TWI384616B - 具備有機多介電層之記憶體元件 - Google Patents

具備有機多介電層之記憶體元件 Download PDF

Info

Publication number
TWI384616B
TWI384616B TW98130835A TW98130835A TWI384616B TW I384616 B TWI384616 B TW I384616B TW 98130835 A TW98130835 A TW 98130835A TW 98130835 A TW98130835 A TW 98130835A TW I384616 B TWI384616 B TW I384616B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
memory device
organic
charge trap
Prior art date
Application number
TW98130835A
Other languages
English (en)
Other versions
TW201110341A (en
Inventor
chun yuan Huang
Ying Chih Chen
Tsung Syun Huang
Chiao Yang Cheng
Yan Kuin Su
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW98130835A priority Critical patent/TWI384616B/zh
Publication of TW201110341A publication Critical patent/TW201110341A/zh
Application granted granted Critical
Publication of TWI384616B publication Critical patent/TWI384616B/zh

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Description

具備有機多介電層之記憶體元件
本發明是有關於一種有機記憶體元件,特別是有關於一種具備多介電層之有機記憶體元件。
目前將有機薄膜電晶體與相當成熟之半導體製程技術結合,於不同型式的元件結構下,製作出具有非揮發性之有機記憶體元件,其有別於其他記憶體元件技術,如磁性記憶體元件及相變化記憶體元件等。在邏輯元件的操作上,負責提供或儲存資料,因此在急速發展之奈米元件技術領域佔有一席之地。
已知的有機記憶體元件類型基本上可分為雙穩態雙端點元件及電晶體式三端點元件。其中雙穩態雙端點元件主要有電阻式及電容式結構。電晶體式記憶體元件其優點在於技術較成熟且結構製作彈性高。比較目前有機薄膜電晶體式之記憶體元件,基本作法有下列兩種:
(1)以鐵電材料(ferroelectric materials)作為有機電晶體之絕緣層時,在閘極偏壓下,鐵電材料會產生感應電偶極而使薄膜內部極化(electric polarization)並打開通道,產生通道電流。但其缺點如下:一般若使用旋轉塗佈法製作鐵電絕緣層,絕緣層厚度無法有效降低,而使得操作電壓(寫入/抹除資料之偏壓)過高;再者單純以鐵電材料為絕緣層會造成嚴重的漏電流,使元件無法正常操作。另外若使用其他材料阻擋漏電流,卻會造成鐵電材料之極化效應喪失,以致記憶保留時間過短,元件亦無法使用。
(2)使用駐極體材料(electret)作為絕緣層,駐極體受到外加電場影響產生極化,因能長久保持極化強度而使得記憶保留時間可大幅延長,但目前現有的文獻指出,使用單層駐極體聚合物做為絕緣層,容易產生漏電流過大的缺點,而且一般具有駐極體特性之高分子聚合物其介電常數都不高,無法有效降低臨界電流。因此在習知之有機記憶體元件中,存在著漏電流過大及記憶保留時間過短的缺點,確有其必要改進之空間。
有鑑於習知技術之問題,本發明之目的就是在提供一種具有有效延長元件記憶功能之記憶體元件,並用以解決漏電流過大之缺點。
根據本發明之目的,提出一種具備有機多介電層之記憶體元件,其係包含一基板、一閘極電極、一多介電層、一半導體通道層、一汲極電極及一源極電極。其中基板係一氧化銦錫玻璃基板或氧化銦錫塑膠基板如聚對苯二甲二乙酯(poly(ethylene terephthalate),PET)或環烯烴共聚合物(cyclic olefin copolymer,COC)。閘極電極形成於基板上,多介電層形成於閘極電極上,半導體通道層、一汲極電極及一源極電極皆形成於多介電層上,且汲極電極及源極電極皆與半導體通道層電性接觸。
根據本發明之目的,更提出一種多介電層,其係包含至少一第一電荷捕捉層、至少一漏電阻擋層及至少一第二電荷捕捉層。漏電阻擋層位於第一電荷捕捉層及第二電荷捕捉層之間。第一電荷捕捉層、第二電荷捕捉層及漏電阻擋層其主要材料皆為有機高分子聚合物。
承上所述,因依本發明之多介電層記憶體元件,其可具有一或多個下述優點:
(1)此具備有機多介電層之記憶體元件之高分子聚合物材料比之鐵電材料便宜許多。
(2)此具備有機多介電層之記憶體元件藉由高分子聚合物組成之多介電層結構,有效改善漏電流過大之缺點。
(3)此具備有機多介電層之記憶體元件藉由高分子聚合物組成之多介電層結構,聚合物中之大量氫氧基可捕捉電荷,有效延長記憶效應,可對元件做多次讀寫動作。
(4)此具備有機多介電層之記憶體元件之塑膠基板係一可撓式之材料,大大增加使用之方便性,如用以無線射頻辨識標籤(RFID)上。
以下將參照相關圖式,說明依本發明之具備有機多介電層之記憶體元件之實施例,為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。
請參閱第1圖及第2圖,其分別為本發明之具備有機多介電層之記憶體元件(頂接觸式)之示意圖,及本發明之具備有機多介電層之記憶體元件(底接觸式)之示意圖。圖中,具備有機多介電層之記憶體元件包含一基板100、一閘極電極110、一多介電層160、一半導體通道層130、一源極電極140及一汲極電極150。其中閘極電極110形成於基板100上,多介電層160形成於閘極電極110上,半導體通道層130、源極電極140及汲極電極150皆形成於多介電層160上,其中源極電極140及汲極電極150皆與半導體通道130電性接觸。
如上述之具備有機多介電層之記憶體元件,其製作方法如下:基板100係為氧化銦錫玻璃基板或為氧化銦錫塑膠基板,於此基板100使用標準光微影蝕刻術(Photo-Lithography)或網版印刷方式定義圖案,並以濕式蝕刻方式製作圖案化之閘極電極110,經過簡單之淨化(先後置於丙酮和異丙醇溶液中以超音波震盪)以完成基板100和閘極電極110之處理。其中塑膠基板(PET或COC)為可撓式之材料,大大增加使用之方便性。
接下來,將具有氫氧基之有機高分子聚合物之多介電層160形成於閘極電極110上,多介電層160具有至少一第一電荷捕捉層120、至少一漏電阻擋層121及至少一第二電荷捕捉層122。多介電層160製作方式如下:首先將聚甲基丙烯酸乙酯(PHEMA)溶於甲醇中,聚甲基丙烯酸乙酯(PHEMA)濃度為0~20%,聚甲基丙烯酸甲酯(PMMA)溶於甲苯中,聚甲基丙烯酸甲酯(PMMA)濃度為0~20%,並旋轉塗佈於基板100及閘極電極110上,其塗佈方式或有滾輪塗佈、噴墨塗佈及網版印刷,並加熱蒸發溶劑使成薄膜;聚甲基丙烯酸乙酯(PHEMA)和聚甲基丙烯酸甲酯(PMMA)厚度皆為0~1微米,其中聚甲基丙烯酸乙酯(PHEMA)即形成第一電荷捕捉層120及第二電荷捕捉層122,聚甲基丙烯酸甲酯(PMMA)即形成漏電阻擋層121。
特別說明第一電荷捕捉層120及第二電荷捕捉層122之主要功能為用以打開半導體通道層並捕捉及累積電荷使元件具有記憶效應,而漏電阻擋層121能有效減少源極及閘極間之漏電流。
其中第一電荷捕捉層120及第二電荷捕捉層122之具氫氧基之有機高分子聚合物亦能使用具有高密度氫氧基之聚乙烯醇(polyvinyl alcohol,PVA)或聚對位乙烯基酚(poly(4-vinyl phenol),PVP);一般而言,相同材料之分子量越高,其氫氧基越多,氫氧基之主要作用在於使聚合物薄膜表面呈現更高的極性,如此可形成更多的載子陷阱以捕捉電荷。另外,漏電阻擋層121之使用材料亦能使用有機或無機材料,如聚苯乙烯(Polystyrene,PS)、二氧化矽(SiO2 )及氮化矽(SiNx )等,又或能為高介電係數材料。
完成多介電層160結構後,使用熱蒸鍍技術,鍍上並五苯(Pentacene)以形成半導體通道層130,其厚度以60nm為最佳,隨後並鍍上源極電極140及汲極電極150金屬金(Au)。因此,此結構係為先鍍上半導體通道層130,再鍍上源極電極140及汲極電極金屬150,稱此結構為頂接觸式有機多介電層之記憶體元件;反之,若結構係為先鍍上源極電極140及汲極電極金屬150,再鍍上半導體通道層130,稱此結構為底接觸式有機多介電層之記憶體元件。
請參閱第3圖及第4圖,其分別為係為本發明之電荷捕捉效應(P型通道層)之示意圖,及本發明之電荷捕捉效應(N型通道層)之示意圖。圖中包含一電荷捕捉層200、一半導體通道層210、一源極電極230及一汲極電極220。其中半導體通道層210以並五苯(Pentacene)等P型半導體為組成材料者,稱之P型通道層;半導體通道層210以富勒烯衍生物(PCBM)等N型半導體材料旋轉塗佈於電荷捕捉層200上者,稱之N型通道層。
請參閱第5圖及第6圖,其分別為本發明之記憶保留時間測試曲線圖,及本發明之重複ON/OFF狀態切換響應圖。如第5圖所示,當閘極施加逆向偏壓時,電子從半導體通道層注入電荷捕捉層,並在介面間被捕捉而逐漸累積。當移除閘極偏壓後,介面間累積的電子不會完全消退,因此可於一段長時間內,維持半導體通道層打開並產生汲極至源極電流。第5圖清楚表示,將汲極至源極電壓固定於-40伏特,施加閘極偏壓-60伏特並維持500秒之後,將閘極偏壓回復0伏特並量測(讀取)通道電流值,汲極至源極電流從4×10-6 安培減少至2×10-8 安培,之後經過多次量測(讀取)亦不會造成汲極至源極電流明顯減少,雖然此時電流值比之起始值已大幅降低,但相對於元件之off狀態(汲極至源極電流~7×10-10 安培),仍達到接近102 倍之電流開關比。估計此記憶保留時間超過100小時,因此能有效延長記憶效應。第6圖之元件重複讀寫操作曲線並沒有觀察到因多次操作而影響電荷捕捉層之電荷捕捉效率。
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
100...基板
110...閘極電極
120...第一電荷捕捉層
121...漏電阻擋層
122...第二電荷捕捉層
130...半導體通道層
140...源極電極
150...汲極電極
160...多介電層
200...第一電荷捕捉層
210...半導體通道層
220...汲極電極
以及
230...源極電極
第1圖 係為本發明之具備有機多介電層之記憶體元件(頂接觸式)之示意圖;
第2圖 係為本發明之具備有機多介電層之記憶體元件(底接觸式)之示意圖;
第3圖 係為本發明之電荷捕捉效應(P型通道層)之示意圖;
第4圖 係為本發明之電荷捕捉效應(N型通道層)之示意圖;
第5圖 係為本發明之記憶保留時間測試曲線圖;以及
第6圖 係為本發明之重複ON/OFF狀態切換響應圖。
100...基板
110...閘極電極
120...第一電荷捕捉層
121...漏電阻擋層
122...第二電荷捕捉層
130...半導體通道層
140...源極電極
以及
150...汲極電極

Claims (16)

  1. 一種具備有機多介電層之記憶體元件,其包含:一基板;一閘極電極,係形成於該基板上;一多介電層,係形成於該閘極電極上,該多介電層主要材料係有機高分子聚合物,該多介電層係用於打開半導體通道層並捕捉電荷使元件具有記憶效應,同時介電層中部分材料用以降低漏電流;一半導體通道層,係形成於該多介電層上;一汲極電極,係形成在該多介電層上,且與該半導體通道層電性接觸;以及一源極電極,係形成在該多介電層上,且與該半導體通道層電性接觸。
  2. 如申請專利範圍第1項所述之具備有機多介電層之記憶體元件,其中該基板係一氧化銦錫玻璃基板或氧化銦錫塑膠基板。
  3. 如申請專利範圍第2項所述之具備有機多介電層之記憶體元件,其中該氧化銦錫塑膠基板係為氧化銦錫鍍於聚對苯二甲二乙酯(poly(ethylene terephthalate),PET)或環烯烴共聚合物(cyclic olefin copolymer(COC))上。
  4. 如申請專利範圍第1項所述之具備有機多介電層之記憶體元件,其中該有機高分子聚合物具有氫氧基。
  5. 如申請專利範圍第1項所述之具備有機多介電層之記憶體元件,其中該多介電層係包含至少一第一電荷捕捉層、至少一漏電阻擋層及至少一第二電荷捕捉層,且該漏電阻擋層係位於該第一電荷捕捉層及該第二電荷捕捉層之間。
  6. 如申請專利範圍第5項所述之具備有機多介電層之記憶體元件,其中該第一電荷捕捉層及第二電荷捕捉層之主要材料係為聚甲基丙烯酸乙酯(PHEMA)溶於甲醇中,該聚甲基丙烯酸乙酯(PHEMA)濃度係大於0且小於等於20%。
  7. 如申請專利範圍第5項所述之具備有機多介電層之記憶體元件,其中該第一電荷捕捉層及該第二電荷捕捉層厚度係大於0且小於1微米。
  8. 如申請專利範圍第5項所述之具備有機多介電層之記憶體元件,其中該第一電荷捕捉層及該第二電荷捕捉層用以形成載子陷阱以捕捉並累積電荷。
  9. 如申請專利範圍第5項所述之具備有機多介電層之記憶體元件,其中該漏電阻擋層之主要材料係為聚甲基丙烯酸甲酯(PMMA)溶於甲苯中,該聚甲基丙烯酸甲酯(PMMA)濃度係大於0且小於等於20%。
  10. 如申請專利範圍第5項所述之具備有機多介電層之記憶體元件,其中該漏電阻擋層厚度係大於0且小於1微米。
  11. 如申請專利範圍第5項所述之具備有機多介電層之記憶體元件,其中該漏電阻擋層用以降低該源極電極及該閘極電極間之漏電流。
  12. 如申請專利範圍第1項所述之具備有機多介電層之記憶體元件,其中該半導體通道層係以P型半導體材料熱蒸鍍而成之P型通道層。
  13. 如申請專利範圍第12項所述之具備有機多介電層之記憶體元件,其中該P型半導體材料為並五苯(Pentacene)。
  14. 如申請專利範圍第1項所述之具備有機多介電層之記憶體元件,其中該半導體通道層係以N型半導體材料組成之N型通道層。
  15. 如申請專利範圍第14項所述之具備有機多介電層之記憶體元件,其中該N型半導體材料為富勒烯衍生物(PCBM)。
  16. 如申請專利範圍第1項所述之具備有機多介電層之記憶體元件,其中該閘極電極、該汲極電極及該源極電極係為金屬或金屬氧化物結構。
TW98130835A 2009-09-11 2009-09-11 具備有機多介電層之記憶體元件 TWI384616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98130835A TWI384616B (zh) 2009-09-11 2009-09-11 具備有機多介電層之記憶體元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98130835A TWI384616B (zh) 2009-09-11 2009-09-11 具備有機多介電層之記憶體元件

Publications (2)

Publication Number Publication Date
TW201110341A TW201110341A (en) 2011-03-16
TWI384616B true TWI384616B (zh) 2013-02-01

Family

ID=44836253

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98130835A TWI384616B (zh) 2009-09-11 2009-09-11 具備有機多介電層之記憶體元件

Country Status (1)

Country Link
TW (1) TWI384616B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050017370A1 (en) * 2002-06-14 2005-01-27 James Stasiak Memory device having a semiconducting polymer film
US20050104058A1 (en) * 2001-12-19 2005-05-19 Janos Veres Organic field effect transistor with an organic dielectric
US20060131569A1 (en) * 2004-12-21 2006-06-22 Choi Sung Y Organic memory device and method of manufacturing the same
US20060214154A1 (en) * 2005-03-24 2006-09-28 Eastman Kodak Company Polymeric gate dielectrics for organic thin film transistors and methods of making the same
US7355238B2 (en) * 2004-12-06 2008-04-08 Asahi Glass Company, Limited Nonvolatile semiconductor memory device having nanoparticles for charge retention
US20090146202A1 (en) * 2006-05-22 2009-06-11 Wei Lin Leong Organic memory device and method of manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104058A1 (en) * 2001-12-19 2005-05-19 Janos Veres Organic field effect transistor with an organic dielectric
US20050017370A1 (en) * 2002-06-14 2005-01-27 James Stasiak Memory device having a semiconducting polymer film
US7355238B2 (en) * 2004-12-06 2008-04-08 Asahi Glass Company, Limited Nonvolatile semiconductor memory device having nanoparticles for charge retention
US20060131569A1 (en) * 2004-12-21 2006-06-22 Choi Sung Y Organic memory device and method of manufacturing the same
US20060214154A1 (en) * 2005-03-24 2006-09-28 Eastman Kodak Company Polymeric gate dielectrics for organic thin film transistors and methods of making the same
US20090146202A1 (en) * 2006-05-22 2009-06-11 Wei Lin Leong Organic memory device and method of manufacture

Also Published As

Publication number Publication date
TW201110341A (en) 2011-03-16

Similar Documents

Publication Publication Date Title
Baeg et al. Controllable shifts in threshold voltage of top‐gate polymer field‐effect transistors for applications in organic nano floating gate memory
She et al. A Vertical Organic Transistor Architecture for Fast Nonvolatile Memory.
Park et al. Control of thin ferroelectric polymer films for non-volatile memory applications
US10163932B1 (en) Memory device based on heterostructures of ferroelectric and two-dimensional materials
Wu et al. High‐performance organic transistor memory elements with steep flanks of hysteresis
Egginger et al. Current versus gate voltage hysteresis in organic field effect transistors
JP2004040094A (ja) 有機強誘電メモリーセル
JP2012503878A (ja) グラフェンメモリセルおよびその製造方法
Dhar et al. Threshold voltage shifting for memory and tuning in printed transistor circuits
US9318596B2 (en) Ferroelectric field-effect transistor
US7829884B2 (en) Non-volatile ferroelectric thin film device using an organic ambipolar semiconductor and method for processing such a device
US20090039341A1 (en) Method for the Manufacturing of a Non-Volatile Ferroelectric Memory Device and Memory Device Thus Obtained
Kumar et al. Colossal tunneling electroresistance in co‐planar polymer ferroelectric tunnel junctions
Kapetanakis et al. Molecular storage elements for proton memory devices
Jung et al. Top-gate ferroelectric thin-film-transistors with P (VDF-TrFE) copolymer
KR101438273B1 (ko) 강유전체 게이트 전계효과트랜지스터의 게이트 전압 조절을 통한 멀티레벨 비휘발성 강유전체 고분자 메모리 동작 방법
Wang et al. High-response organic thin-film memory transistors based on dipole-functional polymer electret layers
TWI384616B (zh) 具備有機多介電層之記憶體元件
Park et al. Recent development in polymer ferroelectric field effect transistor memory
CN109494228B (zh) 一种具有多位存储功能的非易失性存储器及其制备方法
CN108899058A (zh) 基于源/漏电极区差异性铁电极化的四态铁电晶体管存储器的操作方法
Wang et al. Nonvolatile memory devices based on organic field-effect transistors
Adriyanto et al. Solution-processed barium zirconate titanate for pentacene-based thin-film transistor and memory
Jeong et al. All-Sputter-Deposited Hf 0.5 Zr 0.5 O 2 Double-Gate Ferroelectric Thin-Film Transistor with Amorphous Indium–Gallium–Zinc Oxide Channel
Paul et al. Storing electronic information on semi-metal nanoparticles

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees