米碳管12在所述奈米柔性電熱材料10中分散不够均勻。故,使得所述的奈米柔性電熱材料10在響應速率、導電性以及應力等方面還有待進一步地提高。 Carbon nanotube paper (see "Carbon Nanotube Actuators", Ray H. Baughman, et al., Sciencc, vol 284, p1340 (1999)) or composites containing carbon nanotubes, etc. are often used to prepare the described Electrostrictive composites. Please refer to FIG. 1, which is a prior art nano-flexible electrothermal material 10. The nano flexible electrothermal material includes a flexible polymer base material 14 and a plurality of carbon nanotubes 12 dispersed in the flexible polymer base material 14. The carbon nanotubes 12 are overlapped with each other to form a large number of conductive networks in the flexible polymer base material 14, so that the nano-flexible electrothermal material 10 can be electrically conductive, and can be heated after being energized. After the heat is generated, the nano-flexible electrothermal material 10 is generated in volume. Swell. Among them, a large deformation occurs in the direction in which the current flowing along the nanometer flexible electrothermal material 10 flows. However, the above-mentioned nano flexible electrothermal material 10 is usually dispersed. A good carbon nanotube solution is mixed with the prepolymer solution of the polymer material, and then formed by polymerization curing. However, since the carbon nanotubes 12 in the nano-flexible electrocaloric material 10 are prone to agglomeration, the carbon nanotubes 12 are not uniformly dispersed in the nano-flexible electrocaloric material 10. Therefore, the nano flexible electrothermal material 10 needs to be further improved in terms of response rate, conductivity, stress, and the like.

有鑒於此,提供一種響應速率快及能提供較大應力的電致伸縮複合材料及其製備方法實為必要。 In view of this, it is necessary to provide an electrostrictive composite material having a fast response rate and capable of providing a large stress and a preparation method thereof.

一種電致伸縮複合材料,其包括:一柔性高分子基底,分散在所述柔性高分子基底中的多個奈米碳管。其中,所述電致伸縮複合材料還進一步包括分散在所述柔性高分子基底中的多個陶瓷顆粒。 An electrostrictive composite material comprising: a flexible polymer substrate, a plurality of carbon nanotubes dispersed in the flexible polymer substrate. Wherein the electrostrictive composite further comprises a plurality of ceramic particles dispersed in the flexible polymer substrate.

一種電致伸縮複合材料的製備方法,其包括以下步驟:混合一奈米碳管、陶瓷顆粒及柔性高分子的第一組分形成一混合物,並用一可揮發性溶劑溶解上述的混合物,從而形成一含有奈米碳管和陶瓷顆粒的溶液;超聲破碎處理上述的奈米碳管和陶瓷顆粒的溶液,並超聲清洗處理上述含有奈米碳管和陶瓷顆粒的溶液:加熱上述超聲處理後的溶液,揮發掉溶液中的溶劑,形成一含有分散了的奈米碳管和陶瓷顆粒的混合物;將柔性高分子的第二組分加入到上述經加熱處理過的混合物中,攪拌混合反應後,形成一複合物,並將該複合物塗覆至一支撑體的表面;及脫泡處理所述塗覆有複合物的支撑體,除去支撑體後形成所述的電致伸縮複合材料。 A method for preparing an electrostrictive composite material, comprising the steps of: mixing a carbon nanotube, a ceramic particle, and a first component of a flexible polymer to form a mixture, and dissolving the mixture with a volatile solvent to form a solution containing a carbon nanotube and a ceramic particle; ultrasonically crushing the solution of the above carbon nanotube and ceramic particles, and ultrasonically cleaning the solution containing the carbon nanotube and the ceramic particle: heating the sonicated solution , volatilizing the solvent in the solution to form a mixture containing the dispersed carbon nanotubes and ceramic particles; adding the second component of the flexible polymer to the heat-treated mixture, stirring and mixing, forming a composite, and applying the composite to a surface of a support; and defoaming the composite coated support to form the electrostrictive composite after removing the support.

與先前技術相比較,所述電致伸縮複合材料及其製備方法具有以下優點:其一,由於所述電致伸縮複合材料中除包括分散的奈米碳管,還包括大量的均勻分布的陶瓷顆粒。所述陶瓷顆粒具有較高的熱導率和耐高溫特性,因而可提高所述的電致伸縮複合材料的傳熱效率,加快響應速率。其二, 由於陶瓷顆粒的機械性能好和高彈性模量的優點,故,陶瓷顆粒的引入可提高所述電致伸縮複合材料的彈性模量,在同樣的應變下獲得更大的應力。其三,由於陶瓷顆粒具有高電阻率、低介電常數以及低介電損耗等電學性能,因而在所述電致伸縮複合材料中摻入一定量的陶瓷顆粒,可調節所述的電致伸縮複合材料的導電性能,只需施加較小的電壓即可獲得理想的形變,因而降低了所述電致伸縮複合材料的使用電壓。其四,在形成所述的電致伸縮複合材料的過程中,通過採用超聲破碎處理從而使得所述奈米碳管和陶瓷顆粒在所述電致伸縮複合材料中得到很好的分散。 Compared with the prior art, the electrostrictive composite material and the preparation method thereof have the following advantages: First, since the electrostrictive composite material includes a dispersed carbon nanotube, it also includes a large amount of uniformly distributed ceramics. Particles. The ceramic particles have high thermal conductivity and high temperature resistance, thereby improving the heat transfer efficiency of the electrostrictive composite material and accelerating the response rate. Second, Due to the good mechanical properties of the ceramic particles and the high modulus of elasticity, the introduction of ceramic particles increases the modulus of elasticity of the electrostrictive composite and achieves greater stress at the same strain. Third, since the ceramic particles have electrical properties such as high electrical resistivity, low dielectric constant, and low dielectric loss, a certain amount of ceramic particles are incorporated into the electrostrictive composite material, and the electrostriction can be adjusted. The electrical conductivity of the composite material requires only a small voltage to be applied to achieve the desired deformation, thereby reducing the voltage used by the electrostrictive composite. Fourthly, in the process of forming the electrostrictive composite material, the carbon nanotubes and ceramic particles are well dispersed in the electrostrictive composite material by using ultrasonication treatment.

