TWI392740B - 鑑定分枝桿菌之方法 - Google Patents

鑑定分枝桿菌之方法 Download PDF

Info

Publication number
TWI392740B
TWI392740B TW99117460A TW99117460A TWI392740B TW I392740 B TWI392740 B TW I392740B TW 99117460 A TW99117460 A TW 99117460A TW 99117460 A TW99117460 A TW 99117460A TW I392740 B TWI392740 B TW I392740B
Authority
TW
Taiwan
Prior art keywords
seq
sample
tested
dna
probe
Prior art date
Application number
TW99117460A
Other languages
English (en)
Other versions
TW201142038A (en
Inventor
Tsung Chain Chang
Yi Shan Jenh
Ru Wen Jou
Po Liang Lu
Yuan Chieh Yang
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW99117460A priority Critical patent/TWI392740B/zh
Publication of TW201142038A publication Critical patent/TW201142038A/zh
Application granted granted Critical
Publication of TWI392740B publication Critical patent/TWI392740B/zh

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

鑑定分枝桿菌之方法
本發明係關於一種用於鑑定分枝桿菌(Mycobacterium spp.)之方法;特定言之,本發明係關於一種使用專一性探針鑑定分枝桿菌之方法。
由結核桿菌群引起之結核病(tuberculosis)全球每年約有920萬新案例,並造成約170萬人死亡,台灣每年亦有14,500至16,500個肺結核病例,故是全世界公共健康的大問題。
分枝桿菌屬包括絕對致病菌、兼性致病菌及腐生菌。目前已分離出將近100種分枝桿菌,其中跟人類疾病相關的有20多種,臨床上常見的如結核桿菌群(Mycobacterium tuberculosis comples,MTBC)、痲瘋分枝桿菌(M. leprae )、潰瘍分枝桿菌(M. ulcerans )、潰瘍腫分枝桿菌(M. abscessus )及鳥分枝桿菌群(M. avium complex)等(Murray等人,2005,Medical Microbiology,fifth ed,vol. Elsevier Mosby.)。
結核桿菌群包含以下菌種:非洲結核桿菌(Mycobacterium africanum )、牛結核桿菌BCG(M. bovis BCG)、牛結核桿菌(M. bovis )、卡柏結核桿菌(M. caprae )、坎結核桿菌(M. canettii )、邁克結核桿菌(M. microti )以及結核桿菌(M. tuberculosis )(Djelouadji等人,2008,PLoS Negl. Trop. Dis. 2:e253;Murray等人,2007,Manual of CLINICAL MICROBIOLOGY,9th ed,vol. 1),這些菌種彼此間的形態相近且皆會引發人類或動物結核病,其中以非洲結核桿菌、牛結核桿菌及結核桿菌較常造成人類肺結核病(Singleton及Sainsbury,2006,Dictionary of Microbiology and Molecular Biology,3rd ed,vol.),尤以結核桿菌為最。
正確鑑定MTBC中的菌種有助於結核病的流行病學調查,但因MTBC成員在基因上的相似性非常高(Sreevatsan等人,1997,Proc. Natl. Acad. Sci. USA 94:9869-9874),在16S rRNA基因中有99-100%的序列相似性,故此段基因的序列並不容易區分這些菌種;近年來,用來區分MTBC的目標基因包括pncAoxyRmtp40hupBgyrB 等(Liebana等人,1996,J. Clin. Microbiol. 34:933-938;Prabhakar等人,2004,J. Clin. Microbiol. 42:2724-2732;Scorpio及Zhang,1996,Nat. Med. 2:662-667;Sreevatsan等人,1996,J. Clin. Microbiol. 34:2007-2010),其中gyrB 基因已被證實是一個區分MTBC菌種的較佳基因(Chimara等人,2004,Mem. Inst. Oswaldo. Cruz. 99:745-748;Goh等人,2006,Mol. Cell. Probes. 20:182-190;Niemann等人,2000,J. Clin. Microbiol. 38:3231-3234)。
結核桿菌群之外的分枝桿菌,一般統稱為非結核桿菌群分枝桿菌(nontuberculous mycobacteria,NTM),大多數的NTM存於自然界的土壤或水中,少數則會造成人類或動物的伺機性感染(Field及Cowie,2006,Chest. 129:1653-1672),在免疫低下時較易感染致病,近年來臨床上NTM的分離率有逐漸提高的趨勢(Griffith,2007,Curr. Opin. Infect Dis. 20:198-203)。由於NTM在顯微鏡底下無法與結核桿菌區分,通常在培養分離後才能做菌種鑑定,故需要花費較長的鑑定時間。現今有一些結合分子技術的方法,例如:利用IS6110 限制性片段長度多樣性(IS6110 -restriction fragment length polymorphism,RFLP)(Kallenius等人,1999,J. Clin. Microbiol. 37:3872-3878)、熱休克蛋白65聚合酶連鎖反應及限制酶分析(hsp 65 PCR-restriction assay)(Telenti等人,1993,J. Clin. Microbiol. 31:175-178)、多位點可變數量串聯重複序列分析(mycobacterial interspersed repetitive-unit-variable-number tandem-repeat,MIRU-VNTR)或者間隔區寡核苷酸分型技術(spoligotyping)作分型(Aranaz等人,2004,J. Clin. Microbiol. 42:5388-5391;Cadmus等人,2006,J. Clin. Microbiol. 44:29-34;Godreuil等人,2007,J. Clin. Microbiol. 45:921-927;Kremer等人,2005,J. Clin. Microbiol. 43:314-320;Kulkarni等人,2005,Res. Microbiol. 156:588-596;Sola等人,2003,Infect. Genet. Evol. 3:125-133),但臨床上有時並未對NTM做進一步的鑑定。
由於分枝桿菌生長緩慢,一般而言,臨床上一般需要2週至8週的時間才能鑑定分枝桿菌,耗時相當長。近年來,發展許多的分子生物檢測法及套組,例如INNO-LiPAMYCOBACTERIA(Innogenetics,Ghent,Belgium),使用分枝桿菌的rRNA operon作為目標序列(Suffys等人,2001,J. Clin. Microbiol. 39:4477-4482;Tortoli等人,2003,J. Clin. Microbiol. 41:4418-4420;Trombert-Paolantoni等人,2004,Pathol. Biol.(Paris) 52:462-468),可區分出結核桿菌群與16種非結核分枝桿菌;GenoType Mycobacterium CM/AS(Hain Lifesience GmbH,Nehren,Germany)則使利用23S rRNA基因作為其鑑定菌種之目標(Makinen等人,2006,Clin. Microbiol. Infect. 12:481-483;Richter等人,2006,J. Clin. Microbiol. 44:1769-1775),可區分出結核桿菌群與14種( Mycobacterium CM)或16種( Mycobacterium AS)非結核分枝桿菌;Gen-Probe AmplifiedMycobacterium tuberculosis direct test(Gen-Probe,Inc.,San Diego,CA,USA)則以16S rRNA為標的檢測結核桿菌群(Chedore及Jamieson,2002,Int. J. Tuberc. Lung Dis. 6:913-919;Lemaitre等人,2004,J. Clin. Microbiol. 42:4307-4309;Sloutsky等人,2004,J. Clin. Microbiol. 42:1547-1551);而AmplicorTM nucleic acid amplification test(Roche Diagnostic Systems,Inc.,Branchburg,NJ,USA)則是利用16S rRNA為目標檢測結核桿菌群(Bergmann及Woods,1996,J. Clin. Microbiol. 34:1083-1085;Michos等人,2006,Diagn. Microbiol. Infect Dis. 54:121-126)。LCx MTB assay,ABBOTT LCx probe system(Abbott Laboratories,Abbott Park,Ill.)(Rohner等人,1998,J. Clin. Microbiol. 36:3046-3047)利用連接酶連鎖反應偵測結核桿菌群;BD ProbeTec energy transfer(ET) system(DTB)(Becton Dickinson Biosciences Microbiology Products,Sparks,MD,USA)(Barrett等人,2002,J. Med. Microbiol. 51:895-898)利用IS6110 與16S rRNA基因為目標檢測結核分枝桿菌群。
目前亦有許多研究以液態培養基BACTEC MGIT 960陽性反應培養並確認抗酸性染色為陽性後,再結合分子生物方法鑑定其中的分枝桿菌。包括使用rpoB 基因雙套式PCR及限制酶分析(rpo B duplex PCR-restriction enzyme analysis)、光反應性與兩種生化反應,可區分29種NTM(Shen等人,2009,Int. J. Tuberc. Lung Dis. 13:472-479)。也有研究利用抗酸性染色為陽性之MGIT陽性反應管,進行以IS6110 為標的的PCR反應,成功鑑定其中MTBC。由痰塗片抗酸性染色陽性與陰性之檢測時間可分別縮短至6.4天與14.3天(Sun等人,2009,J. Formos. Med. Assoc. 108:119-125)。先前提到利用PCR來擴增hsp65 並配合RFLP技術鑑定分枝桿菌,該技術雖已廣為使用,但在培養過程仍要花不少時間,若直接消化經去汙染之臨床檢體,則常因菌量不足使得敏感度下降。Chang等人結合了毛細管電泳以及巢式聚合酶連鎖反應(nested-PCR)來增加hsp65 及RFLP之敏感度(Chang等人,2008,Talanta. 77:182-188)。台灣林口長庚醫院Wu等人的研究顯示以hsp65 為標的,以nested-PCR和RFLP,檢測陽性痰塗片檢體中的MTBC及部分NTM,有不錯的效果(Wu等人,2008,J. Clin. Microbiol. 46:3591-3594)。
然而上述方法多有操作複雜及耗時長之缺點,且許多方法都無法鑑定出菌種,正確率與靈敏度亦不甚令人滿意,業界仍須開發可正確鑑定分枝桿菌之方法。
本發明之目的在於提供一種鑑定分枝桿菌之方法,該方法包括使Myc2及Myc3之探針或其互補股(complementary strands)與待測樣品中之DNA進行雜合反應,如有至少一雜合反應發生,則該待測樣品包含分枝桿菌。
本發明之另一目的在於提供一種探針,其包含選自由下列探針及其互補股所組成之群:Myc2、Myc3、MTBC2、MTBC4、MbovG1、MbovGW1、Mbov1、MbovW1、Mcan1、McanW1、Mcap1、McapW1、Mmic1、MmicW1、Mtub1R、MtubW1R、Mabs1、Mavi1、Mche3、Mfor1、Mgas2、Mgor1、Mint2、Mkan1、Msi/le1、Mma/ul2、Mnon1、Mper1、Mscr1、Msme3、Mszu1、Mter1及Mxen2。
本發明之又一目的在於提供一種用於鑑定一樣品中分枝桿菌之套組,該套組包括前述之探針。
根據本發明之方法鑑定的正確率相當高,縮短鑑定時間,並使鑑定之流程一致化,並容易朝向簡單化、快速化、和自動化,可藉由正確的菌種鑑定,於臨床上施以正確的抗生素治療。
本發明之目的在於提供一種鑑定分枝桿菌之方法,該方法包括使Myc2及Myc3之探針或其互補股與待測樣品中之DNA進行雜合反應,如有至少一雜合反應發生,則該待測樣品包含分枝桿菌。
本發明所使用之探針資訊如表1所示。
特異性探針命名方式是取分枝桿菌屬名(genus)的一個開頭大寫英文字母”M”加上種名(species)前三個小寫英文字母,最後再加上探針的序號,若為負股(anti-sense)探針會再加上大寫字母R。有19個探針選自rRNA基因間隔區(intergenic spacer region,ITS)中;另外12個探針用來區分MTBC內的菌種,設計自各菌種之gyrB 基因特有的單一位點核苷酸多型性(single nucleotide polymorphism,SNP),以兩個探針為一組,一個是特異性探針,命名方式如前述,另一個是除了目標菌種以外的其他MTBC菌種探針,加大寫字母W以作區別。
探針設計原則為該探針所在位置序列不常發生變異及:
1.探針長度介於17~27個核苷酸是最理想的範圍,探針過短會造成與目標DNA結合不易,過長容易產生非特異性的雜合反應;
2.G+C比例介於40%至60%,以降低二級結構產生的機率;
3.探針T m 值(melting temperature)盡可能的設計在介於雜合反應(hybridization)時的雜合溫度(hybridization temperature)±5℃之間。例如雜合溫度若設定在50℃,則探針的T m 值應該盡量為45℃~55℃;
4.盡量避開可能會產生髮夾環結構(hairpin loops)、迴文結構(palindrome)或是重複鹼基(repeats)結構;
5.把差異點設計在整個探針的中間位置,並在探針之3’端加入8~10個胸腺嘧啶(thymine),以增加探針和尼龍膜(nylon membrane)的結合;
設計完的探針經過BLAST搜索,以確定沒有與GenBank上其他菌種的序列相似,避免交叉反應(cross hybridization)。
本文所使用之「探針」一詞係指一包含連續至少8個核苷酸的分子,較佳為連續10至50個核苷酸,更佳為連續15至40個核苷酸,最佳為連續17至27個核苷酸。另一方面,較佳地,探針之3’端包含8至10個胸腺嘧啶。該探針可與標的DNA於雜合條件下進行雜合反應。本發明所屬技術領域中具通常知識者可決定雜合反應之條件,其中該雜合反應之較佳條件係於約40℃至約65℃中進行。
本文所使用之「互補股」一詞係指可與根據本發明之探針雜合之核酸分子,較佳係可與根據本發明之探針鹼基完全互補之核酸分子。
根據本發明之探針可用以鑑定分枝桿菌,由於分枝桿菌普遍生長緩慢,用傳統的培養法需要較長的時間,且部分的分枝桿菌不易鑑定。先前研究指出,細菌的16S rRNA及23S rRNA二個基因間隔區在序列上具有種的特異性(species-specific),有時比利用16S rRNA基因定序法更能區分至種的層次。且rRNA基因間隔區序列在種內不同菌株間的變異性很小(Gurtler及Stanisich,1996,Microbiology. 142(Pt 1):3-16),因此,本發明主要利用rRNA基因間隔區作為分枝桿菌鑑定之目標。
較佳地,根據本發明之方法可進一步區分結核桿菌群與非結核分枝桿菌群,其另包含使用MTBC2及MTBC4之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA同時與MTBC2及MTBC4之探針或其互補股產生雜合反應,則該待測樣品包含結核桿菌群;如該待測樣品中之DNA未同時與MTBC2及MTBC4之探針或其互補股產生雜合反應,則該待測樣品包含非結核分枝桿菌。
更佳地,根據本發明之方法可進一步針對已鑑定為結核桿菌群之待鑑定菌鑑定出其種名。由於結核桿菌群的rRNA基因間隔區具100%的相似度,故利用MTBC在gyrB 基因中有多個單一位點核苷酸多型性做該群中不同菌種的鑑定。
根據本發明之方法較佳另包含使用Mtub1R及MtubW1R之探針或其互補股與待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與Mtub1R或其互補股雜合反應之強度,大於該待測樣品中之DNA與MtubW1R或其互補股雜合反應之強度,則該待測樣品包含結核桿菌(M. tuberculosis )。
根據本發明之方法較佳另包含使用MbovG1及MbovGW1之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與MbovG1或其互補股雜合反應之強度,大於該待測樣品中之DNA與MbovGW1或其互補股雜合反應之強度,則該待測樣品包含牛結核桿菌群(M. bovis group)。較佳地,該牛結核桿菌群包含牛結核桿菌(M. bovis )、牛結核桿菌BCG(M. bovis BCG)及卡柏結核桿菌(M. caprae )。於本發明之一較佳具體實施例中,可鑑定出牛結核桿菌群之個別菌種。根據本發明之方法,其較佳另包含使用Mbov1及MbovW1之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與Mbov1或其互補股雜合反應之強度,大於該待測樣品中之DNA與MbovW1或其互補股雜合反應之強度,則該待測樣品包含牛結核桿菌或牛結核桿菌BCG;根據本發明之方法,其較佳另包含使用Mcap1及McapW1之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與Mcap1或其互補股雜合反應之強度,大於該待測樣品中之DNA與McapW1或其互補股雜合反應之強度,則該待測樣品包含卡柏結核桿菌。
根據本發明之方法,其較佳另包含使用Mmic1及MmicW1之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與Mmic1或其互補股雜合反應之強度,大於該待測樣品中之DNA與MmicW1或其互補股雜合反應之強度,則該待測樣品包含邁克結核桿菌(M. microti )。
根據本發明之方法,其較佳另包含使用Mcan1及McanW1之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與Mcan1或其互補股雜合反應之強度,大於該待測樣品中之DNA與McanW1或其互補股雜合反應之強度,則該待測樣品包含坎結核桿菌(M. canettii )。
根據本發明之方法,其較佳另包含使用第一群探針或其互補股及第二群探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與第二群探針或其互補股雜合反應之強度,皆大於該待測樣品中之DNA與第一群探針或其互補股雜合反應之強度,則該待測樣品包含非洲結核桿菌(M. africanum ),其中該第一群探針包含Mtub1R、MbovG1、Mbov1、Mcap1、Mmic1及Mcan1;第二群探針包含MtubW1R、MbovGW1、MbovW1、McapW1、MmicW1及McanW1。
另一方面,更佳地,根據本發明之方法可進一步針對已鑑定為非結核分枝桿菌之待鑑定菌鑑定出其種名,其主要利用rRNA基因間隔區所設計之探針而進行。
根據本發明之方法,其較佳另包含使用一或多個選自Mabs1、Mavi1、Mche3、Mfor1、Mgas2、Mgor1、Mint2、Mkan1、Msi/le1、Mma/ul2、Mnon1、Mper1、Mscr1、Msme3、Mszu1、Mter1、Mxen2及其互補股之探針與該待測樣品中之DNA進行雜合反應;如該該待測樣品中之DNA與Mabs1探針或其互補股產生雜合反應,則該待測樣品包含潰瘍腫分枝桿菌(M. abscessus );如該待測樣品中之DNA與Mavi1探針或其互補股產生雜合反應,則該待測樣品包含鳥分枝桿菌(M. avium );如該待測樣品中之DNA與Mche3探針或其互補股產生雜合反應,則該待測樣品包含龜分枝桿菌(M. chelonae );如該待測樣品中之DNA與Mfor1探針或其互補股產生雜合反應,則該待測樣品包含偶然分枝桿菌(M. fortuitum );如該待測樣品中之DNA與Mgas2探針或其互補股產生雜合反應,則該待測樣品包含胃分枝桿菌(M. gastri );如該待測樣品中之DNA與Mgor1探針或其互補股產生雜合反應,則該待測樣品包含戈登分枝桿菌(M. gordonae );如該待測樣品中之DNA與Mint2探針或其互補股產生雜合反應,則該待測樣品包含胞內分枝桿菌(M. intracellulare );如該待測樣品中之DNA與Mkan1探針或其互補股產生雜合反應,則該待測樣品包含堪薩斯分枝桿菌(M. kansasii );如該待測樣品中之DNA與Msi/le1探針或其互補股產生雜合反應,則該待測樣品包含猿分枝桿菌(M. simiae )或蘭分枝桿菌(M. lentiflavum );如該待測樣品中之DNA與Mma/ul2探針或其互補股產生雜合反應,則該待測樣品包含海洋分枝桿菌(M. marinum )或潰瘍分枝桿菌(M. ulcerans );如該待測樣品中之DNA與Mnon1探針或其互補股產生雜合反應,則該待測樣品包含不產色分枝桿菌(M. nonchromogenicum );如該待測樣品中之DNA與Mper1探針或其互補股產生雜合反應,則該待測樣品包含培力分枝桿菌(M. peregrinum );如該待測樣品中之DNA與Mscr1探針或其互補股產生雜合反應,則該待測樣品包含瘰癘分枝桿菌(M. scrofulaceum );如該待測樣品中之DNA與Msme3探針或其互補股產生雜合反應,則該待測樣品包含恥垢分枝桿菌(M. smegmatis );如該待測樣品中之DNA與Mszu1探針或其互補股產生雜合反應,則該待測樣品包含斯氏分枝桿菌(M. szulgai );如該待測樣品中之DNA與Mter1探針或其互補股產生雜合反應,則該待測樣品包含土地分枝桿菌(M. terrae );及如該待測樣品中之DNA與Mxen2探針或其互補股產生雜合反應,則該待測樣品包含蟾蜍分枝桿菌(M. xenopi )。
根據本發明之待測樣品可為包含待鑑定菌之培養物、取自病人之檢體,或是自待鑑定菌培養物或自病人檢體進一步處理以取得其中DNA資訊之樣品,其中病人之檢體較佳係為痰或血液,取得DNA資訊之方法較佳係藉由聚合酶連鎖(polymerase chain reaction)反應擴增。
由於本發明之方法係藉由rRNA基因間隔區或gyrB 基因設計之探針進行鑑定,故該待測樣品中之DNA較佳包含待鑑定菌之rRNA基因間隔區或gyrB 基因;更佳地,該待測樣品中之DNA包含由聚合酶連鎖反應擴增之片段。於本發明之一較佳具體實施例中,待測樣品中之DNA係使用sp1(SEQ ID NO. 36)及sp2(SEQ ID NO. 37)引子擴增待鑑定菌之rRNA基因間隔區;待測樣品中待鑑定菌之gyrB 基因較佳係藉由Gb1f(SEQ ID NO. 38)及Gb1r(SEQ ID NO. 39)引子擴增獲得。
於本發明之一較佳具體實施例中,可對樣品中DNA實施標記。DNA之標記方法,已為本發明所屬技術領域中具通常知識者所熟知。例如,當實施聚合酶連鎖反應擴增時,該引子係包含一標幟,較佳地,該標幟係為毛地黃素(digoxigenin),或經標記之dUTP可用於將一標記引入產物。
在本發明一較佳實施例中,該方法進一步包括一陽性對照步驟。任何用於鑑定一已知微生物之確定探針皆適用於此陽性對照步驟。
較佳地,根據本發明雜合反應可於一微陣列晶片(microarray)上進行,該微陣列晶片包含一基材,且該探針係塗佈於該基材上。本領域已良好地建立了基材材料及塗佈方法,其中該基材較佳係為尼龍或玻璃。
根據本發明之探針較佳以微陣列方式佈置在該基材上,以便一次操作可鑑定多種微生物,節省大量時間、費用、空間及人力。該技術中任何常用之基因表現檢測方法皆可用於本發明,其可取代習知技術中針對不同分枝桿菌進行不同之生物化學反應來鑑定菌種。於本發明之一具體實施例中,以寡核苷酸晶片(oligonucleotide array)鑑定分枝桿菌,包括6種屬於結核桿菌群(M. tuberculosis complex)的細菌。由細菌的16S-23S rRNA基因間的內轉錄區域及gyrB 基因設計探針,將此探針以微矩陣點製機點佈於尼龍薄膜(nylon membrane)上,與標識毛地黃素的PCR產物進行雜合反應後,再以標記磷酸分解酶的抗體呈現反應結果。
晶片先測試模式菌株(type strain)以及參考菌株(reference strain),再進一步測試臨床菌株,最後直接測試臨床檢體,以評估該晶片用於鑑定(或檢測)分枝桿菌之可行性。本發明共測試目標參考菌株25種,包括MTBC 6種(15株)(表2),NTM 19種(73株)(表3),共88株。另測試目標臨床菌株,其中MTBC 80株(表2),NTM 121株,共201株(表3)。
根據本發明之晶片可在8小時內完成菌種鑑定,且試劑用量較少、成本較低廉、靈敏度及特異性高。故本發明之微陣列晶片可快速及正確地鑑定不同的分枝桿菌菌種,為一種有效的檢測工具。
本發明之另一目的在於提供一種探針,其包含選自由下列序列所組成之群:Myc2、Myc3、MTBC2、MTBC4、MbovG1、MbovGW1、Mbov1、MbovW1、Mcan1、McanW1、Mcap1、McapW1、Mmic1、MmicW1、Mtub1R、MtubW1R、Mabs1、Mavi1、Mche3、Mfor1、Mgas2、Mgor1、Mint2、Mkan1、Msi/le1、Mma/ul2、Mnon1、Mper1、Mscr1、Msme3、Mszu1、Mter1、Mxen2及其互補股。
本發明之又一目的在於提供一種用於鑑定一樣品中分枝桿菌之套組,該套組包括前述之探針。
根據本發明,該套組進一步包括用於獲得rRNA基因間隔區或gryB 基因之試劑。該試劑之組成亦為本發明所屬技術領域中具通常知識者所熟知。在本發明一較佳實施例中,試劑係用於聚合酶連鎖反應。在本發明一更佳實施例中,該套組進一步包括sp1與sp2引子及/或Gb1f與Gb1r引子。在本發明另一較佳實施例中,該套組進一步包括雜合反應用試劑。
茲以下列實例予以詳細說明本發明,唯其並不意味本發明僅侷限於此等實例所揭示之內容。
實例: 實驗用菌株、菌株的培養、及菌種DNA
本研究所使用的參考菌株分別從美國ATCC(American Type Culture Collection,Manassas,Virginia,USA)、台灣BCRC(Bioresources Collection and Research Center,Food Industry Research and Development Institute,Hsinchu,Taiwan)、瑞典CCUG(Culture Collection,University of Gteborg,Gteborg,Sweden)、法國CIP(Collection of the Institute Pasteur,rue du Docteur Roux,Paris,France)、日本JCM(Japan Collection of Microorganism,RIKEN BioResource Center,Saitama,Japan)、英國NCTC(National Collection of Type Cultures,Central Public Health Laboratory,London,UK)所購得。
本研究所使用的目標參考菌株總共有25種(88株)分枝桿菌,包括MTBC 6種(15株)(表2),NTM有19種(73株)(表3);另測試目標臨床菌株(clinical strains),其中MTBC 80株(表2),NTM 121株,共201株(表3)。非目標菌(nontarget species)中屬於分枝桿菌屬之細菌有37種(38株),其他細菌35種(35株)(表4)。
所有的菌株培養均依照各個菌種中心所建議的培養基(如BBLTM 7H11 Agar以及Lwenstein-Jensen(L-J) agar slants)和培養條件進行次代培養。
DNA萃取(DNA extraction)
菌株DNA萃取方法為煮沸法(boiled method)(Millar等人,2000,J. Microbiol. Methods. 42:139-147):在微量離心管(Eppendorf)中加入滅菌水,取培養基上的菌落懸浮在滅菌水中,以乾浴槽加熱至100℃,30分鐘後,再用12,500rpm離心20分鐘,上清液含有細菌DNA,保存於-70℃。
rRNA基因間隔區及gyrB基因之增幅及定序
分別利用引子sp1(5'-ACCTC CTTTC TAAGG AGCAC C-3',SEQ ID NO. 36)及sp2(5'-GATGC TCGCA ACCAC TATCC A-3',SEQ ID NO. 37)來放大分枝桿菌的rRNA基因間隔區(Roth等人,2000,J. Clin. Microbiol. 38:1094-1104);引子Gb1f(5’-TGGTT AACGC GCTAT CCAC-3’,SEQ ID NO. 38)及Gb1r(5’-ACCAA CTCTC GTGCC TTAC-32,SEQ ID NO. 39)用來放大分枝桿菌的gyrB 基因,引子均由生工有限公司(MDBio Inc.,Taipei,Taiwan)合成。利用這兩對引子分別以聚合酶連鎖反應進行增幅,引子對Sp1及Sp2所增幅產物為rRNA基因間隔區。引子對Gb1f及Gb1r所增幅的產物為gyrB 基因的部份序列。以Applied Biosystems 2720 thermal cycler(Applied Biosystems,Taipei,Taiwan)進行PCR;總體積為50μl的PCR反應液含有DNA模板(約50 ng),75 mM Tris-HCl(pH 8.5),20 mM ammonium sulfate,1.5 mM MgCl2 ,0.8 mM deoxyribonucleoside triphosphates(0.2 mM each),1 M(each) primer,及1.25 U ofHot Start polymerase(Promega,Madison,WI,USA)。PCR反應為初始變性(initial denaturation,94℃,3 mins),40個循環的變性(denaturation,94℃,1 min),黏合(annealing,59℃,1 min)和延伸(extension,72℃,1.5 mins)反應,最後為7分鐘的延伸反應(extension,72℃,7 mins)(Gurtleret al. ,2006)分別增幅產物之後,以2%的瓊脂(agarose,,OH,USA)進行電泳產物分析。若PCR產物要和晶片進行雜合反應時,則各引子對[(sp1,sp2)及(Gb1f,Gb1r)]中之一引子或二引子之5’端標記毛地黃素。
特異性探針(specific probes)之設計
將參考菌株定序,加上GenBank資料庫上大量搜集分枝桿菌的rRNA基因間隔區及gyrB 基因序列,利用序列比對軟體Vector NTI(Invitrogen Corporation,Carlsbad,CA,USA)進行序列比對(sequence alignment)之後,找出種與種之間(interspecies)的差異性序列,以及同種不同菌株間(intraspecies)的相似性序列來設計探針。本研究之晶片共有32個探針,包含1個分枝桿菌正對照組探針(mycobacteria positive control,代號為PC)及13個座標標記探針(position maker,代號M)以及31個菌種特異性探針(圖1)。正對照組探針的選定採用盡可能蒐集到的分枝桿菌rRNA基因間隔區中的高度保留區域(conserved region);座標標記探針選用已標記毛地黃素之沒有菌種特異性之寡核苷酸探針。
以製造點突變(Site direct mutation)方式產生模擬PCR產物
在MTBC中,極罕見的菌種坎結核桿菌(M. canettii )在全世界的菌種中心均沒有供應,故以人工合成的坎結核桿菌gyrB 基因的序列,來測試探針是否能鑑定坎結核桿菌。從GenBank收集到的MTBC菌種中發現,坎結核桿菌和結核桿菌之gyrB 基因序列間僅有單一個核苷酸差異(SNP),故選殖結核桿菌H37Rv的gyrB 片段,再利用II site-directed mutagenesis kit(Stratagene Products,Hwy,USA),在結核桿菌H37Rv菌株的gyrB 序列上製造一個跟坎結核桿菌相同的單一個核苷酸差異,即可模擬坎結核桿菌之gyrB PCR產物,經定序確認正確無誤後,以套組(Geneaid plasmid midi kit,Taiwan)抽取細菌質體,收集模擬的片段並保存於-80℃,以供日後使用。由於MTBC中所有菌種rRNA基因間隔區序列的相似度為100%,在測試坎結核桿菌時,是以模擬之坎結核桿菌gyrB 和結核桿菌H37Rv之rRNA基因間隔區的PCR產物進行雜合反應。
枝桿菌晶片製備
分別將探針與染劑(tracking dye)以體積比1:1(vol/vol)混合於96孔圓底的微量盤(ELISA plate,Becton Drive,NJ,USA),探針最終濃度除正負對照組及座標探針之外,其他皆為10μM;正對照組(positive control,PC)濃度為5 μM,座標探針濃度為2.5 μM,負對照組(negative control,NC)則是由無菌水和染劑等體積混合而成。
將配置完成的微量盤置於EzspotTM arrayer SR-A300(悅生科技,台北,台灣),利用直徑為400 μm的實心針頭(solid pin)把各個探針點在尼龍膜(positively charged Nylon membrane,Roche,Mannheim,Germany)上,二點之間的中心距離為800 μm。此晶片上共有49點(7×7 dots),大小為6.8 mm×6.8 mm。晶片製作完成後,以shortwave UV(Stratalinker 1800;Stratagen,La Jolla,CA,USA)3 W/cm2 能量之紫外光照射30秒,促使探針固定在尼龍膜上,接著儲存在陰暗乾燥處備用。微陣列晶片探針位置示於圖1。
分枝桿菌晶片的雜合反應(chip hybridization)
於製作好的分枝桿菌晶片中,分別加入已標記毛地黃素的PCR產物,進行雜合反應。雜合反應進行的主要步驟如下:
1. 將製作好的晶片標記之後,利用0.5×的SSC緩衝液[1×SSC緩衝液為0.15 M NaCl和0.015 M sodium citrate)-0.1% sodium dodecyl sulfate(SDS,Boehringer Mannheim,Mannheim,Germany)]清洗晶片,以震盪器震盪4次,每次3分鐘,以洗去晶片上的追蹤染劑、未結合在尼龍膜上的探針及其他雜質
2. 加入雜合緩衝液[hybridization solution,5×SSC,1%(w/v) blocking reagent(Roche Diagnostics,Indianapolis,IN,USA),0.1% N-laurylsarcosine and 0.02% SDS],在室溫下震盪2小時進行前雜合反應(prehybridization)
3. 把每一晶片依序放入24孔的細胞培養盤(24-well cell culture plate)每一孔中,每孔加入300 μl的雜合緩衝液
4. 將帶有毛地黃素的PCR產物加熱至95℃,5分鐘,用以解旋(denature)成單股狀態,並立刻置於冰上
5. 在冰浴上,分別將各個單股狀態的PCR產物取10 μl加入含有雜合緩衝液的晶片中,在雜合反應箱(hybridization oven,Firstek Scientific,Taipei,Taiwan)中(50℃,60 rpm)進行1.5小時的雜合反應
6. 用0.25×SSC緩衝液作為清洗緩衝液(wash buffer),清洗4次,每次5分鐘,洗掉未結合的PCR產物和雜合緩衝液
7. 移除清洗緩衝液,加入1×填塞緩衝液[blocking buffer,10% blocking reagent(Roche Diagnostics)以maleic acid buffer(0.1 M maleic acid,0.15 M NaCl,pH 7.5)稀釋10倍],室溫震盪1小時
8. 加入稀釋2500倍(以1×blocking buffer稀釋)標記有鹼性磷酸酶(alkaline phosphatase,AP)之抗毛地黃素抗體(anti-digoxigenin-AP Fab fragments,Roche),室溫震盪反應1小時
9. 移除抗體緩衝液,接著以緩衝液清洗[0.3%(v/v) Tween 20 in 1×maleic acid buffer]洗去未結合的抗體,室溫下清洗3次,每次15分鐘
10. 加入偵測緩衝液(detection buffer,0.1 M Tris-HCl,0.15 M NaCl,pH 9.5)室溫震盪5分鐘後,去除偵測緩衝液
11. 以偵測緩衝液將鹼性磷酸酶受質[stock solution of nitroblue tetrazolium chloride/5-bromo-4-chloro-3-indolylphosphate(NBT/BCIP),Roche]稀釋50倍,每個晶片上加40μl,37℃避光,進行25分鐘至45分鐘的呈色反應,反應進行中不要搖晃。
12. 用純水清洗晶片4次,每次5分鐘,以洗掉NBT/BCIP終止呈色反應
13. 放入烘箱中烘乾後,即可用肉眼判讀結果
晶片雜合反應之結果判讀
晶片上有座標標記,可辨別上下左右,座標標記將晶片分隔成兩大區域。晶片上半部區域的探針用來鑑定MTBC及其內不同菌種,及兩個負對照組(negative control,NC);下半部區域的探針用來鑑定NTM,及一個正對照組(positive control,PC)探針,該探針可以和分枝桿菌屬細菌反應。
晶片反應結果必須NC點沒有雜合反應發生,而PC點有雜合反應才能進行結果判讀。若鑑定MTBC的二個探針均有反應,表示檢體中有MTBC存在,至於是MTBC中的那一種,將於下文中詳細說明。NTM的鑑定則看是那一個NTM的探針發生雜合反應。
rRNA基因間隔區,16S rRNA基因及gyrB之定序
以晶片鑑定結果若種名和菌種中心的種名不符合,或和傳統(或其他分生方法)所鑑定之菌名不一致時,則定序此菌種之rRNA基因間隔區、16S rRNA基因、或gyrB 序列,作為第三種參考方法。純化之PCR產物進行定序,使用核酸定序儀PRISM 3100 Sequencer(Applied Biosystems,Taipei,Taiwan),及BigDye Terminator cycle sequencing kit(version 3.7;Applied Biosystems)定序。
靈敏度、特異性以及偵測極限之定義
靈敏度(sensitivity):欲鑑定的目標菌株得到正確鑑定的百分比[sensitivity=(no. of target strains correctly identified/total no. of target strains tested)×100%]
特異性(specificity):非目標菌株,沒有得到鑑定的百分比[specificity=(no. of nontarget strains not identified/total no. of nontarget strains tested)×100%]
偵測極限(detection limit):待測菌株能被晶片檢測到的最低genomic DNA量。
Mycobacterium spp.正對照組(positive control,PC)探針
此探針為分枝桿菌菌屬探針,由分枝桿菌屬(Mycobacterium spp.)之rRNA基因間隔區序列中的共同序列所設計,探針代號為Myc2及Myc3,由於探針Myc2無法涵蓋所有的分枝桿菌,針對無法涵蓋的菌種另設計Myc3,再將兩者混合在一起,作為分枝桿菌菌屬探針,代號為PC。本研究中,當此探針發生雜合反應,表示待測菌種為分枝桿菌屬細菌。
結核桿菌群(MTBC)之鑑定
結核桿菌群的特異性探針共分為兩部份,一部分是針對MTBC所設計的菌群特異性探針,另一部分是針對MTBC中的各個菌種設計的菌種探針。
MTBC菌群的探針有兩個,代號分別為MTBC2和MTBC4,探針長度分別為18個及19個核苷酸,由MTBC的rRNA基因間隔區上共有的序列所設計,其序列與NTM菌種有很大的差異;凡屬於結核桿菌群的菌種,包括非洲結核桿菌,牛結核桿菌群,坎結核桿菌,卡柏結核桿菌,邁克結核桿菌,和結核桿菌均會和此二探針產生雜合反應;結核桿菌群以外的菌種,皆不會和此二探針產生反應。
MTBC菌種的特異性探針共有12個,探針代號Mtub1R及MtubW1R用來鑑定結核桿菌,若菌株為結核桿菌則Mtub1R的雜合訊號會比MtubW1R強;MbovG1及MbovGW1用來鑑定牛結核桿菌群,包括牛結核桿菌、牛結核桿菌BCG、及卡柏結核桿菌和MbovG1探針的雜合訊號比和MbovGW1的雜合訊號強,但無法區分出牛結核桿菌群內的菌種。Mbov1及MbovW1用來鑑定牛結核桿菌,包括牛結核桿菌以及牛結核桿菌BCG和Mbov1的雜合訊號都比和MbovW1的雜合訊號強;Mcap1及McapW1為卡柏結核桿菌的探針,僅卡柏結核桿菌才會呈現Mcap1比McapW1強的雜合訊號;Mmic1及MmicW1為邁克結核桿菌的探針,僅邁克結核桿菌才會呈現Mmic1比MmicW1強的雜合訊號;Mcan1及McanW1為坎結核桿菌的探針,由於坎結核桿菌和結核桿菌在gyrB 基因上序列較相似,故坎結核桿菌的雜合反應會呈現Mtub1R比MtubW1R強的雜合訊號,以及Mcan1比McanW1強的反應訊號。
MTBC菌種的鑑定,首先需要菌群探針MTBC2及MTBC4同時有反應的情況下(即待測菌種屬於MTBC),才進一步鑑定是該群內的那一菌種,以雜合圖譜型式(hybridization pattern)做為菌種鑑定依據。以結核桿菌為例,它的圖譜型式為:MTBC2及MTBC4同時有反應,Mtub1R探針的反應比MtubW1R強以外,且剩下10個鑑定MTBC中菌種的探針,均同時證明其不是MTBC中的其他菌種(即探針代號中有”W”字母的探針,其反應比同一組中代號沒有”W”的探針反應強)。卡柏結核桿菌以前被放在牛結核桿菌群內,現被命名為卡柏結核桿菌(Aranaz等人,2003,J. Syst. Evol. Microbiol. 53:1785-1789),它的探針反應圖譜為MbovG1比MbovGW1反應強(即屬於牛結核桿菌群),且Mcap1比McapW1反應強(即它是卡柏結核桿菌)。
非結核分枝桿菌(NTM)之鑑定
針對非結核分枝桿菌所設計之菌種探針共有17個,其中有兩個探針為群探針(complex probe),共可鑑定19種NTM目標菌種,分別為潰瘍腫分枝桿菌、鳥分枝桿菌、龜分枝桿菌、偶然分枝桿菌、胃分枝桿菌、戈登分枝桿菌、胞內分枝桿菌、堪薩斯分枝桿菌、蘭分枝桿菌、海洋分枝桿菌、不產色分枝桿菌、培力分枝桿菌、瘰癘分枝桿菌、猿分枝桿菌、恥垢分枝桿菌、斯氏分枝桿菌、土地分枝桿菌、潰瘍分枝桿菌、及蟾蜍分枝桿菌,其中Mma/ul2用來鑑定海洋分枝桿菌或潰瘍分枝桿菌,而Msi/le1用來鑑定猿分枝桿菌或蘭分枝桿菌。
雜合反應結果必須正對照組(PC)有反應,接著看那一探針有反應,例如PC和Mche3二個探針有反應,菌株鑑定為龜分枝桿菌。唯一例外是胞內分枝桿菌會和鑑定鳥分枝桿菌的探針(Mavi1)有輕微交叉反應,所以Mint2(鑑定胞內分枝桿菌的探針)和Mavi1同時有反應時,菌株鑑定為胞內分枝桿菌,但Mint2的反應較Mavi1強很多。若PC及Mavi1有雜合反應則鑑定為鳥分枝桿菌,這是由於鳥分枝桿菌和胞內分枝桿菌同屬於鳥分枝桿菌群(Mycobacterium avium complex),兩者在生化反應及rRNA基因間隔區序列上非常相似。臨床上不易區分出二菌種,通常只鑑定到鳥分枝桿菌群。
參考菌株之晶片測試
晶片的測試結果如圖2及圖3所示,共測試了88株參考菌株和1個gyrB 模擬序列,包括MTBC 15株及NTM 73株。另測試目標臨床菌株,其中MTBC共80株(表2),NTM 121株,共201株(表3)。
分枝桿菌晶片之靈敏度(sensitivity)與特異性(specificity)
所有目標菌株289株,其中有二株(M. kansasii KMUH0903-4及M. kansasii KMUH0903-26)晶片鑑定錯誤,所以晶片靈敏度為99.3%(287/289)(表2和表3)。所測試的非目標菌(nontarget species)73株中(表4),其中有一株鑑定錯誤(M. goodii CCUG 52054被鑑定為M. smegmatis ),所以晶片特異性為98.6%(72/73)。
晶片之偵測極限(detection limit)
以結核桿菌H37Rv,潰瘍腫分枝桿菌CCUG 20993T 和偶然分枝桿菌JCM 6387作為測試菌株。DNA濃度均由10 ng/μl做10倍序列稀釋。結核桿菌H37Rv的偵測極限為10 fg/μl(即50 fg/每一測試),約相當於12個細菌的DNA含量[(一個E. coli 細胞含有4 fg DNA(Kubitschek and Friedman,1971)]。潰瘍腫分枝桿菌CCUG 20993T 和偶然分枝桿菌JCM 6387的檢測極限均為100 fg/μl(即500 fg/每一測試),約相當於120個細菌的DNA含量。
上述實施例僅為說明本發明之原理及其功效,並非限制本發明。因此習於此技術之人士對上述實施例進行修改及變化仍不脫本發明之精神。本發明之權利範圍應如後述之申請專利範圍所列。
圖1顯示本發明微陣列晶片探針位置示意圖。
圖2顯示結核桿菌群之目標菌之雜合反應圖:
(1)非洲結核桿菌ATCC 25420
(2)非洲結核桿菌ATCC 35711
(3)牛結核桿菌ATCC 27291
(4)牛結核桿菌ATCC 35734
(5)牛結核桿菌BCG ATCC 35731
(6)牛結核桿菌BCG ATCC 35735
(7)牛結核桿菌BCG ATCC 35737
(8)卡柏結核桿菌ATCC BAA-824
(9)坎結核桿菌
(10)邁克結核桿菌ATCC 19422
(11)邁克結核桿菌ATCC 35782
(12)邁克結核桿菌NCTC 8337
(13)結核桿菌H37Rv
(14)結核桿菌ATCC 25177
(15)結核桿菌ATCC 35818
(16)結核桿菌ATCC 35828
圖3顯示非結核分枝桿菌目標菌(1-19)與非目標菌(20-32)之雜合反應圖
(1)潰瘍腫結核桿菌CCUG 20993
(2)鳥分枝桿菌BCRC 15441
(3)龜分枝桿菌CCUG 35749
(4)偶然分枝桿菌BCRC 15320
(5)胃分枝桿菌CCUG 29062
(6)戈登分枝桿菌CCUG 21801
(7)胞內分枝桿菌CCUG 28005
(8)堪薩斯分枝桿菌CCUG 27785
(9)蘭分枝桿菌CCUG 47901
(10)海洋分枝桿菌ATCC 25039
(11)不產色分枝桿菌CCUG 28009
(12)培力分枝桿菌CCUG 27976
(13)瘰癘分枝桿菌CCUG 29045
(14)猿分枝桿菌CCUG 29114
(15)恥垢分枝桿菌ATCC 19420
(16)斯氏分枝桿菌NCTC 10829
(17)土地分枝桿菌CCUG 42429
(18)潰瘍分枝桿菌ATCC 25899
(19)蟾蜍分枝桿菌ATCC 19973
(20)分枝桿菌M. agri CCUG 37673
(21)分枝桿菌M. alvei CCUG 37585
(22)分枝桿菌M. arupense CCUG 39146
(23)分枝桿菌M. asiaticum MB 031
(24)分枝桿菌M. chitae CCUG 39504
(25)分枝桿菌M. chlorophenolicum BCRC 13726
(26)分枝桿菌M. confluentis CCUG 37513
(27)分枝桿菌M. diernhoferi BCRC 16395
(28)分枝桿菌M. gadium CCUG 37515
(29)分枝桿菌M. pulveris CCUG 37668
(30)分枝桿菌M. fallax CCUG 37584
(31)分枝桿菌M. flavescens MB 017
(32)分枝桿菌M. genavense MB 691
(無元件符號說明)

Claims (23)

  1. 一種鑑定分枝桿菌(Mycobacterium spp.)之方法,該方法包括使用Myc2(SEQ ID No.1)及Myc3(SEQ ID No.2)之探針或其互補股與待測樣品中之DNA進行雜合反應,如有至少一雜合反應發生,則該待測樣品包含分枝桿菌。
  2. 根據請求項1之方法,其另包含使用MTBC2(SEQ ID No.3)及MTBC4(SEQ ID No.4)之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA同時與MTBC2(SEQ ID No.3)及MTBC4(SEQ ID No.4)之探針或其互補股產生雜合反應,則該待測樣品包含結核桿菌群(Mycobacterium tuberculosis complex)。
  3. 根據請求項1之方法,其另包含使用MTBC2(SEQ ID No.3)及MTBC4(SEQ ID No.4)之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA未同時與MTBC2(SEQ ID No.3)及MTBC4(SEQ ID No.4)之探針或其互補股產生雜合反應,則該待測樣品包含非結核分枝桿菌(nontuberculous mycobacteria)。
  4. 根據請求項2之方法,其另包含使用Mtub1R(SEQ ID No.15)及MtubW1R(SEQ ID No.16)之探針或其互補股與待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與Mtub1R(SEQ ID No.15)或其互補股雜合反應之強度,大於該待測樣品中之DNA與MtubW1R(SEQ ID No.16)或其互補股雜合反應之強度,則該待測樣品包含結核桿菌(M.tuberculosis )。
  5. 根據請求項2之方法,其另包含使用MbovG1(SEQ ID No.6)及MbovGW1(SEQ ID No.5)之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與MbovG1(SEQ ID No.6)或其互補股雜合反應之強度,大於該待測樣品中之DNA與MbovGW1(SEQ ID No.5)或其互補股雜合反應之強度,則該待測樣品包含牛結核桿菌群(M.bovis group)。
  6. 根據請求項5之方法,其中該牛結核桿菌群包含牛結核桿菌(M.bovis )、牛結核桿菌BCG(M.bovis BCG)及卡柏結核桿菌(M.caprae )。
  7. 根據請求項5之方法,其另包含使用Mbov1(SEQ ID No.8)及MbovW1(SEQ ID No.7)之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與Mbov1(SEQ ID No.8)或其互補股雜合反應之強度,大於該待測樣品中之DNA與MbovW1(SEQ ID No.7)或其互補股雜合反應之強度,則該待測樣品包含牛結核桿菌或牛結核桿菌BCG。
  8. 根據請求項5之方法,其另包含使用Mcap1(SEQ ID No.12)及McapW1(SEQ ID No.11)之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與Mcap1(SEQ ID No.12)或其互補股雜合反應之強度,大於該待測樣品中之DNA與McapW1(SEQ ID No.11)或其互補股雜合反應之強度,則該待測樣品包含卡柏結核桿菌。
  9. 根據請求項2之方法,其另包含使用Mmic1(SEQ ID No.14)及MmicW1(SEQ ID No.13)之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與Mmic1(SEQ ID No.14)或其互補股雜合反應之強度,大於該待測樣品中之DNA與MmicW1(SEQ ID No.13)或其互補股雜合反應之強度,則該待測樣品包含邁克結核桿菌(M.microti )。
  10. 根據請求項2之方法,其另包含使用Mcan1(SEQ ID No.10)及McanW1(SEQ ID No.9)之探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與Mcan1(SEQ ID No.10)或其互補股雜合反應之強度,大於該待測樣品中之DNA與McanW1(SEQ ID No.9)或其互補股雜合反應之強度,則該待測樣品包含坎結核桿菌(M.canettii )。
  11. 根據請求項2之方法,其另包含使用第一群探針或其互補股及第二群探針或其互補股與該待測樣品中之DNA進行雜合反應,如該待測樣品中之DNA與第二群探針或其互補股雜合反應之強度,皆大於該待測樣品中之DNA與第一群探針或其互補股雜合反應之強度,則該待測樣品包含非洲結核桿菌(M.africanum ),其中該第一群探針包含Mtub1R(SEQ ID No.15)、MbovG1(SEQ ID No.6)、Mbov1(SEQ ID No.8)、Mcap1(SEQ ID No.12)、Mmic1(SEQ ID No.14)及Mcan1(SEQ ID No.10);第二群探針包含MtubW1R(SEQ ID No.16)、MbovGW1(SEQ ID No.5) 、MbovW1(SEQ ID No.7)、McapW1(SEQ ID No.11)、MmicW1(SEQ ID No.13)及McanW1(SEQ ID No.9)。
  12. 根據請求項3之方法,其另包含使用一或多個選自Mabs1(SEQ ID No.17)、Mavi1(SEQ ID No.18)、Mche3(SEQ ID No.19)、Mfor1(SEQ ID No.20)、Mgas2(SEQ ID No.21)、Mgor1(SEQ ID No.22)、Mint2(SEQ ID No.23)、Mkan1(SEQ ID No.24)、Msi/le1(SEQ ID No.25)、Mma/ul2(SEQ ID No.26)、Mnon1(SEQ ID No.27)、Mper1(SEQ ID No.28)、Mscr1(SEQ ID No.29)、Msme3(SEQ ID No.31)、Mszu1(SEQ ID No.32)、Mter1(SEQ ID No.33)、Mxen2(SEQ ID No.35)及其互補股之探針與該待測樣品中之DNA進行雜合反應;如該該待測樣品中之DNA與Mabs1(SEQ ID No.17)探針或其互補股產生雜合反應,則該待測樣品包含潰瘍腫分枝桿菌(M.abscessus );如該待測樣品中之DNA與Mavi1(SEQ ID No.18)探針或其互補股產生雜合反應,則該待測樣品包含鳥分枝桿菌(M.avium );如該待測樣品中之DNA與Mche3(SEQ ID No.19)探針或其互補股產生雜合反應,則該待測樣品包含龜分枝桿菌(M.chelonae );如該待測樣品中之DNA與Mfor1(SEQ ID No.20)探針或其互補股產生雜合反應,則該待測樣品包含偶然分枝桿菌(M.fortuitum ); 如該待測樣品中之DNA與Mgas2(SEQ ID No.21)探針或其互補股產生雜合反應,則該待測樣品包含胃分枝桿菌(M.gastri );如該待測樣品中之DNA與Mgor1(SEQ ID No.22)探針或其互補股產生雜合反應,則該待測樣品包含戈登分枝桿菌(M.gordonae );如該待測樣品中之DNA與Mint2(SEQ ID No.23)探針或其互補股產生雜合反應,則該待測樣品包含胞內分枝桿菌(M.intracellulare );如該待測樣品中之DNA與Mkan1(SEQ ID No.24)探針或其互補股產生雜合反應,則該待測樣品包含堪薩斯分枝桿菌(M.kansasii );如該待測樣品中之DNA與Msi/le1(SEQ ID No.25)探針或其互補股產生雜合反應,則該待測樣品包含猿分枝桿菌(M.simiae )或蘭分枝桿菌(M.lentiflavum );如該待測樣品中之DNA與Mma/ul2(SEQ ID No.26)探針或其互補股產生雜合反應,則該待測樣品包含海洋分枝桿菌(M.marinum )或潰瘍分枝桿菌(M.ulcerans );如該待測樣品中之DNA與Mnon1(SEQ ID No.27)探針或其互補股產生雜合反應,則該待測樣品包含不產色分枝桿菌(M.nonchromogenicum );如該待測樣品中之DNA與Mper1(SEQ ID No.28)探針或其互補股產生雜合反應,則該待測樣品包含培力分枝桿菌(M.peregrinum ); 如該待測樣品中之DNA與Mscr1(SEQ ID No.29)探針或其互補股產生雜合反應,則該待測樣品包含瘰癘分枝桿菌(M.scrofulaceum );如該待測樣品中之DNA與Msme3(SEQ ID No.31)探針或其互補股產生雜合反應,則該待測樣品包含恥垢分枝桿菌(M.smegmatis );如該待測樣品中之DNA與Mszu1(SEQ ID No.32)探針或其互補股產生雜合反應,則該待測樣品包含斯氏分枝桿菌(M.szulgai );如該待測樣品中之DNA與Mter1(SEQ ID No.33)探針或其互補股產生雜合反應,則該待測樣品包含土地分枝桿菌(M.terrae );及如該待測樣品中之DNA與Mxen2(SEQ ID No.35)探針或其互補股產生雜合反應,則該待測樣品包含蟾蜍分枝桿菌(M.xenopi )。
  13. 根據請求項1至12任何一項之方法,其中該待測樣品包含由聚合酶連鎖(polymerase chain reaction)反應擴增之DNA片段。
  14. 根據請求項13之方法,其係使用sp1(SEQ ID NO.36)及sp2(SEQ ID NO.37)引子或使用Gb1f(SEQ ID NO.38)及Gb1r(SEQ ID NO.39)引子擴增。
  15. 根據請求項14之方法,其中該引子係包含一標幟。
  16. 根據請求項15之方法,其中該標幟係為毛地黃素(digoxigenin)。
  17. 根據請求項1至12中任一項之方法,其中該雜合反應係於一微陣列晶片(microarray)上進行。
  18. 一種探針組,其包含Myc2(SEQ ID No.1)及Myc3(SEQ ID No.2)或其互補股。
  19. 根據請求項18之探針組,其另包含一探針,該探針係選自由下列序列所組成之群:MTBC2(SEQ ID No.3)、MTBC4(SEQ ID No.4)、MbovG1(SEQ ID No.6)、MbovGW1(SEQ ID No.5)、Mbov1(SEQ ID No.8)、MbovW1(SEQ ID No.7)、Mcan1(SEQ ID No.10)、McanW1(SEQ ID No.9)、Mcap1(SEQ ID No.12)、McapW1(SEQ ID No.11)、Mmic1(SEQ ID No.14)、MmicW1(SEQ ID No.13)、Mtub1R(SEQ ID No.15)、MtubW1R(SEQ ID No.16)、Mabs1(SEQ ID No.17)、Mavi1(SEQ ID No.18)、Mche3(SEQ ID No.19)、Mfor1(SEQ ID No.20)、Mgas2(SEQ ID No.21)、Mgor1(SEQ ID No.22)、Mint2(SEQ ID No.23)、Mkan1(SEQ ID No.24)、Msi/le1(SEQ ID No.25)、Mma/ul2(SEQ ID No.26)、Mnon1(SEQ ID No.27)、Mper1(SEQ ID No.28)、Mscr1(SEQ ID No.29)、Msme3(SEQ ID No.31)、Mszu1(SEQ ID No.32)、Mter1(SEQ ID No.33)及Mxen2(SEQ ID No.35)及其互補股。
  20. 一種用於鑑定一樣品中分枝桿菌之套組,該套組包括根據請求項18或19之探針組。
  21. 根據請求項20之套組,其中該探針係塗佈於微陣列晶片。
  22. 根據請求項20之套組,其進一步包括用於聚合酶連鎖反 應之試劑。
  23. 根據請求項22之套組,其包括sp1(SEQ ID NO.36)與sp2(SEQ ID NO.37)引子及/或Gb1f(SEQ ID NO.38)及Gb1r(SEQ ID NO.39)引子。
TW99117460A 2010-05-31 2010-05-31 鑑定分枝桿菌之方法 TWI392740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99117460A TWI392740B (zh) 2010-05-31 2010-05-31 鑑定分枝桿菌之方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99117460A TWI392740B (zh) 2010-05-31 2010-05-31 鑑定分枝桿菌之方法

Publications (2)

Publication Number Publication Date
TW201142038A TW201142038A (en) 2011-12-01
TWI392740B true TWI392740B (zh) 2013-04-11

Family

ID=46764904

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99117460A TWI392740B (zh) 2010-05-31 2010-05-31 鑑定分枝桿菌之方法

Country Status (1)

Country Link
TW (1) TWI392740B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174520B2 (en) 2018-02-27 2021-11-16 Delta Electronics, Inc. Method for detecting presence or absence of Mycobacterium and kit thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257535A (zh) * 2019-06-27 2019-09-20 大理大学 结核分枝杆菌(Mtb)MLVA基因分型试剂盒
CN113667728B (zh) * 2021-07-23 2024-02-13 杭州圣庭医疗科技有限公司 一种基于纳米孔测序仪的分枝杆菌快速鉴定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Heekyung Park, et al.,"Detection and genotyping of Mycobacterium species from clinical isolates and specimens by oligonucleotide array.", J. Clin. Microbiol., Apr. 2005, Vol.43, No.4, page1782-1788 *
M. Fukushima, et al., "Detection and identification of Mycobacterium species isolates by DNA microarray." J. Clin. Microbiol., June 2003, Vol.41, No.6, page1782-178 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174520B2 (en) 2018-02-27 2021-11-16 Delta Electronics, Inc. Method for detecting presence or absence of Mycobacterium and kit thereof

Also Published As

Publication number Publication date
TW201142038A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
US8044184B2 (en) Probe and primer for tubercle bacillus detection, and method of detecting human tubercle bacillus therewith
JPH06502312A (ja) ミコバクテリアの核酸に相補的なオリゴヌクレオチド
JP4771755B2 (ja) オリゴヌクレオチド、オリゴヌクレオチドを用いた真核生物の検出方法及び同定方法
KR20060019700A (ko) 모든 세균의 감별을 위한 세균 특이적, 속 특이적 및 종특이적 올리고뉴클레오티드, 이를 포함하는 진단 키트, 및이를 이용한 검출 방법
US5703217A (en) Nucleotide fragment of the 23S ribosomal RNA of mycobacteria, derived probes and primers, reagent and detection method
KR100388548B1 (ko) 알이피 13 이 12 반복서열의 피시알 증폭을 이용한결핵균의 검출방법
TWI392740B (zh) 鑑定分枝桿菌之方法
US7271781B2 (en) Multiplex hybridization system for identification of pathogenic mycobacterium and method of use
Fanelli et al. Selective detection of Pseudomonas syringae pv. tomato using dot blot hybridization and real‐time PCR
TWI614345B (zh) 檢測數種非結核分枝桿菌、結核分枝桿菌及其抗藥性之探針、晶片、套組與方法
EP1098003A2 (en) Identification method and specific detection method of slow growing mycobacteria utilizing DNA gyrase gene
AU2004303629B2 (en) Methods for detection of Mycobacterium tuberculosis
US7439022B2 (en) Nucleic acids for detection of Listeria
Katoch et al. Rapid identification of mycobacteria by gene amplification restriction analysis technique targeting 16S-23S ribosomal RNA internal transcribed spacer & flanking region
EP1248854A1 (en) rpoB GENE FRAGMENTS AND A METHOD FOR THE DIAGNOSIS AND IDENTIFICATION OF MYCOBACTERIUM TUBERCULOSIS AND NON-TUBERCULOSIS MYCOBACTERIAL STRAINS
RU2819877C1 (ru) Тест-система для экспресс-выявления и идентификации mycobacterium avium complex
RU2551764C2 (ru) СПОСОБ ОБНАРУЖЕНИЯ МИКОБАКТЕРИЙ ТУБЕРКУЛЁЗА ГЕНЕТИЧЕСКОГО КЛАСТЕРА Beijing B0/W148
Mousa et al. Morphological and molecular tools for identification of Saccharomyces boulardii isolated from active dry yeast
KR20120113119A (ko) 실시간 중합효소연쇄반응법과 융해곡선분석을 이용하는 마이코박테리아의 동정 방법
JP2004534536A (ja) グラム陽性菌の検出方法
KR100985196B1 (ko) 비결핵항산성균의 감별 방법 및 이를 위한 키트
WO2019244860A1 (ja) 植物病原細菌の検出および識別方法
TW201416454A (zh) 用於鑑定分枝桿菌之寡核苷酸探針、生物晶片及鑑定方法
Almahdawi et al. Molecular diagnosis and DNA fingerprinting based on IS6110 of Mycobacterium tuberculosis isolated from patients in Iraq
Schmidt et al. Phylogenetic identification of uncultivated microorganisms in natural habitats