TWI382083B - Method for manufacturing thermal interface material - Google Patents

Method for manufacturing thermal interface material Download PDF

Info

Publication number
TWI382083B
TWI382083B TW98107399A TW98107399A TWI382083B TW I382083 B TWI382083 B TW I382083B TW 98107399 A TW98107399 A TW 98107399A TW 98107399 A TW98107399 A TW 98107399A TW I382083 B TWI382083 B TW I382083B
Authority
TW
Taiwan
Prior art keywords
thermal interface
mold
carbon nanotube
interface material
preparing
Prior art date
Application number
TW98107399A
Other languages
Chinese (zh)
Other versions
TW201033345A (en
Inventor
Yuan Yao
Feng-Wei Dai
Ju-Cun Wang
hui-ling Zhang
You-Sen Wang
Chang-Hong Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98107399A priority Critical patent/TWI382083B/en
Publication of TW201033345A publication Critical patent/TW201033345A/en
Application granted granted Critical
Publication of TWI382083B publication Critical patent/TWI382083B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

熱介面材料之製備方法Method for preparing thermal interface material

本發明涉及一種熱介面材料之製備方法。The invention relates to a method for preparing a thermal interface material.

在半導體積體電路之封裝領域,隨著半導體積體電路不斷改進、發展,其功能不斷提高之同時體積不斷減小,密集程度不斷增加,封裝尺寸亦不斷變小。由於積體電路晶片工作時在非常小之空間內進行運算處理,必將產生相當多之熱量,因此所產生之熱量必須通過適當之方式散出,以避免積體電路晶片因過熱導致運算處理錯誤,甚至嚴重時造成硬體電路之損毀。因此,封裝中之散熱問題就越發關鍵。In the field of semiconductor integrated circuit packaging, as the semiconductor integrated circuit is continuously improved and developed, its function is continuously improved while the volume is continuously reduced, the density is increasing, and the package size is continuously reduced. Since the integrated circuit is processed in a very small space during operation, a considerable amount of heat is generated, so the heat generated must be dissipated in an appropriate manner to avoid the operation error of the integrated circuit chip due to overheating. Even when it is serious, it causes damage to the hardware circuit. Therefore, the heat dissipation problem in the package becomes more and more critical.

通常,在半導體積體電路封裝中之集成散熱片(Integrated Heat Spreader,IHS)與積體電路晶片(DIE)之間一般設置一熱介面材料用於散熱。然而,這種應用熱介面材料之半導體積體電路封裝受到熱介面材料本身熱傳導能力之制約。隨著目前積體電路規模越來越大,很多導熱材料已經達不到產品需求。為改善熱介面材料之性能,提高其熱傳導係數,各種材料被廣泛試驗。Generally, a thermal interface material is generally disposed between the integrated heat spreader (IHS) and the integrated circuit chip (DIE) in the semiconductor integrated circuit package for heat dissipation. However, such a semiconductor integrated circuit package using a thermal interface material is subject to the thermal conductivity of the thermal interface material itself. With the increasing scale of integrated circuits, many thermal materials have not met the demand for products. In order to improve the properties of the thermal interface material and increase its heat transfer coefficient, various materials have been extensively tested.

先前技術中設置於集成散熱片及積體電路晶片之間之熱介面材料通常採用高熱傳導之金屬材料或熱介面材料。當採用高熱傳導之金屬材料時,由於金屬材料及半導體材料之積體電路晶片之間之熱膨脹係數匹配不佳,在熱脹冷縮作用下,長期使用往往會導致封裝面拱曲,甚至破裂。The thermal interface material disposed between the integrated heat sink and the integrated circuit wafer in the prior art generally employs a highly thermally conductive metal material or a thermal interface material. When a metal material with high heat conduction is used, since the thermal expansion coefficient between the integrated circuit chip of the metal material and the semiconductor material is not well matched, the long-term use tends to cause the package surface to be curved or even broken under the action of thermal expansion and contraction.

熱介面材料通常將奈米碳管陣列與聚合物或低熔點金屬基體材料複合形成熱介面複合材料。熱介面材料之製備方法通常採用原位模具注入法使奈米碳管於基體材料中均勻分佈有序排列,能夠避免由於奈米碳管之無序排列而影響熱介面材料之散熱效率,同時,奈米碳管陣列基本垂直於並延伸出熱介面材料之接觸表面,故可確保奈米碳管能直接與積體電路晶片或散熱器件相接觸,且使所述熱介面材料具有較短之導熱通道。然而,上述熱介面材料與積體電路晶片接觸之表面面積及與散熱器件接觸之表面面積相等,由於,積體電路晶片之面積很小,散熱器件與熱介面材料接觸面積小,因此散熱效率不高。Thermal interface materials typically combine a carbon nanotube array with a polymer or low melting point metal matrix material to form a thermal interface composite. The preparation method of the thermal interface material generally adopts the in-situ mold injection method to uniformly arrange the carbon nanotubes in the matrix material in an orderly arrangement, thereby avoiding the heat dissipation efficiency of the thermal interface material due to the disordered arrangement of the carbon nanotubes, and at the same time, The carbon nanotube array is substantially perpendicular to and extends out of the contact surface of the thermal interface material, thereby ensuring that the carbon nanotube can directly contact the integrated circuit wafer or the heat sink member, and the thermal interface material has a short thermal conductivity. aisle. However, the surface area of the thermal interface material in contact with the integrated circuit wafer and the surface area in contact with the heat sink member are equal. Since the area of the integrated circuit wafer is small, the contact area between the heat sink member and the thermal interface material is small, so the heat dissipation efficiency is not high.

為克服上述問題,2002年06月18日公告之一件美國專利申請第US 6,407,922 B1號中揭示一種熱介面材料及其製備方法,該熱介面材料之製備方法為模具注入法(Injection Molding Procedure),其包括以下步驟,首先,提供複數奈米碳管或奈米碳管束;將該複數奈米碳管或奈米碳管束置於一注射模具中,該模具具有兩個相對之第一表面及第二表面,且第一表面之面積小於第二表面之面積,所述複數奈米碳管或奈米碳管束優選地為由模具之第一表面延伸至第二表面;將一液態基體材料注射入模具中;固化所述液態基體材料形成熱介面材料。注入基體材料之過程中利用基體材料之沖刷力量使奈米碳管由第一表面延伸至第二表面。然而該種製備熱介面材料之方法具有以下技術問題:其一,液態基體材料注入模具需要一定之注入速率,才能使奈米碳管取向排列;其二,由於通過液態基體材料之沖刷力量形成奈米碳管之取向排列,無法確保每個奈米碳管由熱介面材料之第一表面延伸至第二表面,因此熱介面材料之散熱效率受到一定影響;其三,採用液態基體材料之沖刷力量形成奈米碳管之取向排列,因此,熱介面材料中奈米碳管之取向性難以確保,影響了熱介面材料之散熱效率。In order to overcome the above problems, a thermal interface material and a preparation method thereof are disclosed in a method of preparing a thermal interface material, which is an injection molding method (Injection Molding Procedure), which is disclosed in US Pat. No. 6,407,922 B1. Included in the following steps, firstly, providing a plurality of carbon nanotubes or carbon nanotube bundles; placing the plurality of carbon nanotubes or carbon nanotube bundles in an injection mold having two opposite first surfaces and a second surface, wherein the area of the first surface is smaller than the area of the second surface, the plurality of carbon nanotubes or carbon nanotube bundles preferably extending from the first surface of the mold to the second surface; injecting a liquid matrix material Into the mold; curing the liquid matrix material to form a thermal interface material. The carbon nanotubes are extended from the first surface to the second surface by the scouring force of the matrix material during the injection of the matrix material. However, the method for preparing a thermal interface material has the following technical problems: First, the injection of the liquid matrix material into the mold requires a certain injection rate to align the orientation of the carbon nanotubes; and second, the formation of the naphthalene by the scouring force of the liquid matrix material. The orientation of the carbon nanotubes does not ensure that each of the carbon nanotubes extends from the first surface of the thermal interface material to the second surface, so that the heat dissipation efficiency of the thermal interface material is affected to some extent; third, the scouring force of the liquid matrix material is used. Since the orientation of the carbon nanotubes is formed, it is difficult to ensure the orientation of the carbon nanotubes in the thermal interface material, which affects the heat dissipation efficiency of the thermal interface material.

有鑒於此,提供一種熱介面材料之簡單製備方法實為必要,且所製備之熱介面材料之具有較好之散熱效率。In view of this, it is necessary to provide a simple preparation method of a thermal interface material, and the prepared thermal interface material has better heat dissipation efficiency.

一種熱介面材料之製備方法,包括下列步驟:提供一形成於一基底之奈米碳管陣列,該奈米碳管陣列包括複數個垂直於所述基底之表面之奈米碳管;擠壓處理所述奈米碳管陣列,使奈米碳管陣列中週邊之奈米碳管向中心靠聚並相對於基底之表面傾斜;提供一液態基體材料,使該液態基體材料與處理後之奈米碳管陣列複合;及固化所述液態之基體材料,形成一熱介面材料。A method for preparing a thermal interface material, comprising the steps of: providing an array of carbon nanotubes formed on a substrate, the array of carbon nanotubes comprising a plurality of carbon nanotubes perpendicular to a surface of the substrate; The carbon nanotube array is such that the surrounding carbon nanotubes in the carbon nanotube array are centered and inclined with respect to the surface of the substrate; a liquid matrix material is provided to make the liquid matrix material and the treated nanometer The carbon tube array is composited; and the liquid matrix material is cured to form a thermal interface material.

與先前技術相比較,本發明提供之熱介面材料之製備方法具備以下優點:其一,直接採用奈米碳管陣列,並處理該奈米碳管陣列使週邊之奈米碳管向中心傾斜,所製備之熱介面材料中奈米碳管具有較好之取向性,充分利用了奈米碳管定向導熱之特性,因此,可提高熱介面材料之散熱效率;其二,由於無需通過注入之方式使奈米碳管定向排列,因此,有利於實現大批量之生產,有利於工業化。Compared with the prior art, the method for preparing the thermal interface material provided by the present invention has the following advantages: First, the carbon nanotube array is directly used, and the carbon nanotube array is processed to tilt the surrounding carbon nanotubes toward the center. The carbon nanotubes in the prepared thermal interface material have better orientation, fully utilizing the characteristics of the directional heat conduction of the carbon nanotubes, thereby improving the heat dissipation efficiency of the thermal interface material; second, since no injection is required The carbon nanotubes are aligned, and therefore, it is advantageous to realize mass production and is advantageous for industrialization.

以下將結合附圖詳細說明本發明實施例提供之熱介面材料之製備方法。Hereinafter, a method for preparing a thermal interface material according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

請一併參閱圖1、圖2(a)至(e)及圖3,本發明第一實施例提供一種熱介面材料之製備方法,主要包括以下步驟:Referring to FIG. 1 , FIG. 2 ( a ) to ( e ) and FIG. 3 , a first embodiment of the present invention provides a method for preparing a thermal interface material, which mainly comprises the following steps:

步驟一:提供一形成於一基底12之奈米碳管陣列10,該奈米碳管陣列10包括複數個垂直於所述基底12之奈米碳管。Step 1: A carbon nanotube array 10 formed on a substrate 12 is provided. The carbon nanotube array 10 includes a plurality of carbon nanotubes perpendicular to the substrate 12.

請參閱圖2(a),所述形成於基底12上之奈米碳管陣列10具有相對之第一表面102及第二表面104。Referring to FIG. 2( a ), the carbon nanotube array 10 formed on the substrate 12 has a first surface 102 and a second surface 104 opposite to each other.

該奈米碳管陣列10為單壁奈米碳管陣列、雙壁奈米碳管陣列或多壁奈米碳管陣列中之一種或複數種。所述複數個垂直於所述基底12之奈米碳管之間有一定之間隙。所述奈米碳管陣列10與基底12相對之表面為第一表面102,與基底12相接觸之表面為第二表面104。所述奈米碳管陣列10之第一表面102與第二表面104之面積相等。The carbon nanotube array 10 is one or a plurality of single-walled carbon nanotube arrays, double-walled carbon nanotube arrays, or multi-walled carbon nanotube arrays. The plurality of carbon nanotubes perpendicular to the substrate 12 have a certain gap therebetween. The surface of the carbon nanotube array 10 opposite to the substrate 12 is a first surface 102, and the surface in contact with the substrate 12 is a second surface 104. The first surface 102 of the carbon nanotube array 10 is equal in area to the second surface 104.

所述奈米碳管陣列10之製備方法包括化學氣相沈積法、石墨電極恒流電弧放電法及鐳射蒸發法等。本實施例中所述奈米碳管陣列之製備方法為化學氣相沈積法。The preparation method of the carbon nanotube array 10 includes a chemical vapor deposition method, a graphite electrode constant current arc discharge method, and a laser evaporation method. The preparation method of the carbon nanotube array in this embodiment is a chemical vapor deposition method.

另外,該基底12也可採用散熱裝置或熱擴散裝置,此時,可以將散熱裝置或熱擴散裝置作為基底生長奈米碳管陣列。In addition, the substrate 12 can also be a heat sink or a heat diffusion device. In this case, the heat sink or the heat diffusion device can be used as a substrate to grow the carbon nanotube array.

步驟二:擠壓處理所述奈米碳管陣列10,使奈米碳管陣列10中週邊之奈米碳管向中心靠近並相對於基底12之表面傾斜。Step 2: The carbon nanotube array 10 is extrusion-treated to bring the peripheral carbon nanotubes in the carbon nanotube array 10 toward the center and inclined with respect to the surface of the substrate 12.

所述奈米碳管陣列10通過一模具20進行擠壓處理,該模具20為由側壁206圍成之一中空結構,具有相對之第一端202及第二端204,並且該模具20從第二端204至第一端202之尺寸逐漸變小。The carbon nanotube array 10 is subjected to an extrusion process by a mold 20, which is surrounded by a side wall 206 into a hollow structure having a first end 202 and a second end 204 opposite thereto, and the mold 20 is from the first The size of the two ends 204 to the first end 202 gradually becomes smaller.

所述模具20為方台狀模具,或圓臺狀模具。所述模具20之第二端204之形狀應與步驟一中提供之奈米碳管陣列10之第二表面104之形狀對應,且模具20之第二端204之面積應大於或等於奈米碳管陣列10之第二表面104之面積,第一端202之面積小於第二端204之面積。可選擇地,可進一步在所述模具20之內表面塗覆一層矽油,該矽油可作為脫模劑。本實施例中所述模具為圓臺狀模具,所述圓臺狀模具之面積略大於所述超順排奈米碳管陣列之第二表面之面積,且圓臺狀模具之高度大於等於所述奈米碳管陣列之高度,模具之內表面塗覆一層矽油。The mold 20 is a square-shaped mold or a truncated-shaped mold. The shape of the second end 204 of the mold 20 should correspond to the shape of the second surface 104 of the carbon nanotube array 10 provided in the first step, and the area of the second end 204 of the mold 20 should be greater than or equal to the nanocarbon. The area of the second surface 104 of the tube array 10 has an area of the first end 202 that is less than the area of the second end 204. Alternatively, a layer of eucalyptus oil may be further coated on the inner surface of the mold 20, and the eucalyptus oil may serve as a release agent. In the embodiment, the mold is a truncated cone mold, and the area of the truncated cone mold is slightly larger than the area of the second surface of the super-sequential carbon nanotube array, and the height of the truncated mold is greater than or equal to The height of the carbon nanotube array is described, and the inner surface of the mold is coated with a layer of eucalyptus oil.

所述奈米碳管陣列10通過該模具進行擠壓處理之方法具體包括以下步驟:將該模具20扣置於該奈米碳管陣列10之上,使其模具20之第一端202靠近所述基底12,通過模具20之側壁206擠壓奈米碳管陣列10中週邊之奈米碳管向中心靠近並相對於基底12之表面傾斜。The method for performing the extrusion treatment of the carbon nanotube array 10 through the mold specifically includes the following steps: the mold 20 is buckled on the carbon nanotube array 10 such that the first end 202 of the mold 20 is close to the The substrate 12 is extruded through the sidewalls 206 of the mold 20 to the vicinity of the center of the carbon nanotube array 10 and is inclined toward the center and inclined with respect to the surface of the substrate 12.

模具20之側壁206會擠壓接近側壁206處之奈米碳管使其沿側壁206傾斜,接近模具20側壁206處之傾斜之奈米碳管又進一步擠壓距離側壁206較遠之奈米碳管向中心靠近。模具側壁206之擠壓使模具20中週邊之奈米碳管向中心靠近並相對於基底12之表面傾斜,形成奈米碳管從模具20之第一端202延伸至第二端204之排列。模具20之第一端202處之奈米碳管之密度大於模具20之第二端204處之奈米碳管之密度。這種奈米碳管從模具20之第一端202延伸至第二端204之排列,符合所製備之熱介面材料在實際工作中熱量之傳導方向,從而實現奈米碳管定向導熱之性能。可選擇地,施加一定之壓力於所述模具20,使所述模具20扣在奈米碳管陣列10上。本實施例中,將所述圓臺狀模具扣在奈米碳管陣列上,使奈米碳管陣列中週邊之奈米碳管向中心傾斜。The side wall 206 of the mold 20 will squeeze the carbon nanotubes near the side wall 206 to be inclined along the side wall 206. The inclined carbon nanotubes near the side wall 206 of the mold 20 further squeeze the nanocarbon farther from the side wall 206. The tube is close to the center. Extrusion of the mold sidewalls 206 causes the peripheral carbon nanotubes in the mold 20 to be centered toward and inclined relative to the surface of the substrate 12 to form an arrangement in which the carbon nanotubes extend from the first end 202 to the second end 204 of the mold 20. The density of the carbon nanotubes at the first end 202 of the mold 20 is greater than the density of the carbon nanotubes at the second end 204 of the mold 20. The arrangement of the carbon nanotubes from the first end 202 of the mold 20 to the second end 204 conforms to the conduction direction of the heat of the prepared thermal interface material in actual operation, thereby realizing the directional heat conduction performance of the carbon nanotubes. Optionally, a certain amount of pressure is applied to the mold 20 to cause the mold 20 to be snapped onto the carbon nanotube array 10. In this embodiment, the truncated cone mold is buckled on the carbon nanotube array to tilt the peripheral carbon nanotubes in the carbon nanotube array toward the center.

步驟三:請參閱圖2(d),提供一液態基體材料14,使該液態基體材料14與擠壓處理後之奈米碳管陣列10複合。Step 3: Referring to Figure 2(d), a liquid matrix material 14 is provided which is compounded with the extruded carbon nanotube array 10.

所述液態基體材料14為液態熱塑性聚合物相變材料、液態熱固性聚合物相變材料或低熔點金屬材料,依據實際應用進行選擇。可選擇地,如果所提供之基體材料14為一常溫下處於固態之基體材料,則對其進行加熱,使其熔化,形成一液態之基體材料14。所述液態基體材料14及奈米碳管陣列10之複合方法與所選擇之液態基體材料14之性質有關,包括將奈米碳管陣列10浸泡進入液態基體材料14之方法、將液態基體材料14採用模具注入與奈米碳管陣列10之複合方法及電鍍所述液態之基體材料14使其與奈米碳管陣列10之複合方法。優選地以低之速率將所述液態基體材料14與奈米碳管陣列10複合。The liquid matrix material 14 is a liquid thermoplastic polymer phase change material, a liquid thermosetting polymer phase change material or a low melting point metal material, and is selected according to practical applications. Alternatively, if the provided base material 14 is a base material which is in a solid state at normal temperature, it is heated to be melted to form a liquid base material 14. The composite method of the liquid matrix material 14 and the carbon nanotube array 10 is related to the nature of the selected liquid matrix material 14, including the method of soaking the carbon nanotube array 10 into the liquid matrix material 14, and the liquid matrix material 14 A composite method of injecting the carbon nanotube array 10 with a mold and a method of plating the liquid base material 14 with the carbon nanotube array 10 are employed. The liquid matrix material 14 is preferably compounded with the carbon nanotube array 10 at a low rate.

所述聚合物相變材料係指在一定溫度(相變點)下能熔融之聚合物,例如,石蠟或環氧樹脂。可選擇地,該聚合物相變材料中添加有至少一種添加劑。所述添加劑也可為聚合物。添加劑用於改善聚合物材料之柔韌性及穩定性,還可調節聚合物材料之相變溫度,如二甲基亞碸添加在石蠟基體材料中,可起到上述作用。可選擇地,聚合物基體材料中填充有一些非奈米碳管導熱材料微粒。所述非奈米碳管導熱材料微粒在熱介面材料中之含量介於0.1~5wt%,該微粒導熱無方向性,可提高熱介面材料之散熱效率。該非奈米碳管導熱材料微粒包括奈米金屬粉體及奈米陶瓷粉體,如鋁、銀、銅、氧化鋁、氮化鋁、氮化硼等。The polymer phase change material refers to a polymer that can be melted at a certain temperature (phase change point), such as paraffin or epoxy resin. Optionally, at least one additive is added to the polymer phase change material. The additive may also be a polymer. The additive is used to improve the flexibility and stability of the polymer material, and can also adjust the phase transition temperature of the polymer material, such as the addition of dimethyl hydrazine to the paraffin matrix material, which can play the above role. Alternatively, the polymer matrix material is filled with some particles of non-carbon nanotube heat conductive material. The content of the non-carbon nanotube heat conductive material particles in the thermal interface material is between 0.1 and 5 wt%, and the particles are thermally conductive and non-directional, which can improve the heat dissipation efficiency of the thermal interface material. The non-nanocarbon tube heat conductive material particles include nano metal powder and nano ceramic powder, such as aluminum, silver, copper, aluminum oxide, aluminum nitride, boron nitride, and the like.

所述液態聚合物相變材料與奈米碳管陣列10之複合方法包括以下步驟:提供一液態聚合物相變材料;將所述含有奈米碳管陣列10之模具20浸泡在液態聚合物相變材料中,使液態之聚合物相變材料與奈米碳管陣列10複合,或以一定壓力將所述液態之聚合物相變材料注入至所述含有奈米碳管陣列10之模具20中,使液態之聚合物相變材料與奈米碳管陣列10複合。The method for compounding the liquid polymer phase change material with the carbon nanotube array 10 comprises the steps of: providing a liquid polymer phase change material; immersing the mold 20 containing the carbon nanotube array 10 in a liquid polymer phase In the variable material, the liquid polymer phase change material is compounded with the carbon nanotube array 10, or the liquid polymer phase change material is injected into the mold 20 containing the carbon nanotube array 10 at a certain pressure. The liquid polymer phase change material is combined with the carbon nanotube array 10.

所述低熔點金屬包括錫、銅、銦、鉛、銻、金、銀、鉍、鋁及前述各材料之合金或混合物,如錫鉛合金、銦錫合金、錫銀銅合金、金矽合金、金鍺合金等。添加低熔點金屬基體材料至所述含有奈米碳管之模具中之方法為電鍍法。若採用電鍍之方法使低熔點金屬材料沈積在模具20中,此時模具20之材料優選之為有機材料或陶瓷材料。The low melting point metal includes tin, copper, indium, lead, antimony, gold, silver, antimony, aluminum and alloys or mixtures of the foregoing materials, such as tin-lead alloy, indium tin alloy, tin-silver-copper alloy, gold-bismuth alloy, Gold alloy and so on. A method of adding a low melting point metal matrix material to the mold containing the carbon nanotubes is electroplating. If a low melting point metal material is deposited in the mold 20 by electroplating, the material of the mold 20 is preferably an organic material or a ceramic material.

所述低熔點金屬材料與奈米碳管陣列10之複合方法包括以下步驟:提供一低熔點金屬材料;以所述低熔點金屬材料作陽極,以所述奈米碳管為陰極採用電鍍之方法將所述低熔點金屬沈積在含有奈米碳管陣列10之模具20中或者將所述低熔點金屬材料以一定壓力注入所述含有奈米碳管陣列10之模具20中。The composite method of the low melting point metal material and the carbon nanotube array 10 comprises the steps of: providing a low melting point metal material; using the low melting point metal material as an anode and the carbon nanotube as a cathode using an electroplating method; The low melting point metal is deposited in the mold 20 containing the carbon nanotube array 10 or the low melting point metal material is injected into the mold 20 containing the carbon nanotube array 10 at a certain pressure.

採用上述浸泡、模具注入或電鍍之方法應以儘量慢之速率將液態基體材料14添加至模具20中,從而降低基體材料14對模具20中奈米碳管陣列10之沖刷力量,使奈米碳管陣列10保持步驟二中得到之由模具20之第一開口202延伸至第二開口204之結構,這種奈米碳管從模具20之第一開口202延伸至第二開口204之排列。The above-described immersion, mold injection or electroplating method should be used to add the liquid matrix material 14 to the mold 20 at a slowest rate, thereby reducing the scouring force of the matrix material 14 to the carbon nanotube array 10 in the mold 20, so that the carbon The tube array 10 maintains the structure resulting from the first opening 202 of the mold 20 extending to the second opening 204 obtained in step two, the carbon nanotube extending from the first opening 202 of the mold 20 to the second opening 204.

本實施例選用相變點在50~60℃之石蠟,將所述含有處理過之奈米碳管陣列之模具緩慢浸泡在液態石蠟中,從而使液態石蠟與奈米碳管陣列複合。In this embodiment, a paraffin wax having a phase change point of 50 to 60 ° C is selected, and the mold containing the treated carbon nanotube array is slowly immersed in liquid paraffin, thereby compounding the liquid paraffin with the carbon nanotube array.

步驟四:固化所述液態之基體材料14得到熱介面材料30。Step 4: Curing the liquid matrix material 14 to obtain a thermal interface material 30.

固化所述基體材料14之方法包括:冷卻液態基體材料14之方法、加熱液態基體材料之方法或添加引發劑之方法。The method of curing the matrix material 14 includes a method of cooling the liquid matrix material 14, a method of heating the liquid matrix material, or a method of adding an initiator.

當所述液態之基體材料14為熱塑性聚合物基體材料或低熔點金屬基體材料時,通過冷卻熱塑性聚合物基體材料及低熔點金屬基體材料之方法固化基體材料14。當所述液態之基體材料14為熱固性聚合物基體材料時,通過加熱熱固性聚合物基體材料之方法固化基體材料14。當所述液態之基體材料14為一預聚物時,可採用添加引發劑之方法使預聚物發生聚合而固化。本實施例中,所述基體材料14為石蠟基體材料,因此可以通過冷卻之方法固化石蠟基體材料。When the liquid matrix material 14 is a thermoplastic polymer matrix material or a low melting point metal matrix material, the matrix material 14 is cured by a method of cooling the thermoplastic polymer matrix material and the low melting point metal matrix material. When the liquid matrix material 14 is a thermosetting polymer matrix material, the matrix material 14 is cured by heating the thermosetting polymer matrix material. When the liquid base material 14 is a prepolymer, the prepolymer may be polymerized and cured by adding an initiator. In this embodiment, the base material 14 is a paraffin base material, so that the paraffin base material can be cured by a cooling method.

步驟五:去除模具20及基底12。Step 5: The mold 20 and the substrate 12 are removed.

由於模具20之內表面塗覆有矽油作為脫模劑,因此模具20可以容易地從奈米碳管熱介面材料30之表面脫下。本實施例中,模具上塗敷有矽油,直接將其從熱介面材料30上取下。Since the inner surface of the mold 20 is coated with eucalyptus oil as a release agent, the mold 20 can be easily removed from the surface of the carbon nanotube thermal interface material 30. In this embodiment, the mold is coated with eucalyptus oil and directly removed from the thermal interface material 30.

去除基底12之方法可以為機械研磨法、化學腐蝕法或直接揭除法等方法。本實施例中,採用直接揭除之方法將奈米碳管陣列10之基底12除去,其具體包括以下步驟:The method of removing the substrate 12 may be a mechanical grinding method, a chemical etching method, or a direct stripping method. In this embodiment, the substrate 12 of the carbon nanotube array 10 is removed by a direct stripping method, which specifically includes the following steps:

首先,將奈米碳管陣列10之基底12固定。可選用膠帶、黏結劑或夾子等將奈米碳管陣列10之基底12固定。First, the substrate 12 of the carbon nanotube array 10 is fixed. The substrate 12 of the carbon nanotube array 10 can be secured by tape, adhesive or clips.

然後,採用一金屬片將奈米碳管陣列10從基底12上鏟下。將金屬片與奈米碳管陣列10之一端接觸,緩慢移動金屬片,使其***奈米碳管陣列10之另一端與基底12之間,從而將奈米碳管陣列12從基底12上鏟下。金屬片之材料不限,可為銅、鋁或鐵及其任意組合之合金,金屬片之厚度不限,可根據實際情況而定,優選地,金屬片之厚度為5微米-15微米。The carbon nanotube array 10 is then shoveled from the substrate 12 using a metal sheet. The metal piece is brought into contact with one end of the carbon nanotube array 10, and the metal piece is slowly moved to be inserted between the other end of the carbon nanotube array 10 and the substrate 12, thereby shoveling the carbon nanotube array 12 from the substrate 12. under. The material of the metal piece is not limited, and may be an alloy of copper, aluminum or iron and any combination thereof. The thickness of the metal piece is not limited, and may be determined according to actual conditions. Preferably, the thickness of the metal piece is 5 micrometers to 15 micrometers.

請參閱圖2(e),熱介面材料30具有相對之第一表面302及第二表面304,且第一表面302之面積小於第二表面304之面積。奈米碳管從熱介面材料30之第一表面302延伸至第二表面304。Referring to FIG. 2(e), the thermal interface material 30 has a first surface 302 and a second surface 304 opposite thereto, and the area of the first surface 302 is smaller than the area of the second surface 304. A carbon nanotube extends from the first surface 302 of the thermal interface material 30 to the second surface 304.

步驟六:對熱介面材料30採用切片處理。Step 6: The thermal interface material 30 is sliced.

可選擇地,也可在去除模具20後不去除基底12直接對熱介面材料30進行切片處理。Alternatively, the thermal interface material 30 may be directly sliced without removing the substrate 12 after the mold 20 is removed.

所述對熱介面材料30進行切片處理之方法可以為採用切片機切片之方法。切片機切片得到之熱介面材料之厚度可視需要而定,通常為1~30微米。所述切片處理之方法中切片之方向為平行於熱介面材料30之第一表面302或第二表面304之方向。該切片步驟既加工成型產品,又可使部分奈米碳管在切片表面露出,因為切片機刀片所到之處必有部分奈米碳管被切斷,該奈米碳管之一端即從切面露出。當切片較薄時,部分奈米碳管兩端均從熱介面材料中露出,這樣更有利於提高熱介面材料之散熱效率。可選擇地,可對切片後之熱介面材料進行蝕刻去除切片表面部分基體材料,使更多之奈米碳管漏出。蝕刻所述熱介面材料之方法可以為氧電漿蝕刻或酸腐蝕法。以石蠟為基體材料製備之熱介面材料可以用氧電漿蝕刻去除石蠟基體從而漏出奈米碳管,以金屬為基體材料製備之熱介面材料用酸腐蝕金屬基體材料從而漏出奈米碳管。本實施例中,對熱介面材料進行切片,切片後之熱介面材料之厚度為10微米,對切片後之熱介面材料採用氧電漿蝕刻法蝕刻。The method of slicing the thermal interface material 30 may be a method of slicing by a microtome. The thickness of the thermal interface material obtained by slicing the slicer may be as desired, usually from 1 to 30 microns. The direction of the slice in the method of slicing is parallel to the direction of the first surface 302 or the second surface 304 of the thermal interface material 30. The slicing step not only processes the shaped product, but also exposes a portion of the carbon nanotubes on the surface of the slice, because some of the carbon nanotubes are cut off where the slicer blade is located, and one end of the carbon nanotube is cut from the cut surface. Exposed. When the slice is thin, both ends of the carbon nanotube are exposed from the thermal interface material, which is more beneficial to improve the heat dissipation efficiency of the thermal interface material. Alternatively, the sliced thermal interface material may be etched to remove a portion of the surface material of the sliced surface to allow more of the carbon nanotubes to leak out. The method of etching the thermal interface material may be an oxygen plasma etching or an acid etching method. The thermal interface material prepared by using paraffin as a base material can be removed by oxygen plasma etching to remove the paraffin substrate to leak the carbon nanotubes, and the thermal interface material prepared by using the metal as the base material corrodes the metal matrix material with acid to leak the carbon nanotubes. In this embodiment, the thermal interface material is sliced, and the thickness of the sliced thermal interface material is 10 micrometers, and the sliced thermal interface material is etched by oxygen plasma etching.

本發明製備之熱介面材料可應用在熱源及散熱器、風扇及其他冷卻裝置之間。所述熱介面材料在應用時,將上述熱介面材料30之面積較小之第一表面302與熱源接觸,面積較大之第二表面304與散熱器接觸。熱經由奈米碳管陣列10可以很快地從熱源傳導至散熱器。第二表面304具有較大之面積,因此熱可以均勻之由第二表面304散發出去。奈米碳管之導熱性能具有方向性,延著奈米碳管之軸向,奈米碳管具有優異之導熱性能,所述熱介面材料30中奈米碳管由第一表面302延伸至第二表面304,因此上述熱介面材料可以充分發揮奈米碳管之導熱性能。延伸出熱介面材料之奈米碳管可與熱源表面或與散熱器表面接觸,充分發揮熱介面材料之高導熱效率。另外,當熱源溫度升高時,介面溫度升高,基體材料逐漸軟化,填充於熱源及散熱器之間,增大二者之有效接觸面積。The thermal interface material prepared by the invention can be applied between a heat source and a heat sink, a fan and other cooling devices. When the thermal interface material is applied, the first surface 302 having a smaller area of the thermal interface material 30 is in contact with the heat source, and the second surface 304 having a larger area is in contact with the heat sink. Heat can be quickly conducted from the heat source to the heat sink via the carbon nanotube array 10. The second surface 304 has a larger area so that heat can be dissipated uniformly from the second surface 304. The thermal conductivity of the carbon nanotubes is directional, extending the axial direction of the carbon nanotubes, and the carbon nanotubes have excellent thermal conductivity. The carbon nanotubes in the thermal interface material 30 extend from the first surface 302 to the first The two surfaces 304, so that the above thermal interface material can fully exert the thermal conductivity of the carbon nanotubes. The carbon nanotubes extending out of the thermal interface material can be in contact with the surface of the heat source or with the surface of the heat sink to fully utilize the high thermal conductivity of the thermal interface material. In addition, when the temperature of the heat source increases, the interface temperature increases, the matrix material gradually softens, and is filled between the heat source and the heat sink to increase the effective contact area between the two.

本發明第二實施例提供一種熱介面材料之製備方法,其包括以下步驟:A second embodiment of the present invention provides a method for preparing a thermal interface material, which includes the following steps:

提供一形成於一基底之奈米碳管陣列,該奈米碳管陣列包括複數個垂直於所述基底之表面之奈米碳管;提供一模具,該模具為由側壁圍成之一中空結構,具有相對之第一端及第二端,且該模具從第二端至第一端之尺寸逐漸變小,該模具之第一端及第二端各設有一開口;將上述模具壓向該奈米碳管陣列,並使該模具之第二端之開口朝向並靠近基底,使模具側壁擠壓收容其內之奈米碳管陣列,以使奈米碳管陣列遠離基底之一端向中心靠聚並靠近模具第一端之開口,以使奈米碳管陣列週邊之奈米碳管相對於基底之表面傾斜;提供一液態基體材料,使該液態基體材料與處理後之奈米碳管陣列複合;及固化所述液態之基體材料,形成一熱介面材料。Providing an array of carbon nanotubes formed on a substrate, the array of carbon nanotubes comprising a plurality of carbon nanotubes perpendicular to a surface of the substrate; providing a mold having a hollow structure surrounded by sidewalls The first end and the second end are opposite to each other, and the mold is gradually reduced in size from the second end to the first end, and the first end and the second end of the mold are respectively provided with an opening; An array of carbon nanotubes, and the opening of the second end of the mold is oriented toward and close to the substrate, so that the sidewall of the mold is squeezed to receive the array of carbon nanotubes therein so that the array of carbon nanotubes is away from the center of the substrate toward the center Gathering close to the opening of the first end of the mold to tilt the carbon nanotubes around the carbon nanotube array relative to the surface of the substrate; providing a liquid matrix material to the treated nanocarbon tube array Recombining; and curing the liquid matrix material to form a thermal interface material.

本發明提供之熱介面材料之製備方法具備以下優點:其一,直接採用奈米碳管陣列,並處理該奈米碳管陣列使週邊之奈米碳管向中心傾斜,因此,所製備之熱介面材料中奈米碳管具有較好之取向性,充分利用了奈米碳管定向導熱之特性,可提高熱介面材料之散熱效率;其二,每個奈米碳管均由熱介面材料之一個表面延伸至另一個表面,符合熱介面材料在實際工作中熱量之傳導方向,充分利用奈米碳管之定向導熱特性,因此提高了熱介面材料之散熱效率;其三,由於無需通過注入之方式使奈米碳管定向排列,因此,有利於實現大批量之生產,有利於工業化。The preparation method of the thermal interface material provided by the invention has the following advantages: First, the carbon nanotube array is directly used, and the carbon nanotube array is processed to tilt the surrounding carbon nanotubes toward the center, and therefore, the prepared heat The carbon nanotubes in the interface material have better orientation, make full use of the characteristics of the directional heat conduction of the carbon nanotubes, and can improve the heat dissipation efficiency of the thermal interface materials. Second, each of the carbon nanotubes is composed of a thermal interface material. One surface extends to the other surface, conforms to the heat conduction direction of the thermal interface material in actual work, and fully utilizes the directional heat conduction characteristics of the carbon nanotubes, thereby improving the heat dissipation efficiency of the thermal interface material; third, since no injection is required The manner of aligning the carbon nanotubes is advantageous for realizing large-scale production and industrialization.

另外,本領域技術人員還可在本發明精神內作其他變化,當然這些依據本發明精神所作之變化,都應包含在本發明所要求保護之範圍內。In addition, other changes in the spirit of the invention may be made by those skilled in the art, and it is to be understood that these changes are intended to be included within the scope of the invention.

10...奈米碳管陣列10. . . Carbon nanotube array

12...基底12. . . Base

14...基體材料14. . . Matrix material

20...模具20. . . Mold

30...熱介面材料30. . . Thermal interface material

102...奈米碳管陣列之第一表面102. . . The first surface of the carbon nanotube array

104...奈米碳管陣列之第二表面104. . . Second surface of the carbon nanotube array

202...模具之第一開口202. . . The first opening of the mold

204...模具之第二開口204. . . The second opening of the mold

206...模具之側壁206. . . Side wall of the mold

302...熱介面材料之第一表面302. . . First surface of the thermal interface material

304...熱介面材料之第二表面304. . . Second surface of the thermal interface material

圖1係本發明實施例提供之奈米碳管熱介面材料之製備方法流程圖。1 is a flow chart of a method for preparing a carbon nanotube thermal interface material according to an embodiment of the present invention.

圖2(a)至(e)係本發明實施例提供之奈米碳管熱介面材料之製備工藝流程圖。2(a) to (e) are flow charts showing the preparation process of the carbon nanotube thermal interface material provided by the embodiment of the present invention.

圖3係本發明實施例提供之模具之俯視結構圖。3 is a top plan view of a mold provided by an embodiment of the present invention.

Claims (18)

一種熱介面材料之製備方法,包括下列步驟:提供一形成於一基底之奈米碳管陣列,該奈米碳管陣列包括複數個垂直於所述基底之表面之奈米碳管;擠壓處理所述奈米碳管陣列,使奈米碳管陣列中週邊之奈米碳管向中心靠聚並相對於基底之表面傾斜;提供一液態基體材料,使該液態基體材料與處理後之奈米碳管陣列複合;及固化所述液態之基體材料,形成一熱介面材料。A method for preparing a thermal interface material, comprising the steps of: providing an array of carbon nanotubes formed on a substrate, the array of carbon nanotubes comprising a plurality of carbon nanotubes perpendicular to a surface of the substrate; The carbon nanotube array is such that the surrounding carbon nanotubes in the carbon nanotube array are centered and inclined with respect to the surface of the substrate; a liquid matrix material is provided to make the liquid matrix material and the treated nanometer The carbon tube array is composited; and the liquid matrix material is cured to form a thermal interface material. 如申請專利範圍第1項所述之熱介面材料之製備方法,其中,所述奈米碳管陣列通過一模具進行擠壓處理,該模具為由側壁圍成之一中空結構,具有相對之第一端及第二端,且該模具從第二端至第一端之尺寸逐漸變小。The method for preparing a thermal interface material according to claim 1, wherein the carbon nanotube array is subjected to extrusion treatment by a mold, wherein the mold is surrounded by a side wall and has a hollow structure, and has a relative One end and the second end, and the size of the mold gradually decreases from the second end to the first end. 如申請專利範圍第2項所述之熱介面材料之製備方法,其中,所述奈米碳管陣列通過該模具進行之擠壓處理之方法包括以下步驟:將該模具扣置於該奈米碳管陣列之上,使其第一端靠近所述基底,通過模具之側壁積壓奈米碳管陣列中週邊之奈米碳管向中心靠聚並相對於基底之表面傾斜。The method for preparing a thermal interface material according to claim 2, wherein the method for extruding the carbon nanotube array by the mold comprises the steps of: placing the mold on the nanocarbon Above the tube array, the first end is adjacent to the substrate, and the carbon nanotubes in the periphery of the carbon nanotube array are accumulated toward the center by the sidewall of the mold and are inclined toward the surface of the substrate. 如申請專利範圍第2項所述之熱介面材料之製備方法,其中,所述模具之內表面塗覆有矽油。The method for preparing a thermal interface material according to claim 2, wherein the inner surface of the mold is coated with eucalyptus oil. 如申請專利範圍第1項所述之熱介面材料之製備方法,其中,所述基體材料為熱塑性聚合物相變材料、熱固性聚合物相變材料、低熔點金屬材料或預聚物。The method for preparing a thermal interface material according to claim 1, wherein the matrix material is a thermoplastic polymer phase change material, a thermosetting polymer phase change material, a low melting point metal material or a prepolymer. 如申請專利範圍第5項所述之熱介面材料之製備方法,其中,所述使液態聚合物相變材料與奈米碳管陣列之複合方法包括以下步驟:提供一液態聚合物相變材料;將所述含有奈米碳管陣列之模具浸泡在液態聚合物相變材料中,使液態之聚合物相變材料與奈米碳管陣列複合;或以一定壓力將所述液態之聚合物相變材料注入至所述含有奈米碳管陣列之模具中,使液態之聚合物相變材料與奈米碳管陣列複合。The method for preparing a thermal interface material according to claim 5, wherein the method for compounding a liquid polymer phase change material and a carbon nanotube array comprises the steps of: providing a liquid polymer phase change material; Soaking the mold containing the carbon nanotube array in a liquid polymer phase change material, compounding the liquid polymer phase change material with the carbon nanotube array; or changing the liquid polymer phase by a certain pressure The material is injected into the mold containing the carbon nanotube array to composite the liquid polymer phase change material with the carbon nanotube array. 如申請專利範圍第5項所述之熱介面材料之製備方法,其中,使所述低熔點金屬材料與奈米碳管陣列之複合方法包括以下步驟:提供一低熔點金屬材料;以所述低熔點金屬材料作陽極,以所述奈米碳管為陰極採用電鍍之方法將所述低熔點金屬沈積在含有奈米碳管陣列之模具中或者將所述低熔點金屬材料以一定壓力注入所述含有奈米碳管陣列之模具中。The method for preparing a thermal interface material according to claim 5, wherein the method for compounding the low melting point metal material and the carbon nanotube array comprises the steps of: providing a low melting point metal material; a melting point metal material is used as an anode, and the low melting point metal is deposited in a mold containing a carbon nanotube array by electroplating or the low melting point metal material is injected into the mold at a certain pressure by using the carbon nanotube as a cathode In a mold containing a carbon nanotube array. 如申請專利範圍第7項所述之熱介面材料之製備方法,其中,所述模具之材料為有機材料或陶瓷材料。The method for preparing a thermal interface material according to claim 7, wherein the material of the mold is an organic material or a ceramic material. 如申請專利範圍第5項所述之熱介面材料之製備方法,其中,所述基體材料為熱塑性聚合物相變材料或低熔點金屬基體材料時,通過冷卻熱塑性聚合物基體材料及低熔點金屬基體材料之方法固化基體材料。The method for preparing a thermal interface material according to claim 5, wherein the base material is a thermoplastic polymer phase change material or a low melting point metal base material, and the thermoplastic polymer matrix material and the low melting point metal matrix are cooled. The method of material cures the matrix material. 如申請專利範圍第5項所述之熱介面材料之製備方法,其中,所述液態之基體材料為熱固性聚合物基體材料時,通過加熱該熱固性聚合物基體材料之方法固化基體材料。The method for preparing a thermal interface material according to claim 5, wherein when the liquid matrix material is a thermosetting polymer matrix material, the matrix material is cured by heating the thermosetting polymer matrix material. 如申請專利範圍第5項所述之熱介面材料之製備方法,其中,所述液態之基體材料為一預聚物時,採用添加引發劑之方法使預聚物發生聚合而固化。The method for preparing a thermal interface material according to claim 5, wherein when the liquid matrix material is a prepolymer, the prepolymer is polymerized and solidified by adding an initiator. 如申請專利範圍第5項所述之熱介面材料之製備方法,其中,所述熱介面材料之製備方法中在固化液態之基體材料之步驟之後進一步包括去除模具之步驟。The method for preparing a thermal interface material according to claim 5, wherein the step of preparing the thermal interface material further comprises the step of removing the mold after the step of curing the liquid base material. 如申請專利範圍第12項所述之熱介面材料之製備方法,其中,該製備方法在去除模具之步驟後進一步包括去除基底之步驟。The method for preparing a thermal interface material according to claim 12, wherein the preparation method further comprises the step of removing the substrate after the step of removing the mold. 如申請專利範圍第13項所述之熱介面材料之製備方法,其中,所述去除基底之方法包括機械研磨法、化學腐蝕法或直接揭除法。The method for preparing a thermal interface material according to claim 13, wherein the method for removing the substrate comprises mechanical grinding, chemical etching or direct stripping. 如申請專利範圍第12或13項所述之熱介面材料之製備方法,其中,所述熱介面材料之製備方法在去除模具或去除基底之後進一步包括對熱介面材料切片處理之步驟。The method for preparing a thermal interface material according to claim 12, wherein the method of preparing the thermal interface material further comprises the step of slicing the thermal interface material after removing the mold or removing the substrate. 如申請專利範圍第15項所述之熱介面材料之製備方法,其中,所述熱介面材料具有相對之第一表面及第二表面,且奈米碳管從熱介面材料之第一表面延伸至第二表面,所述切片處理之方法中切片之方向為平行於熱介面材料之第一表面或第二表面之方向。The method for preparing a thermal interface material according to claim 15, wherein the thermal interface material has a first surface and a second surface opposite to each other, and the carbon nanotube extends from the first surface of the thermal interface material to The second surface, wherein the direction of the slice in the method of slicing is parallel to the direction of the first surface or the second surface of the thermal interface material. 如申請專利範圍第16項所述之熱介面材料之製備方法,其中,所述熱介面材料之製備方法進一步包括對切片後之熱介面材料進行蝕刻去除切片表面部分基體材料之步驟。The method for preparing a thermal interface material according to claim 16, wherein the method for preparing the thermal interface material further comprises the step of etching the sliced thermal interface material to remove a portion of the surface material of the slice surface. 一種熱介面材料之製備方法,包括下列步驟:提供一形成於一基底之奈米碳管陣列,該奈米碳管陣列包括複數個垂直於所述基底之表面之奈米碳管;提供一模具,該模具為由側壁圍成之一中空結構,具有相對之第一端及第二端,且該模具從第二端至第一端之尺寸逐漸變小,該模具之第一端及第二端各設有一開口;將上述模具壓向該奈米碳管陣列,並使該模具之第二端之開口朝向並靠近基底,使模具側壁擠壓收容其內之奈米碳管陣列,以使奈米碳管陣列遠離基底之一端向中心靠聚並靠近模具第一端之開口,以使奈米碳管陣列週邊之奈米碳管相對於基底之表面傾斜;提供一液態基體材料,使該液態基體材料與處理後之奈米碳管陣列複合;及固化所述液態之基體材料,形成一熱介面材料。A method for preparing a thermal interface material, comprising the steps of: providing an array of carbon nanotubes formed on a substrate, the array of carbon nanotubes comprising a plurality of carbon nanotubes perpendicular to a surface of the substrate; providing a mold The mold is a hollow structure surrounded by the side wall, has a first end and a second end opposite to each other, and the mold is gradually reduced in size from the second end to the first end, and the first end and the second end of the mold Each of the ends is provided with an opening; the mold is pressed toward the array of carbon nanotubes, and the opening of the second end of the mold is oriented toward and close to the substrate, so that the sidewall of the mold is pressed to receive the array of carbon nanotubes therein, so that The carbon nanotube array is located away from the one end of the substrate toward the center and close to the opening of the first end of the mold, so that the carbon nanotubes around the carbon nanotube array are inclined with respect to the surface of the substrate; providing a liquid matrix material The liquid matrix material is composited with the treated carbon nanotube array; and the liquid matrix material is cured to form a thermal interface material.
TW98107399A 2009-03-06 2009-03-06 Method for manufacturing thermal interface material TWI382083B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98107399A TWI382083B (en) 2009-03-06 2009-03-06 Method for manufacturing thermal interface material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98107399A TWI382083B (en) 2009-03-06 2009-03-06 Method for manufacturing thermal interface material

Publications (2)

Publication Number Publication Date
TW201033345A TW201033345A (en) 2010-09-16
TWI382083B true TWI382083B (en) 2013-01-11

Family

ID=44855122

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98107399A TWI382083B (en) 2009-03-06 2009-03-06 Method for manufacturing thermal interface material

Country Status (1)

Country Link
TW (1) TWI382083B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI253898B (en) * 2005-04-08 2006-04-21 Hon Hai Prec Ind Co Ltd Thermal interface material and method of making the same
TW200702297A (en) * 2005-07-01 2007-01-16 Hon Hai Prec Ind Co Ltd Method of fabricating thermal interface material
TWI296149B (en) * 2005-03-25 2008-04-21 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI296149B (en) * 2005-03-25 2008-04-21 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making the same
TWI253898B (en) * 2005-04-08 2006-04-21 Hon Hai Prec Ind Co Ltd Thermal interface material and method of making the same
TW200702297A (en) * 2005-07-01 2007-01-16 Hon Hai Prec Ind Co Ltd Method of fabricating thermal interface material

Also Published As

Publication number Publication date
TW201033345A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
CN101826467B (en) Preparation method of thermal interface material
EP2546871B1 (en) Method for producing a heat dissipating structure
JP4704899B2 (en) Manufacturing method of heat conduction material
US7569425B2 (en) Method for manufacturing thermal interface material with carbon nanotubes
JP5255025B2 (en) Heat dissipation structure and heat dissipation system
EP2763167B1 (en) Heat-dissipating material and method for producing same, and electronic device and method for producing same
US20100172101A1 (en) Thermal interface material and method for manufacturing the same
JP5102328B2 (en) Manufacturing method of heat conduction member
JP6127417B2 (en) Manufacturing method of heat dissipation material
US10490492B2 (en) Method for forming semiconductor package using carbon nano material in molding compound
CN101572255B (en) Method for making carbon nanotube composite thermal interface material
US20050046017A1 (en) System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US20070126116A1 (en) Integrated Circuit Micro-Cooler Having Tubes of a CNT Array in Essentially the Same Height over a Surface
JP5790023B2 (en) Manufacturing method of electronic parts
CN101275209A (en) Thermal interfacial material and method for preparing same
JP2010205977A (en) Thermoelectric conversion element
CN113415060A (en) Oriented high-thermal-conductivity thermal interface heat conduction material and application thereof
Bai et al. Encapsulated carbon nanotube array as a thermal interface material compatible with standard electronics packaging
TWI382083B (en) Method for manufacturing thermal interface material
JP6123154B2 (en) Manufacturing method of heat dissipation material