20‧‧‧電致伸縮複合材料 20‧‧‧Electrostrictive composite

22‧‧‧柔性高分子基底 22‧‧‧Flexible polymer substrate

24‧‧‧奈米碳管 24‧‧‧Nano Carbon Tube

26‧‧‧陶瓷顆粒 26‧‧‧Ceramic particles

圖1為先前技術中的奈米柔性電熱材料的結構示意圖。 1 is a schematic view showing the structure of a nano-flexible electrothermal material in the prior art.

圖2為本技術方案實施例的電致伸縮複合材料發生伸縮前後的結構對比示意圖。 FIG. 2 is a schematic view showing the structure comparison of the electrostrictive composite material before and after the expansion and contraction of the embodiment of the present technical solution.

圖3為本技術方案實施例製備的電致伸縮複合材料的製備方法的流程圖。 3 is a flow chart of a method for preparing an electrostrictive composite material prepared according to an embodiment of the present technical solution.

以下將結合附圖對本技術方案作進一步的詳細說明。 The technical solution will be further described in detail below with reference to the accompanying drawings.

請參閱圖2,本技術方案實施例所提供一種電致伸縮複合材料20,其包括一柔性高分子基底22,均勻分散在所述柔性高分子基底中的多個奈米碳管24,及均勻分散在所述柔性高分子基底22中的多個陶瓷顆粒26。所述奈米碳管24在所述矽橡膠基底中均勻分布,奈米碳管24互相搭接在柔性高分子基底22中形成大量導電網絡。柔性高分子基底20可選自矽橡膠彈性體、聚氨脂、環氧樹脂、聚甲基丙烯酸甲酯中的一種及其任意組合。所述陶瓷顆粒26可選自氮化鋁、氧化鋁、氮化硼中的一種及其任意組合。 Referring to FIG. 2 , an embodiment of the technical solution provides an electrostrictive composite material 20 including a flexible polymer substrate 22 , a plurality of carbon nanotubes 24 uniformly dispersed in the flexible polymer substrate, and uniform A plurality of ceramic particles 26 dispersed in the flexible polymer substrate 22. The carbon nanotubes 24 are evenly distributed in the base rubber substrate, and the carbon nanotubes 24 are overlapped with each other to form a large number of conductive networks in the flexible polymer substrate 22. The flexible polymer substrate 20 may be selected from the group consisting of ruthenium rubber elastomer, polyurethane, epoxy resin, polymethyl methacrylate, and any combination thereof. The ceramic particles 26 may be selected from one of aluminum nitride, aluminum oxide, boron nitride, and any combination thereof.

所述柔性高分子基底22在所述電致伸縮複合材料20中的質量百分比含量為 大於等於90%;奈米碳管與陶瓷顆粒在所述電致伸縮複合材料20中的質量百分比含量為小於等於10%。為確保奈米碳管24在所述電致伸縮複合材料20中能形成多個導電網絡,故奈米碳管24與陶瓷顆粒26的質量比大於等於1:1。優選地,所述陶瓷顆粒的質量百分比含量為整個電致伸縮複合材料20的1%~5%。奈米碳管24可為單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種及其任意組合,單壁奈米碳管的直徑為0.5奈米~50奈米,雙壁奈米碳管的直徑為1.0奈米~50奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。 The mass percentage of the flexible polymer substrate 22 in the electrostrictive composite material 20 is 90% or more; the mass percentage of the carbon nanotubes and ceramic particles in the electrostrictive composite material 20 is 10% or less. To ensure that the carbon nanotubes 24 can form a plurality of conductive networks in the electrostrictive composite material 20, the mass ratio of the carbon nanotubes 24 to the ceramic particles 26 is greater than or equal to 1:1. Preferably, the ceramic particles have a mass percentage content of 1% to 5% of the entire electrostrictive composite material 20. The carbon nanotube 24 can be one of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube, and the diameter of the single-walled carbon nanotube is 0.5 nm to 50 nm. The diameter of the double-walled carbon nanotubes is 1.0 nm to 50 nm, and the diameter of the multi-walled carbon nanotubes is 1.5 nm to 50 nm.

本實施例中,所述柔性高分子基底材料10為矽橡膠,奈米碳管為多壁奈米碳管,所述奈米碳管的長度為1~10微米。所述陶瓷顆粒26為氮化鋁陶瓷顆粒,陶瓷顆粒的直徑為1~100奈米。陶瓷顆粒26的質量百分比含量為整個電致伸縮材料20的4%,奈米碳管24的質量百分比含量為整個電致伸縮材料20的5%。 In this embodiment, the flexible polymer base material 10 is a ruthenium rubber, and the carbon nanotubes are multi-walled carbon nanotubes, and the length of the carbon nanotubes is 1 to 10 micrometers. The ceramic particles 26 are aluminum nitride ceramic particles, and the ceramic particles have a diameter of 1 to 100 nm. The mass percentage of the ceramic particles 26 is 4% of the entire electrostrictive material 20, and the mass percentage of the carbon nanotubes 24 is 5% of the entire electrostrictive material 20.

所述陶瓷顆粒26的作用為:其一,由於所述氮化鋁等陶瓷顆粒26具有極高的熱導率和耐高溫等特性,因而可提高所述電致伸縮複合材料20的傳熱效率,並加快所述電致伸縮複合材料的響應速率。其二,氮化鋁等陶瓷顆粒26具有高電阻率、低介電常數及介電損耗等良好的電學性能,故,摻入上述的陶瓷顆粒26後,可對所述電致伸縮複合材料20的導電性進行調解。其三,由於氮化鋁等陶瓷顆粒26具有機械性能好和高彈性模量等優點,故,摻入上述的陶瓷顆粒26後,可提高所述電致伸縮複合材料20的彈性模量,在同樣的應變下獲得更大的應力。 The ceramic particles 26 function as follows: First, since the ceramic particles 26 such as aluminum nitride have extremely high thermal conductivity and high temperature resistance, the heat transfer efficiency of the electrostrictive composite material 20 can be improved. And speed up the response rate of the electrostrictive composite. Second, the ceramic particles 26 such as aluminum nitride have good electrical properties such as high electrical resistivity, low dielectric constant, and dielectric loss. Therefore, after the ceramic particles 26 described above are incorporated, the electrostrictive composite material 20 can be applied. The conductivity is mediated. Thirdly, since the ceramic particles 26 such as aluminum nitride have the advantages of good mechanical properties and high elastic modulus, the elastic modulus of the electrostrictive composite material 20 can be improved after the ceramic particles 26 described above are incorporated. Greater stress is obtained under the same strain.

將兩電極設置於所述電致伸縮複合材料20相對的兩端時,可將電壓通過電極施加於所述電致伸縮複合材料20上,此時,電流可通過上述的導電網絡進行傳輸。由於奈米碳管24和陶瓷顆粒26的熱導率很高,從而使得所述電 致伸縮複合材料20的溫度快速升高,進而,使得所述奈米碳管24之間的矽橡膠處於熔融狀態,而所述電致伸縮複合材料20的電流隨著其溫度的升高而增大,即形成了一個正回饋的過程。由於熱量從所述電致伸縮複合材料20的微觀局部快速地向整個電致伸縮複合材料20擴散,這樣,由於熱膨脹,會引起所述電致伸縮複合材料20的伸展現象。由於本實施例中的奈米碳管24和陶瓷顆粒26在電致伸縮複合材料20中分布較為均勻,因此所述電致伸縮複合材料20的響應速度較快且具有較大的伸縮率。具體地,本實施例中,所述電致伸縮複合材料20的伸縮率為1%~8%。 When the two electrodes are disposed at opposite ends of the electrostrictive composite material 20, a voltage can be applied to the electrostrictive composite material 20 through the electrodes, and at this time, current can be transmitted through the conductive network described above. Since the thermal conductivity of the carbon nanotubes 24 and the ceramic particles 26 is high, the electricity is made The temperature of the stretchable composite material 20 is rapidly increased, and further, the tantalum rubber between the carbon nanotubes 24 is in a molten state, and the current of the electrostrictive composite material 20 increases as the temperature thereof increases. Large, that is, a process of positive feedback. Since heat is rapidly diffused from the microscopic portion of the electrostrictive composite material 20 to the entire electrostrictive composite material 20, the stretching phenomenon of the electrostrictive composite material 20 is caused by thermal expansion. Since the carbon nanotubes 24 and the ceramic particles 26 in the present embodiment are more uniformly distributed in the electrostrictive composite material 20, the electrostrictive composite material 20 has a faster response speed and a larger expansion ratio. Specifically, in the embodiment, the expansion ratio of the electrostrictive composite material 20 is 1% to 8%.

可以理解,當所述電致伸縮複合材料20製備成具有一定形狀的樣品時,當在所述樣品上施加一定電壓時,由於電荷在所述電致伸縮複合材料20中的電流延伸的方向上不斷積累,從而使得所述電致伸縮複合材料20延所述電流延伸的方向上產生一明顯的形變。而在與所述電流延伸方向垂直的方面上所述的形變不明顯,從而所述電致伸縮複合材料20進行收縮時,可看作為一線性收縮。因而當需要制一線性收縮的電致伸縮複合材料20時,可直接使用本實施例提供的電致伸縮複合材料20,無需其他複雜設計便可實現線性收縮和彎曲,降低了製作工藝的難度和製作成本。 It will be appreciated that when the electrostrictive composite 20 is prepared as a sample having a shape, when a certain voltage is applied to the sample, due to the direction in which the electric current extends in the electrostrictive composite 20 Accumulating continuously causes the electrostrictive composite material 20 to undergo a significant deformation in the direction in which the current extends. The deformation is not apparent in the aspect perpendicular to the direction in which the current extends, so that when the electrostrictive composite material 20 is contracted, it can be regarded as a linear contraction. Therefore, when a linearly contracted electrostrictive composite material 20 is required, the electrostrictive composite material 20 provided by the embodiment can be directly used, and linear shrinkage and bending can be realized without other complicated designs, thereby reducing the difficulty of the manufacturing process and production cost.

對本實施例所述的電致伸縮複合材料20進行伸縮特性測量。通過導線將電源(未標示)電壓施加於所述電致伸縮複合材料20的兩端。 The electrostrictive composite material 20 of the present embodiment was subjected to measurement of stretch characteristics. A power source (not shown) voltage is applied to both ends of the electrostrictive composite material 20 by wires.

在未通電時,測得所述長方體電致伸縮複合材料20的原始長度L1為4厘米;施加一40伏特的電壓2分鐘後,測得所述長方體電致伸縮複合材料20的長度L2為4.2厘米。通過計算可知,在通電後,所述長方體電致伸縮複合材料20的長度變化△L為0.2厘米。故,所述電致伸縮複合材料20的伸縮率為通電前後所述電致伸縮複合材料20的長度變化△L與所述電致伸縮複合材料的原始長度L1的比值,即5%。 When the power is not supplied, the original length L1 of the cuboid electrostrictive composite material 20 is measured to be 4 cm; after applying a voltage of 40 volts for 2 minutes, the length L2 of the rectangular parallelepiped electrostrictive composite material 20 is measured to be 4.2 cm. cm. As a result of calculation, the length change ΔL of the rectangular parallelepiped electrostrictive composite material 20 after the energization was 0.2 cm. Therefore, the expansion ratio of the electrostrictive composite material 20 is a ratio of the length change ΔL of the electrostrictive composite material 20 before and after energization to the original length L1 of the electrostrictive composite material, that is, 5%.

進一步地,還可在本實施例所述的電致伸縮複合材料20的上下表面分別設置一矽橡膠薄層,從而形成一三明治結構,即將本實施例所述的電致伸縮複合材料20夾在兩個矽橡膠薄層之間。其中,所述矽橡膠薄層的厚度為所述電致伸縮複合材料20的1~10%。由於矽橡膠薄層和所述電致伸縮複合材料20中的高分子基底22成分相同,因此矽橡膠薄層和電致伸縮複合材料20的接觸面上會形成很好的結合。在形成相同厚度的電致伸縮複合材料時,本實施例所述的三明治結構的電致伸縮複合材料在保持較好的電致伸縮特性,節省了奈米碳管和陶瓷顆粒的用量,節約了成本。另外,由於所述的矽橡膠薄層具有較好的絕緣性,故可在需要絕緣的電致伸縮複合材料情况下使用。可以理解,本實施例所述的電致伸縮複合材料20,還可根據上述的原理,設置成一具有多層結構的電致伸縮複合材料,且各層的設置方式及厚度可以根據實際需要進行調整。 Further, a thin layer of rubber may be separately disposed on the upper and lower surfaces of the electrostrictive composite material 20 of the present embodiment to form a sandwich structure, that is, the electrostrictive composite material 20 of the embodiment is sandwiched. Between two thin layers of rubber. Wherein, the thickness of the thin layer of the ruthenium rubber is 1 to 10% of the electrostrictive composite material 20. Since the thin layer of the ruthenium rubber and the polymer base 22 in the electrostrictive composite material 20 have the same composition, a good bond is formed on the contact surface of the ruthenium rubber thin layer and the electrostrictive composite material 20. When the electrostrictive composite material of the same thickness is formed, the electrostrictive composite material of the sandwich structure described in this embodiment maintains good electrostrictive characteristics, saves the amount of carbon nanotubes and ceramic particles, and saves the amount of electricity. cost. In addition, since the thin layer of the ruthenium rubber has good insulation properties, it can be used in the case of an electrostrictive composite material requiring insulation. It can be understood that the electrostrictive composite material 20 of the present embodiment can also be configured as an electrostrictive composite material having a multi-layer structure according to the above principle, and the arrangement and thickness of each layer can be adjusted according to actual needs.

請參閱圖3,本實施例所述的電致伸縮複合材料20的製備方法,包括以下步驟: Referring to FIG. 3, a method for preparing the electrostrictive composite material 20 of the embodiment includes the following steps:

步驟一:混合奈米碳管24、陶瓷顆粒26及矽橡膠的第一組分(A組分)形成一混合物,並用一可揮發性溶劑溶解上述的混合物,從而形成一含有奈米碳管24和陶瓷顆粒26的溶液。 Step 1: mixing the carbon nanotubes 24, the ceramic particles 26 and the first component (component A) of the ruthenium rubber to form a mixture, and dissolving the above mixture with a volatile solvent to form a carbon nanotube-containing tube 24 And a solution of ceramic particles 26.

本實施例中,首先將矽橡膠的A組分與奈米碳管22和陶瓷顆粒24進行混合,之後,加入適量的乙酸乙酯,使得矽橡膠A組分完全溶解,並形成一含有的奈米碳管24和陶瓷顆粒26的溶液。所述的矽橡膠係由GF-T2A彈性電子灌封膠A、B兩組分按A:B的質量比為100:6混合反應生成。本實施例中,矽橡膠22在電致伸縮複合材料20中的質量比為91%,奈米碳管在電致伸縮複合材料20中的質量比為5%,陶瓷顆粒在電致伸縮複合材料20中的質量比為4%。 In this embodiment, the A component of the ruthenium rubber is first mixed with the carbon nanotubes 22 and the ceramic particles 24, and then an appropriate amount of ethyl acetate is added to completely dissolve the ruthenium rubber component A, and form a contained naphthalene. A solution of carbon nanotubes 24 and ceramic particles 26. The ruthenium rubber is produced by mixing a mixture of GF-T2A elastic electronic potting A and B in a mass ratio of A:B of 100:6. In this embodiment, the mass ratio of the ruthenium rubber 22 in the electrostrictive composite material 20 is 91%, the mass ratio of the carbon nanotubes in the electrostrictive composite material 20 is 5%, and the ceramic particles are in the electrostrictive composite material. The mass ratio in 20 is 4%.

步驟二:超聲破碎處理上述的奈米碳管24和陶瓷顆粒26的溶液,並超聲清 洗處理上述含有奈米碳管24和陶瓷顆粒26的溶液。 Step 2: ultrasonically crushing the solution of the above carbon nanotube 24 and ceramic particles 26, and ultrasonically clearing The above solution containing the carbon nanotubes 24 and the ceramic particles 26 is washed.

具體地,用超聲波細胞破碎儀超聲處理上述的奈米碳管24和陶瓷顆粒26的溶液10分鐘;之後,用保鮮膜將上述的奈米碳管24和陶瓷顆粒26的溶液密封起來,並將密封後的奈米碳管24和陶瓷顆粒26的溶液放入超聲波清洗機中超聲處理3小時,從而使得上述的奈米碳管24和陶瓷顆粒26可在上述的溶液中得到較好的分散。其中,超聲波破碎處理可使得奈米碳管24和陶瓷顆粒26的受到一定程度的破碎,從而减小尺寸。超聲清洗處理可進一步將奈米碳管24和陶瓷顆粒26分散到溶液中。 Specifically, the solution of the above carbon nanotube 24 and the ceramic particles 26 is ultrasonically treated with an ultrasonic cell disrupter for 10 minutes; after that, the solution of the above carbon nanotube 24 and the ceramic particles 26 is sealed with a wrap film, and The sealed solution of the carbon nanotubes 24 and the ceramic particles 26 was ultrasonically treated in an ultrasonic cleaner for 3 hours so that the above-described carbon nanotubes 24 and ceramic particles 26 were well dispersed in the above solution. Among them, the ultrasonic wave breaking treatment can cause the carbon nanotubes 24 and the ceramic particles 26 to be crushed to a certain extent, thereby reducing the size. The ultrasonic cleaning treatment can further disperse the carbon nanotubes 24 and the ceramic particles 26 into the solution.

步驟三:加熱上述超聲處理後的溶液,揮發掉溶液中的溶劑,形成一奈米碳管24、陶瓷顆粒26以及矽橡膠的第一組分均勻分散的混合物。 Step 3: heating the sonicated solution to volatilize the solvent in the solution to form a carbon nanotube 24, ceramic particles 26, and a uniformly dispersed mixture of the first component of the ruthenium rubber.

具體地,上述經超聲處理後的溶液冷却至室溫時,將上述的溶液放入一80攝氏度恒溫的烘箱中進行加熱,一直加熱至溶液中的乙酸乙酯完全揮發,形成一奈米碳管24、陶瓷顆粒26以及矽橡膠的第一組分均勻分散的混合物。 Specifically, when the sonicated solution is cooled to room temperature, the solution is placed in an oven at a constant temperature of 80 degrees Celsius, and heated until the ethyl acetate in the solution is completely volatilized to form a carbon nanotube. 24. A mixture of ceramic particles 26 and a first component of the ruthenium rubber uniformly dispersed.

步驟四:將矽橡膠的第二組分(B組分)加入到上述經加熱處理過的混合物中,攪拌混合反應後,形成一複合物,並將該複合物塗覆至一支撑體的表面。 Step 4: adding the second component (component B) of the ruthenium rubber to the above heat-treated mixture, stirring and mixing to form a composite, and applying the composite to the surface of a support .

具體地,冷却上述經加熱處理後的混合物至室溫後,將矽橡膠的B組分加入到上述的溶液中,並用玻璃棒進行攪拌,從而使得矽橡膠B組分和矽橡膠A組分混合均勻,以便於進行充分反應。之後,將上述反應後形成的複合物用一玻璃棒塗覆至一支撑體的表面,輕輕震蕩上述的支撑體,從而使得所述混合物均勻分布於所述支撑體的表面。其中,所述支撑體可為矽基片、玻璃基板等,只需具有一定的支撑作用即可,可根據實際需要進行相應的 選擇。 Specifically, after cooling the above heat-treated mixture to room temperature, the component B of the ruthenium rubber is added to the above solution, and stirred with a glass rod, thereby mixing the bismuth rubber component B and the ruthenium rubber component A. Uniform to facilitate adequate reaction. Thereafter, the composite formed after the above reaction is applied to the surface of a support with a glass rod, and the above support is gently shaken so that the mixture is uniformly distributed on the surface of the support. Wherein, the support body can be a ruthenium substrate, a glass substrate, etc., and only needs to have a certain supporting effect, and can be correspondingly according to actual needs. select.

步驟五:脫泡處理所述塗覆有複合物的支撑體,除去支撑體後形成所述的電致伸縮複合材料20。 Step 5: Defoaming the support coated with the composite, and forming the electrostrictive composite 20 after removing the support.

具體地,將塗覆有所述複合物的支撑體放置於一真空裝置中進行抽真空,從而除去所述複合物中的氣泡。為使得本實施例所製備的電致伸縮複合材料具有光滑的表面,本實施例採用一具有光滑表面的微孔濾膜對上述的電致伸縮複合材料進行擠壓,通過擠壓可將複合物均勻地且平整地塗覆於所述支撑體的表面。靜置12~18個小時後,用一刀片對上述的微孔濾膜的邊緣進行切割,從而確保最終得到的電致伸縮複合材料的邊緣連續無破損和無缺口,之後,將整個電致伸縮複合材料從支撑體的表面緩慢地揭起來。 Specifically, the support coated with the composite is placed in a vacuum apparatus to evacuate, thereby removing bubbles in the composite. In order to make the electrostrictive composite material prepared in the embodiment have a smooth surface, in the embodiment, the electrostrictive composite material is extruded by using a microporous filter membrane having a smooth surface, and the composite can be extruded by extrusion. Uniformly and evenly applied to the surface of the support. After standing for 12 to 18 hours, the edge of the above microporous membrane is cut with a blade to ensure that the edge of the finally obtained electrostrictive composite material is continuous without damage and no gap, and then the entire electrostriction The composite material is slowly peeled off from the surface of the support.

另外,本實施例可進一步在所述電致伸縮複合材料20的上下表面分別形成一矽橡膠薄層,從而形成一個三明治結構。所述三明治結構的製備方法為:將矽橡膠的第一組分溶於一揮發性溶劑中,形成一溶液;將矽橡膠的第二組分溶於所述溶液中,形成一矽橡膠預聚物溶液;將所述電致伸縮複合材料20浸入到所述矽橡膠預聚物溶液中,靜置固化所述的矽橡膠預聚物溶液,即可在電致伸縮複合材料20的上下表面形成所述矽橡膠薄層。由於矽橡膠薄層與電致伸縮複合材料20中的矽橡膠基底22材料相同,因而,可將上述的電致伸縮複合材料20直接放入到矽橡膠預聚物溶液中形成所述的三明治結構,故,方法簡單、易於應用。 In addition, in this embodiment, a thin layer of a rubber layer may be further formed on the upper and lower surfaces of the electrostrictive composite material 20 to form a sandwich structure. The sandwich structure is prepared by dissolving the first component of the ruthenium rubber in a volatile solvent to form a solution; dissolving the second component of the ruthenium rubber in the solution to form a ruthenium rubber prepolymerization a solution; the electrostrictive composite material 20 is immersed in the ruthenium rubber prepolymer solution, and the ruthenium rubber prepolymer solution is statically solidified to form an upper and lower surface of the electrostrictive composite material 20. The thin layer of tantalum rubber. Since the thin layer of the ruthenium rubber is the same as the material of the ruthenium rubber substrate 22 in the electrostrictive composite material 20, the above-mentioned electrostrictive composite material 20 can be directly placed in the ruthenium rubber prepolymer solution to form the sandwich structure. Therefore, the method is simple and easy to apply.

本技術方案實施例所述的電致伸縮複合材料20及其製備方法具有以下優點:其一,由於所述電致伸縮複合材料20中除包括分散的奈米碳管24,還包括大量的均勻分布的陶瓷顆粒26。所述陶瓷顆粒26具有較高的熱導率和耐高溫特性,因而可提高所述的電致伸縮複合材料20的傳熱效率,加快響應速率。其二,由於陶瓷顆粒26的機械性能好和高彈性模量的優點,故,陶 瓷顆粒的引入可提高所述電致伸縮複合材料20的彈性模量,在同樣的應變下獲得更大的應力。其三,由於陶瓷顆粒26具有高電阻率、低介電常數以及低介電損耗等電學性能,因而在所述電致伸縮複合材料20中摻入一定量的陶瓷顆粒,可調節所述的電致伸縮複合材料20的導電性能,只需施加較小的電壓即可獲得理想的形變,因而降低了所述電致伸縮複合材料20的使用電壓。其四,在形成所述的電致伸縮複合材料20的過程中,通過採用超聲破碎處理從而使得所述奈米碳管和陶瓷顆粒在所述電致伸縮複合材料中得到很好的分散。其五,在所述電致伸縮複合材料20的上下表面分別形成一矽橡膠薄層,從而形成一三明治結構。由於矽橡膠薄層和所述電致伸縮複合材料20中的高分子基底22成分相同,因此矽橡膠薄層和電致伸縮複合材料20的接觸面上會形成很好的結合。在形成相同厚度的電致伸縮複合材料時,所述的三明治結構的電致伸縮複合材料在保持較好的電致伸縮特性,節省了奈米碳管和陶瓷顆粒的用量,節約了成本。另外,由於所述的矽橡膠薄層具有較好的絕緣性,故可在需要絕緣的電致伸縮複合材料情况下使用。 The electrostrictive composite material 20 and the preparation method thereof according to the embodiments of the present technical solution have the following advantages: First, since the electrostrictive composite material 20 includes a dispersed carbon nanotube 24, it also includes a large amount of uniformity. Distributed ceramic particles 26. The ceramic particles 26 have high thermal conductivity and high temperature resistance, thereby improving the heat transfer efficiency of the electrostrictive composite material 20 and accelerating the response rate. Second, due to the mechanical properties of the ceramic particles 26 and the advantages of high modulus of elasticity, The introduction of porcelain particles increases the modulus of elasticity of the electrostrictive composite 20, resulting in greater stress at the same strain. Third, since the ceramic particles 26 have electrical properties such as high electrical resistivity, low dielectric constant, and low dielectric loss, a certain amount of ceramic particles are incorporated into the electrostrictive composite material 20 to adjust the electricity. The conductive properties of the stretchable composite material 20 require only a small voltage to be applied to obtain a desired deformation, thereby reducing the voltage of use of the electrostrictive composite material 20. Fourthly, in the process of forming the electrostrictive composite material 20, the carbon nanotubes and ceramic particles are well dispersed in the electrostrictive composite material by using ultrasonication treatment. Fifthly, a thin layer of rubber is formed on the upper and lower surfaces of the electrostrictive composite material 20 to form a sandwich structure. Since the thin layer of the ruthenium rubber and the polymer base 22 in the electrostrictive composite material 20 have the same composition, a good bond is formed on the contact surface of the ruthenium rubber thin layer and the electrostrictive composite material 20. When forming the electrostrictive composite material of the same thickness, the sandwich structure electrostrictive composite material maintains good electrostrictive properties, saves the amount of carbon nanotubes and ceramic particles, and saves cost. In addition, since the thin layer of the ruthenium rubber has good insulation properties, it can be used in the case of an electrostrictive composite material requiring insulation.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

20‧‧‧電致伸縮複合材料 20‧‧‧Electrostrictive composite

22‧‧‧柔性高分子基底 22‧‧‧Flexible polymer substrate

24‧‧‧奈米碳管 24‧‧‧Nano Carbon Tube

26‧‧‧陶瓷顆粒 26‧‧‧Ceramic particles

Claims (18)

一種電致伸縮複合材料,其包括:一柔性高分子基底,分散在所述柔性高分子基底中的多個奈米碳管,其改良在於,所述電致伸縮複合材料還進一步包括分散在所述柔性高分子基底中的多個陶瓷顆粒及兩個柔性高分子薄層,該兩個柔性高分子薄層分別設置於所述電致伸縮複合材料的兩個相對的表面。 An electrostrictive composite material comprising: a flexible polymer substrate, a plurality of carbon nanotubes dispersed in the flexible polymer substrate, wherein the electrostrictive composite material further comprises a dispersion a plurality of ceramic particles and two flexible polymer thin layers in the flexible polymer substrate, wherein the two flexible polymer thin layers are respectively disposed on two opposite surfaces of the electrostrictive composite material. 如申請專利範圍第1項所述的電致伸縮複合材料,其中,所述柔性高分子基底材料為矽橡膠彈性體、聚氨脂、環氧樹脂、聚甲基丙烯酸甲酯中的一種或其任意組合。 The electrostrictive composite material according to claim 1, wherein the flexible polymer base material is one of ruthenium rubber elastomer, polyurethane, epoxy resin, polymethyl methacrylate or random combination. 如申請專利範圍第1項所述的電致伸縮複合材料,其中,所述奈米碳管在所述柔性高分子基底材料中均勻分布,且多個奈米碳管相互搭接形成多個導電網絡。 The electrostrictive composite material according to claim 1, wherein the carbon nanotubes are uniformly distributed in the flexible polymer base material, and the plurality of carbon nanotubes overlap each other to form a plurality of conductive materials. The internet. 如申請專利範圍第3項所述的電致伸縮複合材料,其中,所述奈米碳管為單壁奈米碳管、雙壁奈米碳管、多壁奈米碳管中的一種或其任意組合,單壁奈米碳管的直徑為0.5奈米~50奈米,雙壁奈米碳管的直徑為1.0奈米~50奈米,多壁奈米碳管的直徑為1.5奈米~50奈米,其長度為1~10微米。 The electrostrictive composite material according to claim 3, wherein the carbon nanotube is one of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube or In any combination, the diameter of a single-walled carbon nanotube is 0.5 nm to 50 nm, the diameter of a double-walled carbon nanotube is 1.0 nm to 50 nm, and the diameter of a multi-walled carbon nanotube is 1.5 nm. 50 nm, its length is 1~10 microns. 如申請專利範圍第1項所述的電致伸縮複合材料,其中,所述陶瓷顆粒材料為氮化鋁或/和氧化鋁。 The electrostrictive composite material according to claim 1, wherein the ceramic particulate material is aluminum nitride or/and aluminum oxide. 如申請專利範圍第1項所述的電致伸縮複合材料,其中,所述奈米碳管和陶瓷顆粒在所述電致伸縮複合材料的質量比小於等於10%,且奈米碳管和陶瓷顆粒的質量比大於等於1:1。 The electrostrictive composite material according to claim 1, wherein the mass ratio of the carbon nanotubes and ceramic particles to the electrostrictive composite material is 10% or less, and the carbon nanotubes and ceramics are used. The mass ratio of the particles is greater than or equal to 1:1. 如申請專利範圍第1項所述的電致伸縮複合材料,其中,所述陶瓷顆粒在 所述電致伸縮複合材料中的質量比為1%~5%。 The electrostrictive composite material according to claim 1, wherein the ceramic particles are The mass ratio in the electrostrictive composite material is 1% to 5%. 如申請專利範圍第1項所述的電致伸縮複合材料,其中,所述柔性高分子薄層的厚度為所述電致伸縮複合材料的1%~10%。 The electrostrictive composite material according to claim 1, wherein the flexible polymer thin layer has a thickness of 1% to 10% of the electrostrictive composite material. 如申請專利範圍第1項所述的電致伸縮複合材料,其中,所述柔性高分子薄層的成分與所述柔性高分子基底的成分相同。 The electrostrictive composite material according to claim 1, wherein the component of the flexible polymer layer is the same as the component of the flexible polymer substrate. 如申請專利範圍第1項所述的電致伸縮複合材料,其中,所述電致伸縮複合材料的伸縮率為1%~8%。 The electrostrictive composite material according to claim 1, wherein the electrostrictive composite material has a stretching ratio of 1% to 8%. 一種電致伸縮複合材料的製備方法,其包括以下步驟:混合奈米碳管、陶瓷顆粒及柔性高分子材料的第一組分形成一混合物,並用一可揮發性溶劑溶解上述的混合物,從而形成一含有奈米碳管和陶瓷顆粒的溶液;超聲破碎處理上述含有奈米碳管和陶瓷顆粒的溶液,並超聲清洗處理上述含有奈米碳管和陶瓷顆粒的溶液;加熱上述超聲處理後的溶液,揮發掉溶液中的溶劑,形成一奈米碳管、陶瓷顆粒以及柔性高分子的第一組分均勻分散的混合物;將柔性高分子材料的第二組分加入到上述經加熱處理過的混合物中,攪拌混合反應後,形成一複合物,並將該複合物塗覆至一支撑體的表面;及脫泡處理所述塗覆有複合物的支撑體,除去支撑體後形成所述的電致伸縮複合材料。 A method for preparing an electrostrictive composite material, comprising the steps of: mixing a first component of a carbon nanotube, a ceramic particle and a flexible polymer material to form a mixture, and dissolving the mixture with a volatile solvent to form a solution containing a carbon nanotube and a ceramic particle; ultrasonically crushing the above solution containing the carbon nanotube and the ceramic particle, and ultrasonically cleaning the solution containing the carbon nanotube and the ceramic particle; heating the sonicated solution , volatilizing the solvent in the solution to form a carbon nanotube, ceramic particles, and a uniformly dispersed mixture of the first component of the flexible polymer; adding the second component of the flexible polymer material to the heat-treated mixture After stirring and mixing, forming a composite, and applying the composite to the surface of a support; and defoaming the support coated with the composite, and forming the electricity after removing the support Telescopic composites. 如申請專利範圍第11項所述的電致伸縮複合材料的製備方法,其中,所述奈米碳管和陶瓷顆粒在所述電致伸縮複合材料的質量比小於等於10%,且奈米碳管和陶瓷顆粒的質量比大於等於1:1,所述陶瓷顆粒在所述電致伸縮複合材料中的質量比為1%~5%。 The method for producing an electrostrictive composite according to claim 11, wherein a mass ratio of the carbon nanotubes and ceramic particles to the electrostrictive composite material is 10% or less, and the nanocarbon is used. The mass ratio of the tube to the ceramic particles is greater than or equal to 1:1, and the mass ratio of the ceramic particles in the electrostrictive composite material is 1% to 5%. 如申請專利範圍第11項所述的電致伸縮複合材料的製備方法,其中,所 述揮發性溶劑包括乙酸乙酯。 The method for preparing an electrostrictive composite material according to claim 11, wherein The volatile solvent includes ethyl acetate. 如申請專利範圍第11項所述的電致伸縮複合材料的製備方法,其中,所述柔性高分子材料為矽橡膠,且矽橡膠的第一組分與矽橡膠的第二組分的質量比為100:6。 The method for preparing an electrostrictive composite material according to claim 11, wherein the flexible polymer material is ruthenium rubber, and the mass ratio of the first component of the ruthenium rubber to the second component of the ruthenium rubber It is 100:6. 如申請專利範圍第11項所述的電致伸縮複合材料的製備方法,其中,在除去所述支撑體之前,還進一步包括採用微孔濾膜對所述複合物進行擠壓的步驟。 The method for producing an electrostrictive composite according to claim 11, wherein the step of extruding the composite with a microporous filter is further included before the support is removed. 如申請專利範圍第11項所述的電致伸縮複合材料的製備方法,其中,該電致伸縮複合材料的製備方法進一步包括一切割電致伸縮複合材料邊緣的步驟。 The method for preparing an electrostrictive composite material according to claim 11, wherein the method for preparing the electrostrictive composite material further comprises the step of cutting an edge of the electrostrictive composite material. 如申請專利範圍第11項所述的電致伸縮複合材料的製備方法,其中,可進一步在所述電致伸縮複合材料的上下表面分別形成一矽橡膠薄層,從而形成一三明治結構。 The method for producing an electrostrictive composite material according to claim 11, wherein a thin layer of a rubber layer is further formed on the upper and lower surfaces of the electrostrictive composite material to form a sandwich structure. 如申請專利範圍第17項所述的電致伸縮複合材料的製備方法,其中,所述三明治結構的製備方法包括以下步驟:將矽橡膠的第一組分溶於一揮發性溶劑中,形成一溶液;將矽橡膠的第二組分溶於所述溶液中,形成一矽橡膠預聚物溶液;將所述電致伸縮複合材料浸入到所述矽橡膠預聚物溶液中,靜置固化所述矽橡膠預聚物溶液,即可在電致伸縮複合材料的上下表面形成所述矽橡膠薄層。 The method for preparing an electrostrictive composite material according to claim 17, wherein the method for preparing the sandwich structure comprises the steps of dissolving a first component of the ruthenium rubber in a volatile solvent to form a a solution; dissolving a second component of the ruthenium rubber in the solution to form a ruthenium rubber prepolymer solution; immersing the electrostrictive composite material in the ruthenium rubber prepolymer solution, and standing still The rubber prepolymer solution can be formed by forming a thin layer of the tantalum rubber on the upper and lower surfaces of the electrostrictive composite.
TW97123095A 2008-06-20 2008-06-20 Electrostrictive composite material and method for making the same TWI398972B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97123095A TWI398972B (en) 2008-06-20 2008-06-20 Electrostrictive composite material and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97123095A TWI398972B (en) 2008-06-20 2008-06-20 Electrostrictive composite material and method for making the same

Publications (2)

Publication Number Publication Date
TW201001764A TW201001764A (en) 2010-01-01
TWI398972B true TWI398972B (en) 2013-06-11

Family

ID=44824951

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97123095A TWI398972B (en) 2008-06-20 2008-06-20 Electrostrictive composite material and method for making the same

Country Status (1)

Country Link
TW (1) TWI398972B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840991B (en) 2010-04-30 2012-01-25 清华大学 Electrical actuating structure and electrical actuating element
TWI485896B (en) * 2010-05-06 2015-05-21 Hon Hai Prec Ind Co Ltd Electrostrictive structure and actuator using the same.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060084752A1 (en) * 2004-03-09 2006-04-20 Usa As Represented By The Administrator Of The National Aeronautics And Space Administration Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same
US20080136052A1 (en) * 1999-07-20 2008-06-12 Sri International Electroactive polymer manufacturing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136052A1 (en) * 1999-07-20 2008-06-12 Sri International Electroactive polymer manufacturing
US20060084752A1 (en) * 2004-03-09 2006-04-20 Usa As Represented By The Administrator Of The National Aeronautics And Space Administration Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same

Also Published As

Publication number Publication date
TW201001764A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
JP5086308B2 (en) Electrostrictive composite material and manufacturing method thereof
Ning et al. Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators
Liu et al. Cross‐stacked superaligned carbon nanotube films for transparent and stretchable conductors
US8253300B2 (en) Electrostrictive composite and method for making the same
Zhu et al. Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field
US7642489B2 (en) Flexible electrothermal composite and heating apparatus having the same
KR101225143B1 (en) Flexible electrode materials and manufacturing method of the same
Sun et al. Highly elastic and ultrathin nanopaper-based nanocomposites with superior electric and thermal characteristics
RU2012127275A (en) PIEZOELECTRIC AND / OR PYROELECTRIC COMPOSITE SOLID MATERIAL, METHOD FOR PRODUCING IT AND APPLICATION OF SUCH MATERIAL
JP6205333B2 (en) Thermoelectric conversion module
Huang et al. Vinylsilane-rich silicone filled by polydimethylsiloxane encapsulated carbon black particles for dielectric elastomer actuator with enhanced out-of-plane actuations
JP2006312677A (en) Carbon fiber oriented connecting film and its manufacturing method
TW201242892A (en) A method for making carbon nanotube slurry
JP5111324B2 (en) Preparation method of carbon nanotube alignment film
Liu et al. Modified carbon nanotubes/polyvinyl alcohol composite electrothermal films
TWI398972B (en) Electrostrictive composite material and method for making the same
Wang et al. Selective Laser Sintering of Polydimethylsiloxane Composites
TWI382047B (en) Electrostrictive composite material and method for making the same
KR102176737B1 (en) Filament for 3-dimensional printing and methods of fabricating the same
CN115594930B (en) Modified liquid metal particle doped PVDF-TrFE composite membrane, preparation method and application
TWI394302B (en) Electrostrictive material and actuator using the same
TWI400984B (en) Planar heater
CN115368594B (en) Directional carbon-based electric heating composite film and preparation method and application thereof
KR102420931B1 (en) Method for manufacturing semi-transparent polymer composite and semi-transparent polymer composite prepared thereby
TWI485897B (en) Electrostrictive material and method for making the same and electrothermic type actuator