TWI396881B - Optoacoustic probe, optical acoustic sensing method and optical acoustic sensing system - Google Patents

Optoacoustic probe, optical acoustic sensing method and optical acoustic sensing system Download PDF

Info

Publication number
TWI396881B
TWI396881B TW98142968A TW98142968A TWI396881B TW I396881 B TWI396881 B TW I396881B TW 98142968 A TW98142968 A TW 98142968A TW 98142968 A TW98142968 A TW 98142968A TW I396881 B TWI396881 B TW I396881B
Authority
TW
Taiwan
Prior art keywords
photoacoustic
central core
reflective layer
core
photoacoustic probe
Prior art date
Application number
TW98142968A
Other languages
Chinese (zh)
Other versions
TW201120501A (en
Inventor
Tsung Ter Kuo
Chih Wei Lu
Ching Fu Hsieh
Tsai Chu Hsiao
meng lin Li
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW98142968A priority Critical patent/TWI396881B/en
Publication of TW201120501A publication Critical patent/TW201120501A/en
Application granted granted Critical
Publication of TWI396881B publication Critical patent/TWI396881B/en

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

光聲探頭、光聲探測方法與光聲探測系統Photoacoustic probe, photoacoustic detection method and photoacoustic detection system

本發明是有關於一種探頭、探測方法與探測系統,且特別是有關於一種光聲探頭、光聲探測方法與光聲探測系統。The invention relates to a probe, a detection method and a detection system, and in particular to a photoacoustic probe, a photoacoustic detection method and a photoacoustic detection system.

各種超音波內視鏡已被廣泛用於臨床診療中,以在不施以大型外科手術的前提下取得生物體內深層組織的解剖影像,作為醫生診斷疾病的依據。然而,目前臨床使用的超音波內視鏡對血液影像對比不佳,在人體內使用高電壓驅動壓電材料感測器,系統安全設計較複雜。無法早期確診食道腺癌之類的疾病。另外,現有之血管內超音波之脈波回音取像方式無法分析血管內壁異常斑塊成份。Various ultrasonic endoscopes have been widely used in clinical diagnosis and treatment to obtain anatomical images of deep tissues in vivo without the use of large-scale surgery, as a basis for doctors to diagnose diseases. However, the currently used ultrasonic endoscopes have poor contrast of blood images, and high-voltage driving piezoelectric material sensors are used in the human body, and the system safety design is complicated. It is not possible to diagnose diseases such as esophageal adenocarcinoma early. In addition, the pulse wave echo imaging method of the existing intravascular ultrasound cannot analyze the abnormal plaque component of the inner wall of the blood vessel.

本發明提供一種光聲探頭,可解決習知內視鏡技術成本過高且精確度不佳的問題。The invention provides a photoacoustic probe which can solve the problem that the conventional endoscope technology is too costly and has poor precision.

本發明提供一種光聲探測方法,可解決習知內視鏡技術成本過高且精確度不佳的問題。The invention provides a photoacoustic detection method, which can solve the problem that the conventional endoscope technology is too expensive and has poor precision.

本發明提供一種光聲探測系統,可解決習知內視鏡技術成本過高且精確度不佳的問題。The invention provides a photoacoustic detection system, which can solve the problem that the conventional endoscope technology is too costly and has poor precision.

本發明的光聲探頭包括一光纖以及一法布立-培若(Fabry-Perot)干涉結構。光纖包括一中央核心、包覆中央核心的同心核心及包覆同心核心的一披覆層。光纖具有一端面。對波長位於一操作範圍內的一特定光線而言,中央核心的折射率大於同心核心的折射率,同心核心的折射率大於披覆層的折射率。法布立-培若干涉結構配置於端面而覆蓋中央核心暴露於端面的部分。The photoacoustic probe of the present invention comprises an optical fiber and a Fabry-Perot interference structure. The optical fiber includes a central core, a concentric core encasing the central core, and a cladding layer covering the concentric core. The fiber has an end face. For a particular ray having a wavelength within an operating range, the refractive index of the central core is greater than the refractive index of the concentric core, and the refractive index of the concentric core is greater than the refractive index of the cladding layer. The Fabry-Perrault interference structure is disposed on the end surface to cover the portion of the central core exposed to the end surface.

在本發明之光聲探頭的一實施例中,法布立-培若干涉結構包括一第一反射層、一第二反射層以及一介質層。第一反射層配置於端面而覆蓋中央核心暴露於端面的部分。介質層配置於第一反射層與第二反射層之間。介質層之剛性較中央核心之剛性低,介質層的材料可為但不限於聚二甲基矽氧烷(PDMS)、SU-8光阻或聚對二甲苯(Poly-para-xylylene,Parylene)。另外,第一反射層與第二反射層的材料可以選自但不限於金、銀、銀合金或金合金。In an embodiment of the photoacoustic probe of the present invention, the Fabry-Perio interference structure includes a first reflective layer, a second reflective layer, and a dielectric layer. The first reflective layer is disposed on the end surface to cover a portion of the central core exposed to the end surface. The dielectric layer is disposed between the first reflective layer and the second reflective layer. The rigidity of the dielectric layer is lower than that of the central core. The material of the dielectric layer may be, but not limited to, polydimethyl siloxane (PDMS), SU-8 photoresist or poly-para-xylylene (Parylene). . In addition, the materials of the first reflective layer and the second reflective layer may be selected from, but not limited to, gold, silver, silver alloys or gold alloys.

在本發明之光聲探頭的一實施例中,光聲探頭還包括一中空殼體、一轉子以及一反射鏡。光纖與法布立-培若干涉結構共同配置於中空殼體內。轉子配置於中空殼體內且位於法布立-培若干涉結構前方。反射鏡配置於轉子上且位於法布立-培若干涉結構與轉子之間。一液體被導入中空殼體以驅動轉子帶動反射鏡轉動,而反射鏡反射同心核心傳遞的一光線。In an embodiment of the photoacoustic probe of the present invention, the photoacoustic probe further includes a hollow housing, a rotor, and a mirror. The optical fiber is disposed in the hollow housing together with the Fabry-Perot interference structure. The rotor is disposed within the hollow housing and is located forward of the Fabry-Perot interference structure. The mirror is disposed on the rotor and between the Fabry-Perot interference structure and the rotor. A liquid is introduced into the hollow housing to drive the rotor to rotate the mirror, and the mirror reflects a light transmitted by the concentric core.

本發明的光聲探測方法包括下列步驟。經由前述之光聲探頭的同心核心傳遞一脈衝雷射至一待測物。法布立-培若干涉結構接收待測物受脈衝雷射激發而產生的一超音波,並藉由超音波將中央核心傳遞的一回傳光線調變為一回傳調變光。接收並分析經由中央核心傳遞的回傳調變光,以獲取待測物的資訊。The photoacoustic detection method of the present invention comprises the following steps. A pulsed laser is delivered to a test object via the concentric core of the aforementioned photoacoustic probe. The Fabry-Perio interference structure receives an ultrasonic wave generated by the pulsed laser excitation of the object to be tested, and the ultrasonic wave transmits a back-transmitted light transmitted by the central core to a sub-transmission light. Receiving and analyzing the backhaul modulated light transmitted through the central core to obtain information of the object to be tested.

在本發明之光聲探測方法的一實施例中,待測物為生物組織。In an embodiment of the photoacoustic detection method of the present invention, the object to be tested is biological tissue.

在本發明之光聲探測方法的一實施例中,光聲探頭更包括一中空殼體、一轉子以及一反射鏡。光聲探測方法更包括導引一液體進入中空殼體以液壓驅動轉子帶動反射鏡轉動,以及以反射鏡反射同心核心傳遞的脈衝雷射與待測物產生的超音波。In an embodiment of the photoacoustic detection method of the present invention, the photoacoustic probe further comprises a hollow casing, a rotor and a mirror. The photoacoustic detection method further comprises guiding a liquid into the hollow casing to hydraulically drive the rotor to drive the mirror to rotate, and reflecting the pulsed laser transmitted by the concentric core and the ultrasonic wave generated by the object to be tested by the mirror.

在本發明之光聲探測方法的一實施例中,中央核心用於以單波長單模態傳送回傳光線與回傳調變光。In an embodiment of the photoacoustic detection method of the present invention, the central core is configured to transmit the return light and the return modulated light in a single wavelength single mode.

本發明的光聲探測系統包括前述之光聲探頭、一控制單元、一脈衝雷射源、一幫浦、一連續雷射源以及一光感測器。脈衝雷射源耦接於控制單元與光聲探頭之間。幫浦耦接於控制單元與光聲探頭之間。連續雷射源耦接於控制單元與光聲探頭之間。光感測器耦接於光聲探頭。The photoacoustic detection system of the present invention comprises the aforementioned photoacoustic probe, a control unit, a pulsed laser source, a pump, a continuous laser source, and a light sensor. The pulsed laser source is coupled between the control unit and the photoacoustic probe. The pump is coupled between the control unit and the photoacoustic probe. The continuous laser source is coupled between the control unit and the photoacoustic probe. The photo sensor is coupled to the photoacoustic probe.

在本發明之光聲探測系統的一實施例中,光聲探測系統更包括一功能產生器,耦接於控制單元與脈衝雷射源之間,並耦接於控制單元與連續雷射源之間。In an embodiment of the photoacoustic detection system of the present invention, the photoacoustic detection system further includes a function generator coupled between the control unit and the pulsed laser source and coupled to the control unit and the continuous laser source. between.

在本發明之光聲探測系統的一實施例中,光聲探測系統更包括一耦合器。光聲探頭經由耦合器而耦接於連續雷射源與光感測器。In an embodiment of the photoacoustic detection system of the present invention, the photoacoustic detection system further includes a coupler. The photoacoustic probe is coupled to the continuous laser source and the photo sensor via a coupler.

在本發明之光聲探測系統的一實施例中,光聲探測系統更包括一示波器,耦接於光感測器。In an embodiment of the photoacoustic detection system of the present invention, the photoacoustic detection system further includes an oscilloscope coupled to the photo sensor.

在本發明之光聲探測系統的一實施例中,光感測器更耦接於控制單元。In an embodiment of the photoacoustic detection system of the present invention, the photo sensor is further coupled to the control unit.

在本發明之光聲探頭的一實施例中,光聲探頭係用以探測一待測物,其中該光聲探頭包括:一光纖與一法布立-培若干涉結構。其中光纖包括一中央核心與包覆該中央核心的一同心核心。法布立-培若干涉結構,配置於該光纖的一端面且覆蓋中央核心暴露於端面的部分。其中同心核心係用以發射一脈衝雷射至待測物,使待測物產生一超音波回傳至法布立-培若干涉結構,藉由超音波將中央核心傳送的一回傳光線調變為一回傳調變光。In an embodiment of the photoacoustic probe of the present invention, the photoacoustic probe is configured to detect an object to be tested, wherein the photoacoustic probe comprises: an optical fiber and a Fabry-Perot interference structure. The optical fiber includes a central core and a concentric core encasing the central core. The Fabry-Perrault interference structure is disposed on one end surface of the optical fiber and covers a portion of the central core exposed to the end surface. The concentric core system is used to emit a pulse of laser light to the object to be tested, so that the ultrasonic wave of the object to be tested is transmitted back to the Fabry-Perrault interference structure, and a back-transmitted light transmitted by the central core is modulated by the ultrasonic wave. It becomes a change of tone.

在本發明之光聲探頭的一實施例中,中央核心用於以單波長單模態傳送回傳光線與回傳調變光。In an embodiment of the photoacoustic probe of the present invention, the central core is configured to transmit the return light and the return modulated light in a single wavelength single mode.

在本發明之光聲探頭的一實施例中,其中法布立-培若干涉結構包括:一第一反射層、一第二反射層以及一介質層。第一反射層配置於端面而覆蓋中央核心暴露於端面的部分,介質層配置於第一反射層與第二反射層之間,介質層之剛性較中央核心之剛性低。第一反射層的反射率小於第二反射層的反射率。In an embodiment of the photoacoustic probe of the present invention, the Fabry-Perio interference structure comprises: a first reflective layer, a second reflective layer and a dielectric layer. The first reflective layer is disposed on the end surface to cover a portion of the central core exposed to the end surface, and the dielectric layer is disposed between the first reflective layer and the second reflective layer, and the rigidity of the dielectric layer is lower than that of the central core. The reflectance of the first reflective layer is less than the reflectivity of the second reflective layer.

在本發明之光聲探頭的一實施例中,光聲探頭更包括:一中空殼體、一轉子與一反射鏡。光纖與法布立-培若干涉結構共同配置於中空殼體內。轉子配置於中空殼體內且位於法布立-培若干涉結構前方。反射鏡配置於轉子上且位於法布立-培若干涉結構與轉子之間,其中一液體被導入中空殼體以驅動轉子帶動反射鏡轉動,而反射鏡反射同心核心傳遞的脈衝雷射。In an embodiment of the photoacoustic probe of the present invention, the photoacoustic probe further comprises: a hollow casing, a rotor and a mirror. The optical fiber is disposed in the hollow housing together with the Fabry-Perot interference structure. The rotor is disposed within the hollow housing and is located forward of the Fabry-Perot interference structure. The mirror is disposed on the rotor and located between the Fabry-Perot interference structure and the rotor, wherein a liquid is introduced into the hollow casing to drive the rotor to drive the mirror to rotate, and the mirror reflects the pulsed laser transmitted by the concentric core.

基於上述,本發明的光聲探頭、光聲探測方法與光聲探測系統相較先現技術具有高精確度,且具有體積小與安全的優點。Based on the above, the photoacoustic probe, photoacoustic detection method and photoacoustic detection system of the present invention have high precision compared with the prior art, and have the advantages of small size and safety.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1是本發明一實施例的前視型光聲探頭的剖視圖。請參照圖1,本實施例的光聲探頭100A包括一光纖110以及一法布立-培若干涉結構120。光纖110包括一中央核心112與包覆中央核心112的同心核心114。中央核心112為長條管狀,而同心核心114與中央核心112共軸心。對波長位於一操作範圍內的一特定光線而言,中央核心112的折射率大於同心核心114的折射率。本實施例的光纖110更包括一披覆(cladding)層116,包覆同心核心114。對波長位於一操作範圍內的一特定光線而言,同心核心114的折射率大於披覆層116的折射率。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a front view type photoacoustic probe according to an embodiment of the present invention. Referring to FIG. 1, the photoacoustic probe 100A of the present embodiment includes an optical fiber 110 and a Fabry-Perot interference structure 120. The optical fiber 110 includes a central core 112 and a concentric core 114 that encases the central core 112. The central core 112 is elongated and the concentric core 114 is coaxial with the central core 112. The center core 112 has a refractive index greater than the refractive index of the concentric core 114 for a particular ray having a wavelength within an operational range. The optical fiber 110 of the present embodiment further includes a cladding layer 116 covering the concentric core 114. The refractive index of the concentric core 114 is greater than the refractive index of the cladding layer 116 for a particular ray having a wavelength within an operational range.

光纖110具有一端面S10。此端面S10是橫切中央核心112與同心核心114所得,故中央核心112與同心核心114都有部分是暴露在端面S10的。端面S10的法線例如是平行於中央核心112與同心核心114的軸心。法布立-培若干涉結構120配置於端面S10,並覆蓋中央核心112暴露於端面S10的部分。The optical fiber 110 has an end face S10. The end face S10 is obtained by transversing the central core 112 and the concentric core 114, so that the central core 112 and the concentric core 114 are partially exposed to the end face S10. The normal to the end face S10 is, for example, parallel to the axis of the central core 112 and the concentric core 114. The Fabry-Perrault interference structure 120 is disposed on the end surface S10 and covers a portion of the central core 112 exposed to the end surface S10.

本實施例的光聲探頭100A可用以實施本發明一實施例的光聲探測方法,包括下列步驟。首先,將一脈衝雷射L10經由光聲探頭100A的同心核心114傳遞至一待測物T10。脈衝雷射L10的脈衝寬度例如是5~100奈秒。若待測物T10為生物體內的組織,則需先將光聲探頭100A深入生物體內,並使端面S10到達待測物T10附近。當待測物T10接收脈衝雷射L10後,會產生局部熱彈效應(thermoelastic),空間局部應變產生一回傳超音波W10。法布立-培若干涉結構120在接收回傳超音波W10後,可藉由超音波W10將中央核心112傳遞的一回傳光線L20調變為為一回傳調變光L22。只要分析回傳調變光L22而得出待測物T10的吸收頻譜,即可獲得待測物T10的成分資訊。The photoacoustic probe 100A of the present embodiment can be used to implement the photoacoustic detection method of an embodiment of the present invention, and includes the following steps. First, a pulsed laser L10 is transmitted to a test object T10 via the concentric core 114 of the photoacoustic probe 100A. The pulse width of the pulsed laser L10 is, for example, 5 to 100 nanoseconds. If the object to be tested T10 is a tissue in a living body, the photoacoustic probe 100A needs to be deeply penetrated into the living body, and the end surface S10 is brought to the vicinity of the object to be tested T10. When the object to be tested T10 receives the pulsed laser L10, a local thermoelastic effect is generated, and the spatial local strain produces a back-propagation ultrasonic wave W10. After receiving the returning ultrasonic wave W10, the Fabry-Perrault interference structure 120 can adjust a return light L20 transmitted from the central core 112 by the ultrasonic wave W10 into a transient modulated light L22. As long as the back-modulated light L22 is analyzed and the absorption spectrum of the object T10 is obtained, the component information of the object T10 can be obtained.

本實施例的光聲探頭100A之體積可設計的很小,因此在對於人體或動物進行體內探測時,可減少所需的入口面積,並可降低人體與動物的不適感。此外,本實施例的光聲探測方法是以脈衝雷射L10對待測物T10進行探測,相對傳統超音波影像具有高影像對比的特性。而且,相較於利用超音波進行探測的技術,本實施例的光聲探測方法不需使用高壓電驅動昂貴的壓電元件,不僅提高安全性,還因為成本較低而有潛力發展成拋棄式的使用方式以降低消毒清潔成本並避免交互感染。The volume of the photoacoustic probe 100A of the present embodiment can be designed to be small, so that when the body or the animal is inspected in vivo, the required entrance area can be reduced, and the discomfort of the human body and the animal can be reduced. In addition, the photoacoustic detection method of the present embodiment detects the object to be tested T10 by the pulse laser L10, and has high image contrast characteristics with respect to the conventional ultrasonic image. Moreover, the photoacoustic detection method of the present embodiment does not require the use of high-voltage electric driving of expensive piezoelectric elements as compared with the technique of detecting by ultrasonic waves, which not only improves safety, but also has the potential to develop into abandonment because of low cost. Use in a way that reduces disinfection and cleaning costs and avoids cross-contamination.

舉例而言,本實施例的光聲探測方法可用以取得待測組織的微血管的分佈,因為血紅素在500~600nm波段相對其它身體組織具有高吸收率,有助於早期確診癌症或其它可能發生微血管異常增生的疾病。另外,本實施例的光聲探測方法也可用於探測血管內壁斑塊的成分分佈,以瞭解是否有動脈粥樣化、脂肪堆積等異常現象。For example, the photoacoustic detection method of the present embodiment can be used to obtain the distribution of microvessels of the tissue to be tested, because hemoglobin has a high absorption rate relative to other body tissues in the 500-600 nm band, which is helpful for early diagnosis of cancer or other possible occurrences. A disease in which microvascular abnormalities are abnormal. In addition, the photoacoustic detection method of the present embodiment can also be used to detect the composition distribution of plaques in the blood vessel wall to know whether there are abnormal phenomena such as atheroma and fat accumulation.

本實施例的中央核心112主要用於以單波長單模態傳送光線,而同心核心114則可用於以多模態傳送光線且不限定一種波長。此外,本實施例的法布立-培若干涉結構120包括一第一反射層122、一第二反射層124以及一介質層126。第一反射層122配置於端面S10而覆蓋中央核心112暴露於端面S10的部分。第一反射層122的反射率小於第二反射層124的反射率。介質層126配置於第一反射層122與第二反射層124之間,介質層126之剛性較中央核心112之剛性低。當法布立-培若干涉結構120接收超音波W10時,介質層126的厚度會產生變化,使得中央核心112傳遞至法布立-培若干涉結構120的回傳光線L20在第一反射層122與第二反射層124之間因為共振效應而被調變為回傳調變光L22,並經由中央核心112傳送到資料分析裝置(稍後說明)。介質層126的材料可為聚二甲基矽氧烷(PDMS)、SU-8光阻、聚對二甲苯(Poly-para-xylylene,Parylene)或其它低剛性高穿透率材料。第一反射層122與第二反射層124的材料可以選自於金、銀、金合金、銀合金或其他適當材料。此外,第一反射層122與第二反射層124也可以是堆疊多層不同折射率的介電材料的多層膜結構。The central core 112 of the present embodiment is primarily used to transmit light in a single wavelength single mode, while the concentric core 114 can be used to transmit light in multiple modes without defining a wavelength. In addition, the Fabry-Perister interference structure 120 of the present embodiment includes a first reflective layer 122, a second reflective layer 124, and a dielectric layer 126. The first reflective layer 122 is disposed on the end surface S10 to cover a portion of the central core 112 exposed to the end surface S10. The reflectance of the first reflective layer 122 is smaller than the reflectance of the second reflective layer 124. The dielectric layer 126 is disposed between the first reflective layer 122 and the second reflective layer 124. The dielectric layer 126 has a lower rigidity than the central core 112. When the Fabry-Perrault interference structure 120 receives the ultrasonic wave W10, the thickness of the dielectric layer 126 changes, so that the central core 112 transmits the return light L20 to the Fabry-Perot interference structure 120 at the first reflective layer. The 122 and the second reflective layer 124 are modulated into the return modulation light L22 due to the resonance effect, and are transmitted to the data analysis device (to be described later) via the center core 112. The material of the dielectric layer 126 may be polydimethyl siloxane (PDMS), SU-8 photoresist, poly-para-xylylene (Parylene) or other low-rigidity high-transmittance materials. The material of the first reflective layer 122 and the second reflective layer 124 may be selected from gold, silver, gold alloys, silver alloys, or other suitable materials. In addition, the first reflective layer 122 and the second reflective layer 124 may also be a multilayer film structure in which a plurality of dielectric materials of different refractive indices are stacked.

圖2是本發明另一實施例的側視型光聲探頭的剖視圖。請參照圖2,本實施例的光聲探頭100B與圖1的光聲探頭100A相似,差異在於光聲探頭100B更包括一中空殼體130、一轉子140以及一反射鏡150。光纖110與法布立-培若干涉結構120共同配置於中空殼體130內。轉子140配置於中空殼體130內且位於法布立-培若干涉結構120前方。反射鏡150配置於轉子140上且位於法布立-培若干涉結構120與轉子140之間。反射鏡150具有一斜面,可用於改變脈衝雷射L10與超音波W10的前進方向。藉由反射鏡150,光聲探頭100B可用於探測側向的待測物T10。然而,即使沒有反射鏡150,光聲探頭100B仍可用於探測前方的待測物。此外,導引一液體Q10進入中空殼體130,當液體Q10持續流動時,液壓將會驅動轉子140帶動反射鏡150轉動。藉由反射鏡150不斷轉動,可將同心核心114傳遞的脈衝雷射L10反射並傳遞到環繞光聲探頭100B的待測物T10端,並將待測物T10產生的超音波W10回傳到法布立-培若干涉結構120。如此,即可獲得待測物T10的360度的立體影像。液體Q10除了驅動轉子140轉動之外,還可幫助脈衝雷射L10與超音波W10的傳遞。另外,若中空殼體130主要採用不透明材料製成,還可將中空殼體130在轉子140附近的部分採用透明材料製成而形成一個窗口132,以避免耗損脈衝雷射L10。其中,窗口132可依中空殼體130的表面周圍設置。2 is a cross-sectional view of a side view type photoacoustic probe according to another embodiment of the present invention. Referring to FIG. 2 , the photoacoustic probe 100B of the present embodiment is similar to the photoacoustic probe 100A of FIG. 1 . The difference is that the photoacoustic probe 100B further includes a hollow housing 130 , a rotor 140 , and a mirror 150 . The optical fiber 110 is disposed in the hollow housing 130 together with the Fabry-Perot interference structure 120. The rotor 140 is disposed within the hollow housing 130 and is located forward of the Fabry-Perot interference structure 120. The mirror 150 is disposed on the rotor 140 and between the Fabry-Perot interference structure 120 and the rotor 140. The mirror 150 has a slope that can be used to change the direction of advancement of the pulsed laser L10 and the ultrasonic wave W10. With the mirror 150, the photoacoustic probe 100B can be used to detect the lateral object T10. However, even without the mirror 150, the photoacoustic probe 100B can be used to detect the object to be tested in front. In addition, a liquid Q10 is introduced into the hollow casing 130. When the liquid Q10 continues to flow, the hydraulic pressure will drive the rotor 140 to drive the mirror 150 to rotate. By continuously rotating the mirror 150, the pulsed laser L10 transmitted by the concentric core 114 can be reflected and transmitted to the T10 end of the object to be tested surrounding the photoacoustic probe 100B, and the ultrasonic wave W10 generated by the object T10 can be transmitted back to the method. The Bu Li-Pei Ruo interference structure 120. In this way, a 360-degree stereoscopic image of the object T10 can be obtained. In addition to driving the rotation of the rotor 140, the liquid Q10 can also assist in the transmission of the pulsed laser L10 and the ultrasonic wave W10. In addition, if the hollow casing 130 is mainly made of an opaque material, a portion of the hollow casing 130 near the rotor 140 may be made of a transparent material to form a window 132 to avoid consuming the pulsed laser L10. Wherein, the window 132 can be disposed around the surface of the hollow casing 130.

要說的是,當轉子140固定不動時,反射鏡150的斜面會朝一方向,此時由同心核心114傳遞之脈衝雷射L10到達反射鏡150後,經由斜面改變行進方向而傳遞至斜面所對應的待測物T10之表面,再透過反射鏡150將待測物T10所產生之超音波W10回傳至法布立-培若干涉結構120。然而,當轉子140轉動時,反射鏡150的斜面會因轉子140的轉動而連帶的旋轉,使由同心核心114傳遞之脈衝雷射L10到達反射鏡150時,旋轉的斜面讓脈衝雷射L10改變方向而傳遞至中空殼體130的外部周圍360度。也就是說,本實施例之側式型的光聲探頭100B可以針對特定側方向來進行探測,也可以針對中空殼體130的外部周圍進行360度的探測。It should be noted that when the rotor 140 is stationary, the slope of the mirror 150 will be oriented in a direction. At this time, the pulsed laser L10 transmitted by the concentric core 114 reaches the mirror 150, and the direction of travel is changed to the slope by the slope. The surface of the test object T10 is further transmitted back to the Fabry-Perot interference structure 120 through the mirror 150 to generate the ultrasonic wave W10 generated by the object T10. However, when the rotor 140 rotates, the slope of the mirror 150 is rotated by the rotation of the rotor 140, so that when the pulsed laser L10 transmitted by the concentric core 114 reaches the mirror 150, the rotating slope causes the pulsed laser L10 to change. The direction is transmitted to 360 degrees around the outside of the hollow casing 130. That is to say, the side type photoacoustic probe 100B of the present embodiment can detect for a specific side direction, and can also perform 360 degree detection for the outer periphery of the hollow casing 130.

圖3為本發明一實施例的光聲探測系統的示意圖。請參照圖2與圖3,光聲探測系統S100是由控制單元S110控制功能產生器S120、幫浦S130與連續雷射源S140。控制單元S110例如是一台電腦。幫浦S130用以提供液體Q10經由中空殼體130而到達光聲探頭100B,且幫浦S130的輸出功率會決定水流速度,進而決定轉子140的轉速。連續雷射源S140通常具有波長可調功能,而在此提供波長約1550nm的連續雷射(回傳光線L20),並使回傳光線L20耦合進入中央核心112而傳遞至法布立-培若干涉結構120。功能產生器S120同時也用於控制連續雷射源S140與脈衝雷射源S150,例如是使連續雷射源S140與脈衝雷射源S150同步開啟。脈衝雷射源S150通常具有波長可調功能,脈衝雷射源S150提供的脈衝雷射L10耦合進入同心核心114而傳遞至待測物T10。功能產生器S120也可根據控制單元S110的指令而控制脈衝雷射L10的發射頻率、脈衝寬度、波長等等的參數。此外,連續雷射源S140提供的回傳光線L20是經由耦合器S160而耦合進入中央核心112。耦合器S160例如是2×2的耦合器。3 is a schematic diagram of a photoacoustic detection system in accordance with an embodiment of the present invention. Referring to FIG. 2 and FIG. 3, the photoacoustic detection system S100 controls the function generator S120, the pump S130 and the continuous laser source S140 by the control unit S110. The control unit S110 is, for example, a computer. The pump S130 is used to supply the liquid Q10 to the photoacoustic probe 100B via the hollow casing 130, and the output power of the pump S130 determines the water flow velocity, thereby determining the rotational speed of the rotor 140. The continuous laser source S140 typically has a wavelength-tunable function, and here a continuous laser (return light L20) having a wavelength of about 1550 nm is provided, and the return light L20 is coupled into the central core 112 for transmission to Fabry-Pei Ruo. Interference structure 120. The function generator S120 is also used to control the continuous laser source S140 and the pulsed laser source S150, for example, to synchronize the continuous laser source S140 with the pulsed laser source S150. The pulsed laser source S150 generally has a wavelength adjustable function, and the pulsed laser L10 provided by the pulsed laser source S150 is coupled into the concentric core 114 and transmitted to the object to be tested T10. The function generator S120 can also control parameters of the emission frequency, pulse width, wavelength, and the like of the pulse laser L10 according to an instruction of the control unit S110. In addition, the return light L20 provided by the continuous laser source S140 is coupled into the central core 112 via the coupler S160. The coupler S160 is, for example, a 2 x 2 coupler.

在法布立-培若干涉結構120處受超音波W10調變的回傳調變光L22會由中央核心112回傳,並經由耦合器S160而傳遞至光感測器S170。光感測器S170可以是光二極體或其它光感測器。光感測器S170的感測結果會傳遞至控制單元S110與示波器S180,並由控制單元S110分析回傳調變光L22而得出待測物T10的成分資訊。示波器S180可以是數位式或類比式的。The return modulated modulated light L22 modulated by the ultrasonic wave W10 at the Fabry-Perot interference structure 120 is transmitted back by the central core 112 and transmitted to the photosensor S170 via the coupler S160. The photo sensor S170 can be a photodiode or other photo sensor. The sensing result of the photo sensor S170 is transmitted to the control unit S110 and the oscilloscope S180, and the control unit S110 analyzes the back-modulated modulated light L22 to obtain component information of the object T10. The oscilloscope S180 can be digital or analog.

綜上所述,本發明的光聲探頭只需一般光纖的體積即可達成探測目的,可應用於低侵入之消化道及血管內視鏡。此外,本發明的光聲探頭因為成本低廉而可設計為拋棄式以確保清潔並避免感染。另外,本發明的光聲探測方法與光聲探測系統因為採用脈衝雷射誘發超音波作為探測媒介而可獲得高對比及高解析度的影像以提升診斷精確性。In summary, the photoacoustic probe of the present invention can be used for detection purposes only by the volume of a general optical fiber, and can be applied to a low-invasive digestive tract and an endoscope. Furthermore, the photoacoustic probe of the present invention can be designed to be disposable in order to ensure cleanliness and avoid infection because of its low cost. In addition, the photoacoustic detection method and the photoacoustic detection system of the present invention can obtain high contrast and high resolution images by using pulsed laser-induced ultrasonic waves as a detection medium to improve diagnostic accuracy.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100A、100B...光聲探頭100A, 100B. . . Photoacoustic probe

110...光纖110. . . optical fiber

112...中央核心112. . . Central core

114...同心核心114. . . Concentric core

116...披覆層116. . . Cladding layer

120...法布立-培若干涉結構120. . . Fabry-Pyro interference structure

122...第一反射層122. . . First reflective layer

124...第二反射層124. . . Second reflective layer

126...介質層126. . . Dielectric layer

130...中空殼體130. . . Hollow housing

140...轉子140. . . Rotor

150...反射鏡150. . . Reflector

T10...待測物T10. . . Analyte

L10...脈衝雷射L10. . . Pulsed laser

L20...回傳光線L20. . . Back light

L22...回傳調變光L22. . . Return tone

W10...超音波W10. . . Ultrasonic

Q10...液體Q10. . . liquid

S10...端面S10. . . End face

S100...光聲探測系統S100. . . Photoacoustic detection system

S110...控制單元S110. . . control unit

S120...功能產生器S120. . . Function generator

S130‧‧‧幫浦S130‧‧‧ pump

S140‧‧‧連續雷射源S140‧‧‧Continuous laser source

S150‧‧‧脈衝雷射源S150‧‧‧pulse laser source

S160‧‧‧耦合器S160‧‧‧ coupler

S170‧‧‧光感測器S170‧‧‧Light sensor

S180‧‧‧示波器S180‧‧‧ oscilloscope

圖1是本發明一實施例的前視型光聲探頭的剖視圖。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a front view type photoacoustic probe according to an embodiment of the present invention.

圖2是本發明另一實施例的側視型光聲探頭的剖視圖。2 is a cross-sectional view of a side view type photoacoustic probe according to another embodiment of the present invention.

圖3為本發明一實施例的光聲探測系統的示意圖。3 is a schematic diagram of a photoacoustic detection system in accordance with an embodiment of the present invention.

100A...光聲探頭100A. . . Photoacoustic probe

110...光纖110. . . optical fiber

112...中央核心112. . . Central core

114...同心核心114. . . Concentric core

116...披覆層116. . . Cladding layer

120...法布立-培若干涉結構120. . . Fabry-Pyro interference structure

122...第一反射層122. . . First reflective layer

124...第二反射層124. . . Second reflective layer

126...介質層126. . . Dielectric layer

T10...待測物T10. . . Analyte

L10...脈衝雷射L10. . . Pulsed laser

L20...回傳光線L20. . . Back light

L22...回傳調變光L22. . . Return tone

W10...超音波W10. . . Ultrasonic

S10...端面S10. . . End face

Claims (18)

一種光聲探頭,包括:一光纖,包括一中央核心、包覆該中央核心的一同心核心及包覆該同心核心的一披覆層,該光纖具有一端面,其中對波長位於一操作範圍內的一特定光線而言,該中央核心的折射率大於該同心核心的折射率,該同心核心的折射率大於該披覆層的折射率;以及一法布立-培若干涉結構,配置於該端面而覆蓋該中央核心暴露於該端面的部分,其中該法布立-培若干涉結構包括:一第一反射層,配置於該端面而覆蓋該中央核心暴露於該端面的部分;一第二反射層;以及一介質層,配置於該第一反射層與該第二反射層之間,該介質層之剛性較該中央核心之剛性低。A photoacoustic probe comprising: an optical fiber comprising a central core, a concentric core encasing the central core, and a cladding layer covering the concentric core, the optical fiber having an end face, wherein the wavelength is within an operating range The specific refractive index of the central core is greater than the refractive index of the concentric core, the refractive index of the concentric core is greater than the refractive index of the cladding layer; and a Fabry-Perot interference structure is disposed in the The end surface covers a portion of the central core exposed to the end surface, wherein the Fabry-Perot interference structure comprises: a first reflective layer disposed on the end surface to cover a portion of the central core exposed to the end surface; a reflective layer; and a dielectric layer disposed between the first reflective layer and the second reflective layer, the dielectric layer having a lower rigidity than the central core. 如申請專利範圍第1項所述之光聲探頭,其中該介質層的材料為聚二甲基矽氧烷、SU-8光阻或聚對二甲苯。The photoacoustic probe of claim 1, wherein the material of the dielectric layer is polydimethyl siloxane, SU-8 photoresist or parylene. 如申請專利範圍第1項所述之光聲探頭,其中該第一反射層與該第二反射層的材料是選自於金、銀、金合金與銀合金。The photoacoustic probe of claim 1, wherein the material of the first reflective layer and the second reflective layer is selected from the group consisting of gold, silver, gold alloy and silver alloy. 如申請專利範圍第1項所述之光聲探頭,其中該第一反射層的反射率小於該第二反射層的反射率。The photoacoustic probe of claim 1, wherein a reflectance of the first reflective layer is less than a reflectivity of the second reflective layer. 如申請專利範圍第1項所述之光聲探頭,更包括:一中空殼體,其中該光纖與該法布立-培若干涉結構共 同配置於該中空殼體內;一轉子,配置於該該中空殼體內且位於該法布立-培若干涉結構前方;以及一反射鏡,配置於該轉子上且位於該法布立-培若干涉結構與該轉子之間,其中一液體被導入該中空殼體以驅動該轉子帶動該反射鏡轉動,而該反射鏡反射該同心核心傳遞的一光線。The photoacoustic probe of claim 1, further comprising: a hollow casing, wherein the optical fiber is in common with the Fabry-Perio interference structure Cooperating in the hollow housing; a rotor disposed in the hollow housing and located in front of the Fabry-Perot interference structure; and a mirror disposed on the rotor and located in the Fabry- Between the interference structure and the rotor, a liquid is introduced into the hollow housing to drive the rotor to rotate the mirror, and the mirror reflects a light transmitted by the concentric core. 一種光聲探測方法,包括:經由如申請專利範圍第1項所述之光聲探頭的該同心核心傳遞一脈衝雷射至一待測物;該法布立-培若干涉結構接收該待測物受該脈衝雷射激發而產生的一超音波,並藉由該超音波將該中央核心傳遞的一回傳光線調變為一回傳調變光;以及接收並分析經由該中央核心傳遞的該回傳調變光,以獲取該待測物的資訊,其中該光聲探頭更包括一中空殼體、一轉子以及一反射鏡,該光聲探測方法更包括:導引一液體進入該中空殼體以一液壓驅動該轉子帶動該反射鏡轉動;以及以該反射鏡反射該同心核心傳遞的該脈衝雷射與該待測物產生的該超音波。A photoacoustic detection method, comprising: transmitting a pulsed laser to a test object via the concentric core of the photoacoustic probe according to claim 1; the method is received by the Fabry-Perio interference structure An ultrasonic wave generated by the excitation of the pulsed laser, and the ultrasonic wave transmits a back-transmitted light transmitted by the central core to a sub-transmission dimming; and receives and analyzes the transmission through the central core. The photo-acoustic probe further includes a hollow casing, a rotor, and a mirror, and the photoacoustic detection method further includes: guiding a liquid into the The hollow casing drives the rotor to drive the mirror to rotate; and the mirror reflects the pulsed laser transmitted by the concentric core and the ultrasonic wave generated by the object to be tested. 如申請專利範圍第6項所述之光聲探測方法,其中該待測物為生物組織。The photoacoustic detection method of claim 6, wherein the object to be tested is biological tissue. 如申請專利範圍第6項所述之光聲探測方法,其中 該中央核心用於以單波長單模態傳送該回傳光線與該回傳調變光。The photoacoustic detection method described in claim 6 of the patent application, wherein The central core is configured to transmit the backhaul light and the backhaul modulated light in a single wavelength single mode. 一種光聲探測系統,包括:如申請專利範圍第1項所述之一光聲探頭;一控制單元;一脈衝雷射源,耦接於該控制單元與該光聲探頭之間;一幫浦,耦接於該控制單元與該光聲探頭之間;一連續雷射源,耦接於該控制單元與該光聲探頭之間;以及一光感測器,耦接於該光聲探頭。A photoacoustic detection system comprising: a photoacoustic probe according to claim 1; a control unit; a pulsed laser source coupled between the control unit and the photoacoustic probe; a pump And being coupled between the control unit and the photoacoustic probe; a continuous laser source coupled between the control unit and the photoacoustic probe; and a photo sensor coupled to the photoacoustic probe. 如申請專利範圍第9項所述之光聲探測系統,更包括一功能產生器,耦接於該控制單元與該脈衝雷射源之間,並耦接於該控制單元與該連續雷射源之間。The photoacoustic detection system of claim 9, further comprising a function generator coupled between the control unit and the pulsed laser source and coupled to the control unit and the continuous laser source between. 如申請專利範圍第9項所述之光聲探測系統,更包括一耦合器,其中該光聲探頭經由該耦合器而耦接於該連續雷射源與該光感測器。The photoacoustic detection system of claim 9, further comprising a coupler, wherein the photoacoustic probe is coupled to the continuous laser source and the photo sensor via the coupler. 如申請專利範圍第9項所述之光聲探測系統,更包括一示波器,耦接於該光感測器。The photoacoustic detection system of claim 9, further comprising an oscilloscope coupled to the photo sensor. 如申請專利範圍第9項所述之光聲探測系統,其中該光感測器更耦接於該控制單元。The photoacoustic detection system of claim 9, wherein the photo sensor is further coupled to the control unit. 一種光聲探頭,係用以探測一待測物,其中該光聲探頭包括:一光纖,包括一中央核心與包覆該中央核心的一同心 核心;一法布立-培若干涉結構,配置於該光纖的一端面且覆蓋該中央核心暴露於該端面的部分;其中該同心核心係用以發射一脈衝雷射至該待測物,使該待測物產生一超音波回傳至該法布立-培若干涉結構,藉由該超音波將該中央核心傳送的一回傳光線調變為一回傳調變光,該法布立-培若干涉結構包括:一第一反射層,配置於該端面而覆蓋該中央核心暴露於該端面的部分;一第二反射層;以及一介質層,配置於該第一反射層與該第二反射層之間,該介質層之剛性較該中央核心之剛性低。A photoacoustic probe for detecting a sample to be tested, wherein the photoacoustic probe comprises: an optical fiber comprising a central core and a concentric covering the central core a core-distributing structure disposed on an end surface of the optical fiber and covering a portion of the optical core exposed to the end surface; wherein the concentric core is configured to emit a pulsed laser to the object to be tested The object to be tested generates an ultrasonic wave back to the Fabry-Perot interference structure, and the ultrasonic wave transforms a back-transmitted light transmitted by the central core into a sub-transmission dimming light. The perforation structure includes: a first reflective layer disposed on the end surface to cover a portion of the central core exposed to the end surface; a second reflective layer; and a dielectric layer disposed on the first reflective layer and the first Between the two reflective layers, the dielectric layer is less rigid than the central core. 如申請專利範圍第14項所述之光聲探頭,其中該中央核心用於以單波長單模態傳送該回傳光線與該回傳調變光。The photoacoustic probe of claim 14, wherein the central core is configured to transmit the return light and the return modulated light in a single wavelength single mode. 如申請專利範圍第14項所述之光聲探頭,其中該第一反射層的反射率小於該第二反射層的反射率。The photoacoustic probe of claim 14, wherein the reflectivity of the first reflective layer is less than the reflectivity of the second reflective layer. 如申請專利範圍第14項所述之光聲探頭,更包括:一中空殼體,其中該光纖與該法布立-培若干涉結構共同配置於該中空殼體內;一轉子,配置於該中空殼體內且位於該法布立-培若干涉結構前方;以及一反射鏡,配置於該轉子上且位於該法布立-培若干涉結構與該轉子之間,其中一液體被導入該中空殼體以驅動 該轉子帶動該反射鏡轉動,而該反射鏡反射該同心核心傳遞的該脈衝雷射。The photoacoustic probe of claim 14, further comprising: a hollow casing, wherein the optical fiber is disposed in the hollow casing together with the Fabry-Perio interference structure; and a rotor is disposed on the rotor The hollow housing is located in front of the Fabry-Perot interference structure; and a mirror is disposed on the rotor and located between the Fabry-Perio interference structure and the rotor, wherein a liquid is introduced The hollow housing is driven The rotor drives the mirror to rotate, and the mirror reflects the pulsed laser transmitted by the concentric core. 如申請專利範圍第14項所述之光聲探頭,其中該中央核心的折射率大於該同心核心的折射率。The photoacoustic probe of claim 14, wherein the central core has a refractive index greater than a refractive index of the concentric core.
TW98142968A 2009-12-15 2009-12-15 Optoacoustic probe, optical acoustic sensing method and optical acoustic sensing system TWI396881B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98142968A TWI396881B (en) 2009-12-15 2009-12-15 Optoacoustic probe, optical acoustic sensing method and optical acoustic sensing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98142968A TWI396881B (en) 2009-12-15 2009-12-15 Optoacoustic probe, optical acoustic sensing method and optical acoustic sensing system

Publications (2)

Publication Number Publication Date
TW201120501A TW201120501A (en) 2011-06-16
TWI396881B true TWI396881B (en) 2013-05-21

Family

ID=45045203

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98142968A TWI396881B (en) 2009-12-15 2009-12-15 Optoacoustic probe, optical acoustic sensing method and optical acoustic sensing system

Country Status (1)

Country Link
TW (1) TWI396881B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865614A (en) * 2016-06-14 2016-08-17 中北大学 Novel optical fiber fabry-perot ultrasonic hydrophone and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108852262A (en) * 2018-05-11 2018-11-23 上海交通大学 A kind of wide visual field Photoacoustic endoscope and imaging system for exempting from scanner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152240A2 (en) * 2000-05-02 2001-11-07 Fuji Photo Film Co., Ltd. Ultrasonic probe and ultrasonic diagnosis apparatus using the same
TW200733992A (en) * 2005-03-11 2007-09-16 Heart Link Biomedical Inc Apparatus and method for ablating deposits from blood vessel
TW200912314A (en) * 2007-06-18 2009-03-16 Home Diagnostics Inc Biosensor and ultrasonic method of making a biosensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152240A2 (en) * 2000-05-02 2001-11-07 Fuji Photo Film Co., Ltd. Ultrasonic probe and ultrasonic diagnosis apparatus using the same
TW200733992A (en) * 2005-03-11 2007-09-16 Heart Link Biomedical Inc Apparatus and method for ablating deposits from blood vessel
TW200912314A (en) * 2007-06-18 2009-03-16 Home Diagnostics Inc Biosensor and ultrasonic method of making a biosensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865614A (en) * 2016-06-14 2016-08-17 中北大学 Novel optical fiber fabry-perot ultrasonic hydrophone and manufacturing method thereof

Also Published As

Publication number Publication date
TW201120501A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
US10105062B2 (en) Miniaturized photoacoustic imaging apparatus including a rotatable reflector
JP7279957B2 (en) Quantitative imaging system and its use
US9528966B2 (en) Reflection-mode photoacoustic tomography using a flexibly-supported cantilever beam
EP2742854B1 (en) Handheld device and method for tomographic optoacoustic imaging of an object
JP4829934B2 (en) Inspection device
US8764666B2 (en) Ultrasound guided optical coherence tomography, photoacoustic probe for biomedical imaging
JP5751769B2 (en) Image information acquisition apparatus and control method thereof
US11857290B2 (en) Device for endoscopic optoacoustic imaging, in particular for endoscopic optoacoustic imaging of cavities and hollow objects
JP6674038B2 (en) Integrated catheter device for cardiovascular diagnosis and image processing system using the same
CA2244732A1 (en) Laser opto-acoustic imaging system
CA2731409A1 (en) Quantitative multi-spectral opto-acoustic tomography (msot) of tissue biomarkers
CN102056534A (en) System and method for intravascular structural analysis compensation of chemical analysis modality
WO2015045353A1 (en) Diagnostic imaging device, method for controlling same, program, and computer-readable storage medium
JP2005224399A (en) Optical ultrasonic tomographic image measuring method and device
JP6452110B2 (en) Hand-held probe
Li et al. Advances in endoscopic photoacoustic imaging
JP2007307007A (en) Catheter system using photoacoustic effect
Valluru et al. Basics and clinical applications of photoacoustic imaging
JP7102047B2 (en) Hemoglobin concentration measurement system, transvaginal probe, attachment, and hemoglobin concentration measurement method
TWI396881B (en) Optoacoustic probe, optical acoustic sensing method and optical acoustic sensing system
He et al. Optoacoustic endoscopy of the gastrointestinal tract
JP4739878B2 (en) Cerebral blood flow measuring device
CN205374286U (en) Hand -held type integration photoacoustic imaging detection device based on area array detector
JP2015070939A (en) Measurement system
Yang et al. Endoscopic photoacoustic microscopy