TWI378231B - Estimatation method of veiling glare - Google Patents

Estimatation method of veiling glare Download PDF

Info

Publication number
TWI378231B
TWI378231B TW96132877A TW96132877A TWI378231B TW I378231 B TWI378231 B TW I378231B TW 96132877 A TW96132877 A TW 96132877A TW 96132877 A TW96132877 A TW 96132877A TW I378231 B TWI378231 B TW I378231B
Authority
TW
Taiwan
Prior art keywords
stray light
light
function
tested
coefficient
Prior art date
Application number
TW96132877A
Other languages
Chinese (zh)
Other versions
TW200912274A (en
Inventor
Chuan Chung Chang
yi ling Wu
Hsiao Yue Tsao
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96132877A priority Critical patent/TWI378231B/en
Publication of TW200912274A publication Critical patent/TW200912274A/en
Application granted granted Critical
Publication of TWI378231B publication Critical patent/TWI378231B/en

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

1378231 P51960068TW 24883twf.doc/n 九、發明說明: 【發明所屬之技術領域】 枣發明是有關於一種 【先前技術】 為了子估先子兀件或先學糸統所1378231 P51960068TW 24883twf.doc/n IX. Description of the invention: [Technical field to which the invention belongs] The invention of the jujube is related to a [prior art] for the purpose of estimating the syllabus or the scholastic system

統技術多會使用投影解像力、光學坰制了奴办像。0質傳 庙望办供炎、…满製函數、空間頻率響 應.·:專末做為刀析的工具。此類分析1具之基本原理是利 用影像對比度的變化來反應影像品f的好壞,但^述之分 析方法並無法分析出絲元件、鏡職構等所產生的表 ,反射光、散射光,也就是所謂的雜散光,對影像造成的 負面效應。因此要評估光學純所獲得的影像品質,則必 須進订雜散S分析,藉赠得光學元件或光學纟統或光學 元件之雜散光情形。The system technology uses the projection resolution and optics to control the slave image. 0 quality transmission Temple to do for inflammation, ... full system function, spatial frequency response. ·: Specialized as a tool for analysis. The basic principle of such analysis is to use the change of image contrast to reflect the quality of the image f, but the analysis method can not analyze the table produced by the silk component, mirror structure, etc., reflected light, scattered light , also known as stray light, has a negative effect on the image. Therefore, to evaluate the image quality obtained by optical purity, it is necessary to customize the spurious S analysis to lend the stray light of the optical component or optical system or optical component.

於ISO 9358規範中’定義出一光學元件或光學系統之 雜散光分析技術與雜散光測試系統,光學元件或光學系統 的雜散光分析技術可分為兩類,一種稱作雜散光係數 (Veiling Glare Index,簡稱VGI)分析技術,另一種稱為 光擴散函數(Glare Spread Function,簡稱GSF)分析技術。 上述兩種方法分別依據ISO 9358規範的雜散光量測系統 架構’對雜散光進行分析。在IS09358規範中,使用VGI 分析技術時,雜散光量測系統被規範在順光條件下進行雜 散光檢測與分析;反之,使用GSF分析技術時,雜散光量 1378231 P51960068TW 24883twf.doc/n 測系統被城在逆紐件下進行雜散級顺分析。In the ISO 9358 specification, stray light analysis techniques and stray light test systems for optical components or optical systems are defined, and stray light analysis techniques for optical components or optical systems can be classified into two categories, one called stray light coefficient (Veiling Glare). Index, referred to as VGI) analysis technology, and another called Glare Spread Function (GSF) analysis technology. The above two methods analyze the stray light according to the stray light measurement system architecture of the ISO 9358 specification. In the IS09358 specification, when VGI analysis technology is used, the stray light measurement system is standardized for stray light detection and analysis under smooth conditions; conversely, when using GSF analysis technology, the amount of stray light is 1378231 P51960068TW 24883twf.doc/n measurement system It was analyzed by the city under the reverse element.

V 在曰本專利第jp6m〇635號中提出了—_用QSF 分析技術’其依據IS〇 9358所規範的雜散光測試系統進行 雜散光檢_獲得-個光擴散函數,接著制用下列公式 (一)即可計算得到雜散光係數: \Z \ZG{x,y)dxdy-^ \%G{x,y)dxdy -——…公式(一)V proposed in the Japanese Patent No. jp6m〇 635—using QSF analysis technology to perform stray optical inspection according to the stray light test system specified in IS〇9358 _ obtain a light diffusion function, and then use the following formula ( a) The stray light coefficient can be calculated: \Z \ZG{x,y)dxdy-^ \%G{x,y)dxdy -——...formula (1)

△式()中,G(X,W為光擴散函數,k為光點大小, N為雜散光係數。 ‘ 【發明内容】 本發明提供 徑雑欣无之评估方法,利用光擴散函數 得到雜散光係數或雜散光分佈函數,藉以評估待測光學元 件或待測光學系統之雜散光情況。In the formula (), G (X, W is a light diffusion function, k is the spot size, and N is a stray light coefficient. ' [Invention] The present invention provides an evaluation method for the path, which is obtained by using a light diffusion function. An astigmatism coefficient or a stray light distribution function to evaluate the stray light condition of the optical component to be tested or the optical system to be tested.

—本發明提種雜散光之評估方法,包括獲取待測光 學件或制光學祕光軸上的光強度分佈資訊,藉以^ 到第-光擴散函數。另外,獲取待測光學元件或待 系統非光軸上的光強度分佈資訊,藉以得到第二拉子 數。此外,將第—光擴散函數與第—光擴散函數進:放函 (correlation)運算,以得到第一相關函數,並且將關 擴放函數與第二光擴散函數進行相關運算,以得 光 關函數。再者’依據第—相關函數與第二相關 =相 散光係數或雜散光分佈函數。 于到雜 在本發明之一實施例中,依據第一相關函數與 關函數得到雜散光係數之步驟包括將第一相關函^ =相 相關函數分別進行面積分運算,以得到一第一 ^卓二 、;里興〜第 1378231 P51960068TW 24883twf.d〇c/, 二純量。此外,依據第—純量盥 在另-實施例中,可依據公到雜散光係數。 A '雜散光係數, 其中Α!為苐一純量,A為坌_ 在又—者斤加士 為弟—、.·屯1 ’ N為雜散光传數。 在又,例中,上述之轉分 在本發明之一實施例中,依攄第一 、刀運α :函數得到雜散光係數之步驟包括取第— 峰值做為第一峰值,並敌筮_士 flu數之取大 二峰值。此外,歸第-峰值鮮值做為第 在另-實施财,可依據公式# = ¥計算雜 其中—峰值,?2為第^峰值,雜光餘。 々在本發明之一實施例中,雜散光之評估方法更包括將 弟光擴散函數與第一光擴散函數轉換至頻率空間,並於 頻率空間下,取得第—湖函數與第二相關^,分別對 ,一,關函數與第二相關函數進行面積分,以得到第一純 置與第二純量。再依據第一純量與第二純量得到雜散 數二在又一實施例中’於頻率空間下,取得第—相關函數 之最大峰值做為第一峰值,並取第二相關函數之最大峰值 做為第二峰值。再依據第一峰值與第二峰值得到雜散光係 數。 ’、 在另一實施例中,雜散光之評估方法更包括依據雜散 光係數與第一光擴散函數以得到光源之光點大小。利用光 點大小可簡化光源位於其他位置的雜散光係數之計算複雜 度。例如依據公式# i- IZGjx^dxdy-^ \kj/G(x,y)dxdy ~ ]ζ\-Ζ〇ϊ^ώφ 可得到 7 1378231 P51960068TW 24883twf.doc/n 光點大小,其中為第一光擴散函數,U ^雜散光絲。接著,將光齡於其他位置所得到㈣ 散光it函數代人上述公式的㈣)則可求得其他位置之雜 此外,本發明另提供一種雜散光之評估方法复 幾何光學方法錢動辟方法讀得総大小依據 點大小以及光擴散函數得·散光錄,藉 統之雜散光情況。 叶估先學系 在本發明之-實施例中,光點大小為光學系 、赠=學^或待測光學系統,所形成之光源成像大二 #在另-只施例中,計算雜散光分佈函數之步驟 I:數與第二相關函數進行相減運算,以得到雜散 在土-實施例中’第—侧函數與第二相關函 1 ^异ί步!"更包括對齊第—相關函數之最大峰值與第 一相關函數之最大峰值。 /、 在一實施例中,雜散光之評估方法更包括建立 閥值,藉以判定雜散光是否超出預定之雜散光可容ς程 ’雜散光之評估方法適用於雜散光量 源、光感測器與待測光 :量測:立?:子糸,。其中,光感測器配置於光強度分 佈里測位置,糾得到第—光錄函 數與雜散光分佈函數用以評估;測光= 件或待測光學线之雜散光。在—實施财,雜光之評 1378231 P51960068TW 24883twf.d〇c/n 估方法更包括對光感測器進行暗電流校正。 從另一觀點來看,本發明提供一種雜散光之評估方 .法,雜散光之評估方法包括,使光源照射待測光學元件或 待測光學系統,以得到待測之光擴散函數,並依據光源與 '待測光學元件或待測光學系統之間的物距、光源之發光口' 徑與待測光學元件或待測光學系統之焦距得到光點^小。 此外,依據光點大小與光擴散函數,以得_散光係數j • 在一實施例中’得到光點大小之倾包括依 據公式I,、得到光點大小,其中P為光源與待測光 學兀件或待測光學系統之_物距,h 徑,f為_光學元件或待縣學%統之如,k為&點大 小。 在本發明之-實施例中,得到光點大小 據光學鏡頭之光圈形狀得到校正函數,#价祕|娜匕祜依 光學元件或待測光學系統之間的物距、。待測 • 待測光學元件或待測光學系統之焦距與校正、 大小。在另一實施例中,得到光點大小之^數t 公式'以得到光點大小,D 括依據 J ρ “Τρ為光源與待 測光學元件或待測光學系統之間的物距,h 口徑,f為待測光學元件或待測光學***之 正函數,k為光點大小。 為%c 在本,明之-實施例中,依據光點大小與 數,以彳于到雜散光係數之步驟包括依據=式 9 1378231 P51960068TW 24883twf.doc/n ~\Z\ZG^y)dxdy ~~得到雜散光係數,其中 為光擴散函數,k為光點大小, ^ 本發明利用光擴散函數進行相關運 散光係數無散光分佈函數,_ I柄可传到雜 測光學系統之雜散光情況。再=:!=,元件或待 ^幾何光學獲得光點大小,再依據光點 =r數,藉以評估待測先學元==學; 如下y文特舉幾個實施例,並配合所關式,作詳細說明 【實施方式】 ,之實施例可以在不需定義光點大小的情況 :或==數進行相關運算,藉以求得雜散光係 光情況。此外’利用上述求得的雜散光係 光源之光點大小,接著再配合習知的gsf分析技 可進-步簡化雜散光餘之運算式。不僅如此,本發 =實施例也可_幾何光學原理或搭配波動絲原理, ^義出光點大小,再配合習知的GSF分析技術,藉以評估 3光學元件或待測光學㈣之雜散光情況。以下則配合 圖式作更進一步地說明。 第一實施例 圖1與2分別是依照本發明之第一實施例之一種雜散 1378231 P51960068TW 24883twf.doc/n- The method for evaluating stray light according to the present invention comprises obtaining information on the light intensity distribution on the optical member to be tested or on the optical axis, whereby the first light diffusion function is obtained. In addition, the light intensity distribution information on the non-optical axis of the optical element to be tested or the system to be tested is obtained, thereby obtaining the second pull number. In addition, the first light diffusion function and the first light diffusion function are: a correlation operation to obtain a first correlation function, and a correlation operation between the off diffusion function and the second light diffusion function is performed to obtain a light off function. Furthermore, 'based on the first correlation function and the second correlation = phase astigmatism coefficient or stray light distribution function. In an embodiment of the present invention, the step of obtaining a stray light coefficient according to the first correlation function and the off function comprises separately performing an area division operation on the first correlation function ^=phase correlation function to obtain a first ^2 ,; Rising ~ 1378231 P51960068TW 24883twf.d〇c /, two scalar. Further, depending on the first-quantity amount, in another embodiment, the stray light coefficient can be based on the public. A 'stray light coefficient, where Α! is a scalar quantity, A is 坌 _ _ _ _ _ _ _ _ _ _ _ _ _ N is a stray light transmission number. In another example, in the embodiment of the present invention, the step of obtaining the stray light coefficient according to the first, knife-loading α: function includes taking the first peak as the first peak and the enemy _ The number of flu is taken as the sophomore peak. In addition, the first-to-peak fresh value is used as the first------------------------------------------------- 2 is the ^ peak, the stray light. In an embodiment of the present invention, the method for evaluating stray light further includes converting a dioptric light diffusion function and a first light diffusing function into a frequency space, and obtaining a first lake function and a second correlation in a frequency space. The first and second correlation functions are respectively divided into areas to obtain a first pure and a second pure quantity. Further obtaining the spur number according to the first scalar quantity and the second scalar quantity. In another embodiment, in the frequency space, the maximum peak value of the first correlation function is obtained as the first peak value, and the maximum of the second correlation function is taken. The peak is taken as the second peak. A stray light coefficient is obtained based on the first peak and the second peak. In another embodiment, the method for evaluating stray light further includes determining a spot size of the light source based on the stray light coefficient and the first light diffusing function. The use of spot size simplifies the computational complexity of stray light coefficients at other locations. For example, according to the formula # i- IZGjx^dxdy-^ \kj/G(x,y)dxdy ~ ]ζ\-Ζ〇ϊ^ώφ, you can get 7 1378231 P51960068TW 24883twf.doc/n spot size, where is the first light Diffusion function, U ^ stray light filament. Then, the light age is obtained at other positions. (4) The astigmatism function is substituted for (4) of the above formula, and the other positions can be obtained. In addition, the present invention provides a method for evaluating stray light. The complex geometric optical method is read by the money kinetic method. According to the point size and the light diffusion function, the size of the smashing light is recorded by the stray light. In the embodiment of the present invention, the spot size is an optical system, a gift, or an optical system to be tested, and the formed light source is imaged in the second generation. In another example, the stray light is calculated. Step I of the distribution function: the number is subtracted from the second correlation function to obtain the spurs in the soil-embodiment, the 'first side function and the second correlation function 1 ^ different steps!" The maximum peak value of the function and the maximum peak value of the first correlation function. In an embodiment, the method for evaluating stray light further includes establishing a threshold value to determine whether stray light exceeds a predetermined stray light, and the evaluation method of stray light is suitable for a stray light source and a photo sensor. And the light to be measured: measurement: stand? : 子糸,. Wherein, the photo sensor is disposed at the position of the light intensity, and the first-order optical function and the stray light distribution function are used to evaluate; the photometry=the stray light of the piece or the optical line to be tested. In the implementation of the fiscal, stray light evaluation 1378231 P51960068TW 24883twf.d〇c / n estimation method also includes dark current correction of the light sensor. From another point of view, the present invention provides an evaluation method for stray light. The method for evaluating stray light includes causing a light source to illuminate an optical element to be tested or an optical system to be tested to obtain a light diffusion function to be measured, and The light source is smaller than the object distance between the optical element to be tested or the optical system to be tested, the light-emitting port of the light source, and the focal length of the optical element to be tested or the optical system to be tested. In addition, according to the spot size and the light diffusion function, the astigmatism coefficient j is obtained. In an embodiment, the gradient of the spot size is obtained according to the formula I, and the spot size is obtained, where P is the light source and the optical 待 to be tested. The distance of the object or the optical system to be tested, the h-path, f is _ optical element or the equivalent of the county, k is & point size. In the embodiment of the present invention, the spot size is obtained according to the aperture shape of the optical lens to obtain a correction function, and the object distance between the optical element or the optical system to be tested is obtained. Tested • The focal length and correction, size of the optical component to be tested or the optical system to be tested. In another embodiment, the formula t of the spot size is obtained to obtain the spot size, and D is based on J ρ "Τρ is the object distance between the light source and the optical element to be tested or the optical system to be tested, h caliber , f is a positive function of the optical component to be tested or the optical system to be tested, and k is the spot size. For %c, in the present embodiment, according to the size and number of the spot, the step of stray light is obtained. Including according to == 9 1378231 P51960068TW 24883twf.doc/n ~\Z\ZG^y) dxdy ~~ to obtain the stray light coefficient, where is the light diffusion function, k is the spot size, ^ The present invention uses the light diffusion function for correlation The astigmatism coefficient has no astigmatism distribution function, and the _I handle can be transmitted to the stray light condition of the miscellaneous optical system. Then =:!=, the component or the geometrical optics obtains the spot size, and then evaluates it according to the spot = r number. The first test element == learning; the following y text specific examples, and with the closed type, a detailed description [embodiment], the embodiment can be defined without the need to define the spot size: or == number Perform correlation calculations to obtain stray light-based light conditions. The size of the spot of the stray light source obtained, and then with the conventional gsf analysis technique, can further simplify the calculation of the stray light. In addition, the present embodiment can also be used for geometric optics or matching. The principle of the wave, the size of the spot, and the conventional GSF analysis technique, to evaluate the stray light of the 3 optical components or the opticals to be tested (4). The following is further explained in conjunction with the drawings. 1 and 2 are respectively a spurious 1378231 P51960068TW 24883twf.doc/n according to the first embodiment of the present invention.

光量測系統架構圖。圖3是依照本發明之第一實施例之一 種雜散光評估方法之流程圖。請先合併參照圖】與圖3, 本實施例中,雜散光量測系統1〇包括了光源2〇、待測光 學元件或待測光學系統(本實施例之待測光學元件以光學 鏡頭30為例進行說明之)與光感測器(ph〇t〇 sensor) 4〇。 光源20之發光孔可以配置擴散光片(未繪示),使光源 20此夠提供廣角度的散射光線。上述之光源2Q可以沿著 水平軸200移動,藉以改變光源2〇與光學鏡頭之間的 角度。光感測裔40配置於光學鏡頭3〇之成像面22〇位置, 藉以量測上述不同角度之光擴散函數。 首先,可先由步驟S301,對感測器4〇進行暗電流校 二暗電流誤差。接著由步驟識,將光源如 光學鏡頭30之光軸210上,透過光感· 4〇獲得Light measurement system architecture diagram. Figure 3 is a flow chart showing a method of evaluating stray light in accordance with a first embodiment of the present invention. Please refer to FIG. 3 and FIG. 3 , in this embodiment, the stray light measurement system 1 includes a light source 2 , an optical element to be tested or an optical system to be tested (the optical element to be tested in the embodiment is an optical lens 30 ) For example, the light sensor (ph〇t〇sensor) 4〇. The light-emitting aperture of the light source 20 can be provided with a diffusing light sheet (not shown) to provide the light source 20 with a wide angle of scattered light. The above-described light source 2Q can be moved along the horizontal axis 200 to change the angle between the light source 2'' and the optical lens. The light sensing body 40 is disposed at the position of the imaging surface 22 of the optical lens 3 to measure the light diffusion function of the above different angles. First, the dark current correction error can be performed on the sensor 4A by step S301. Then, by the step, the light source is obtained on the optical axis 210 of the optical lens 30 through the light sensation.

散函數。接著’由步驟咖,將第—光擴散函數 j -先擴散函數進行相_算以㈣第—相關函數。再 由ッ驟S304進行面積分運算以得到第一吨量 例其中面積分運算例如為有限面積分運管。 本心 光風2^ 2與圖3 ’接“辆、加移動至 頭30之絲21〇外,使光源2()與光 ^ —離軸配置,透過光感測器4〇獲得 頌30形成 s3〇5) 之程度,本發明並不以此為限。接著 驟、=軸配置 相關函數。再由步驟S3:7 算-得到第二 積分運异,例如有限面 11 P51960068TW 24883twf.d〇c/n 積分運算,藉以得到第二純量。 承上述,接著由步锦_依 :可光=雜散光係數’例如可依據下列公式(二二;Scatter function. Then, by the step coffee, the first light diffusion function j - the first diffusion function is phase-calculated to (4) the first correlation function. Further, the area division operation is performed by step S304 to obtain the first ton amount. The area division operation is, for example, a limited area branch pipe. The heart light wind 2^ 2 and the figure 3 'connected to the vehicle, and moved to the head 30 of the wire 21 ,, so that the light source 2 () and the light ^ off-axis configuration, through the light sensor 4 〇 get 颂 30 to form s3 The extent of 〇5), the invention is not limited thereto. Then, the relevant function is configured by the step == axis. Then, the second integral difference is obtained by step S3:7, for example, the finite plane 11 P51960068TW 24883twf.d〇c/ n integral operation, in order to obtain the second scalar. According to the above, followed by the step _ _: optable = stray light coefficient 'for example, according to the following formula (two two;

A2~ AA2~ A

N ..公式(二) 八1為弟一純量,為第-έώ旦 \τ 來即可依據嶋係^^ 點I Ig L W則光干系統之雜散光。本實施例不需定義光 二小卩此#估雜散光測試系統10之雜散光,改善了習知 光點大小不易確定之問題。 上述實施例中,待測光學元件或待測光學系統雖以光 :鏡頭30為例進行說明之,但在其他實施例中,待測光學 凡件或待測光學系統也可由光學單/複數鏡#組成或是可 由含有感測器構成之模組組成。其中,光感測器4〇可以是 雜散光量測系統内裝之感測裝置,亦可以是含有光感測器 之待測光學系統中所含之光感測裝置。 此外,上述實施例中,雖以依序執行步驟S3〇1〜S3〇8 為例。但在其他實施例中,熟習本領域技術者可依其需求 改變各步驟之順序,例如可依序執行步驟S3〇1、S3〇2、 S305、S306、S307、S303、S304、S308。換言之,本發明 並不受限於步驟順序。 _ 弟二貫施例 本實施例與第一實施例類似,不同之處在於本實施例 12 1378231 P51960068TW 24883twf.doc/n 可利用第一實施例所求得的第— 計算求得雜散光分佈函數◊孰習:與第二相關函數 散光分佈函數包含了諸多資應當知道雜 或的人來說,雜綠佈_4 =或系統 請合併參闕1與圖2,由要參考指標。 位於光轴训上所量測並經過計關函^是^20 數是光源20位於光軸210外所| ,弟一相關函N..Formula (2) Eighty-one is a pure quantity of the younger brother, which is the first-day \\τ. It can be based on the 嶋 system ^^ point I Ig L W is the stray light of the light-drying system. In this embodiment, it is not necessary to define the stray light of the light astigmatism test system 10, which improves the problem that the conventional spot size is difficult to determine. In the above embodiment, the optical element to be tested or the optical system to be tested is described by taking the light: lens 30 as an example, but in other embodiments, the optical component to be tested or the optical system to be tested may also be an optical single/complex mirror. The #component can be composed of a module containing a sensor. The photo sensor 4〇 may be a sensing device built in the stray light measuring system, or may be a light sensing device included in the optical system to be tested including the photo sensor. Further, in the above embodiment, steps S3〇1 to S3〇8 are sequentially performed as an example. However, in other embodiments, those skilled in the art can change the order of the steps according to their needs. For example, steps S3〇1, S3〇2, S305, S306, S307, S303, S304, and S308 can be sequentially performed. In other words, the invention is not limited by the order of steps. The second embodiment is similar to the first embodiment except that this embodiment 12 1378231 P51960068TW 24883twf.doc/n can obtain the stray light distribution function by using the first calculation obtained in the first embodiment. Bad habits: The astigmatism distribution function with the second correlation function contains a lot of resources should be known to people or people, the green cloth _4 = or the system please merge the reference 1 and Figure 2, by reference to the indicator. Located on the optical axis training and measured by the pass-through function ^ is ^20 number is the light source 20 is located outside the optical axis 210 |

,。因此,本實施例先將第—相關函數與第二相關函數之 攻大峰值對齊縣第-相_數與第二烟函數進 仃相減運具即能得_散光分佈函數。如此—來,即可藉 由雜散光分佈函數評估制光學元件或待測光學系統之雜 散光。 , 第三實施例 本技術領域具有通常知識者也可視其需求,而依據本 發明之精神與前述諸實施例之教示改變計算雜散光係數之 方式。例如圖4是依照本發明之第三實施例之一種雜散光 評估方法之流程圖。請合併參照圖1、2 '圖3與圖4。本 實施例與第一實施例相類似,不同之處在於,本實施例利 用圖4的步驟S404、S407、S408分別取代圖3之步驟 S304、S307、S308。 藉由圖 3 之步驟 S301、S302、S303、S305、S306 求 得第一相關函數與第二相關函數之後。本實施例透過步驟 13 P51960068TW 24883tw£d〇c/n S404,取第一相關函數 接著藉由步驟s術,取名為第一锋值。 即可求得Ϊ 姻,轉第—峰值與第二學值 搞數。例如可依據下列公式(三)求得雜 Ν=Ελτι ...公式(三) Μ公式(三)中’Pl為第一峰值,Ρ2為第二峰值,Ν為 件。如此一來即可依據雜散光係數來評估光學元 件或先學糸統之雜散光。 第四實施例 σ月多…、圖1 ’上述第一實施例與第三實施例已經描繪 出幾種不需絲光點大小即可求娜散光储之方法。本 實施例利訂述實施例所求得的雜散光係數可進—步地簡 化求取代啦學元件或制光學系·不同情況下 光係數的方法。 由於對同一個雜散光測試系統10,其光點大小理論上 應該相同,其中本實施例所述之光點大小為光源20於成像 面220所形成之大小。因此利用上述實施例所求取之雜散 光係數可反推光點大小。例如可利用下列公式(四),計 算光點大小: ° {-»}-<〇G(x,y)dxdy ~Ϋΐ/1Ϋΐ/^^y)dxdy }-» \^ZG{x,y)dxdy ...公式 (四) 公式(四)中GhW可以是第一光擴散函數,k為光點 1378231 P51960068TW 24 883twf.doc/n 大小,N為上述實施例所求得的雜散光係數。由於G(x;;)與 N皆為已知,因此由上述公式(四)之關係則可反推光點 大小k。 此時光源之光點大小k則成為已知。因此當雜散光測 試系統10量測到不同情況之光擴散函數時,只要將量測到 的光擴散函數代入公式(四)之G(JC>〇,即可求得相對應之 ,,光係數。如此一來,可大幅簡化計算雜散光係數之運 算複雜度,省去了上述實施例進行相關運算的麻煩。 第五實施例 上述第四實施例雖已提供了一種計算光點大小之方 式:但在其財_巾’亦可_幾何光學估算光點大小, =著再參紅述實施例之實施方式,即可求取雜散光係 數,以下則配合圖示作更進一步地說明。,. Therefore, in this embodiment, the _ astigmatism distribution function can be obtained by first aligning the peak-correlation function with the attack peak of the second correlation function with the county first-phase _ number and the second smoke function. In this way, the stray light distribution function can be used to evaluate the stray light of the optical element or the optical system to be tested. THIRD EMBODIMENT A person skilled in the art can also vary the manner in which the stray light coefficient is calculated in accordance with the teachings of the foregoing embodiments and the teachings of the foregoing embodiments. For example, Fig. 4 is a flow chart showing a method of evaluating stray light in accordance with a third embodiment of the present invention. Please refer to Figure 1, 2 'Figure 3 and Figure 4 together. This embodiment is similar to the first embodiment except that steps S404, S407, and S408 of Fig. 4 are used instead of steps S304, S307, and S308 of Fig. 3, respectively. After the first correlation function and the second correlation function are obtained by steps S301, S302, S303, S305, S306 of Fig. 3 . In this embodiment, the first correlation function is taken through step 13 P51960068TW 24883 twd dc/n S404, and then the first front value is obtained by the step s. You can get the marriage, turn the first-peak and the second-school value. For example, according to the following formula (3), we can find the 杂=Νλτι ... formula (3) Μ In the formula (3), 'Pl is the first peak, Ρ2 is the second peak, and Ν is the piece. In this way, the optical components or the stray light of the first system can be evaluated based on the stray light coefficient. FOURTH EMBODIMENT σ月多多, Fig. 1 'The above first embodiment and third embodiment have already described several methods for obtaining astigmatism without the need for a spot size. The present embodiment provides a method for determining the optical coefficient in a different case by substituting the stray light coefficient obtained in the embodiment. Since the spot size of the same stray light test system 10 should be theoretically the same, the spot size described in this embodiment is the size of the light source 20 formed on the image plane 220. Therefore, the stray light coefficient obtained by the above embodiment can be used to reverse the spot size. For example, the following formula (4) can be used to calculate the spot size: ° {-»}-<〇G(x,y)dxdy ~Ϋΐ/1Ϋΐ/^^y)dxdy }-» \^ZG{x,y ) dxdy ...Formula (4) In equation (4), GhW may be the first light diffusing function, k is the light spot 1378231 P51960068TW 24 883twf.doc/n size, and N is the stray light coefficient obtained in the above embodiment. Since G(x;;) and N are both known, the relationship of the above formula (4) can be reversed to the spot size k. At this time, the spot size k of the light source becomes known. Therefore, when the stray light test system 10 measures the light diffusion function of different conditions, the light diffusion coefficient obtained by substituting the measured light diffusion function into the G of the formula (4) (JC> 〇, can be determined correspondingly, the light coefficient In this way, the computational complexity of calculating the stray light coefficient can be greatly simplified, and the trouble of performing the correlation operation in the above embodiment is omitted. Fifth Embodiment The fourth embodiment described above provides a way of calculating the spot size: However, in the case of the money, it is also possible to estimate the spot size by geometric optics, and to calculate the stray light coefficient by referring to the embodiment of the embodiment, which will be further explained below with reference to the figure.

疋伙肽桊發明之第# m <一裡雜散光評估方 流程圖。請合併參照圖i與圖5,首先由步驟s3〇i對 ,感^ 40進行暗電流校正。接著由步驟S5〇i,透過光 二=40獲取光擴散函數。接著依據幾㈣學原理,利用 =光測試^ 1Q t的光源與待測光學元件或待測光學 之、隹之間的物距P、光源2〇之發光σ#Γ)與光學鏡頭% =、距f即可求得光點大小k。舉例來說,可依據下列公疋 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊 桊Referring to FIG. 1 and FIG. 5 together, the dark current correction is first performed by the step s3〇i. Then, in step S5〇i, the light diffusion function is obtained by transmitting light ==40. Then, according to the principle of several (four), use the light source of the light test ^1Q t and the object to be tested or the object to be tested, the object distance P between the light source, the light source 〇#Γ) and the optical lens %=, The spot size k can be obtained from the distance f. For example, the following

kJ-izAxh fxp2 h k = ^J^xh)%PSF f iti)或公式(六)計算光點大小lc: [一 p ' ·..公式(五) 15 1378231 P51960068TW 24883twf.doc/n 物距===學元件或待測光學系統之間的 光學系統;0之焦距 求得光點大小k之後,再㈣點大小。當 求得雜散光係數。冉…弟四實施例之實施方式即可 值得一提的是,公式(丄)由 _ 光學鏡頭·30之光圈形狀(光正函數PSF可依據 π 邊7^圈值與光源20之波長而變化kJ-izAxh fxp2 hk = ^J^xh)%PSF f iti) or formula (6) Calculate the spot size lc: [一p ' ·..Formula (5) 15 1378231 P51960068TW 24883twf.doc/n Object distance == = optical system between the learning element or the optical system to be tested; the focal length of 0 is obtained after the spot size k, and then (four) point size. When the stray light coefficient is obtained.冉...The implementation of the fourth embodiment can be worth mentioning that the formula (丄) is formed by the aperture shape of the optical lens 30 (the positive function PSF can be changed according to the value of the π edge and the wavelength of the light source 20

如當光圈形狀為圓形時,則可用圓形的校正函數來 進仃技正。此外校^數PSF亦可依 ^長之不同而進行調整。舉例來說,當待測光學元^ 待測光學系統30之光圈形狀為圓形時,校正函數psF可 用下列公式(七)表示之,其中π為圓周率,r,為出入瞳 之半徑,為數學上的特殊函數’例如是第一類第—階貝 索函數(First Kind,Order 〇ne Bessel Function):白、 校正函數7Γ *r,)/r,}2 ...公式(七)For example, when the aperture shape is circular, the circular correction function can be used to correct the technique. In addition, the school PSF can also be adjusted according to the length. For example, when the aperture shape of the optical element to be tested to be tested is circular, the correction function psF can be expressed by the following formula (7), where π is the pi, r is the radius of the entrance pupil, and is mathematical. The special function on 'is the first class First Order, Order Bene Bessel Function: white, correction function 7 Γ * r,) / r, } 2 ... formula (7)

又例如,當待測光學元件或待測光學系統3〇之光圈 形狀為矩形時,校正函數PSF可用下列公式(八)表示之, 其中右將座彳示原點設在出入瞳之中心,X則代表由原點向 外延伸至初入瞳最大外徑r的座標位置: 校正函數 PSF = F{rect(r)}2={sin(7T*X)/(7T*X)}2。 公式 上述諸實施例中,各函數之間的運算可以在時域 (Time Domain)或頻率域(Frequency)中進行運算。利 用光感測器40求得光擴散函數之後,可將光擴散函數轉換 16 1378231 P51960068TW 24883twf.doc/n 至頻率域,藉以簡化後續之運算複雜度。 本發明之實施例揭露了幾種不需定義光點大小即可 . 求取雜散光係數或雜散光分佈函數之方法。此外,再利用 上述所求取的雜散光係數可反推光源之光點大小,進而可 簡化求取雜散光係數之運算量。另一方面,本發明之實施 例亦提供了幾種利用幾何光學方式求出光點大小之方^, 進而可求得雜散光係數。最後,再藉由雜散光係數或雜散 • 光分佈函數則可評估待測光學元件或待測光學系統之雜散. 光。 另外’前述之光源20不限於僅有—組光源,亦可以 ,多組光源分別置放於光學系統之光轴上與光轴外。在雜 散光評估方法中,亦可加入自定之閥值(thresh hold value),藉以判定雜散光是否超出預定之雜散光可容許程 度。 —雖然本發明已以幾個實施例揭露如上,然其並非用以 φ 限足本發明,任何所屬技術領域中具有通常知識者,在不 脫離本發明之精神和範圍内,當可作些許之更動與潤飾, 因此本發明之保護範圍當視後附之申請專利範圍所界 為準。 【圖式簡單說明】 、圖1與2分別是依照本發明之第一實施例之一種雜散 光測試系統架構圖。 圖3是依照本發明之第一實施例之一種雜散光評估方 法之流程圖。 17 1378231 P51960068TW 24883twf.doc/i 圖4是依照本發明之第三實施例之一種雜散光評估方 法之流程圖。 圖5是依照本發明之第五實施例之一種雜散光評估方 法之流程圖。 【主要元件符號說明】 1 〇 .雜散光測試系統 20 :光源 30 :光學鏡頭 40 :光感測器 200 ·水平轴 210 :光轴 220 .成像面 k :光點大小 Αι、A2、A3 :面積 D:發光口徑 P:光源與光學鏡頭之間的物距 S301 〜S308、S404、S407、S408、S501 〜S503 :本發 明之諸實施例的雜散光評估方法之各步驟 18For another example, when the shape of the aperture of the optical element to be tested or the optical system to be tested 3 is rectangular, the correction function PSF can be expressed by the following formula (8), wherein the right point is shown at the center of the entrance and exit, X It represents the coordinate position extending from the origin to the maximum outer diameter r of the initial entry: Correction function PSF = F{rect(r)}2={sin(7T*X)/(7T*X)}2. Formulas In the above embodiments, the operations between the functions can be performed in the Time Domain or the Frequency domain. After the light diffusing function is obtained by the photo sensor 40, the light diffusing function can be converted into a frequency domain by converting 16 1378231 P51960068TW 24883twf.doc/n to the subsequent operation complexity. Embodiments of the present invention disclose several methods for obtaining a stray light coefficient or a stray light distribution function without defining a spot size. In addition, by using the stray light coefficient obtained as described above, the spot size of the light source can be reversed, and the calculation amount of the stray light coefficient can be simplified. On the other hand, the embodiment of the present invention also provides several methods for determining the spot size by means of geometric optics, and the stray light coefficient can be obtained. Finally, the stray light or the light distribution function can be used to evaluate the stray light of the optical component to be tested or the optical system to be tested. Further, the aforementioned light source 20 is not limited to only a group of light sources, and a plurality of sets of light sources may be placed on the optical axis of the optical system and outside the optical axis. In the stray light evaluation method, a threshold hold value can also be added to determine whether the stray light exceeds the predetermined stray light allowability. The present invention has been disclosed in several embodiments, but it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications without departing from the spirit and scope of the invention. The scope of protection of the present invention is subject to the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and FIG. 2 are respectively a structural diagram of a stray light test system according to a first embodiment of the present invention. Figure 3 is a flow chart showing a method of evaluating stray light in accordance with a first embodiment of the present invention. 17 1378231 P51960068TW 24883twf.doc/i Figure 4 is a flow chart of a stray light evaluation method in accordance with a third embodiment of the present invention. Figure 5 is a flow chart showing a method of evaluating stray light in accordance with a fifth embodiment of the present invention. [Main component symbol description] 1 〇. Stray light test system 20: Light source 30: Optical lens 40: Light sensor 200 • Horizontal axis 210: Optical axis 220. Imaging surface k: Spot size Αι, A2, A3: Area D: light-emitting aperture P: object distance S301 to S308, S404, S407, S408, S501 to S503 between the light source and the optical lens: steps 18 of the stray light evaluation method of the embodiments of the present invention

Claims (1)

年月日修正替換灵 100-5-6 十、申請專利範圍: L一種雜散光之評估方法,包括: 強产相光學元件或—待測光學系統光柏上的七 ,如得到1 —光擴散函數; 獲取该待測光學元件或該待測 得到-第二光擴散函數上的 運算:—第?二數:第—光擴散函數進行相關 運算,以彳^卜"^^^^^散_進行相關 其中依所述:雜二光之評估方法’ 數之步驟,包括:一第一相關函數得到該雜散光係 量;將該第-相關函數進行面積分運算,以得到—第一純 量;二相關函數進行面積分運算,以得到-第二純 依據§亥第一純量與兮_ θ 3.如申請專利範圍第^二屯:得到該雜散光係數。 其中依據誃望一奸旦战2項所述之雜散光之評估方法, 驟,包括^ ’’、里/、該第二純量得到該雜散光係數之步 依據公式TV = 斗〜 4 4异该雜散光係數,其中Al為該第 丄dJ丄 100-5-6 屯里A2為4第二純量’ N為該雜散光係數。 盆中til專概圍^ 2顧狀雜散光之評估方法, 八中上返之面積分運算為有限面積分運算。 其中範圍第1項所述之雜散光之評估方法, 係數之步包^關函數與該第二相關函數得到該雜散光 取該第一相關函數之峰值做為一第一峰值; 該第相關函數之峰值做為一第二峰值;以及依據 乂 值,、該第二峰值得到該雜散光係數。 6.如巾μ糊圍第5項所述之雜散光之評估方法, 挪,據該第—峰值與該第二峰值得到該雜散光係數之步 鄉’包括: 據A式iV-一^计异該雜散光係數,其中匕為該第 峰值’ p2為該第二峰值,N為該雜散光係數。 I ^申请專利範圍第5項所述之雜散光之評估方法, 八中°亥第峰值為該第一相關函數之最大峰值,該第二峰 值為該第二相關函數之最大峰值。 8. 如申請專職圍第1項所述之雜航之評估方法, 更包括: 將該第一光擴散函數與該第二光擴散函數轉換至 率空間。 9. 如申請專利範圍第丨項所述之雜散光之評估方法, 更包括: 依據該雜散光係數與該第一光擴散函數以得到該光 20 1^78231 100-5-6 源之一光點大小。 、10.如申請專利範圍第9項所述之雜散光之評估方 法’其中依據該雜散光係數與該第一光擴散函數以得到該 光點大小之步驟,包括: / J ^ J ^ G(x, y)dxdy ~\\\\ G{x, y)dxdy ^ \ZiZG(x,y)Jy 得到該光 依據公式 點大小,其中為該第一光擴散函數,k為該光點大小, N為該雜散光係數。 U·如申請專利範圍第1項所述之雜散光之評估方 法’其中得到該雜散光分佈函數之步驟包括: 咏將該第一相關函數與該第二相關函數進行相、诗遥 异’以得到該雜散光分佈函數。 ' 12.如申請專利範圍第11項所述之雜散光之評估方 之步ί中相關函數與該第二相關函數進行相減運算 最大峰^第―相關函數之最大料與該第二相關函數之 法,括申請專利範圍第1項所述之雜散光之評估方 ‘雜敢光閥值。 法,^用t請專利範圍第1項所述之雜散光之評估方 少-光源:Γ政光!測系統’該雜散光量測系統包括至 %,制11與該待測光學元件辆待測光學率 ί統置Γ該待測光學元件或該待測= …先源之另,位置,妙得_第—光擴散 21 1378231 午β〇-〇·替換買 函數與該第二光擴散函數,而該雜散光係數與該雜散光分 佈函數用以評估該待測光學元件或該待測光學系統之雜散 光。 15.如申請專利範圍第14項所述之雜散光之評估方 法,更包括: 對該光感測器進行暗電流校正。 16.如申請專利範圍第1項所述之雜散光之評估方 法,其中該待測光學元件或待測光學系統包括一光學單/ 複數鏡片、一光學鏡頭或是含有感測裝置之一光學系統模Revision of the year and month to replace the spirit 100-5-6 Ten, the scope of application for patents: L A method for evaluating stray light, including: strong phase optical components or - the optical system to be tested on the cypress, seven, such as 1 - light diffusion Function; obtain the operation on the optical element to be tested or the second light diffusion function to be measured: - the first? The second number: the first-light diffusion function performs the correlation operation, and the correlation process is performed according to the method of evaluating the number of the heterogeneous light, including: a first correlation function Obtaining the amount of the stray light; performing the area-division operation on the first correlation function to obtain the first scalar quantity; and performing the area division operation on the second correlation function to obtain - the second pure basis § hai first scalar quantity and 兮 _ θ 3. As in the scope of the patent application, the stray light coefficient is obtained. According to the evaluation method of the stray light described in the item 2, the method includes: ^ ', 里 /, the second scalar is obtained according to the formula of the stray light coefficient TV = 斗~ 4 4 The stray light coefficient, wherein Al is the third 丄dJ丄100-5-6, and A2 is 4, the second singular quantity 'N is the stray light coefficient. In the basin, the til is used to evaluate the method of stray light, and the area of the upper part of the eighth is calculated as a limited area. Wherein the evaluation method of the stray light according to the first item of the range, the coefficient step function and the second correlation function obtain the peak of the first correlation function of the stray light as a first peak; the first correlation function The peak value is taken as a second peak; and according to the 乂 value, the second peak obtains the stray light coefficient. 6. The evaluation method of stray light according to item 5 of the towel, according to the first peak and the second peak, the step of obtaining the stray light coefficient 'includes: According to the formula AV-I The stray light coefficient is different, wherein 匕 is the first peak 'p2 is the second peak, and N is the stray light coefficient. I ^ The method for evaluating stray light according to item 5 of the patent application scope, wherein the peak value of the eight middle angle is the maximum peak value of the first correlation function, and the second peak value is the maximum peak value of the second correlation function. 8. The method for evaluating the miscellaneous flight described in item 1 of the full-time application further includes: converting the first light diffusing function and the second light diffusing function into a rate space. 9. The method for evaluating stray light according to the scope of the patent application, further comprising: obtaining the light according to the stray light coefficient and the first light diffusing function to obtain the light of the light source 1 1 782 31 100-5-6 Point size. 10. The method for evaluating stray light according to claim 9 of the invention, wherein the step of obtaining the spot size according to the stray light coefficient and the first light diffusing function comprises: /J ^ J ^ G ( x, y)dxdy ~\\\\ G{x, y)dxdy ^ \ZiZG(x,y)Jy to get the light according to the formula point size, where is the first light diffusion function, k is the spot size, N is the stray light coefficient. U. The method for evaluating stray light as described in claim 1 wherein the step of obtaining the stray light distribution function comprises: 咏 aligning the first correlation function with the second correlation function The stray light distribution function is obtained. 12. The correlation function of the stray light evaluation method described in item 11 of the patent application scope is the subtraction operation of the correlation function and the second correlation function. The maximum peak of the first-correlation function and the second correlation function The method includes the appraisal of the stray light described in item 1 of the patent application scope. Law, ^ use t to ask for the assessment of stray light as described in item 1 of the patent scope - Light source: Qi Zhengguang! The measurement system 'the stray light measurement system includes to %, the system 11 and the optical component to be tested to be tested are placed on the optical element to be tested or the to-be-tested ... _ first-light diffusion 21 1378231 mid-β〇-〇· replacement buy function and the second light diffusion function, and the stray light coefficient and the stray light distribution function are used to evaluate the optical element to be tested or the optical system to be tested Stray light. 15. The method for evaluating stray light according to claim 14 of the patent application, further comprising: performing dark current correction on the photo sensor. 16. The method for evaluating stray light according to claim 1, wherein the optical element to be tested or the optical system to be tested comprises an optical single/complex lens, an optical lens or an optical system including a sensing device. mold 22twenty two
TW96132877A 2007-09-04 2007-09-04 Estimatation method of veiling glare TWI378231B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96132877A TWI378231B (en) 2007-09-04 2007-09-04 Estimatation method of veiling glare

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96132877A TWI378231B (en) 2007-09-04 2007-09-04 Estimatation method of veiling glare

Publications (2)

Publication Number Publication Date
TW200912274A TW200912274A (en) 2009-03-16
TWI378231B true TWI378231B (en) 2012-12-01

Family

ID=44724846

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96132877A TWI378231B (en) 2007-09-04 2007-09-04 Estimatation method of veiling glare

Country Status (1)

Country Link
TW (1) TWI378231B (en)

Also Published As

Publication number Publication date
TW200912274A (en) 2009-03-16

Similar Documents

Publication Publication Date Title
US20180038768A1 (en) Methods and Apparatus for Small Aperture Lensometer
US10335027B2 (en) Methods and apparatus for assessment of refractive condition
WO2016188378A1 (en) Measurement device and measurement method for thin film provided with transparent substrate
CN104079827A (en) Light field imaging automatic refocusing method
CN102183301B (en) Portable type unified glare measuring apparatus
EP3270098B2 (en) Measurement system for eyeglasses-wearing parameter, measurement program, measurement method therefor, and manufacturing method for eyeglasses lens
CN103163663A (en) Method and device for estimating the optical power of corrective lenses in a pair of eyeglasses worn by a spectator
CN107427208A (en) For providing the wear-type eye tracking equipment and method of rift-free eye tracking by lens combination
TR201811449T4 (en) Method for observing linear dimensions of three-dimensional objects.
CN109272557A (en) A kind of one camera single light source sight line tracking system eyeball parameter calibration method
CN106993117A (en) A kind of auxiliary lens of Intelligent mobile equipment and illumination adjustment system
JP2006095008A (en) Visual axis detecting method
JP2016211999A (en) Measurement device, measurement method and program
CN104813217B (en) For the method for the passive single channel imager for being designed to estimate the depth of field
US20220092805A1 (en) Optical caliper for 3-d endoscopic imaging and measurement
US20160155000A1 (en) Anti-counterfeiting for determination of authenticity
TWI378231B (en) Estimatation method of veiling glare
TW201250370A (en) Image calculation and measurement apparatus and method
JP5332202B2 (en) Refractive index measurement method
CN107529962A (en) Image processing apparatus, image processing method and image processing program
JP2018163106A (en) Lens meter
JP2006105868A (en) Lens meter
CN110287797B (en) Refractive screening method based on mobile phone
CN205607856U (en) Transparent medium refracting index detection device
TWI498539B (en) Image-based diopter measuring system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees