TWI374548B - Polyester resin sheet for solar cell, laminate formed by using the same, protective sheet inside the solar cell and module thereof - Google Patents

Polyester resin sheet for solar cell, laminate formed by using the same, protective sheet inside the solar cell and module thereof Download PDF

Info

Publication number
TWI374548B
TWI374548B TW95109532A TW95109532A TWI374548B TW I374548 B TWI374548 B TW I374548B TW 95109532 A TW95109532 A TW 95109532A TW 95109532 A TW95109532 A TW 95109532A TW I374548 B TWI374548 B TW I374548B
Authority
TW
Taiwan
Prior art keywords
layer
polyester resin
resin sheet
sheet
solar cell
Prior art date
Application number
TW95109532A
Other languages
Chinese (zh)
Other versions
TW200737530A (en
Inventor
Hideki Fujii
Masahiro Kawaguchi
Original Assignee
Toray Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries filed Critical Toray Industries
Priority to TW95109532A priority Critical patent/TWI374548B/en
Publication of TW200737530A publication Critical patent/TW200737530A/en
Application granted granted Critical
Publication of TWI374548B publication Critical patent/TWI374548B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Description

1374548 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種太陽電池用襯片、及使用其之太 陽電池,該太陽電池用襯片係價廉、具有優良的耐環境性 (耐水解性、耐候性等)、且最適合使用於要求太陽光入射 光背面側的反射係數之領域。 【先前技術】 近年來,作爲次世代能源之無污染能源的太陽電池係 受到注目,從建築領域至電氣電子零件的開發係爲增加。 太陽電池元件的構成,係以高光線穿透材、太陽電池模組、: 塡充樹脂層及內面密封片作爲基本構成之物,可以組裝在 房屋的屋頂或利用於電氣、電子零件等。被使用作爲太陽 電池的構成項目之一的內面密封片係使用熱塑性樹脂片, 該(太陽電池用)熱塑性樹脂片被要求必須具有堅強的對自 然環境之耐久性(耐加水分解、耐候性)。且因爲亦被要求 提升太陽電池之太陽光的換電效率,亦利用太陽電池之內 面密封薄膜的反射光加以轉換成電能。又,同時亦被要求 具有輕量性、良好的強度及電池加工性。專利文獻1掲示 使用一種數量平均分子量高的原料聚合物作爲低比重的太 陽電池用襯片。但是,由於遮蓋性差而被要求進一步改善。 使用在屋外的太陽電池模組時,爲了確保信賴性,提 高機械強度、在大氣環境中亦不容易劣化之耐環境性能, 通常所使用的構造係使用合成樹脂將太陽電池封裝在強化 玻璃板或金屬板上。更具體地藉由層積方法來說明模組構 1374548 造時,可以使用在強化玻璃板上將乙烯·乙酸乙烯酯共聚物 (以下稱爲「EVA」)片/太陽電池/EVA片/以氟化乙烯片夾 住鋁箔所構成的片(以下稱爲「鋁·氟複合片」)片,以此順 序層積、加熱壓貼而成的構造。 又,太陽電池若是非晶矽的薄膜太陽電池時,可以使 用在強化玻璃板上直接形成太陽電池,層積EVA片、鋁-氟複合片並加熱壓貼而成之物。已知有使用聚乙烯系的樹 脂或聚酯系樹脂、使用氟系薄膜作爲太陽電池的內面密封 薄膜。(參照專利文獻2〜3) ! 又,已知具有氣泡之聚酯薄膜(參照專利文獻4),但是 此等薄膜未被利用作爲太陽電池用的襯片·用。 專利文獻1:特開2002-26354號公報(第2頁第1欄第 3 2行〜3 9行) 專利文獻2:特開平11-261085號公報(第2頁第1欄 第36行〜第2欄第4行) 專利文獻3 :特開平1 1 - 1 86 5 7 5號公報(第2頁第1欄 第36行〜第3頁第1欄第22行) 專利文獻4 :特公平7-3 7098號公報(第1頁第1欄第 1行〜第3頁第2欄第23行) 【發明內容】 前述之以往的薄片具有以下的問題點。以往,在該領 域所使用的雙軸延伸聚酯片,因爲缺乏在耐環境性上最被 要求的耐水解性,在此領域的使用受到限制。又,著色成 白色的雙軸延伸聚酯片,雖然反射係數提升,但是因爲缺 1374548 乏上述的耐水解性,在此領域的使用受到限制。 又,氟系薄片雖然具有優良的耐水解性或耐候性,但 是有缺乏氣體阻障性、薄膜的強硬度較弱之缺點。因此, 此種薄片爲了改良氣體阻障性及具有作爲內面密封材的強 度,係層積鋁等金屬箔等而使用。即便使用專利文獻1 (爲 了解決此等問題之發明)的薄膜,亦會有從積層界面剝離的 問題、在製造太陽電池時或施工於屋頂時會有問題。 又,使用聚酯片之物,雖然較爲低廉,但是若曝露在 高溫(100〜120°c)時,耐熱性有困難。 鑒於以往如此的背景,本發明係以提供一種太陽電池 用聚酯樹脂片及使用其之太陽電池作爲目的,該太陽電池 用聚酯樹脂片價廉且具有優良的耐水解性、改善抗界面剝 離性、而且藉由提升遮蓋性能夠提升太陽電池的換電效率。 鑒於以往如此的背景,本發明者專心檢討改善耐水解 性、耐熱性,進而藉由提升遮蓋性來提升太陽電池的換電 效率,在開發應用可以符合特定的UV穿透率、相對反射 係數、表觀密度、光學濃度、光學濃度的偏差、以及數量 平均分子量之太陽電池用聚酯樹脂片時,追究明白而一舉 解決了如此的課題。 爲了解決如此的課題,本發明採用以下的手段。亦即, (1)—種太陽電池用聚酯樹脂片,具有以數量平均分子量 爲1 8 5 00〜4 0000之1或複數層形成的聚酯樹脂層,在該聚 酯樹脂層具有至少1層以上具有5〜4 0重量%二氧化鈦的 層,其中波長300〜350奈米的透光率爲0.005〜10%、相 1374548 v 以下。 內面 之太 〇 面保 脂片 良的 升太 作爲 撓性 以數 酯樹 重量 • 005 度爲 對於 U以 池模 如第 (ίο) —種太陽電池內面保護片,係使用於太陽電池的 密封材,該太陽電池內面保護片係如(1)至(9)中任一項 陽電池用聚酯樹脂片或太陽電池用聚酯樹脂片積層品 (Π)—種太陽電池模組,係使用如(10)之太陽電池內 護片而成。 [發明之效果] 依據本發明,可以提供一種太陽電池用熱塑性樹 ^ 及積層體,該太陽電池用熱塑性樹脂片價廉且具有優 耐水解性、改善耐熱性、而且藉由提升遮蓋性能夠提 陽電池的換電效率。該薄片及積層體當然可以使用於 屋頂材料所使用的太陽電池,亦能夠適合使用於具有 的太陽電池及電子零件等。 【實施方式】 本發明係提供一種太陽電池用聚酯樹脂片,具有 量平均分子量爲18500〜4〇〇0〇之1或複數層形成的聚 b 脂層’在該聚酯樹脂層具有至少1層以上具有5〜40 %二氧化鈦的層,其中波長300〜350奈米的透光率爲〇 〜1 0 % '相對反射係數爲8 0 %以上1 〇 5 %以下、表觀密 1·37〜1.65克/立方公分、光學濃度爲0.55〜3.50'相 中心値之光學濃度偏差爲20%以內。 在本發明所稱太陽電池係指將太陽光轉換成電肯丨 下稱換電)之系統,較佳是以高光線穿透材、太陽電 組、塡充樹脂層及內面密封片作爲基本構成之物,例[Technical Field] The present invention relates to a lining for a solar cell, and a solar cell using the same, which is inexpensive and has excellent environmental resistance (water resistance) It is most suitable for use in the field of reflection coefficient requiring the back side of sunlight incident light. [Prior Art] In recent years, solar cells, which are non-polluting energy sources for the next generation of energy, have attracted attention, and the number of developments from the construction field to electrical and electronic parts has increased. The solar cell element is composed of a high light-transmitting material, a solar cell module, a squeezing resin layer, and an inner surface sealing sheet, and can be assembled on a roof of a house or used for electrical and electronic parts. A thermoplastic resin sheet is used as the inner surface sealing sheet which is used as one of the constituent items of the solar battery, and the thermoplastic resin sheet (for solar cells) is required to have a strong durability against the natural environment (hydrolysis resistance, weather resistance). . And because it is also required to improve the solar power conversion efficiency of the solar cell, it is also converted into electric energy by using the reflected light of the inner sealing film of the solar cell. At the same time, it is also required to have lightweight, good strength and battery processing properties. Patent Document 1 discloses the use of a base polymer having a high number average molecular weight as a lining for a low specific gravity solar battery. However, further improvement is required due to poor opacity. When using a solar cell module outside the house, in order to ensure reliability, improve mechanical strength, and environmental resistance that is not easily deteriorated in an atmospheric environment, a structure generally used is a solar cell packaged on a tempered glass plate or a synthetic resin. On the metal plate. More specifically, by the lamination method, the module structure 1374548 can be used, and an ethylene-vinyl acetate copolymer (hereinafter referred to as "EVA") sheet/solar cell/EVA sheet/fluorine can be used on the tempered glass sheet. A sheet in which an aluminum foil is sandwiched between aluminum foils (hereinafter referred to as "aluminum-fluorine composite sheet") is laminated in this order and heated and pressed. Further, when the solar cell is an amorphous thin film solar cell, a solar cell can be directly formed on the tempered glass plate, and an EVA sheet or an aluminum-fluorine composite sheet can be laminated and heated and pressed. A polyethylene-based resin or a polyester-based resin and a fluorine-based film are used as an inner surface sealing film for a solar battery. (Patent Documents 2 to 3) Further, a polyester film having air bubbles is known (see Patent Document 4). However, these films are not used as a lining for solar cells. Patent Document 1: JP-A-2002-26354 (Page 2, column 1, line 3-2 to line 3 9) Patent Document 2: JP-A-11-261085 (page 2, column 1, line 36 to page 1) 2nd column, 4th line) Patent Document 3: Unexamined Patent Publication No. 1 1 - 1 86 5 7 5 (Page 2, column 1, line 36 to page 3, column 1, line 22) Patent Document 4: Special Fair 7 -3 7098 (1st page, 1st column, 1st line - 3rd page, 2nd column, 23rd line) [Summary of the Invention] The conventional sheet described above has the following problems. Conventionally, the biaxially stretched polyester sheet used in this field is limited in use in this field because of the lack of hydrolysis resistance which is most desirable in environmental resistance. Further, although the biaxially stretched polyester sheet colored in white has an improved reflection coefficient, the use of the above-mentioned field is limited because of the lack of hydrolysis resistance described above. Further, although the fluorine-based sheet has excellent hydrolysis resistance or weather resistance, it is disadvantageous in that it lacks gas barrier properties and the film has a weak hardness. Therefore, such a sheet is used for laminating a metal foil such as aluminum in order to improve gas barrier properties and to have strength as an inner surface sealing material. Even if a film of Patent Document 1 (invention for solving such problems) is used, there is a problem of peeling from the laminated interface, and there is a problem in manufacturing a solar cell or when it is applied to a roof. Further, although a polyester sheet is used, it is relatively inexpensive, but when exposed to a high temperature (100 to 120 ° C), heat resistance is difficult. In view of the prior art, the present invention has an object of providing a polyester resin sheet for a solar cell and a solar cell using the same, which is inexpensive and has excellent hydrolysis resistance and improved interface peeling resistance. Sex, and by improving the opacity, can improve the solar cell's power conversion efficiency. In view of the background in the past, the present inventors focused on reviewing the improvement of hydrolysis resistance and heat resistance, and thereby improving the power-receiving efficiency of the solar cell by improving the hiding property, and the development can be applied to a specific UV transmittance, relative reflection coefficient, When the polyester resin sheet for solar cells is used for the apparent density, the optical density, the optical density deviation, and the number average molecular weight, the problem is solved in one fell swoop. In order to solve such a problem, the present invention employs the following means. That is, (1) a polyester resin sheet for a solar cell, which has a polyester resin layer formed of a number average molecular weight of 1 8 5 00 to 4 0000 or a plurality of layers, and has at least 1 in the polyester resin layer. A layer having 5 to 40% by weight of titanium dioxide above the layer, wherein a light transmittance of 300 to 350 nm is 0.005 to 10% and a phase of 1374548 v or less. The inside of the sun-faced grease-retaining film is as good as the flexibility to the weight of the ester tree. • 005 degrees for the U-shaped pool model as the first (ίο)-type solar cell inner protective sheet, used for solar cells. The solar cell inner surface protective sheet is a polyester resin sheet for a positive battery or a polyester resin sheet for a solar battery, such as a solar battery module, according to any one of (1) to (9). It is made of a solar cell inner cover such as (10). [Effects of the Invention] According to the present invention, it is possible to provide a thermoplastic resin for a solar cell and a laminate, which is inexpensive, has excellent hydrolysis resistance, improves heat resistance, and can be improved by improving opacity. The power exchange efficiency of the anode battery. The sheet and the laminated body can of course be used for a solar cell used for a roofing material, and can also be suitably used for a solar cell and an electronic component. [Embodiment] The present invention provides a polyester resin sheet for a solar cell having a polyb lipid layer having a number average molecular weight of 18,500 to 4 Å or a plurality of layers, and having at least 1 in the polyester resin layer. a layer having 5 to 40% of titanium dioxide above the layer, wherein the transmittance of the wavelength of 300 to 350 nm is 〇1 to 10%, and the relative reflection coefficient is 80% or more and 1 〇5% or less, and the apparent density is 1.37~ The optical density deviation of 1.65 g/cm 3 and the optical density of 0.55 to 3.50 'phase center 为 is within 20%. In the system of the present invention, the term "solar battery refers to converting sunlight into electric electricity", preferably using high light penetrating material, solar electric group, enamel resin layer and inner surface sealing sheet as basic Constitutes, examples

1374548 1圖所示構造,可以組裝在房屋的屋頂或利用於電 子零件等。 在此,高光線穿透材係指能夠使太陽光有效率 射’保護背部的太陽電池模組之物,較佳是使用玻璃 光線穿透塑膠或薄膜等。又,因爲太陽電池模組係將 光轉換成電能,所以是太陽電池的心臟部分。該模組 用矽、鎘-碲、鍺-砷等半導體。目前以使用單結晶砂 結晶矽、非晶矽等爲多。 又,前述塡充樹脂層係用以固定及保護太陽電池 太陽電池元件或爲了電絕緣的目的而使用,其中性能 格面而言,以使用乙烯-乙酸乙烯酯樹脂(EVAJ爲佳。 本發明以使用作爲太陽電池模組的內面密封片爲 該薄膜藉由具有阻礙太陽電模組最忌的水蒸氣之機能 夠提升太陽電池背部的遮蓋性、提升反射係數,有助 升太陽電池的換電效率。又,藉由遮掩從背面入射 區域波長3 00奈米〜3 5 0奈米,而成爲耐久性優良 池0 在本發明之聚酯樹脂係二羧酸衍生物與二醇衍生 縮聚物,例如可以使用聚對二甲酸乙二酯、聚對酞酸 酯 '聚對酞酸丁二酯、聚2,6-萘二甲酸乙二酯、聚對 1,4-環己烷二甲酯、1,4-環己烷二甲醇共聚合聚對酞酸 酯等。因爲價廉的緣故,特別是聚對酞酸乙二酯可以 於非常多方面的用途。又,此等樹脂亦可以是同元樹 亦可以是共聚物或摻合物。所使用聚酯之較佳熔點, '電 地入 或咼 太陽 係使 、多 內的 及價 佳。 、能 於提 UV 陽電 物的 丙二 酞酸 乙二 使用 脂, 就耐 -10- 1374548 < 熱性而言以250 °C以上之物爲佳,就生產力而言以300 t以 下之物爲佳。若在此範圍內時,可以與其他成分共聚合, 亦可以摻合。又,在機械特性及生產力上無問題的範圍內, 亦可以在例如6 0重量%以下的範圍添加滑劑、著色劑、抗 靜電劑、低密度化劑等添加劑。 本發明的太陽電池用聚酯樹脂片,係指將上述的聚合 物熔融成形所得到的未延伸、無配向片,進行雙軸延伸、 熱處理而到的薄片。就作爲太陽電池用內面密封片之適當 > 的強硬度、加工性、太陽電池輕量性而言,該薄片的厚度 以20〜350微米的範圍爲佳。 太陽電池用聚酯樹脂片的厚度,對提升部分放電電壓 的耐壓係重要的,以使用共擠出之層積或貼合等的方法, 來提升厚度至目標耐壓之方法爲佳。 在本發明之聚酯樹脂層係指由數量平均分子量爲 1 8 5 00〜4000G之聚酯樹脂所構成的層,可以是單層亦可以 是複數的層所構成之物。本發明的聚酯樹脂片係指具有上 I 述聚酯樹脂層、按照必要的其他聚酯層所構成的多層或單 層。 在本發明,聚酯樹脂片之波長300奈米〜350奈米的 透光率必須爲0·005〜10 %。本發明所稱波長300奈米〜350 奈米的透光率係指入射該薄片之該波長的入射光與在相反 面的穿透率之比率。爲了降低UV劣化,太陽電池用熱塑 性樹脂片的UV區域的波長(300〜3 5 0奈米)的穿透率(以 下,亦稱爲UV穿透率)必須符合0.005〜10%的範圍,以 1374548 r 0.01〜7%爲佳,以0.05〜5%的範圍爲更佳。入射光的波長 中亦包含會使該太陽電池用聚酯樹脂片劣化之UV區域的 光線,若在表層附近可以遮蔽時,往內層之UV區域波長 的滲透減少 '耐候性變爲優良。UV穿透率大於10 %時,由 於經時接收υν波長能量、分子鏈產生***、機械特性降 低,乃是不佳。又,因爲色調亦變黃,從外觀亦能得知劣 化。 控制上述波長300奈米〜350奈米的透光率(UV穿透 I 率)的方法,可以舉出的有藉由控制下述二氧化鈦的混合比 率來進行控制。 若增加二氧化鈦混合比率時,遮蓋性增加、:同時波長 300〜350奈米的穿透率顯著下降。熱塑樹脂片的UV穿透 率以0.005〜10 %爲佳,從二氧化鈦的混合比率(相對於含有 二氧化鈦的層之二氧化鈦的含量)大於5重量%的區域起該 效果開始顯現。以7重量%以上爲佳,以1 0重量%以上爲 更佳。就生產力、薄強度的觀點,二氧化鈦的濃度之上限 > 以40重量%以下爲佳。藉由在聚酯樹脂層中含有具有上述 二氧化鈦含量的層,可以符合本發明波長300〜350奈米透 光率的範圍。 在本發明,熱塑性樹脂片的相對反射率必須爲8 0%〜 10 5% >以8 3 %〜1 0 5 %爲較佳,以8 5〜1 0 5 %爲更佳。小於 80%時,光損失大、幾乎無助於換電效率,乃是不佳。 在此,本發明所稱相對反射係數係使用氧化鋁作爲標 準白色板,在波長5 60奈米測定反射係數時的反射係數(基 -12- 1374548 、 準値)爲1 00%,將試樣的測定値換算成相對於該基準値之 數値。相對反射値在本發明的範圍時,會使來自太陽電池 模組的間隙的漏光相對於入射光產生擴散反射,能夠再次 到達太陽電池。因爲能夠提升照度,可以改良太陽電池的 換電效率。 在本發明,聚酯樹脂片的表觀密度必須爲1.37〜1.65 克/立方公分。 在此,表觀密度係指從由多層或單層所層積得到的薄 > 膜整體之厚度、面積、重量計算得到的數値。·藉由添加比 重高的無機粒子,在界面的折射係數差變大,有助於反射 性能。有助於反射係數之表觀必度的下限爲1.37克/立方公 分,亦考慮太陽電池輕量性時,上限爲1.65克/立方公分。 將表觀密度控制在1.37至1.65克/立方公分的方法,可以 藉由控制聚酯樹脂的種類、無機粒子的種類、無機粒子的 混合比率來達成》無機粒子以使用滑石粉、氧化鎂、二氧 化鈦、二氧化鋅、碳酸鈣、硫酸鋇、石膏等爲佳。其中因 > 爲使用二氧化鈦時能夠擴散反射UV波長區域的波長,對 耐UV性具有顯著的效果。 而且,爲了提升白色度,使用4,4’·雙(2-苯并噚唑基) 芪等螢光增白劑時係有效果的。 在本發明使用麥克佩斯(Macbeth)光學濃度計測定時 時,光學濃度必須爲〇·55以上,以0_60以上爲更.佳。理論 上,上限係越高越佳,就生產力及薄片強度的觀點爲3.5 以下,以3 · 0以下爲佳,以2.5以下爲更佳。在此,本發明 -13- 1374548 v 所稱光學濃度係指以遮蓋性作爲指標而定量化之數値,數 値越高表示遮蓋性高,在本發明係指使用光學濃度計 (Macbeth製:TR-524)以後述的條件定得到的數値。在該太 陽電池用熱塑性樹脂片,必須具有遮蓋性係爲了使來自該 太陽電池上部的間隙之太陽光不會漏光而加以反射,該反 射光亦能轉換成電能,賦與提升換電效率之機能。特別是 配置在太陽電池模組下部之該太陽電池用熱塑性樹脂片, 必須能夠防止入射光從間隙往太陽電池外部洩漏》光學濃 ® 度小於〇· 55時,入射.光會往太陽電池外部洩漏。因爲此時, 太陽電池元件無法再次使用來轉換成電能,無法提升換電 效率而不佳。若提升二氧化鈦等無機粒子的混合比率時, 在增加遮蓋性同時,能夠顯著地使穿透率下降。作爲遮蓋 性指標之光學濃度如上述,以〇 . 5 5〜3.5爲佳,從二氧化鈦 的混合比率大於5重量%的區域,開始顯現此效果。二氧 化鈦濃度以7重量%以上爲佳,以1 〇重量%以上爲更佳。 就生產力、薄片強度的觀點,二氧化鈦的濃度上限以40重 量%以下爲佳。關於二氧化鈦含有層,藉由使聚酯樹脂層 含有具有上記二氧化鈦的含量的層,可以符合本發明的光 學濃度的範圍。 在本發明,藉由麥克佩斯光學濃度計測定時之光學濃 度偏差係相對於中心値,必須在20%以內。光學濃度的偏 差係以(最大値一最小値)/中心値表示。例如光學濃度的中 心値爲1 .0時,光學濃度的偏差爲0.2的範圍,光學濃度必 須符合〇 . 9〜1. 1的範圍。光學濃度的偏差,相對於中心値 1374548 *· 以1 5 %以內爲佳,以1 Ο %以內爲更佳。因爲光學濃 要求在太陽電池模組的面內必須均勻°在目前泛用 長1.5公尺X寬1.0公尺的範圍必須符合要求。光學 差係在從製品卷物中央之長度方向每1〇〇公尺取樣 向1.5公尺X寬度方向1公尺’進而在1.5公尺XI.0 切下試樣的四角取樣10公分χΐ0公分。使用該104 公分的試樣測定光學濃度3次,作爲光學濃度。以 支製品卷物測定5次時之光學濃度的最大値、最小 > 心値(數據數爲20)算出光學濃度偏差作爲光學濃度 光學濃度偏差脫離20%的範圍時,UV穿透率的偏差 光率的偏差會影響到相對反射率的偏差,就性能及 面而言並不佳。爲了使光學濃度偏差在20%以內, 低原料晶片的分級,例如使用比重不同之原料晶片 以藉由變更原料晶片的大小來達成。二氧化鈦的比I 〜4.2克/立方公分,聚酯的比重爲1.2〜1.4克/立:¾ 含有5 0重量%二氧化鈦之主晶片的比重爲2 · 5〜2 . I 方公分。以往之主晶片的形狀爲長度5.95〜8.05毫 度3_20〜4.80毫米、高度1.70〜2.30毫米之圓柱狀 晶片狀在稀釋成二氧化鈦濃度爲5〜40重量°/。時, 機上部的漏斗內,會有二氧化鈦的主晶片與聚酯片 重高的主晶片先吐出的問題存在。因此’先吐出薄 含有較多的二氧化鈦,光學濃度較高,後吐出薄片 有較少的二氧化鈦,光學濃度較低,光學濃度偏差 因此,藉由使二氧化鈦主晶片的形狀變更爲長度 度偏差 尺寸之 濃度偏 長度方 公尺之 分 X 1 0 從每一 値、中 偏差。 或總透 品質方 必須降 時,可 I 爲 3.9 「公分。 8克/立 米、寬 。上述 在擠壓 分級比 片因爲 因爲含 變大。 2.40 〜 1374548 « 4.60毫米、寬度3_20〜4.80毫米、高度1.70〜2.30毫米的 圓柱狀,可以在本發明之光學濃度偏差的範圍內。 在本發明,爲了符合耐水解性,該聚酯樹脂片必須具 有數量平均分子量1 8500以上之聚酯樹脂層。上限係越高 越佳,但是該數量平均分子量大於40000時,實質上無法 擠出’考慮熔融成形性、雙軸延伸性,以35000以下的分 子量爲更佳。亦即,數量平均分子量爲18500〜40000,以 19000〜35000爲較佳,以20000〜30000爲更佳。在此, > 本發明所稱數量平均分子量係:··以後述之凝膠滲透層析法 (GPC ; gel permeation chromatography)測 定得到,數量平 均分子量係聚合度的指標。數量平均分子量若在本發明的 範圍時,即使聚酯樹脂進行加水分解反應,因爲反應起始 處的聚合度較高,與低於 1 8500之數量平均分子量比較 時,能夠具有優勢地減少經時劣化。 爲了調整數量平均分子量本發明的範圍內,在聚合熱1374548 1 The structure shown can be assembled on the roof of a house or used for electronic parts. Here, the high light penetrating material refers to a solar cell module capable of efficiently emitting sunlight to protect the back, and preferably uses glass light to penetrate the plastic or film. Also, because the solar cell module converts light into electrical energy, it is the heart of the solar cell. The module uses semiconductors such as germanium, cadmium-tellurium, and antimony-arsenic. At present, there are many crystals of ruthenium, amorphous ruthenium, and the like using single crystal sand. Further, the above-mentioned squeezing resin layer is used for fixing and protecting a solar cell solar cell element or for the purpose of electrical insulation, and in terms of performance, it is preferable to use an ethylene-vinyl acetate resin (EVAJ). The inner sealing sheet used as the solar cell module can improve the hiding property of the back of the solar cell and enhance the reflection coefficient by means of a machine having water vapor which is the most difficult to block the solar power module, and can help to change the solar battery. Efficiency. Further, by masking the wavelength of the incident region from the back side of 300 nm to 305 nm, it becomes an excellent durability pool 0 in the polyester resin-based dicarboxylic acid derivative and the diol-derived polycondensate of the present invention, For example, polyethylene terephthalate, polyparaphthalate 'polybutylene terephthalate, polyethylene 2,6-naphthalenedicarboxylate, poly-p-1,4-cyclohexanedimethyl ester, 1,4-cyclohexanedimethanol copolymerized polyparaphthalic acid ester, etc. Because of its low cost, especially polyethylene terephthalate can be used in many aspects. Moreover, these resins can also be the same The meta tree can also be a copolymer or a blend. The preferred melting point of polyester, 'electrically grounded or enthalpy of the solar system, more than the inside and the price is good. It can be used to raise the UV-positive material of the use of the fat of the malonate, it is resistant to -10- 1374548 < heat It is better to use something above 250 °C, and it is better than 300 t in terms of productivity. If it is within this range, it can be copolymerized with other components, or it can be blended. Also, in mechanical properties and productivity In the range of no problem, for example, an additive such as a lubricant, a colorant, an antistatic agent, or a low density agent may be added in a range of, for example, 60% by weight or less. The polyester resin sheet for a solar cell of the present invention means The unstretched and non-aligned sheet obtained by melt-molding the above-mentioned polymer is subjected to biaxial stretching and heat treatment, and is suitable for use as an inner surface sealing sheet for solar cells, and has high hardness, workability, and lightness of the solar cell. Quantitatively, the thickness of the sheet is preferably in the range of 20 to 350 μm. The thickness of the polyester resin sheet for solar cells is important for increasing the partial discharge voltage withstand voltage, to use a laminate of coextrusion or Fit, etc. The method of increasing the thickness to the target withstand voltage is preferred. The polyester resin layer of the present invention refers to a layer composed of a polyester resin having a number average molecular weight of 1 8 5 00 to 4000 G, which may be a single layer or The polyester resin sheet of the present invention refers to a multilayer or single layer comprising the polyester resin layer described above and other polyester layers as necessary. In the present invention, the polyester resin sheet The light transmittance of the wavelength of 300 nm to 350 nm must be 0. 005 to 10%. The light transmittance of the wavelength of 300 nm to 350 nm according to the present invention means the incident light of the wavelength incident on the sheet and The ratio of the transmittance on the opposite side. In order to reduce the UV degradation, the transmittance of the wavelength (300 to 350 nm) of the UV region of the thermoplastic resin sheet for solar cells (hereinafter, also referred to as UV transmittance) Must be in the range of 0.005~10%, preferably 1374548 r 0.01~7%, and preferably in the range of 0.05~5%. The wavelength of the incident light also includes the light in the UV region which deteriorates the polyester resin sheet for the solar cell. When it is shielded in the vicinity of the surface layer, the penetration into the UV region of the inner layer is reduced, and the weather resistance is excellent. When the UV transmittance is more than 10%, it is not preferable because the υν wavelength energy is received over time, the molecular chain is split, and the mechanical properties are lowered. Also, since the color tone is also yellow, the deterioration can be known from the appearance. The method of controlling the light transmittance (UV penetration rate) of the above-mentioned wavelength of 300 nm to 350 nm can be controlled by controlling the mixing ratio of the following titanium oxide. When the titanium dioxide mixing ratio is increased, the hiding power is increased, and the transmittance of the wavelength of 300 to 350 nm is remarkably lowered. The thermoplastic resin sheet preferably has a UV transmittance of 0.005 to 10%, and this effect starts to appear from a region where the mixing ratio of titanium oxide (the content of titanium dioxide relative to the titanium oxide-containing layer) is more than 5% by weight. It is preferably 7% by weight or more, more preferably 10% by weight or more. From the viewpoint of productivity and thin strength, the upper limit of the concentration of titanium dioxide > is preferably 40% by weight or less. By containing a layer having the above titanium oxide content in the polyester resin layer, it is possible to satisfy the range of the wavelength of 300 to 350 nm of the present invention. In the present invention, the relative reflectance of the thermoplastic resin sheet must be 80% to 10 5% > preferably from 83% to 10.5%, more preferably from 8 5 to 105%. When it is less than 80%, the light loss is large and it is almost unhelpful to change the power efficiency, which is not good. Here, the relative reflection coefficient referred to in the present invention uses alumina as a standard white plate, and the reflection coefficient (base-12-1374548, quasi-値) when the reflection coefficient is measured at a wavelength of 5 60 nm is 100%. The measurement 値 is converted into the number 相对 relative to the reference 値. When the relative reflection 値 is in the range of the present invention, the light leakage from the gap of the solar cell module is diffused and reflected with respect to the incident light, and the solar cell can be reached again. Because it can improve the illumination, the solar cell's power conversion efficiency can be improved. In the present invention, the apparent density of the polyester resin sheet must be 1.37 to 1.65 g/cm 3 . Here, the apparent density refers to a number calculated from the thickness, area, and weight of a thin film obtained by laminating a plurality of layers or a single layer. By adding inorganic particles having a high specific gravity, the difference in refractive index at the interface becomes large, contributing to the reflection performance. The lower limit of the apparent degree of contribution to the reflection coefficient is 1.37 g/cm 3 , and the upper limit is 1.65 g/cm 3 when the solar cell is lightweight. The method of controlling the apparent density to 1.37 to 1.65 g/cm 3 can be achieved by controlling the kind of the polyester resin, the kind of the inorganic particles, and the mixing ratio of the inorganic particles to use the inorganic particles to use talc, magnesium oxide, and titanium oxide. Zinc dioxide, calcium carbonate, barium sulfate, gypsum, etc. are preferred. Among them, > is a wavelength which can diffusely reflect the UV wavelength region when titanium dioxide is used, and has a remarkable effect on UV resistance. Further, in order to improve the whiteness, it is effective to use a fluorescent whitening agent such as 4,4'-bis(2-benzoxazolyl) fluorene. When the present invention is measured by a Macbeth optical densitometer, the optical density must be 〇·55 or more, and more preferably 0 to 60 or more. In theory, the higher the upper limit, the better, and the viewpoint of productivity and sheet strength is 3.5 or less, preferably 3 or less, and more preferably 2.5 or less. Here, the optical density referred to in the present invention-13- 1374548 v refers to the number quantified by the opacity as an index, and the higher the number, the higher the hiding property, and the present invention refers to the use of an optical densitometer (manufactured by Macbeth: TR-524) The number of conditions determined by the conditions described later. In the thermoplastic resin sheet for a solar cell, it is necessary to have a covering property so that the sunlight from the gap in the upper portion of the solar cell does not leak light, and the reflected light can be converted into electric energy, thereby enhancing the function of improving the switching efficiency. . In particular, the thermoplastic resin sheet for solar cells disposed in the lower portion of the solar cell module must be capable of preventing incident light from leaking from the gap to the outside of the solar cell. When the optical density is less than 〇·55, the incident light leaks to the outside of the solar cell. . Because at this time, the solar cell component cannot be used again to be converted into electric energy, and the power conversion efficiency cannot be improved. When the mixing ratio of inorganic particles such as titanium dioxide is increased, the hiding property can be remarkably lowered while the hiding property is increased. The optical density as an indicator of hiding property is preferably 〇 5 5 to 3.5 as described above, and the effect is exhibited from a region where the mixing ratio of titanium dioxide is more than 5% by weight. The concentration of titanium dioxide is preferably 7% by weight or more, more preferably 1% by weight or more. From the viewpoint of productivity and sheet strength, the upper limit of the concentration of titanium dioxide is preferably 40% by weight or less. Regarding the titanium oxide-containing layer, the layer of the polyester resin layer containing the content of the above-mentioned titanium oxide can satisfy the range of the optical density of the present invention. In the present invention, the optical density deviation measured by the Macbeth optical densitometer must be within 20% with respect to the center enthalpy. The deviation of the optical density is expressed by (maximum 値 minimum 値) / center 値. For example, when the center of the optical density is 1.0, the deviation of the optical density is in the range of 0.2, and the optical density must conform to the range of 〜. 9~1. The deviation of the optical density is preferably within 1 55% with respect to the center 値 1374548 *, preferably within 1 Ο %. Because the optical density requirement must be uniform in the plane of the solar cell module, it must meet the requirements in the current range of 1.5 meters in length and 1.0 meter in width. The optical difference was sampled every 1 mm from the center of the product roll to 1.5 m in the width direction and 1 m in the width direction. Then, the sample was cut at 10 cm in the square of the sample cut at 1.5 m. The optical density was measured 3 times using the 104 cm sample as the optical density. When the optical density deviation is calculated as the optical density deviation in the range of 20% from the optical density deviation when the optical density deviation is 20%, the deviation of the UV transmittance is calculated when the optical density of the product is measured five times. The deviation of the light rate affects the deviation of the relative reflectivity, which is not good in terms of performance and surface. In order to make the optical density deviation within 20%, the classification of the low-thickness wafer, for example, using a raw material wafer having a different specific gravity, is achieved by changing the size of the raw material wafer. The specific gravity of the titanium dioxide is 1.2 to 1.4 g/cm 3 , and the specific gravity of the polyester is 1.2 to 1.4 g/立: 3⁄4 The specific gravity of the main wafer containing 50% by weight of titanium dioxide is 2 · 5 to 2. The shape of the conventional main wafer is a cylindrical wafer having a length of 5.95 to 8.05 millimeters, 3 to 20 to 4.80 millimeters, and a height of 1.70 to 2.30 millimeters, and is diluted to a titanium oxide concentration of 5 to 40 weight%. At the time of the funnel in the upper part of the machine, there is a problem that the main wafer of titanium dioxide and the main wafer of the polyester sheet are discharged first. Therefore, 'small amount of titanium dioxide is contained first, and the optical density is high. After that, the thinned sheet has less titanium dioxide, and the optical density is low. The optical density deviation is changed by the shape of the titanium dioxide main wafer to the length deviation. The concentration is proportional to the length of the square meter. X 1 0 is offset from each 値. Or the total permeation quality must be reduced, I can be 3.9 "cm. 8 g / mil, wide. The above is in the extrusion grading ratio because the inclusion is larger. 2.40 ~ 1374548 « 4.60 mm, width 3_20 to 4.80 mm, height The cylindrical shape of 1.70 to 2.30 mm can be within the range of the optical density deviation of the present invention. In the present invention, in order to satisfy the hydrolysis resistance, the polyester resin sheet must have a polyester resin layer having a number average molecular weight of 18500 or more. The higher the amount, the better, but when the number average molecular weight is more than 40,000, it is substantially impossible to extrude 'considering melt formability and biaxial elongation, and more preferably 35,000 or less. That is, the number average molecular weight is 18,500 to 40000. Preferably, it is preferably from 19,000 to 35,000, more preferably from 20,000 to 30,000. Here, the number average molecular weight of the present invention is: gel permeation chromatography (GPC; gel permeation chromatography) described later. An index indicating the degree of polymerization of the number average molecular weight is obtained. If the number average molecular weight is within the scope of the present invention, even if the polyester resin is subjected to a hydrolysis reaction, Higher polymerization degree at the start of the reaction, when the number average molecular weight of less than 18,500 compared with the possible advantage of having reduced by deterioration. In order to adjust a number average molecular weight within the scope of the present invention, the heat of polymerization

塑性樹脂時,藉由高聚合化溫度,例如190〜2 3 0 T:、改變 I 聚合時間爲10〜23小時,能夠得到不同數量平均分子量。 在本發明,聚酯樹脂片的總透光率以0.005〜25 %爲 佳。在此,總透光率係指使用 Suga試驗器製霧度計 HGM-2DP,依據JIS-K-7 1 05進行測定所得到的値。總透光 率係遮蓋性的指標,特別是藉由降低可見光區域的波長之 總透光率,可以防止有助於發電之入射太陽光,穿透而逃 離太陽電池外部。如上述,添加5〜4 0重量%二氧化鈦時, 對提升遮蓋性有顯著的效果。小於5重量%時,上述遮蓋 -16- 1374548 * 性降低,無法減少目標之總光線透率。40重量%以上時, 因製膜過濾器阻塞的原因或薄片本身變爲容易破裂、生產 力惡化的原因而不佳。二氧化鈦的濃度7重量%以上爲佳, 以10重量%以上爲更佳。關於二氧化鈦含有層,藉由使聚 酯樹脂層含有具有上記二氧化鈦的含量的層,可以符合本 發明的光學濃度的範圍。若二氧化鈦的濃度符合上述範圍 時,亦可以具有複數層具有高濃度的層。 本發明較佳是數量平均分子量爲185 00以上之聚酯樹 脂層的厚度佔有聚酯樹脂片整體厚度的7〜100%爲佳.,以 10 %以上爲較佳,以15%以上爲更佳。薄膜不必整體都是數 量平均分子量1 8500〜40000,其構成若係薄膜厚度方向7% 以上的厚度爲 18500〜40000的高分子量聚酯樹脂時即 可。以具有全層厚度之7%以上、較佳是10%以上厚度的層、 且係數量平均分子量爲18500〜40000的範圍之聚酯樹脂 層來構成太陽電池用聚酯樹脂片的外側最表層時,因爲能 > 夠賦耐水解性,乃是較佳。層厚度方向小於 7 %的厚度爲 185 GG〜40000的高分子量聚酯樹脂時,因爲耐水解性差、 強伸長度保持率降低、劣化快而不佳。層積7%以上厚度, 就從積層界面的層間剝離而言,亦具有優勢。 又’在本發明,數量平均分子量爲18500以上之聚酯 樹脂層係由複數層所構成,含有5〜40重量%二氧化鈦的 層’以佔有聚酯樹脂層整體厚度的7〜1 00%爲佳。以佔有 聚醋樹脂層整體厚度的1 0 %以上爲較佳,以佔有聚酯樹脂 層整體厚度的I 5%以上爲更佳。在該聚酯樹脂層中,藉由 1374548 • 將具有高濃度二氧化鈦的層與其他的層分開,能夠成爲製 膜性及光學特性兩者都優良的層。 又,本發明之太陽電池用聚酯樹脂片爲了顯現有效防 止加水分解,以在兩面層積18500〜40000之該平均分子量 的聚酯樹脂層爲更佳。 本發明在溫度85°C、濕度85%之環境下老化3 000小 時後的伸長度保持率以40〜100%爲佳》在溫度85°C、濕 度85%之環境下老化3 000小時,係相當於檢查太陽電池用 > 聚酯樹脂片在屋外曝露狀態下2 5年期間之水解性試驗中 的一種,爲了符合上述伸長度保持率,以在最外層配置數 量平均分子量18500〜40000範圍之聚酯樹脂層,其構成係 層厚度佔有薄片整體厚度7 %以上爲佳。該薄膜層小於7 % 時,從最外層起之劣化加速,會有伸長度保持率小於40% 之情況。 本發明在溫度1 40°C的環境下,老化1 5小時後的伸長 度保持率以40〜100%爲佳。太陽電係使用於屋外,會有曝 I 露在例如沙漠或熱帶等高溫的可能性。又,密閉區域會上 升至環境溫度以上。而且,太陽電池模組本身在發電時會 放熱,在襯片的使用環境下耐熱性亦是重要項目。耐熱性 的加速試驗可以使用上述評價來代替。爲了使在溫度140 °C 的環境下老化1 5小時後的伸長度保持率以40〜1 00%,以 在最外層配置具有數量平均分子量18500〜40000範圍之 聚酯樹脂層,其構成係層厚度佔有薄片整體厚度7 %以上爲 佳。聚酯樹脂層小於7%時,從最外層起之劣化加速,會有 1374548 伸長度保持率小於40%之情況。 本發明之太陽電池用聚酯樹脂片積層品係由聚酯樹脂 片及氣體及水蒸氣阻障層而成。在此,本發明所稱之氣體 阻障層係指對水蒸氣具有阻障性,將例如金屬、金屬的氧 化物以層的方式設置在該薄片表層或2層薄片之間而成的 層。本發明之太陽電池用聚酯樹脂片爲了隔斷來自外部之 太陽電模組最忌的水蒸氣之進入,如第2、3圖所示,以使 用設置有水蒸氣阻障層(水蒸氣隔斷層)之物爲佳。在最外 層未具有氣體及_水蒸氣阻障層之積層體,水蒸氣阻障性 差、會有進入太陽電池模組內的電路而產生短路等不良的 情況。 本發明的太陽電池用聚酯樹脂片積層品依據 JIS-K-7129測定水蒸氣穿透率時,在溫度 90°C濕度 9 0%RH,換算成1 00微米之水蒸氣穿透率0.5克/(平方公尺 • 2 4小時)以下爲佳。爲了使依據JI S - K - 7 1 2 9的規格所測. 得之水蒸氣穿透率値爲0.5克/(平方公尺· 24小時)(換算 成100微米),以0.25克/(平方公尺· 24小時)(換算成100 微米)爲佳,以〇.1〇克/(平方公尺· 24小時)(換算成100微 米)爲更佳,以使用金屬或金屬氧化物爲佳。此種金屬,以 使用鋁爲佳,又,金屬的氧化物,以使用矽或是鋁的氧化 物爲佳。若比0.5克/(平方公尺· 24小時)更多水蒸氣通過 時,會促進該太陽電池用聚酯脂片的加水分解,強度、伸 長度都劣化、變脆,而且會成爲上述太陽電池模組的問題》 本發明的太陽電池內面保護片,係太陽電池用聚酯樹 -19- 1374548 • 脂片或是太陽電池內面保護片積層品,太陽電池內面保護 片係使用於太陽電池的內面密封材。本發明的太陽電池用 聚樹脂片的任務係作爲背面保護片,因爲能夠保護太陽電 池模組避免受到污染或水蒸氣等影響,可以適合使用作爲 太陽電池內面密封材。 本發明的太陽電池模組係使用上述太陽電池內面保護 片之太陽電池模組。使用符合上述特性之太陽電池用聚酯 樹脂片作爲背面保護片之太陽電池模組,能夠適合使用作 > 爲太陽電池。接著,說明本發明的太陽電池用聚酯樹脂片 之製造方法的一個例子。 例如,使用眾所周知方法使對酞酸或其衍生物與乙二 醇進行酯交換反應。反應觸媒可以舉出的有鹼金屬化合 物、鹼土類金屬化合、鋅化合物、鉛化合物、錳化合物、 鈷化合物 '鋁化合物、銻化合物、鈦化合物等,著色劑憐 有化合物等。聚合觸媒以添加銻化合物或鍺化合物、鈦化 合物爲佳。此種方法例如舉出鍺化合物作爲例子時,以直 接添加鍺化合物粉體爲佳。 控制本發明的聚酯樹脂的數量平均分子量在1 8 50〇〜 40000的方法,依以上述方法聚合數量平均分子量爲ι8〇〇〇 等級之通常的聚酯樹脂後,在190 °C〜小於聚酯樹脂的點 之溫度,在減壓或如氮氣之惰性氣體的流通下加熱,亦即 固相聚合的方法爲佳。該方法能夠以不增加聚酯樹脂末端 羧基量的方式提升數量平均分子量。 接著’從該聚合物製造太陽電池用聚酯樹脂片時,可 -20 - 1374548 ¥ 以按照必要對該聚合物進行乾燥,將使用2台以上的擠壓 機從不同流路送出的聚酯樹脂,使用多歧管模頭、供料塊 (feed block)、靜態混合器、比諾魯(pinole)等來進行多層積 之方法。又,亦可以任意組合此等。 從模頭吐出之多層積層而成薄片,係擠出至塑製滾筒 等的冷卻體上,冷卻固化而得到塑製片。此時,以使用金 屬絲狀、帶狀、針狀或刀狀等電極,藉由靜電力使其黏附 .在塑製滾筒等的冷卻體,使其急冷固化爲佳》 I 此等所得到的塑製片亦可以按照必要進行雙軸延伸。 所謂雙軸延伸係指在縱方向及橫方向之延伸。延伸可以依 次雙軸延伸、亦可以同時雙軸延伸。又,亦可以進而在縱 及/或橫方向進行再延伸。 在此,縱方向的延伸係指爲了賦與薄膜在長方向的配 向之延伸,通常係藉由輥輪的周速差來施加。該延伸可以 1階段進行,又,亦可以使用複數根輥輪多階段地進行。 如此的延伸倍率係按照樹脂的種類而異,通常,面積倍率 i 以2〜1 5倍爲佳,例如使用聚對酞酸乙二酯時,縱向延伸 倍率以使用2〜4倍爲特佳。 隨後,爲了施加橫向延伸,將保持端部之夾子,以2 〜4倍的條件設定在軌道上之以夾子保持狀態的薄膜往橫 向(機器寬度方向)進行橫向延伸。環境溫度係以薄膜的延 伸溫度爲85〜110 °C的方式設定環境溫度,往橫向延伸。 在隨後的製程爲了得到尺寸安定性而施加180〜240°C熱處 理,得到本發明的太陽電池用聚酯樹脂片。 -21 - 1374548 在此,提升反射係數的方法係在聚酯樹脂片的聚酯中 大量地添加數量平均粒徑爲0.1〜1微米的微粒子,以晶片 狀的方式均勻地分散之方法。藉由該微粒子之擴散反射來 提升相對反射係數。微粒子的添加方法以藉由混合的方法 爲佳。在本發明係使用二氧化鈦作爲微粒子。具體上,以 在聚酯中添加50重量%二氧化鈦粒子準備作爲主晶片、稀 釋成目標濃度爲佳。又,分散·助劑例如可以使用聚伸烷基 二醇或其共聚物等,具體上以使用聚乙二醇或聚丙二醇、 聚對酞酸丁二酯-聚伸丁二醇共聚物爲佳。 接著’爲了對構成本發明的太陽電池用的薄片賦與氣 體及水蒸氣阻障性而層積氣體及水蒸氣阻障層的方法,有 如第2圖所示,使用真空蒸鍍或濺鍍等眾所周知的方法直 接設置在本發明的太陽電池用聚酯樹脂片表面之方法。其 厚度通常以100〜700A的範圍爲佳。又,阻障層不一定是 一層,亦可以按照阻障性的必要,如第3圖所示,設置在 本片的兩側。In the case of a plastic resin, a different number of average molecular weights can be obtained by a high polymerization temperature, for example, 190 to 2 30 T: and a change I polymerization time of 10 to 23 hours. In the present invention, the total light transmittance of the polyester resin sheet is preferably from 0.005 to 25%. Here, the total light transmittance refers to a enthalpy obtained by measurement using a Suga tester hammometer HGM-2DP in accordance with JIS-K-7 195. The total light transmittance is an indicator of opacity, in particular, by reducing the total light transmittance at a wavelength in the visible light region, it is possible to prevent incident sunlight that contributes to power generation from penetrating and escape from the outside of the solar cell. As described above, when 5 to 40% by weight of titanium oxide is added, there is a remarkable effect on the improvement of the hiding property. When it is less than 5% by weight, the above-mentioned covering -16 - 1374548 * is lowered, and the total light transmittance of the target cannot be reduced. When the amount is 40% by weight or more, the film filter is clogged or the sheet itself is liable to be broken and the productivity is deteriorated. The concentration of titanium dioxide is preferably 7% by weight or more, more preferably 10% by weight or more. The titanium oxide-containing layer can satisfy the range of the optical density of the present invention by including the layer having the content of the above-mentioned titanium oxide in the polyester resin layer. If the concentration of titanium dioxide is in the above range, it is also possible to have a layer having a high concentration in a plurality of layers. In the present invention, it is preferred that the thickness of the polyester resin layer having a number average molecular weight of 185 or more is preferably from 7 to 100% of the total thickness of the polyester resin sheet, preferably 10% or more, more preferably 15% or more. . The film does not have to have a total number average molecular weight of 1,800 to 40000 as a whole, and it is possible to form a high molecular weight polyester resin having a thickness of 18,500 to 400,000 in the thickness direction of the film. When the polyester resin layer having a thickness of 7% or more, preferably 10% or more of the total layer thickness and a coefficient average molecular weight of 18500 to 40000 is used to constitute the outermost outer layer of the polyester resin sheet for a solar cell It is preferable because it is capable of imparting hydrolysis resistance. When the thickness of the layer is less than 7% and the thickness is 185 GG to 40000, the high molecular weight polyester resin is poor in hydrolysis resistance, high elongation retention, and poor deterioration. A layer thickness of 7% or more has an advantage in terms of interlayer peeling at the interface of the laminate. Further, in the present invention, the polyester resin layer having a number average molecular weight of 18,500 or more is composed of a plurality of layers, and the layer containing 5 to 40% by weight of titanium dioxide is preferably 7 to 100% of the entire thickness of the polyester resin layer. . It is preferable to occupy more than 10% of the entire thickness of the polyester resin layer, and more preferably I 5% or more of the entire thickness of the polyester resin layer. In the polyester resin layer, a layer having a high concentration of titanium oxide is separated from other layers by 1374548. It is possible to obtain a layer excellent in both film forming properties and optical properties. Further, the polyester resin sheet for a solar cell of the present invention is more preferably formed by laminating a polyester resin layer having an average molecular weight of 18,500 to 40,000 on both sides in order to effectively prevent hydrolysis. The invention maintains an elongation retention rate of 40 to 100% after aging for 3 000 hours in an environment of a temperature of 85 ° C and a humidity of 85%, and aging for 3,000 hours in an environment of a temperature of 85 ° C and a humidity of 85%. Equivalent to the inspection of the solar cell> One of the hydrolysis test of the polyester resin sheet in the outdoor exposure state for 25 years, in order to satisfy the above elongation retention ratio, the number average molecular weight in the outermost layer is set to be in the range of 18,500 to 40000. The polyester resin layer preferably has a thickness of the base layer of 7% or more of the entire thickness of the sheet. When the film layer is less than 7%, the deterioration from the outermost layer is accelerated, and the elongation retention ratio may be less than 40%. The present invention preferably has an elongation retention ratio of 40 to 100% after aging for 15 hours in an environment of a temperature of 40 °C. The solar system is used outside the house and there is a possibility that the exposure will be exposed to high temperatures such as desert or tropical. Also, the enclosed area will rise above the ambient temperature. Moreover, the solar cell module itself exotherms during power generation, and heat resistance is also an important item in the use environment of the lining. The accelerated test of heat resistance can be replaced by the above evaluation. In order to maintain the elongation retention rate after aging for 15 hours in an environment of 140 ° C at 40 to 100%, a polyester resin layer having a number average molecular weight of 18,500 to 40000 is disposed on the outermost layer, and the constituent layer is formed. The thickness is preferably 7% or more of the entire thickness of the sheet. When the polyester resin layer is less than 7%, the deterioration from the outermost layer is accelerated, and the elongation of 1374548 is less than 40%. The polyester resin sheet layer for a solar cell of the present invention is composed of a polyester resin sheet, a gas and a water vapor barrier layer. Here, the gas barrier layer referred to in the present invention means a layer which is barrier to water vapor and which is provided, for example, as a layer of metal or metal oxide between the surface layer of the sheet or the sheet of the sheet. The polyester resin sheet for a solar cell of the present invention is provided with a water vapor barrier layer (water vapor barrier layer) as shown in Figs. 2 and 3 in order to block the entry of water vapor from the external solar power module. ) is better. In the outermost layer, the laminated body which does not have a gas and a water vapor barrier layer is inferior in water vapor barrier property, and may cause a short circuit such as a short circuit in the solar cell module. When the water vapor permeability of the polyester resin sheet laminate for solar cell of the present invention is measured in accordance with JIS-K-7129, the moisture vapor permeability at a temperature of 90 ° C is 90% RH, which is converted into a water vapor permeability of 100 μm. / (square meter • 2 4 hours) is better. In order to make the water vapor permeability 値 measured according to the specifications of JI S - K - 7 1 2 9 0.5 0.5 g / (m ^ 2 · 24 hours) (converted to 100 μm), to 0.25 g / (square The meter (24 hours) (converted to 100 micrometers) is preferably 〇.1 gram / (square meter · 24 hours) (converted to 100 micrometers), preferably metal or metal oxide. It is preferable to use such a metal, and it is preferable to use an oxide of a metal or an oxide of aluminum. When more than 0.5 g/(m^m·24 hours) of water vapor is passed, the hydrolysis of the polyester resin sheet for solar cells is promoted, and the strength and elongation are deteriorated and become brittle, and the solar cell is formed. The problem of the module" The solar cell inner surface protection sheet of the present invention is a polyester tree for solar cells -19-1374548. • a grease sheet or a solar cell inner surface protective sheet laminate, and a solar cell inner surface protection sheet is used for the sun. The inner surface of the battery is sealed. The task of the polyresin sheet for a solar cell of the present invention is as a back surface protective sheet, and since it can protect the solar cell module from contamination or water vapor, it can be suitably used as a solar cell inner surface sealing material. The solar cell module of the present invention is a solar cell module using the above solar cell inner protective sheet. A solar cell module using a polyester resin sheet for a solar cell that meets the above characteristics as a back protective sheet can be suitably used as a solar cell. Next, an example of a method for producing a polyester resin sheet for a solar cell of the present invention will be described. For example, a transesterification reaction of citric acid or a derivative thereof with ethylene glycol is carried out by a well-known method. Examples of the reaction catalyst include an alkali metal compound, an alkaline earth metal compound, a zinc compound, a lead compound, a manganese compound, a cobalt compound 'aluminum compound, a ruthenium compound, a titanium compound, and the like. The polymerization catalyst is preferably a ruthenium compound or a ruthenium compound or a titanium compound. In such a method, for example, a ruthenium compound is exemplified, and it is preferred to directly add a ruthenium compound powder. The method for controlling the number average molecular weight of the polyester resin of the present invention is from 1 8 50 〇 to 40000, and according to the above method, the usual polyester resin having a number average molecular weight of ι 8 聚合 is polymerized at 190 ° C to less than poly The temperature of the point of the ester resin is preferably reduced under reduced pressure or a flow of an inert gas such as nitrogen, that is, a method of solid phase polymerization. This method can increase the number average molecular weight in a manner that does not increase the amount of carboxyl groups at the end of the polyester resin. Then, when the polyester resin sheet for a solar cell is produced from the polymer, it can be -20 - 1374548 ¥ to dry the polymer as necessary, and the polyester resin which is sent from different flow paths using two or more extruders A method of multi-layer product using a multi-manifold die, a feed block, a static mixer, a pinole, or the like. Also, these may be combined arbitrarily. A plurality of layers which are discharged from the die are laminated to form a sheet, which is extruded onto a cooling body such as a plastic drum, and solidified by cooling to obtain a molded sheet. In this case, an electrode such as a wire, a belt, a needle, or a knife is used, and it is adhered by an electrostatic force. The cooling body of a plastic drum or the like is cooled and solidified. The plastic sheet can also be biaxially stretched as necessary. The term "biaxial extension" refers to the extension in the longitudinal direction and the transverse direction. The extension can be extended biaxially or simultaneously. Further, it may be further extended in the vertical and/or lateral directions. Here, the extension in the longitudinal direction means that the extension of the film in the longitudinal direction is usually applied by the circumferential speed difference of the roller. This extension can be carried out in one stage, or it can be carried out in multiple stages using a plurality of rolls. Such a stretching ratio varies depending on the type of the resin. Usually, the area magnification i is preferably 2 to 15 times. For example, when polyethylene terephthalate is used, the longitudinal stretching ratio is particularly preferably 2 to 4 times. Subsequently, in order to apply the lateral extension, the clip holding the end portion is placed on the rail in a condition of 2 to 4 times, and the film held in the clip holding state is laterally extended in the lateral direction (machine width direction). The ambient temperature is set such that the film has an elongation temperature of 85 to 110 ° C and extends in the lateral direction. In the subsequent process, heat treatment at 180 to 240 ° C was applied to obtain dimensional stability, and a polyester resin sheet for a solar cell of the present invention was obtained. Here, the method of increasing the reflection coefficient is a method of uniformly dispersing fine particles having a number average particle diameter of 0.1 to 1 μm in a polyester of a polyester resin sheet in a wafer form. The relative reflection coefficient is increased by the diffuse reflection of the particles. The method of adding the microparticles is preferably a method of mixing. In the present invention, titanium dioxide is used as the fine particles. Specifically, it is preferred to add 50% by weight of titanium dioxide particles to the polyester as the main wafer and to dilute to a target concentration. Further, as the dispersion aid, for example, a polyalkylene glycol or a copolymer thereof may be used, and specifically, polyethylene glycol or polypropylene glycol or polybutylene terephthalate-polybutylene glycol copolymer is preferably used. . Next, a method of laminating a gas and a water vapor barrier layer for imparting gas and water vapor barrier properties to a sheet for a solar cell of the present invention is as shown in Fig. 2, and vacuum vapor deposition or sputtering is used. A well-known method is directly provided on the surface of the polyester resin sheet for a solar cell of the present invention. The thickness is usually in the range of 100 to 700 A. Moreover, the barrier layer is not necessarily a layer, and may be disposed on both sides of the film as shown in Fig. 3 in accordance with the necessity of barrier properties.

另一方面,亦有不直接在該薄片上設置氣體阻障層, 而是如第4圖所示將設置於其他基材之金屬或無機氧化物 層而成的氣體阻障片,使用黏著劑層等在本發的太陽電池 用聚酯樹脂片表面製成積層品之方法。又,亦可以使用金 屬箔(例如鋁箔)層積在薄膜表面的方法。此時,就加工性 及氣體阻障性而言,金屬箔的厚度以10〜50微米的範圍爲 佳。又,該氣體阻障不一定必須配置在該薄片表面,例如 亦可以夾在2層的薄膜之間。又I -22- 【074548 又,使用本發明的太陽電池用聚酯樹脂片之太陽電池 內面保護片的構成,不限定於層積上述氣體及水蒸氣阻障 片。與本發明的太陽電池用聚酯樹脂片層積之物,除了前 述阻障片以外,例如,亦可以層積選自另外具有優良的光 反射係數之反射片、爲提高電絕緣性之100微米以上之厚 的塑膠片、爲提高放熱性之黑色著色或熱傳性較高的放熱 片、及爲提高耐候性之氟樹脂片等中一種以上的薄片。又, 其層積順序沒有別限定,其中較佳是具有光反射機能的薄 膜盡可能靠近太陽電池元件側,具有耐候性的薄片配置在 最外側。在本發明,使黏著劑介於中間層積而成之物係作 爲積層品’未使黏著劑介於中間層積而成之物係作爲薄片。 本發明之太陽電池模組例如採用第1圖所示構成。亦 即’使具有高透光率之基材(玻璃、薄膜等)放置在表面, 賦與矽系等的太陽電池模組取出電能的導線,以E V A樹脂 塡充樹脂固定,隨後,使用內面密封用太陽電池內面保護 片固定本發明之太陽電池用聚酯樹脂片而得到。 以下說明本發明所使用物性及其評價方.法、評價基準。 <物性及方法、評價基準> (1)數量平均分子量(Μη) 在室溫(23°C )使用 244型凝膠滲透層析儀 GCP-244(WATERS 公司製),柱使用 2 支 Shodex K 80M(昭 和電工(股)製)、1 支 TSK-GEL-G2000Hxl(TOSOH(股)製), 在實施測定該太陽電池用聚酯樹脂片之前,使用聚苯乙烯 (PS)(標準品)來實施分子量校正。使用溶出體積(v)及分子 -23- fi^74548 4 量(Μ),計算3次近似式(i)的係數(a ,)並作圖。On the other hand, there is a gas barrier sheet in which a gas barrier layer is not provided directly on the sheet, but a metal or inorganic oxide layer is provided on another substrate as shown in Fig. 4, and an adhesive is used. A method of forming a laminate product on the surface of a polyester resin sheet for a solar cell of the present invention. Further, a method of laminating a metal foil (e.g., aluminum foil) on the surface of the film may also be used. At this time, in terms of workability and gas barrier properties, the thickness of the metal foil is preferably in the range of 10 to 50 μm. Further, the gas barrier does not have to be disposed on the surface of the sheet, and may be sandwiched between two layers of the film, for example. Further, I -22- [074548] The configuration of the solar cell inner surface protection sheet using the polyester resin sheet for a solar cell of the present invention is not limited to the lamination of the gas and the water vapor barrier sheet. In addition to the above-mentioned barrier sheet, the laminate of the polyester resin sheet for a solar cell of the present invention may be laminated, for example, to a reflection sheet selected from another sheet having an excellent light reflection coefficient, and 100 μm for improving electrical insulation. The above-mentioned thick plastic sheet is one or more sheets of a heat-radiating sheet having a high heat-dissipating color or heat-transfer property, and a fluororesin sheet for improving weather resistance. Further, the order of lamination is not limited, and it is preferable that the film having the light reflecting function is as close as possible to the side of the solar cell element, and the sheet having weather resistance is disposed on the outermost side. In the present invention, a material obtained by laminating an adhesive is used as a laminate. A material in which an adhesive is not interposed is used as a sheet. The solar cell module of the present invention is configured as shown in Fig. 1, for example. That is, a substrate (glass, film, etc.) having a high light transmittance is placed on the surface, and a wire for taking out electric energy from a solar cell module such as a tether is fixed with an EVA resin, and then the inner surface is used. The solar cell inner surface protective sheet for sealing is obtained by fixing the polyester resin sheet for a solar cell of the present invention. The physical properties used in the present invention, as well as the evaluation methods and evaluation criteria thereof, will be described below. <Physical properties and methods, evaluation criteria> (1) Number average molecular weight (Μη) 244 type gel permeation chromatography instrument GCP-244 (manufactured by WATERS) was used at room temperature (23 ° C), and two Shodex columns were used for the column. K 80M (manufactured by Showa Denko Co., Ltd.) and one TSK-GEL-G2000Hxl (manufactured by TOSOH Co., Ltd.), before using the polyester resin sheet for solar cell measurement, polystyrene (PS) (standard) To perform molecular weight correction. Using the dissolution volume (v) and the molecule -23-fi^74548 4 amount (Μ), the coefficient (a , ) of the approximate approximation formula (i) was calculated 3 times and plotted.

Lo g(M) = A〇 + A 1 + A2 V 2 + A3 V3 · ···(}) 校正、作圖完成後’以溶劑鄰氯苯酚/氯仿(1 /4體積比) 將該太陽電池用聚酯樹脂片的試樣溶解成〇.2%(wt/vol)。 層析儀係以注射量爲0.400毫升、流速爲〇.8毫升/分鐘來 實施。檢測器係使用R-401型微差折射係數器(WATERS), 依照下述式算出數量平均分子量。 數量平均分子量(Μη) = ΣΝίΜί/ΣΝί 莫耳分率;Ni、相當於各保持容量(Vi)之分子量(Mi) 將複合或單體的薄膜取樣進行測定。又,複合薄膜係 邊顯微鏡觀察邊硏磨該薄膜來進行取樣。 (2) 二氧化鈦的含量 將薄片製成試樣,使用螢光X線元素分析裝置(堀場製 作所製、MESA- 5 0 0W型)求得二氧化鈦特有元素之鈦元素 量,從該鈦元素量換算成二氧化鈦含量。 (3) 光學濃度 以光學濃度計(麥克佩斯製:TR-524)測定穿透光束, 以下述式算出。 光源:可見光線 分光組成:色溫度 3 006度K的鎢燈泡 測定環境··溫度23t: ±3°C濕度65±10%RH 計算式:光學濃度=l〇gio(F()/F) F:試料的穿透光束、F〇:無試料的穿透光束 (4) 光學濃度偏差(%) -24 - 1374548 • 光學濃度的偏差係以[(Fmax-Fmin)/Fave]xl〇〇表示。Lo g(M) = A〇+ A 1 + A2 V 2 + A3 V3 · ···(}) After calibration, after the completion of the drawing, the solvent is o-chlorophenol/chloroform (1/4 volume ratio). The sample of the polyester resin sheet was dissolved to 〇. 2% (wt/vol). The chromatograph was carried out at an injection volume of 0.400 ml and a flow rate of 毫升8 ml/min. The detector was subjected to a R-401 type differential refractive index device (WATERS), and the number average molecular weight was calculated according to the following formula. Number average molecular weight (Μη) = ΣΝίΜί/ΣΝί Molar fraction; Ni, molecular weight corresponding to each holding capacity (Vi) (Mi) A composite or monomer film was sampled for measurement. Further, the composite film was subjected to microscopy while honing the film to perform sampling. (2) The content of titanium dioxide The sample is made into a sample, and the amount of titanium element of the specific element of titanium dioxide is obtained by using a fluorescent X-ray element analyzer (MESA-500W type manufactured by Horiba, Ltd.), and the amount of titanium element is converted into Titanium dioxide content. (3) Optical density The transmitted light beam was measured by an optical density meter (McPace: TR-524) and calculated by the following formula. Light source: visible light spectroscopic composition: tungsten bulb with color temperature of 3 006 degrees K. Measurement environment · · 23 t: ± 3 ° C humidity 65 ± 10% RH Calculation formula: optical density = l〇gio (F () / F) F : Penetrating beam of sample, F〇: penetrating beam without sample (4) Optical density deviation (%) -24 - 1374548 • The deviation of optical density is expressed by [(Fmax-Fmin)/Fave]xl〇〇.

Fmax : 20個數據的最大値,Fm in : 20個數據的最小 値,Fave : 20個數據的平均値 光學濃度測定方法係使用上述(3 )同樣的方法測定。 光學濃度偏差係在從製品卷物中央部之長度方向每 100公尺取樣長度方向1.5公尺X寬度方向1公尺’在5處 取樣,進而在1.5公尺xl.0公尺之切下試樣的四角取樣1〇 公分xlO公分。使用該試樣測定光學濃度3次’以3次的 ® 平値均作爲光學濃度。.以從每一支製品卷物測定5次時之 光學濃度的最大値、最小値、中心値(數據數係5處Μ個試' 樣共有20個)算出光學濃度偏差作爲光學濃度偏差。i (5) 表觀密度 以電磁式秤(硏精工業(股)製SD-120L)測定。 N =採用3次測定之平均値 (6) 耐加水分解 在85°C、85%RH的環境使薄膜老化,依據ASTM-D61T ® 測定薄片的斷裂伸長度,以未經老化的斷裂伸長度爲1 〇〇% 時的比(保持率)進行比較,依據以下的基準判定。 老化時間:〇小時(1 0 0 % )、3 0 0 0小時 ◎:保持率爲50〜60%以上 〇:保持率爲5 0〜小於6 0 % △:保持率爲40〜小於50% X :保持率爲小40% (7) 耐候性 -25- 1374548 使用促進試驗器AISUPER UW TESTER,進行下述循 環5循環,和上述同樣地求得伸長度保持率,以上述同樣 的基準進行評價。 1循環:溫度60°C、在濕度50%RH的環境下照射紫外 線8小時後,在結露狀態(溫度35°C、濕度l〇〇RH)老化4 小時。 紫外線強度:l〇〇mW/平方公分 〇:b値上升率(5以下) △ : b値上升率(5〜25) X : b値上升率(2 5以上) (8 )總透光率 使用 SUGA 試驗器製霧度計 HGM-2DP,依據 JIS-K-7 1 05 ( 1 98 1年)進行測定所得到的値。 (9) 相對反射係數 使用日立製分光光度計U-3310,標準白色板用開口部 與試片開口部同時都是使用作爲標準白色板之氧化鋁,使 用5 60奈米光線使試片開口部的傾斜角度爲1 0度測得擴散 反射係數(TQ),以此時的反射係數爲1 00%。隨後,使用試 片取代試片開口部,以5 6 0奈米光線測得擴散反射係數。 隨後,依據下式換算成相對反射係數(R)。 R(%) = T1/T〇x 1 00 T〇 :標準白色板的反射係數 T,:試驗片.的反射係數 (10) UV(300〜350微米)的透光率 -26 - 1374548 使用日立製分光光度計U-3310,標準白色板用開口部 與試片開口部同時都是使用作爲標準白色板之氧化鋁,使 用3 00〜3 5 0奈米光線使試片開口部的傾斜角度爲1〇度測 得無試樣狀態的穿透率(A〇),以此時的穿透率爲1〇〇%。隨 後,在入射光面配置該試樣,得到300〜350奈米的穿透率 (A 1 ),每隔波長5微米取得數據,以測定値的平均値作爲 UV穿透率T(°/〇。 Τ(%) = Α,/Α〇χ 100 Α〇:無試樣的穿透率 Αι :試驗片的穿透率 (1 1)水蒸氣穿透率 依據JIS K7 1 2 9( 1 992年)測定水蒸氣穿透率β測定條件 係24小時,溫度40°C、濕度90%RH,換算成平方公尺。(厚 度係換算成1〇〇微米)。 (12) 耐熱性 在140°C的環境使薄膜老化15小時,依據ASTM_D61T 測定薄膜的斷裂伸長度,以未老化的斷裂伸長度爲1 〇 〇 %, 計算老化後之伸長度的比(保持率)。接著,以下述基準進 行判定。 〇:保持率爲40%以上 △:保持率爲30〜小於40% X :保持率爲小於30% (13) 加工性 製造1公尺四方的太陽電池內面密封薄膜,考慮對太 -27- 1374548 陽電池系統之組裝性,以下述基準判定強硬度。 〇:強硬度適當,可以簡單地組裝加工的等級。 △:強硬度軟弱或太強硬,組裝加工有少許困難之等級。 X:強硬度太軟弱或太強硬,組裝加工有明顯困難之等 級。 (14)介電率 依據:FISC2151(1990年)測定介電率。 (1 5)各層的厚度 依據JISC2151(1990年)測定整體的厚度,在使用切薄 片機進行對積層剖面在厚度方向切割剖面之前處理後,使 用日立製作所製電場放射型掃描電子顯微鏡 (FE-SEM)S-800,以能夠拍攝厚度剖面整體像的倍率 (XI 000)來照相,量取該剖面照片的厚度。二氧化鈦含有層 能夠以白色層的方式照相。 (1 6)複合比 從藉由(15)的方法從剖面照片量取各層厚度的結果, 算出複合比率。 A層/B層/C層構成時,原料聚酯之數量平均分子爲 1 8 5 00〜40000,二氧化鈦的含量爲5〜40重量%係只有A 層時, 式1複合比(°/。): A層的厚度 A層的厚度+ B層的厚度+ C層的厚度Fmax : maximum 20 of 20 data, Fm in : minimum of 20 data F, Fave : average of 20 data 光学 The optical density measurement method is measured by the same method as (3) above. The optical density deviation is sampled at 5 meters per 100 meters in the longitudinal direction of the center of the product roll, 1 meter in the width direction, 1 width in the width direction, and then cut at 1.5 meters x 1 .0 meters. The sample of the four corners is 1 〇 cm x lO cm. Using this sample, the optical density was measured three times. The optical density deviation was calculated as the optical density deviation from the maximum 値, the minimum 値, and the center 値 (the total number of data in five data samples) of five times when the roll of each product was measured five times. i (5) Apparent density Measured with an electromagnetic scale (SD-120L manufactured by Seiko Seiki Co., Ltd.). N = average 値 using three measurements (6) resistance to hydrolysis at 85 ° C, 85% RH to age the film, according to ASTM-D61T ® determination of the elongation at break of the sheet, with an unaged elongation at break The ratio (retention ratio) at 1 〇〇% is compared and judged based on the following criteria. Aging time: 〇 hours (100%), 30,000 hours ◎: retention rate is 50 to 60% or more 保持: retention rate is 50 to less than 60% △: retention ratio is 40 to less than 50% X In the following cycle 5 cycles, the elongation retention ratio was determined in the same manner as above, and the evaluation was performed on the same basis as described above using the booster tester AISUPER UW TESTER. 1 cycle: After illuminating the ultraviolet ray for 8 hours at a temperature of 60 ° C in an environment of humidity of 50% RH, it was aged for 4 hours in a dew condensation state (temperature 35 ° C, humidity l 〇〇 RH). UV intensity: l〇〇mW/cm ^ 2 〇: b値 increase rate (5 or less) △ : b値 increase rate (5~25) X : b値 increase rate (2 5 or more) (8) Total light transmittance The SUGA tester haze meter HGM-2DP was measured in accordance with JIS-K-7 195 (1981). (9) The relative reflection coefficient is measured by the Hitachi spectrophotometer U-3310. The standard white plate opening and the test piece opening are both used as the standard white plate alumina, and the 5 60 nm light is used to make the test piece opening. The diffractive reflection coefficient (TQ) was measured at an inclination angle of 10 degrees, and the reflection coefficient at this time was 100%. Subsequently, the test piece was used to replace the opening of the test piece, and the diffuse reflection coefficient was measured with a light of 560 nm. Subsequently, it is converted into a relative reflection coefficient (R) according to the following formula. R(%) = T1/T〇x 1 00 T〇: reflection coefficient T of standard white plate, reflection coefficient of test piece (10) transmittance of UV (300~350 μm) -26 - 1374548 using Hitachi The spectrophotometer U-3310, the standard white plate opening and the test piece opening are both made of alumina as a standard white plate, and the inclination angle of the opening of the test piece is made using 300 to 300 nm light. The transmittance (A〇) of the sample-free state was measured at 1 degree, and the transmittance at this time was 1%. Subsequently, the sample was placed on the incident light surface to obtain a transmittance (A 1 ) of 300 to 350 nm, and data was obtained every 5 μm of the wavelength to determine the average enthalpy of enthalpy as the UV transmittance T (°/〇 Τ(%) = Α, /Α〇χ 100 Α〇: no sample penetration Αι : penetration of test piece (1 1) water vapor transmission rate according to JIS K7 1 2 9 (1992) The measurement of the water vapor transmission rate β is 24 hours, the temperature is 40 ° C, and the humidity is 90% RH, which is converted into square meters (the thickness is converted into 1 μm). (12) The heat resistance is 140 ° C. The film was aged for 15 hours, and the elongation at break of the film was measured in accordance with ASTM_D61T, and the ratio of the elongation after aging (retention ratio) was calculated by using the unaged elongation at break of 1% by weight. Then, the following criteria were used for the determination. 〇: The retention ratio is 40% or more △: The retention ratio is 30 to less than 40% X: The retention ratio is less than 30% (13) The 1 mm square solar cell inner surface sealing film is manufactured by workability, considering the Tai-27 - 1374548 The assembly of the positive battery system determines the hardness according to the following criteria. 〇: The hardness is appropriate and can be easily assembled. Grade: △: The hardness is weak or too strong, and the assembly process has a little difficulty. X: The hardness is too weak or too strong, and the assembly process has obvious difficulty. (14) Dielectric rate basis: FISC2151 (1990) The dielectric constant was measured. (1) The thickness of each layer was measured in accordance with JIS C2151 (1990), and the electric field radiation type scanning electrons manufactured by Hitachi, Ltd. were used after the cutting of the laminated section in the thickness direction using a slitter. The microscope (FE-SEM) S-800 was photographed at a magnification (XI 000) capable of taking an overall image of the thickness profile, and the thickness of the cross-sectional photograph was taken. The titanium dioxide-containing layer can be photographed as a white layer. (1 6) Composite The composite ratio is calculated from the result of taking the thickness of each layer from the cross-sectional photograph by the method of (15). When the A layer/B layer/C layer is composed, the number average molecular weight of the raw material polyester is 1 8 5 00 to 40000, titanium dioxide. The content of 5 to 40% by weight is only A layer, the compounding ratio of formula 1 (° /.): thickness of layer A thickness of layer A + thickness of layer B + thickness of layer C

xlOO 從上述算出。各層的數量平均分子量係使用從各層所取 -28- 1374548 得的試樣,藉由上述測定方法測定。 (17) 二氧化鈦含有層粒子濃度 二氧化鈦濃度係使用上述(2)的方法測定。從複合比率算 出二氧化鈦含有層的二氧化鈦粒子濃度,作爲二氧化鈦含 有層的粒子濃度。 (18) 二氧化鈦含有層比率(對聚酯樹脂片整體) 從藉由(15)的方法從剖面照片量取各層厚度的結果,算 出二氧化鈦含有層比率。XlOO is calculated from the above. The number average molecular weight of each layer was measured by the above measurement method using a sample obtained from each layer of -28 - 1374548. (17) Titanium dioxide-containing layer particle concentration Titanium dioxide concentration was measured by the method of the above (2). The concentration of the titanium dioxide particles in the titanium oxide-containing layer was calculated from the composite ratio as the particle concentration of the titanium oxide-containing layer. (18) Titanium dioxide-containing layer ratio (for the entire polyester resin sheet) From the results of (15), the thickness of each layer was measured from the cross-sectional photograph, and the titanium oxide-containing layer ratio was calculated.

A層/B層/C層構成時’二氧化欽的含量爲5〜40重量% 係只有A層時, 式2 ' 二氧化鈦含有層比率(%): A層的厚度 A層的厚度+ B層的厚度+ C層的厚度 :100 係從上算出。各層的數量平均分子量係使用從各層所取 得的試樣,藉由上述測定方法測定。 實施例 以下,藉由實施例更詳細地說明本發明。 實施例1〜4 在100份對酞酸二甲酯(重量份:以下只稱爲份)混合64 份乙二醇’並且添加0.1份作爲觸媒之.乙酸鋅及〇.03份三 氧化銻,在乙二醇的回流溫度實施酯交換。 對此,添加0.08份磷酸三甲酯,慢慢地升溫 '減壓,在 2 7 1 °C的溫度進行聚合5小時。所得到的聚對酞酸乙二酯的 固有黏度爲0.55。將該聚合物切斷成長度 4毫米的晶片 •29- 1374548 狀,PET(poIyethy 丨 ene terephthalate;聚對酞酸乙二酯)的 晶片狀係圓柱形、長度:5.95〜8_05毫米、寬度:3.20〜 4.80毫米、高度:1.70〜2·30毫米,比重爲1.3克/立方公 分。將該PET加入高聚合化溫度]9〇〜2301、真空度0.5 毫米Hg的條件之旋轉式真空裝置(旋轉真空乾燥),邊攪拌 10〜23小時邊加熱得到PET聚合物。 複合及原料用的PET之聚合,係在190〜230乞變化高 聚合化的溫度、在1 0〜2 3小時變化高聚合化的時間,得到 PET聚合物的固有黏度爲〇.6〇(實施例ι)、〇·66(實施例2)、 〇.73(實施例3)、0.81(實施例4)等4種PET聚合物。混合 該4種PET聚合物與二氧化鈦微粒子,製得二氧化鈦爲50 重量%之主晶片。因爲該主晶片係比重2.5克/立方公分, 主晶片的晶片形狀爲長度:2.40〜4.60毫米、寬度:3.20 〜4,80毫米、高度:1.70〜2.30毫米的圓柱形,係不容易 發生分級的晶片形狀。在原料聚酯中添加28重量%之含有 二氧化鈦的主晶片,使二氧化鈦濃度爲1 4重量%。藉由層 積裝置將此等聚合物以B層/A層/B層的方式層積,經由T 模頭成形爲薄片狀。積層結構雖然是複合3層構成,但是 A層與B層係使用相同聚合物,成爲實質單層(B層/A層/B 層=B層/B層/ B層)。因此,各層(A層、B層)的聚合度相 同。將從T模頭吐出的薄片成形物藉由表面溫度25 °C的冷 卻滚筒冷卻固化而成的未延伸薄膜,引導到至加熱至8 5〜 98 °C的輥輪群,在長度方向縱向延伸3.3倍,藉由21〜25 °C 的輥輪群冷卻。接著,邊以夾子把持該縱向延伸過的薄膜 -30- 1374548 . 之兩端,邊引導至拉幅器,在加熱至130 °C的環境中,在 與長度方向垂的方向橫向延伸3.6倍。隨後,在拉幅器內 以220 °C進行熱固定,均勻地慢慢冷卻後,冷卻至室溫, 得到捲取厚度爲50微米的薄片。 將上述在A、B層都使用上述PET聚合物固有黏度爲 0.60之物作爲片2,將0.66之物作爲片3,將0.73之物作 爲片4,將0.81之物作爲片5。另一方面,在12微米之雙 軸延伸聚酯樹脂片(TORAY(股)製 LUMIRROR(註冊商 > 標)P11濺鍍氧化矽(Si02),得到400A厚度的氧化矽膜形成 薄膜。使用下述黏著劑將該濺鍍薄膜層積於片2〜5而成之 物作爲積層品2〜5。 黏著劑:胺甲酸乙酯系黏著劑(ADOCOAT(註冊商 標)76P1 : TOYOINK公司製),黏著劑係相對於10重量份 主劑,調配硬化劑的比率爲1重量份,使用乙酸乙酯調整 爲30重量%,使用凹版輥輪法以對濺鍍薄膜面進行溶劑乾 燥後之塗布厚度爲5微米厚度之方式進行塗布。乾燥溫度 1 爲lOOt。又,層積條件係使用輥輪層積機以60°C溫度、 壓力1公斤/平方公分進行,硬化條件爲60°C、3天。 比較例1 除了數量平均粒徑0.2微米的二氧化鈦微粒子爲50重量 %之主晶片(主晶片形狀爲圓柱形、長度:5.95〜8.05毫米、 寬度:3_20〜4,80毫米、高度:1.70〜2.30毫米)以外,與 實施例1同樣的方法得到上述PET聚合物固有黏度0.5 5 (比 較例1)的片1,將該片1使用實施例1同樣的方法層積得 1374548 • 到之物作爲積層品-1。 PET 時 > 又,A、B層都使用數量平均分子量爲41000 聚合物固有黏度爲0.9無法擠出。 [表1 ]When the A layer/B layer/C layer is composed, the content of the 'dioxide is 5 to 40% by weight. When only the A layer is used, the formula 2' Titanium dioxide contains the layer ratio (%): the thickness of the A layer, the thickness of the A layer, and the B layer. Thickness + Thickness of C layer: 100 is calculated from above. The number average molecular weight of each layer was measured by the above measurement method using a sample obtained from each layer. EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples. Examples 1 to 4 In 100 parts of dimethyl phthalate (parts by weight: hereinafter referred to as "parts only"), 64 parts of ethylene glycol was mixed and 0.1 part was added as a catalyst. Zinc acetate and 〇.03 parts of antimony trioxide Transesterification is carried out at the reflux temperature of ethylene glycol. On the other hand, 0.08 parts of trimethyl phosphate was added, and the temperature was gradually lowered to reduce the pressure, and polymerization was carried out at a temperature of 27 ° C for 5 hours. The intrinsic viscosity of the obtained polyethylene terephthalate was 0.55. The polymer was cut into a wafer of length 4 mm • 29-1374548, PET (poIyethy 丨ene terephthalate; polyethylene terephthalate) wafer-shaped cylindrical, length: 5.95~8_05 mm, width: 3.20 ~ 4.80 mm, height: 1.70 to 2.30 mm, specific gravity 1.3 g / cm ^ 3 . This PET was placed in a rotary vacuum apparatus (rotary vacuum drying) under conditions of a high polymerization temperature of 9 Torr to 2301 and a vacuum of 0.5 mmHg, and heated to obtain a PET polymer while stirring for 10 to 23 hours. The polymerization of PET for the composite and the raw material is changed to a high polymerization temperature of 190 to 230 Torr, and the polymerization time is changed from 10 to 23 hours, and the inherent viscosity of the PET polymer is 〇.6 〇 (implementation) Four types of PET polymers, such as ι), 〇66 (Example 2), 〇.73 (Example 3), and 0.81 (Example 4). The four kinds of PET polymer and titanium dioxide fine particles were mixed to prepare a main wafer having a titanium oxide content of 50% by weight. Since the main wafer has a specific gravity of 2.5 g/cm 3 , the wafer shape of the main wafer is a length of 2.40 to 4.60 mm, a width of 3.20 to 4,80 mm, and a height of 1.70 to 2.30 mm, which is not easy to be classified. Wafer shape. To the raw polyester, 28% by weight of a main wafer containing titanium oxide was added to have a titanium oxide concentration of 14% by weight. These polymers were laminated in the form of a B layer/A layer/B layer by a laminating apparatus, and formed into a sheet shape via a T die. Although the laminated structure is a composite three-layer structure, the A-layer and the B-layer use the same polymer to form a substantially single layer (B layer/A layer/B layer=B layer/B layer/B layer). Therefore, the polymerization degree of each layer (layer A, layer B) is the same. The sheet-formed product discharged from the T-die is cooled and solidified by a cooling drum having a surface temperature of 25 ° C, and is guided to a roller group heated to 85 to 98 ° C to extend longitudinally in the longitudinal direction. 3.3 times, cooled by a roller group of 21 to 25 °C. Next, both ends of the longitudinally extending film -30- 1374548 were gripped by a clip, and guided to the tenter, and extended 3.6 times in the direction perpendicular to the longitudinal direction in an environment of heating to 130 °C. Subsequently, it was thermally fixed at 220 ° C in a tenter, uniformly cooled slowly, and then cooled to room temperature to obtain a sheet having a thickness of 50 μm. The above-mentioned PET polymer having the intrinsic viscosity of 0.60 was used as the sheet 2, the 0.66 was used as the sheet 3, the 0.73 was used as the sheet 4, and the 0.81 was used as the sheet 5. On the other hand, a 12-micron biaxially stretched polyester resin sheet (LUMYOROR (registered trademark) P11 manufactured by TORAY Co., Ltd.) was sputtered with yttrium oxide (SiO 2 ) to obtain a yttrium oxide film formed into a film having a thickness of 400 A. The adhesive is formed by laminating the sputtered film on the sheets 2 to 5 as the laminates 2 to 5. Adhesive: urethane-based adhesive (ADOCOAT (registered trademark) 76P1: manufactured by TOYOINK Co., Ltd.), adhesive The ratio of the agent to the hardener is 10 parts by weight with respect to 10 parts by weight of the main component, and is adjusted to 30% by weight with ethyl acetate, and the coating thickness of the sputtered film surface after solvent drying is 5 using a gravure roll method. The coating was carried out in a micron-thickness manner, and the drying temperature was 1 000 t. Further, the lamination conditions were carried out using a roller laminator at a temperature of 60 ° C and a pressure of 1 kg/cm 2 , and the curing conditions were 60 ° C for 3 days. Example 1 In addition to a titanium oxide fine particle having a number average particle diameter of 0.2 μm, a main wafer of 50% by weight (the main wafer has a cylindrical shape, a length of 5.95 to 8.05 mm, a width of 3 to 20 to 4, 80 mm, and a height of 1.70 to 2.30 mm). Other than the embodiment In the same manner, the sheet 1 having a PET polymer inherent viscosity of 0.5 5 (Comparative Example 1) was obtained, and the sheet 1 was laminated in the same manner as in Example 1 to obtain 1374548. Also, the A and B layers all use a number average molecular weight of 41,000. The polymer has an intrinsic viscosity of 0.9 and cannot be extruded. [Table 1]

-32- 1374548-32- 1374548

(乸<0跋r撇 1 41000 (無法擠出) I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.90 1 窗施例4 同B層PET 35000 Ο Ο 氧化鈦 寸 1.42 〇 0.71 12.8 〇 V» 0.45 m m 84% 〇 0.81 ίβ曆品-5 實施例3 同B層PET 27000 ο 氧化鈦 寸 OJ 对 •Μ 〇 0.71 11.3 〇 m 11.7 0.45 m m 83% 〇 0.73 積層品-4 實施例2 同B層PET 19800 ο 氧化鈦 寸 (Ν 呀· 0.71 12.8 〇 in cn 11.5 0.45 ΓΛ m 84% 〇 0.66 積層品-3 實施例1 同B層PET 18500 ο ο 氧化鈦 寸 (Ν 呀 <1 45.8 0.71 11.3 〇 KTi rn 11.8 0.45 m m 85% 〇 ο ο 積層品-2 比較例1 同B層PET 18300 ο ο 氧化鈦 CN 寸 X 11.6 0.71 25.2 〇 in 11.8 0.45 m m 83% 〇 0.55 積層品-1 A層PET的Μη Β層PET的Μη 複合比(%) [Β層/(Α層+Β層) 粒子種類 二氧化鈦濃度(wt%) 表觀密度 耐水解性 耐熱性 (伸長度保持率)(%) 光學濃度 光學濃度偏差(%) 耐候性(耐UV性) uv穿透率(%) 總透光率(%) δ q裁 坦ε ft ε 囤5 難 δ » 褂· m 1 喊s U ε 爷3 介電率 相對反射係數 加工性 固有黏度(Β層PET) 試樣號碼 -ecn_ 1374548 得知實施例1〜4之本發明的太陽電池用聚酯樹脂片 積層品,與比較例1比較時具有優良的耐水解性,而且使 用較商聚合度之聚合物’可以提升耐水解性、及耐熱性。 光學濃度偏差依照晶片形狀的不同以形狀較小的類型能夠 降低光學濃度偏差。 實施例5〜7 使用實施例1〜4同樣的方法,擠出Α層與β層同樣 的PET聚合物(數量平均分子量21000、固有黏著0.71、二 氧化鈦粒子濃度14重量%)、實質性單層構造(B層/A層/B 層=B層/B層/B層)。將單層的PET中的氧化鈦的添加量 爲5重量%作爲片7(實施例5)、14重量%作爲片8(實施例 6)、40重量%作爲片9(實施例7),製造3種類的複合薄膜, 在各片一面與實施例1〜4同樣地進行層積氧化矽濺鍍薄 膜,蔣該積層品作爲積層品7〜9。其他部分與實施例1〜4 同樣地進行。 比較例2、3 除了變更粒子濃度、主晶片形狀以外,與實施例5同 樣進行製造聚酯樹脂片。使用平均粒徑爲0.2微米的二氧 化鈦微粒子爲5 0重量%之主晶片(主晶片形狀爲圓柱形、長 度:5.95〜8.05毫米、寬度:3_20〜4.80毫米、高度:1.70 〜2 ·3 0毫米)。比較例2係使二氧化鈦濃度爲4重量%,得 到的薄片作爲片6。接著將與阻障層積後的薄片作爲積層 品6。比較例3係使二氧化鈦濃度爲4 5重量。/(),將得到的 薄片作爲片1〇。接著將與阻障層積後的薄片作爲積層品 -34 - 1374548 10,但是製膜的薄膜部立刻阻塞,濾壓上升必須更換過濾 器,結果生產力變差。 [表2](乸<0跋r撇1 41000 (cannot be extruded) I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.90 1 Window Example 4 Same as B layer PET 35000 Ο 氧化钛 Titanium oxide inch 1.42 〇0.71 12.8 〇V» 0.45 mm 84% 〇0.81 ίβ历-5 - Example 3 Same as B layer PET 27000 ο Titanium oxide inch OJ pair • Μ 〇 0.71 11.3 〇m 11.7 0.45 mm 83% 〇 0.73 laminated product-4 Example 2 B layer PET 19800 ο Titanium oxide inch (Ν呀·0.71 12.8 〇in cn 11.5 0.45 ΓΛ m 84% 〇0.66 Laminate-3 Example 1 Same as B layer PET 18500 ο ο 钛 寸 (Ν呀<1 45.8 0.71 11.3 〇KTi rn 11.8 0.45 mm 85% 〇ο ο Laminate-2 Comparative Example 1 Same as B layer PET 18300 ο ο Titanium oxide CN inch X 11.6 0.71 25.2 〇in 11.8 0.45 mm 83% 〇0.55 Laminated product-1 A layer PET Μη 复合 layer PET Μη composite ratio (%) [Β layer / (Α layer + Β layer) particle type titanium dioxide concentration (wt%) apparent density hydrolysis resistance heat resistance (elongation retention rate) (%) optical concentration Optical density deviation (%) Weather resistance (UV resistance) uv penetration rate (%) Total light transmittance (%) δ qCutan ε ft ε 囤5 Hard δ » 褂· m 1 Shout s U ε 爷3 dielectric constant and reflection coefficient, workability, intrinsic viscosity, Β layer PET, sample number - ecn_ 1374548. The polyester resin sheet laminate for solar cells of the present invention of Examples 1 to 4 was found to have a comparison with Comparative Example 1. Excellent hydrolysis resistance, and the use of a polymer having a higher degree of polymerization can improve hydrolysis resistance and heat resistance. The optical density deviation can reduce the optical density deviation in a smaller shape depending on the shape of the wafer. 7 Using the same method as in Examples 1 to 4, the same PET polymer (quantitative molecular weight 21,000, intrinsic adhesion 0.71, titanium dioxide particle concentration: 14% by weight) and a substantially single layer structure (B layer/ A layer / B layer = B layer / B layer / B layer). The amount of titanium oxide added to the single layer of PET was 5% by weight as the sheet 7 (Example 5) and 14% by weight as the sheet 8 (Example 6), 40% by weight as a sheet 9 (Example 7), three kinds of composite films were produced, and a cerium oxide sputtering film was laminated on the same side as in Examples 1 to 4, and the laminate was used as a laminate. 7 to 9. The other portions were carried out in the same manner as in Examples 1 to 4. Comparative Examples 2 and 3 A polyester resin sheet was produced in the same manner as in Example 5 except that the particle concentration and the shape of the main wafer were changed. Using a titanium oxide fine particle having an average particle diameter of 0.2 μm as a 50% by weight main wafer (the main wafer has a cylindrical shape, a length of 5.95 to 8.05 mm, a width of 3 to 20 to 4.80 mm, and a height of 1.70 to 2 · 300 mm). . In Comparative Example 2, the titanium oxide concentration was 4% by weight, and the obtained sheet was used as the sheet 6. Next, a sheet laminated with the barrier is used as the laminate 6. Comparative Example 3 was such that the titanium dioxide concentration was 45 weight. / (), the obtained sheet is taken as a sheet. Then, the sheet laminated with the barrier layer was used as a laminate product -34 - 1374548 10, but the film portion of the film formation was immediately blocked, and the filter was replaced when the filter pressure was raised, resulting in poor productivity. [Table 2]

-35- 1374548-35- 1374548

•表2(粒子濃度) 比較例2 實施例5 實施例6 實施例7 比較例3 A層PET的Μη 同B層 PET 同B層 PET 同B層 PET 同B層 PET 同B層 PET Β層PET的Μη 21000 21000 21000 21000 21000 複合比(%) [Β層/(Α層+Β層) 100 100 100 100 100 粒子種類 氧化鈦 氧化鈦 氧化鈦 氧化鈦 氧化鈦 二氧化鈦濃度(wt°/。) 4 5 14 40 45 表觀密度 1.36 1.37 1.42 1.65 1.75 耐水解性 〇 〇 〇 〇 〇 耐熱性 (伸長度保持率)(%) 47 47 57 47 39 光學濃度 0.54 0.55 1.15 1.45 2.6 光學濃度偏差(%) 35.4 19.2 7.8 4.1 1.2 耐候性(耐UV性) X Δ 〇 〇 〇 UV穿透率(%) 11 10 3.5 0.005 0.004 總透光率(%) 26.8 24.2 11.8 1.3 0.95 水蒸氣穿透率(氣體阻障性) (g/m2)[24hr ·厚度 0.1mm 換算] 0.25 0.3 0.33 0.35 0.45 介電率 3.1 3.1 3.3 3.3 3.3 相對反射係數 79 81 85 87 89 加工性 〇 〇 〇 Δ X 固有黏度(B層PET) 0.71 0.71 0.71 0.71 0.71 試樣號碼 積層品-6 積層品-7 積層品-8 積層品-9 積層品-10 得知實施例 5〜7之本發明的太陽電池用聚酯樹脂片 積層品,與比較例2比較時具有優良的光學濃度 '光學濃 度偏差、總透光率、反射係數 '耐U V性,而且隨著提高 -36 - 1374548 . 粒子濃度,同樣地光學濃度、光學濃度偏差、總透光率、 反射係數、耐UV性上升。但是,得知若粒子濃度上升太 多時,氣體阻障性變差、加工性、生產力有變差的傾向。 實施例8〜1 0 使B層的PET的數量平均分子量爲21000、固有黏度 爲0.71、A層的PET之數量平均分子量爲18300、固有黏 度爲0.55(雙方的PET都是二氧化鈦粒子濃度爲14重量 %)。藉由層積裝置以B層/A層/B層的方式層積此等聚合 ® 物,經由T模頭以片狀的方式成形。積層構成係合3層構 成。將從T模頭吐出的薄片成形物藉由表面溫度25 °C的冷 卻滾筒冷卻固化而成的未延伸薄膜,引導到至加熱至8 5〜 98 °C的輥輪群,在長度方向縱向延伸3.3倍,藉由21〜25 °C 的輥輪群冷卻。接著,邊以夾子把持該縱向延伸過的薄膜 之兩端,邊引導至拉幅器,在加熱至130 °C的環境中,在 與長度方向垂的方向橫向延伸3.6倍。隨後,在拉幅器內 以22 0 °C進行熱固定,均勻地慢慢冷卻後,冷卻至室溫, ® 得到捲取厚度爲250微米的薄片。 將B層/A層/B層的複合比[B層/(A層+B層)]爲7.2% 之物作爲片12(實施例8)、15%之物作爲片13(實施例9)、 20%之物作爲片14(實施例10)。延伸方法係在上述該薄膜 的一面真空蒸鍍60 0A厚度的鋁。該蒸鏟的目的係爲了使用 作爲太陽電池時之氣體阻障性。• Table 2 (particle concentration) Comparative Example 2 Example 5 Example 6 Example 7 Comparative Example 3 层η of A layer PET Same as B layer PET Same B layer PET Same B layer PET Same B layer PET Same B layer PET Β PET Μη 21000 21000 21000 21000 21000 Composite ratio (%) [Β layer / (Α layer + Β layer) 100 100 100 100 100 Particle type titanium oxide titanium oxide titanium oxide titanium oxide titanium dioxide concentration (wt ° /.) 4 5 14 40 45 Apparent density 1.36 1.37 1.42 1.65 1.75 Hydrolysis resistance 〇〇〇〇〇 Heat resistance (elongation retention) (%) 47 47 57 47 39 Optical density 0.54 0.55 1.15 1.45 2.6 Optical density deviation (%) 35.4 19.2 7.8 4.1 1.2 Weather resistance (UV resistance) X Δ 〇〇〇 UV transmittance (%) 11 10 3.5 0.005 0.004 Total light transmittance (%) 26.8 24.2 11.8 1.3 0.95 Water vapor transmission rate (gas barrier property) (g/m2) [24hr · thickness 0.1mm conversion] 0.25 0.3 0.33 0.35 0.45 Dielectric ratio 3.1 3.1 3.3 3.3 3.3 Relative reflection coefficient 79 81 85 87 89 Processability 〇〇〇Δ X Intrinsic viscosity (B layer PET) 0.71 0.71 0.71 0.71 0.71 sample number laminated product-6 laminated product-7 laminated product-8 product Product-9 Laminated product-10 The polyester resin sheet laminate for solar cell of the present invention of Examples 5 to 7 was found to have excellent optical density 'optical density deviation, total light transmittance, reflection when compared with Comparative Example 2 The coefficient 'UV resistance, and the optical density, optical density deviation, total light transmittance, reflection coefficient, and UV resistance increase as the particle concentration increases. However, when the particle concentration rises too much, the gas barrier property is deteriorated, and workability and productivity tend to be deteriorated. Example 8 to 1 0 The PET of the B layer had a number average molecular weight of 21,000, an intrinsic viscosity of 0.71, a PET of the A layer, a number average molecular weight of 18,300, and an intrinsic viscosity of 0.55 (both PETs have a titanium dioxide particle concentration of 14 weights). %). These polymerization products were laminated in the form of a B layer/A layer/B layer by a laminating apparatus, and formed into a sheet shape via a T die. The laminate structure is composed of a three-layer structure. The sheet-formed product discharged from the T-die is cooled and solidified by a cooling drum having a surface temperature of 25 ° C, and is guided to a roller group heated to 85 to 98 ° C to extend longitudinally in the longitudinal direction. 3.3 times, cooled by a roller group of 21 to 25 °C. Next, both ends of the longitudinally stretched film were held by a clip, and guided to the tenter, and extended 3.6 times in the direction perpendicular to the longitudinal direction in an environment of heating to 130 °C. Subsequently, heat-fixing was carried out in a tenter at 22 ° C, uniformly cooled slowly, and then cooled to room temperature, to obtain a sheet having a thickness of 250 μm. The composite ratio of the B layer/A layer/B layer [B layer/(A layer + B layer)] was 7.2% as the sheet 12 (Example 8), and 15% was used as the sheet 13 (Example 9) 20% of the material was used as the sheet 14 (Example 10). The stretching method vacuum-deposited 60 A thick aluminum on one side of the above film. The purpose of the steam shovel is to use gas barrier properties when used as a solar cell.

又,在12微米之雙軸延伸聚酯樹脂片(TORAY(股)製 LUMIRROR(註冊商標)PI 1濺鍍氧化矽(S i 0 2),得到4 0 0 A -37 - 1374548 • 厚度的氧化矽膜形成薄膜》在乾式層積機在上述濺鍍薄膜 的蒸鍍薄膜層面以固體成分30重量%的武田藥品工業(股) 製聚胺甲酸酯系黏著劑(主劑 TAKELACK515/硬化劑 TAKENET A50=10/l溶液)作爲黏著劑、塗布量5克/平方公 尺(乾燥狀態),進行塗布、乾燥,層積片12〜14。如此, 將兩側設置有氣體阻障層之積層體作爲積層體12〜14。 實施例1 1 使A、B層的PET的數量平均分子量爲21000、固有黏Further, a 12-micron biaxially stretched polyester resin sheet (LUMYOROR (registered trademark) PI 1 sputtered yttrium oxide (S i 0 2) manufactured by TORAY Co., Ltd., obtained 400 0 - 37 - 1374548 • thickness oxidation Film for forming a ruthenium film. Polyurethane-based adhesive (the main agent TAKELACK515/hardener TAKENET) manufactured by Takeda Pharmaceutical Co., Ltd., which has a solid content of 30% by weight on the surface of the deposited film of the above-mentioned sputtered film. A50=10/l solution) as an adhesive, a coating amount of 5 g/m 2 (dry state), coating and drying, and laminating sheets 12 to 14. Thus, a laminate having gas barrier layers on both sides is provided As the laminates 12 to 14. Example 1 1 The number average molecular weight of the PET layers of the A and B layers was 21,000, and the intrinsic viscosity was obtained.

I 度爲0.71(雙方的PET都是二氧化鈦粒子濃度爲14重量 %)。藉由層積裝置以B層/A層/B層的方式層積此等聚合 物,經由T模頭以片狀的方式成形。積層構成係合3層構 成。將從T模頭吐出的薄片成形物藉由表面溫度2 5 °C的冷 卻滾筒冷卻固化而成的未延伸薄膜,引導到至加熱至8 5〜 98 °C的輥輪群,在長度方向縱向延伸3.3倍,藉由21〜25 °C 的輥輪群冷卻。接著,邊以夾子把持該縱向延伸過的薄膜 之兩端,邊引導至拉幅器,在加熱至130 °C的環境中,在 與長度方向垂的方向橫向延伸3.6倍。隨後,在拉幅器內 以22 0 °C進行熱固定,均勻地慢慢冷卻後,冷卻至室溫, 得到捲取厚度爲250微米的薄片。 8層/八層/8層的複合比[8層/(八層+8層)]爲100%,片 1 5 (實施例1 1)係未設置氣體阻障層,同樣地測定各種物性。 比較例4、5 使用B層的PET的數量平均分子量爲21000、固有黏 度爲0.71、A層的PET之數量平均分子量爲18300、固有 -38 - 1374548 黏度爲0.55(雙方的PET都是二氧化鈦粒子濃度爲14重量 %)之物。藉由層積裝置以B層/A層/B層的方式層積此等聚 合物,經由T模頭以片狀的方式成形。積層構成係合3層 構成。 得到B層/A層/B層的複合比[B層/(A層+B層)]爲 6 % (比較例4)的薄片。在比較例5係在B層的P E T亦使用 與A層的PET同樣的數量平均分子量18300、固有黏度0.55 的ΡΕΤ»將該薄膜使用逐次雙軸延伸法,在溫度95 °C往薄 片長度方向延伸3.0倍。並且,隨後以220°C熱處理,得到 2種類之厚度250微米的薄片。接著,藉由實施例8同樣 的方法得到積層品。 積層品係使用上述的複合比爲6 %之物,將藉由實施例 8的方法層積阻障層所得到之物作爲片1 1,同樣地,將b 層的PET亦與使用A層的PET同樣的數量平均分子量 1 8300之作爲片16。 比較例6 使用杜邦公司製氟系薄膜“TEDORA’’TWH20BS3(50微 米)’將該薄片作爲片1 7。對該片1 7測定與其他實施例同 樣的項目。 [表3] -39- 1374548The I degree is 0.71 (both PETs have a titanium dioxide particle concentration of 14% by weight). These polymers were laminated in the form of a B layer/A layer/B layer by a laminating apparatus, and formed into a sheet shape via a T die. The laminate structure is composed of a three-layer structure. The sheet-formed product discharged from the T-die is cooled and solidified by a cooling drum having a surface temperature of 25 ° C, and is guided to a roller group heated to 85 to 98 ° C, longitudinally in the longitudinal direction. It is extended 3.3 times and cooled by a roller group of 21 to 25 °C. Next, both ends of the longitudinally stretched film were held by a clip, and guided to the tenter, and extended 3.6 times in the direction perpendicular to the longitudinal direction in an environment of heating to 130 °C. Subsequently, it was heat-fixed at 22 ° C in a tenter, uniformly cooled slowly, and then cooled to room temperature to obtain a sheet having a thickness of 250 μm. The composite ratio of 8 layers/eight layers/8 layers [8 layers/(eight layers + 8 layers)] was 100%, and the sheet 15 (Example 11) was not provided with a gas barrier layer, and various physical properties were measured in the same manner. Comparative Examples 4 and 5 PET having a B layer had a number average molecular weight of 21,000, an intrinsic viscosity of 0.71, an A layer of PET having a number average molecular weight of 18,300, and an inherent -38 - 1374548 viscosity of 0.55 (both PETs are titanium dioxide particle concentrations). It is 14% by weight). These polymers were laminated in the form of a B layer/A layer/B layer by a laminating apparatus, and formed into a sheet shape via a T die. The laminated structure is composed of three layers. The composite ratio of the B layer/A layer/B layer [B layer/(A layer + B layer)] was 6 % (Comparative Example 4). In Comparative Example 5, the PET in the B layer also used the same average molecular weight of 18300 and the intrinsic viscosity of 0.55 as the PET of the A layer. The film was stretched in the longitudinal direction at a temperature of 95 ° C using a sequential biaxial stretching method. 3.0 times. Further, heat treatment was then carried out at 220 ° C to obtain two types of sheets having a thickness of 250 μm. Then, a laminate was obtained in the same manner as in Example 8. The laminate product was obtained by using the above-mentioned composite ratio of 6%, and the material obtained by laminating the barrier layer by the method of Example 8 was used as the sheet 1 1. Similarly, the PET of the b layer was also used with the layer A. PET has the same number average molecular weight of 18,300 as the sheet 16. Comparative Example 6 The sheet was used as the sheet 17 using a fluorine-based film "TEDORA" TWH20BS3 (50 μm) manufactured by DuPont. The same items as in the other examples were measured for the sheet 17. [Table 3] -39 - 1374548

(褂q-LA鹅 if)e 谳 比較例6 1 I I 1 1 :· ◎ κη Os 0.75 1_ 1 〇 (N Os (N 5以上 X 1 1 片-17 比較例5 18300 Α層PET同 1 二氧化鈦 1.42 X r^i 1.51 00 〇 卜 Ο Os 0.15 m 00 〇 0.55 0.55 層品-1 6 實施例Π 同B層PET 21000 100 二氧化鈦 <N 〇 卜 κη 对 00 <N 〇 卜 ο m in ON 〇 0.71 0.71 片-15 實施例10 18300 21000 二氧化鈦 琴· _ CN 〇 v£> OO (N 〇 r- ο v〇 0.15 oo 〇 0.55 0.71 積層品-14 實施例9 18300 21000 二氧化鈦 ^r (N 〇 卜 l/·) OO (N 〇 卜 ο m o m oo 〇 0.55 0.71 積層品-13 實施例8 1 8300 21000 (N 二氧化駄 对 1.42 <3 oo 寸 1.45 OO (N 〇 卜 ο <n o CN oo 〇 0.55 0.71 -1 積層品-12 比較例4 18300 21000 二氧化鈦 寸 (N 寸 X 卜 OO 〇 卜 ο 0.15 79.8 〇 0.55 0.71 積層品-11 A層PET的Μη B層PET的Μη CQ + $幽 t < Λ3 ^ 粒子種類 二氧化鈦濃度(Wt%) 表觀密度 耐水解性 耐熱性(伸長度保持率)(%) 光學濃度 光學濃度偏差(%) 耐候性(耐uv性) uv穿透率(%) 總透光率(%) » a截 si 艇ε 固S S it 褂· m ^ 俄5 嫉p 擬 爷5 相對反射係數 加工性 固有黏度(A層PET) 固有黏度(B層PET) 試樣號碼 • 〇寸— ψ4548 實施例8〜10之太陽電池用聚酯樹脂片,與比赵 之物比較時,耐水解性較爲優良,而且氣體阻障性、 光率、反射性等諸特性都能夠滿足。另一方面,實施 〜10之物耐水解性隨著數量平均分子量較高的高分子 增加而改良,得知該積層比必須7%以上(以1 5 %以上 爲佳。最優是全部使用高分子量的層時。比較例6之 電池用聚酯樹脂片使用聚氟乙烯片之物(使用於該領 氟系片)雖然具有優良的耐候性、耐水解性、光反射估 但是氣體阻障性或薄片的強硬性弱、太陽電池的加 差。應用在此領域必須增加薄片的厚度、作爲氣體阻 時必須設置較佳的金屬層。又,該薄片的表觀密度較 若將這一起考慮時,不符合最近對輕量化的要求。 實施例1 2〜1 9 使用Β層的PET的數量平均分子量爲21000、固 度爲0.7 1 (B層的二氧化鈦粒子濃度爲20重量%),使 的PET爲表4之數量平均分子量、二氧化鈦含,使C PET之數量平均分子量爲1 7450、固有黏度爲0.50(C 二氧化鈦粒子濃度爲0重量%)。藉由層積裝置以B層 /B層/C層的方式層積此等聚合物,經由T模頭以片狀 式成形。積層構成係合4層構成。將從T模頭吐出的 成形物藉由表面溫度25 °C的冷卻滾筒冷卻固化而成的 伸薄膜,引導到至加熱至85〜98 °C的輥輪群,在長度 縱向延伸3.3倍,藉由21〜2 5°C的輥輪群冷卻。接著 以夾子把持該縱向延伸過的薄膜之兩端,邊引導至 〔例4 總透 例8 量層 爲佳) 太陽 域之 匕等, 工性 障層 局, 有黏 A層 層的 層的 /A層 的方 薄片 未延 方向 ,邊 拉幅 -41- 1374548 器’在加熱至130 °C的環境中,在與長度方向垂的方向橫 向延伸3.6倍》隨後’在拉幅器內以2201進行熱固定,均 勻地慢慢冷卻後’冷卻至室溫,各實施例得到各自的捲取 厚度的薄片。配合B層/a層化層…層的複合比,改變每 實施例的厚度而吐出C層,改變二氧化鈦含有層的。使聚 醋樹脂的總厚度爲3 2 5微米、相對於薄片整體使[B層/(a 層+ B層+ C層)]之二氧化鈦含有層比率爲5.5%、使B層/A 層/B層的厚度爲250微米、使[B層/(a層+ B層的複合比 爲7.2¼之物爲片19(實施例12)。使聚酯樹脂片的總厚度爲 3 1 3微米、相對於薄片整體二氧化鈦含有層比率爲9%、B 層/ A層/B層的厚度爲188微米、使[B層/ (A層+ B層)]的複 合比爲1 5°/。之物作爲片20(實施例1 3) '使聚酯樹脂片的總 厚度爲238微米、相對於薄片整體二氧化鈦含有層比率爲 16°/。、B層/A層/B層的厚度爲188微米、使[B層/ (A層+B 層)]的複合比爲20°/。之物作爲片21(實施例14)。使聚酯樹 脂片的總厚度爲175微米、相對於薄片整體二氧化鈦含有 層比率爲17°/〇、B層/ A層/ B層的厚度爲1〇〇微米、使[B層 /(A層+ B層)]的複合比爲30 %之物作爲片22(實施例15)、 使聚酯樹脂片的總厚度爲263微米、相對於薄片整體二氧 化鈦含有層比率爲.21 %、B層/ A層/B層的厚度爲188微米、 使[B層/(A層+B層)]的複合比爲30%之物作爲片23 (實施例 16)、使聚酯樹脂片的總厚度爲300微米、相對於薄片整體 二氧化鈦含有層比率爲〗7%' B層/A層/B層的厚度爲50 微米、使[B層/(A層+B層)]的複合比爲1〇〇%之物作爲片 -42 - 1374548 24(實施例17)、使聚酯樹脂片的總厚度爲238微米、相對 於薄片整體—氧化鈦含有層比率爲21%' B層/A層/B層的 厚度爲50微米、使[B層/(A層+ B層)]的複合比爲1〇〇%之 物作爲片25(實施例18)。使聚酯樹脂片的總厚度爲125微 米、相對於薄片整體二氧化鈦含有層比率爲4〇%、B層/A 層/ B層的厚度爲50微米、使[B層/(A層+ B層)]的複合比 爲100°/。之物作爲片26(實施例19)。接著,在實施例12〜 19之全部片的一面’從B層側真空蒸鍍6〇〇A厚度的鋁》 又’各光學特性係從B層側測定。 比較例7 使B層;的PET的數量平均分子量爲21000、固有黏.度 爲0.71、A層的PET之數量平均分子量爲18300、固有黏 度爲0.55、C層的PET的數量平均分子量爲17450、固有 黏度爲0.50 ' B層的二氧化鈦粒子濃度爲20重量%。藉由 層積裝置以B層/A層/B層/C層的方式層積此等聚合物, 經由T模頭以片狀的方式成形。積層構成係合3層構成。 將從T模頭吐出的薄片成形物藉由表面溫度25 °C的冷卻滾 筒冷卻固化而成的未延伸薄膜,引導到至加熱至85〜98 °C 的輥輪群,在長度方向縱向延伸3.3倍,藉由2〗〜25 °C的 輥輪群冷卻。接著,邊以夾子把持該縱向延伸過的薄膜之 兩端,邊引導至拉幅器,在加熱至130 °C的環境中,在與 長度方向垂的方向橫向延伸3.6倍。隨後,在拉幅器內以 2 20 °C進行熱固定,均勻地慢慢冷卻後,冷卻至室溫,得到 捲取厚度爲313微米的薄片。B層/A層/B層的厚度爲188 -43- 1374548 微米,[B層/(A層+ B層)]的複合比率爲6%,使[B層/(A層 + B層+C層)]之二氧化鈦含有層的比率爲4.8%,接著如實 施例12〜19同樣地,在片的一面從B層側真空蒸鍍60 0 A 厚度的鋁。又,各光學特性係從B層側測定。 [表4](褂q-LA goose if) e 谳Comparative Example 6 1 II 1 1 :· ◎ κη Os 0.75 1_ 1 〇 (N Os (N 5 or more X 1 1 piece-17 Comparative Example 5 18300 Α layer PET with 1 titanium dioxide 1.42 X r^i 1.51 00 〇 Ο Os 0.15 m 00 〇 0.55 0.55 layer-1 - 6 Example Π Same as layer B PET 21000 100 Titanium dioxide <N 〇卜 κη Pair 00 <N 〇布ο m in ON 〇0.71 0.71 piece-15 Example 10 18300 21000 Titanium dioxide piano _ CN 〇v£> OO (N 〇r- ο v〇0.15 oo 〇0.55 0.71 laminated product-14 Example 9 18300 21000 Titanium dioxide ^r (N 〇卜l /·) OO (N 〇 ο mom oo 〇 0.55 0.71 laminate product - 13 Example 8 1 8300 21000 (N bismuth oxide pair 1.42 < 3 oo inch 1.45 OO (N 〇 ο ο < no CN oo 〇 0.55 0.71 -1 Laminated product-12 Comparative example 4 18300 21000 Titanium dioxide inch (N inch X Bu OO 〇 ο 0.15 79.8 〇0.55 0.71 Laminated product -11 A layer PET Μη B layer PET Μη CQ + $幽t < Λ3 ^ Particle type Titanium dioxide concentration (Wt%) Apparent density hydrolysis resistance Heat resistance (elongation retention rate) (%) Optical concentration Optical density deviation (%) Weatherability (UV resistance) uv penetration rate (%) Total light transmittance (%) » a cut si boat ε solid SS it 褂· m ^ Russian 5 嫉p ji ye 5 relative reflection coefficient processing intrinsic viscosity (A Layer PET) Intrinsic viscosity (B layer PET) Specimen number • — - ψ 4548 The polyester resin sheet for solar cells of Examples 8 to 10 is superior in hydrolysis resistance to gas compared with Zhao, and gas resistance The properties such as barrier properties, light transmittance, and reflectivity can be satisfied. On the other hand, the hydrolysis resistance of the material of ~10 is improved with the increase of the polymer having a high number average molecular weight, and it is found that the laminate ratio must be 7% or more. (15% or more is preferable. It is preferable to use a layer having a high molecular weight in all. The polyester resin sheet for a battery of Comparative Example 6 is excellent in the use of a polyvinyl fluoride sheet (used in the fluorine-based sheet). Weather resistance, hydrolysis resistance, light reflection estimation, but the gas barrier property or the toughness of the sheet is weak, and the solar cell is poorly added. The application must increase the thickness of the sheet in this field, and a better metal layer must be provided as a gas barrier. Further, when the apparent density of the sheet is considered together, it does not meet the recent demand for weight reduction. Example 1 2 to 1 9 The PET having a ruthenium layer had a number average molecular weight of 21,000 and a solidity of 0.7 1 (the concentration of the titanium dioxide particles of the B layer was 20% by weight), and the PET was the number average molecular weight of Table 4, and the titanium oxide content. The C PET has a number average molecular weight of 1,750 and an intrinsic viscosity of 0.50 (C titanium dioxide particle concentration of 0% by weight). These polymers were laminated in the form of a B layer/B layer/C layer by a laminating apparatus, and formed into a sheet form via a T die. The laminated structure is composed of four layers. The formed product discharged from the T die is cooled and solidified by a cooling drum having a surface temperature of 25 ° C, and guided to a roller group heated to 85 to 98 ° C, extending longitudinally 3.3 times in length. It is cooled by a roller group of 21 to 2 5 °C. Then, the two ends of the longitudinally extending film are gripped by a clip, and guided to [the fourth embodiment of the total number of layers 8 is preferable), the sun layer, etc., the work barrier layer, the layer of the adhesive layer A / The square sheet of the A layer is not extended, and the side tenter -41 - 1374548 'extends 3.6 times in the direction of the longitudinal direction in the environment heated to 130 ° C." Then '2201 in the tenter Heat-fixed, uniformly cooled slowly, and then cooled to room temperature, and each of the examples obtained sheets of respective wound thicknesses. The C layer was discharged by changing the thickness of each of the layers of the B layer/a layered layer, and the layer containing the titanium oxide was changed. The total thickness of the polyester resin was 325 μm, and the ratio of the titanium dioxide-containing layer of [B layer/(a layer + B layer + C layer)] was 5.5% with respect to the entire sheet, and the layer B/A layer/B was made. The thickness of the layer was 250 μm so that the [B layer/(a layer + B layer composite ratio of 7.21⁄4 was a sheet 19 (Example 12). The total thickness of the polyester resin sheet was 3 1 3 μm, and the relative The total titanium dioxide content of the sheet is 9%, the thickness of the B layer/A layer/B layer is 188 μm, and the composite ratio of [B layer / (A layer + B layer)] is 15 ° /. Sheet 20 (Example 13) 'The total thickness of the polyester resin sheet was 238 μm, and the ratio of the titanium oxide-containing layer to the sheet was 16°/. The thickness of the B layer/A layer/B layer was 188 μm. The composite ratio of [B layer / (A layer + B layer)] was 20 ° / as the sheet 21 (Example 14). The total thickness of the polyester resin sheet was 175 μm, and the titanium oxide-containing layer was formed with respect to the entire sheet. The ratio is 17°/〇, the thickness of the B layer/A layer/B layer is 1 μm, and the composite ratio of [B layer/(A layer + B layer)] is 30% as the sheet 22 (Example 15), the total thickness of the polyester resin sheet is 263 microns, relative to the sheet The titanium dioxide contains a layer ratio of 21.21%, the B layer/A layer/B layer has a thickness of 188 μm, and the [B layer/(A layer + B layer)] composite ratio is 30% as the sheet 23 (Example) 16), the total thickness of the polyester resin sheet is 300 μm, and the ratio of the titanium dioxide-containing layer to the sheet is 7%. The thickness of the B layer/A layer/B layer is 50 μm, so that [B layer/(A layer) +B layer)] The compounding ratio is 1% by weight as sheet-42 - 1374548 24 (Example 17), the total thickness of the polyester resin sheet is 238 μm, and the ratio of the whole sheet to the titanium oxide-containing layer is As the sheet 25 (Example 18), the thickness of the 21% 'B layer/A layer/B layer was 50 μm, and the composite ratio of [B layer/(A layer + B layer)] was 1% by weight. The total thickness of the polyester resin sheet was 125 μm, the ratio of the titanium oxide-containing layer to the sheet was 4%, and the thickness of the B layer/A layer/B layer was 50 μm, so that [B layer/(A layer + B layer) The compounding ratio of 100% was as the sheet 26 (Example 19). Next, on one side of all the sheets of Examples 12 to 19, 'a thickness of 6 Å A of aluminum was vacuum-deposited from the side of the layer B. Further, each optical characteristic was measured from the side of the layer B. Comparative Example 7 The PET has a number average molecular weight of 21,000, an intrinsic viscosity of 0.71, an A layer of PET having a number average molecular weight of 18,300, an intrinsic viscosity of 0.55, a C layer of PET having a number average molecular weight of 17450 and an intrinsic viscosity of 0.50 'B. The layer has a titanium dioxide particle concentration of 20% by weight. These polymers were laminated in the form of a B layer/A layer/B layer/C layer by a laminating apparatus, and formed into a sheet shape via a T die. The laminated structure is composed of three layers. The sheet-formed product discharged from the T-die is cooled and solidified by a cooling drum having a surface temperature of 25 ° C, and is guided to a roller group heated to 85 to 98 ° C to extend longitudinally in the longitudinal direction of 3.3. Double, cooled by a roller group of 2 to 25 °C. Next, both ends of the longitudinally stretched film were gripped by a clip, and guided to the tenter, and extended 3.6 times in the direction perpendicular to the longitudinal direction in an environment of heating to 130 °C. Subsequently, heat setting was carried out at 2 20 ° C in a tenter, and the mixture was gradually cooled slowly, and then cooled to room temperature to obtain a sheet having a thickness of 313 μm. The thickness of the B layer/A layer/B layer is 188 -43 - 1374548 micrometers, and the composite ratio of [B layer / (A layer + B layer)] is 6%, so [B layer / (A layer + B layer + C The ratio of the titanium dioxide-containing layer of the layer] was 4.8%, and then, as in Examples 12 to 19, aluminum of a thickness of 60 A was vacuum-deposited from the side of the B layer on one side of the sheet. Further, each optical property was measured from the side of the layer B. [Table 4]

-44- 1374548-44- 1374548

(<nn 1ί »)寸谳 0施例 19 同Β曆 PET 21000 〇 〇 二氣化鈦 〇 ΓΜ Ο 贫 〇 卜 0.75 12.8 〇 〇 14.6 0.35 Os OC 〇 0.71 0.71 片-26 Κ施例 18 同B層 PET 21000 100 二氧化鈦 〇 (Ν <N 〇 卜 0.82 〇〇 〇 0.03 13.5 0.35 σ\ 00 〇 0.71 0.71 片-25 實施例 17 同B層 PET 21000 100 二氧化鈦 〇 CN 卜 (N 寸 〇 卜 0.88 〇〇 〇〇 〇 0.02 13.2 0.35 On 00 〇 0.71 0.71 片-24 實施例 16 同B層 PET 21000 〇 二氧化鈦 〇 (Ν 寸 〇 v〇 ο 〇〇 卜 〇 0.01 〇 0.35 Ο On 〇 0.71 0,71 1 片-23 I 實施例 15 同B層 PET 21000 ο 二氧化鈦 〇 CS 卜 〇 m SO 0.85 ON 〇 0.09 卜 0.35 Ο Cs 〇 0.71 0.71 片-22 實施例 14 18300 (無鈦) 21000 Ο (N 二氧化鈦 〇 <N ν〇 1.41 〇 卜 0.85 10.2 〇 0.14 18.5 0.35 卜 oo 〇 0.55 0.71 片-21 實施例 13 18300 (無鈦) 21000 二氧化鈦 〇 <N CTs 〇 in 寸 00 d 〇 寸 〇 20.2 0.35 in 00 〇 0.55 0.71 片-20 實施例 12 18300 (無鈦) 21000 (N 一 二氧化鈦 Ο (Ν in 〇 rs 0.65 19.2 0 0.25 20.5 0.35 oo 〇 0.55 0.71 , 片-19 比較例 7 18300 (無鈦) 21000 v〇 二氧化鈦 Ο (Ν CO 寸 〇 VO m ο CN X v〇 <s 0.35 1 On 卜 〇 0.55 0.71 片-18 A層PET的Μη Β層PET的Μη 複合比(%)【B層/(A層+B層) 粒子種類 二氧化鈦濃度(Wt%) m Wpll* 樹· f am 趣=33 inn ® ^ S 11 s 表觀密度 耐水解性 耐熱性(伸長度保持率)(%) 光學濃度 光學濃度偏差(%) 耐候性(耐uv性) uv穿透率(%) 總透光率(%) Λ 一戰 m E 艇ε S d 製贼 β Μ 褂· 嫉Ρ 職ε 爷3 相對反射係數 加工性 固有黏度(A層PET) 固有黏度(B層PET) 試樣號碼 —们寸— 1374548(<nn 1ί ») inch 谳0 Example 19 Same as calendar PET 21000 〇〇二化化〇ΓΜ〇ΓΜ 〇 Barrenness 0.75 12.8 〇〇14.6 0.35 Os OC 〇0.71 0.71 piece -26 Example 18 Same B Layer PET 21000 100 Titanium Dioxide Ν(Ν <N 〇布0.82 〇〇〇0.03 13.5 0.35 σ\ 00 〇0.71 0.71 Sheet-25 Example 17 Same as Layer B PET 21000 100 Titanium Dioxide 〇CN Bu (N inch 〇卜0.88 〇〇 〇〇〇0.02 13.2 0.35 On 00 〇0.71 0.71 piece-24 Example 16 Same B layer PET 21000 〇2 〇 〇 (Ν inch〇v〇ο 〇〇卜〇0.01 〇0.35 Ο On 〇0.71 0,71 1 piece-23 I Example 15 Same as B layer PET 21000 ο TiO 2 〇 CS 0.8 m SO 0.85 ON 〇 0.09 卜 0.35 Ο Cs 〇 0.71 0.71 piece -22 Example 14 18300 (without titanium) 21000 Ο (N TiO 2 〇 < N ν 〇 1.41 0.8卜0.85 10.2 〇0.14 18.5 0.35 oo 〇0.55 0.71 piece-21 Example 13 18300 (without titanium) 21000 TiO 2 〇<N CTs 〇in inch 00 d 〇 inch 〇20.2 0.35 in 00 〇0.55 0.71 piece-20 Example 12 18300 (without titanium) 21000 (N one two Titanium oxide Ο (Ν in 〇rs 0.65 19.2 0 0.25 20.5 0.35 oo 〇 0.55 0.71 , sheet -19 Comparative Example 7 18300 (without titanium) 21000 v 〇 titanium dioxide Ο (Ν CO 〇 〇 VO m ο CN X v〇<s 0.35 1 On 〇 0.55 0.71 piece -18 A layer of PET Μ Β layer PET Μ 复合 composite ratio (%) [B layer / (A layer + B layer) particle type titanium dioxide concentration (Wt%) m Wpll* tree · f Am Interest =33 inn ® ^ S 11 s Apparent density Hydrolysis resistance Heat resistance (Elongation retention) (%) Optical concentration Optical density deviation (%) Weather resistance (UV resistance) UV penetration rate (%) Total Transmittance (%) Λ World War I m boat ε S d thief β Μ 褂· 嫉Ρ Job ε Lord 3 Relative reflection coefficient Processing intrinsic viscosity (A layer PET) Intrinsic viscosity (B layer PET) Sample number— Inch - 1374548

爲了提升部分放電起始電壓,薄膜厚度係重 發明之聚酯樹脂層與其他聚酯層共擠出,係爲了 而實施。從表4可以得知,即使共擠出而得到的 用聚酯樹脂片,聚酯樹脂層由複數層構成,含有 量%二氧化鈦的層佔有聚酯樹脂片(B層/A層/B j 7 %以上之聚酯樹脂時’亦能夠得到合適的特性。 7 ’相對於薄片整體厚度,含有二氧化鈦的層小护 候性及光學特性不符合。因爲二氧化鈦含有層 時’能夠提升光學特性,所以在太陽電池用聚酯 以增加至能夠符合上述範圍之比率爲佳。但是爲 本’亦可以檢討藉由貼合本發明的太陽電.池用聚 以外之物來提升厚度之方法。 [產業上之利用可能性] 本發明之太陽電池用聚酯樹脂片,當然可以 爲屋頂材料所使用的太陽電池,亦能夠適合使用 性的太陽電池及電子零件等。 【圖式簡單說明】 第1圖係使用本發明的太陽電池用聚酯樹脂 電池的剖面圖。 第2圖係在薄膜的一面具有氣體阻障層之太 聚酯樹脂片積層品構造的一個例子的剖面圖。 第3圖係在二層薄膜之間具有氣體阻障層之 用聚酯樹脂片積層品構造之另外一個例子的剖面 第4圖係在薄膜的一面具有氣體阻障層(基木 要的。本 提升厚度 太陽電池 5〜40重 匿)厚度之 在比較例 〉7%,耐 比率越高 樹脂片中 了減少成 酯樹脂片 使用於作 於具有撓 片之太陽 陽電池用 太陽電池 圏。 f薄片+金 -46 - 1374548 屬或無機氧化物層)之太陽電池用聚酯樹脂片積層品構造 的一個例子的剖面圖* 【元件符號說明】In order to increase the partial discharge inception voltage, the film thickness is emphasized by co-extruding the polyester resin layer of the invention with other polyester layers. As can be seen from Table 4, even if the polyester resin sheet obtained by co-extrusion, the polyester resin layer is composed of a plurality of layers, the layer containing % of titanium oxide occupies the polyester resin sheet (B layer / A layer / B j 7) When the polyester resin is more than %, it can also obtain suitable characteristics. 7 'The thickness of the layer containing titanium dioxide is not consistent with the overall thickness of the sheet. Because titanium dioxide contains layers, it can improve optical properties, so It is preferable that the polyester for solar cells is increased to a ratio that can satisfy the above range. However, it is also possible to review the method of increasing the thickness by bonding the materials other than the solar cells of the present invention. [Explanation of the use] The polyester resin sheet for a solar cell of the present invention may of course be a solar cell used for a roofing material, and may be suitable for use in solar cells and electronic parts, etc. [Simplified illustration] Fig. 1 is used A cross-sectional view of a polyester resin battery for a solar cell of the present invention. Fig. 2 is an example of a structure of a polyester resin sheet laminate having a gas barrier layer on one surface of a film. Fig. 3 is a cross-sectional view showing another example of a structure of a polyester resin sheet having a gas barrier layer between two layers of film. Fig. 4 is a gas barrier layer on one side of the film. The thickness of the solar cell is increased by 5 to 40 in the comparative example. In the comparative example, 7%, the higher the resistance ratio, the lower the ester-forming resin sheet in the resin sheet, and the solar cell for solar solar cells having the flexible sheet. Fig. 5 is a cross-sectional view showing an example of a structure of a polyester resin sheet laminate for solar cells of the f-sheet + gold-46 - 1374548 genus or inorganic oxide layer.

1 總 光 線 穿 透 材 料 2 太 陽 電 池 元 件 3 塡 充 樹 脂 4 太 電 電 池 內 面 保護 片 5 導 線 6 水 蒸 氣 及 氣 體 阻障 層 7 聚 酯 樹 脂 層 (Α 層) 8 聚 酯 樹 脂 層 (Β 層) 9 黏 著 劑 層 10 太 陽 電 池 模 組 20 太 陽 電 池 用 熱 塑性 樹 脂 片積層品 2 1 基 材 片 22 金 屬 或 Μ JWS 機 氧 化物 層 3 0 太 陽 電 池 用 熱 塑性 樹 脂 片 -47 -1 Total light penetrating material 2 Solar cell component 3 Filling resin 4 Taipower battery inner protective sheet 5 Conductor 6 Water vapor and gas barrier layer 7 Polyester resin layer (Α layer) 8 Polyester resin layer (Β layer) 9 Adhesive layer 10 Solar cell module 20 Thermoplastic resin sheet for solar cell 2 1 Substrate sheet 22 Metal or tantalum JWS Machine oxide layer 3 0 Thermoplastic resin sheet for solar cells -47 -

Claims (1)

1374548 修正本 第09 5 109 5 3 2號「太陽電池用聚酯樹脂片、用它形成之 積層品、太陽電池内面保護片及模組」專利案 (2012年5月31日修正多欠下 十、申請專利範圍: 1·—種太陽電池用聚酯樹脂片,其係具有以數量平均分子 量爲18500〜400 00之1或複數層形成的聚酯樹脂層,在 該聚酯樹脂層具有至少1層以上具有5〜40重量%二氧化 鈦的層(B層)之聚酯樹脂片,其中 B層之合計厚度係聚酯樹脂層之整體厚度的9〜 4 0%、該B層係位於至少一邊的最外層,且 該聚酯樹脂片的波長300〜350奈米的透光率爲0.005 〜10%, 該聚酯樹脂片的相對反射係數爲80%以上105%以下, 該聚酯樹脂片的表觀密度爲1.37〜1.65克/立方公分, 該聚酯樹脂片的光學濃度爲0.55〜3.50, 相對於中心値之該聚酯樹脂片的光學濃度偏差爲20 %以內。 2. 如申請專利範圍第1項之太陽電池用聚酯樹脂片,其中 相對於中心値,該光學濃度偏差爲1 5%以內。 3. 如申請專利範圍第1項之太陽電池用聚酯樹脂片,其中 •該聚酯樹脂片的總透光率爲0.005〜25%。 4_如申請專利範圍第1項之太陽電池用聚酯樹脂片,其中 該具有5〜40重量%二氧.化鈦的層(B層)的數量平均分子 量爲 1 8 500 〜3 5000 » 5.如申請專利範圍第1項之太陽電池用聚酯樹脂片’其中 13.74548 / 修正本 . 在溫度85°C、濕度85%RH的環境下老化3000小時前後 的該聚酯樹脂片的伸長度保持率爲40〜100%。 6.如申請專利範圍第1項之太陽電池用聚酯樹脂片,其中 在溫度140°C的環境下老化15小時前後的該聚酯樹脂片 . 的伸長度保持率爲40〜100%。 7·如申請專利範圍第1項之太陽電池用聚酯樹脂片,其中 該具有5〜40重量%二氧化鈦的層(B層)的數量平均分子 量爲18500〜35000,且在溫度85 °C '濕度85 % RH的環 境下老化3000小時前後的該聚酯樹脂片的伸長度保持率 爲 40〜100%。 8. 如申請專利範圍第1項之太陽電池用聚酯樹脂片,其中 該具有5〜40重量%二氧化鈦的層(B層)的數量平均分子 量爲18500〜35000,且在溫度140 °C的環境下老化15小 時前後的該聚酯樹脂片的伸長度保持率爲40〜100% » 9. 如申請專利範圍第1項之太陽電池用聚酯樹脂片,其中 該具有5〜40重量%二氧化鈦的層(B層)的數量平均分子 量爲18500〜35000,.在溫度85 °C、濕度85 % RH的環境 下老化3 000小時前後的該聚酯樹脂片的伸長度保持率爲 . 4 0〜1 〇 〇 %,且在溫度1 4 0 °C的環境下老化1 5小時前後的 該聚酯樹脂片的伸長度保持率爲40〜100%。 1〇·如申請專利範圍第1項之太陽電池用聚酯樹脂片,其係 具有氣體及水蒸氣阻障層。 1 1 . 一種太陽電池用聚酯樹脂片積層品,其係至少層積如申 請專利範圍第1至10項中任一項之聚酯樹脂片、與氣體 Π74548 修正本 及水蒸氣阻障層而成。 12. 如申請專利範圍第11項之太陽電池用聚酯樹脂片積層 品,其中於依據JIS-K-7129測定水蒸氣穿透率時,在溫 度40°C、濕度90%RH,100微米換算的水蒸氣穿透率爲 0.5g/(m2 · 24hr)以下。 13. —種太陽電池內面保護片,其係使用於太陽電池的內面 密封材,該太陽電池內面保護片係使用如申請專利範圍 第1至12項中任一項之太陽電池用聚酯樹脂片、或太陽 電池用聚酯樹脂片積層品而成。 14. —種太陽電池模組,其係使用如申請專利範圍第13項之 太陽電池內面保護片而成。1374548 Amendment to the Patent No. 09 5 109 5 3 2 "Polyester Resin Sheet for Solar Cells, Laminated Products Formed by It, Solar Cell Inner Protective Sheet and Module" (May 31, 2012 Patent application scope: 1. A polyester resin sheet for a solar cell, which has a polyester resin layer formed by a number average molecular weight of 18,500 to 400 00 or a plurality of layers, and has at least 1 in the polyester resin layer. a polyester resin sheet having a layer (B layer) of 5 to 40% by weight of titanium dioxide above the layer, wherein the total thickness of the B layer is 9 to 40% of the entire thickness of the polyester resin layer, and the B layer is located on at least one side The outermost layer, and the light transmittance of the polyester resin sheet having a wavelength of 300 to 350 nm is 0.005 to 10%, and the relative reflection coefficient of the polyester resin sheet is 80% or more and 105% or less, and the surface of the polyester resin sheet is The apparent density is 1.37 to 1.65 g/cm 3 , and the optical density of the polyester resin sheet is 0.55 to 3.50, and the optical density deviation of the polyester resin sheet is less than 20% with respect to the center 。. 1 item of polyester resin sheet for solar cells, The optical density deviation is less than 1 5% with respect to the center 。. 3. The polyester resin sheet for solar cells according to claim 1, wherein the polyester resin sheet has a total light transmittance of 0.005 to 25 4) The polyester resin sheet for solar cells according to claim 1, wherein the layer (layer B) having 5 to 40% by weight of dioxygenated titanium has a number average molecular weight of 1 8 500 〜3 5000 » 5. For the polyester resin sheet for solar cells according to item 1 of the patent application, which is 13.74548 / Amendment. The elongation of the polyester resin sheet before and after aging for 3000 hours in an environment of temperature 85 ° C and humidity 85% RH 6. The degree of retention of the polyester resin sheet for solar cells according to claim 1, wherein the elongation of the polyester resin sheet before and after aging for 15 hours at a temperature of 140 ° C. The retention ratio is 40 to 100%. The polyester resin sheet for solar cells according to claim 1, wherein the layer (layer B) having 5 to 40% by weight of titanium dioxide has a number average molecular weight of 18,500 to 35,000. And aging in an environment of temperature 85 ° C 'humidity 85% RH 3 The polyester resin sheet of the solar cell of the first aspect of the invention is a polyester resin sheet of the first aspect of the invention, which has a layer of 5 to 40% by weight of titanium dioxide ( The number average molecular weight of the layer B) is 18,500 to 35,000, and the elongation retention of the polyester resin sheet before and after aging for 15 hours in an environment of a temperature of 140 ° C is 40 to 100%. The polyester resin sheet for solar cells, wherein the layer (layer B) having 5 to 40% by weight of titanium dioxide has a number average molecular weight of 18,500 to 35,000, and is aged at a temperature of 85 ° C and a humidity of 85% RH. The elongation retention of the polyester resin sheet before and after the 000 hours was maintained at 40% to 10,000%, and the elongation of the polyester resin sheet was maintained before and after aging for 15 hours at a temperature of 140 °C. The rate is 40 to 100%. 1) A polyester resin sheet for a solar cell according to the first aspect of the patent application, which has a gas and water vapor barrier layer. 1 1 . A polyester resin sheet laminate for a solar cell, which is at least laminated with a polyester resin sheet according to any one of claims 1 to 10, and a gas Π 74548 amendment and a water vapor barrier layer. to make. 12. The polyester resin sheet laminate for solar cells according to claim 11, wherein the water vapor permeability is measured at a temperature of 40 ° C, a humidity of 90% RH, and a conversion of 100 μm according to JIS-K-7129. The water vapor permeability is 0.5 g/(m 2 · 24 hr) or less. 13. A solar cell inner surface protection sheet for use in an inner surface sealing material for a solar cell, wherein the solar cell inner surface protection sheet is used for solar cell polymerization according to any one of claims 1 to 12. The ester resin sheet or the polyester resin sheet for solar cells is laminated. 14. A solar cell module, which is obtained by using a solar cell inner protective sheet as claimed in claim 13 of the patent application.
TW95109532A 2006-03-21 2006-03-21 Polyester resin sheet for solar cell, laminate formed by using the same, protective sheet inside the solar cell and module thereof TWI374548B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95109532A TWI374548B (en) 2006-03-21 2006-03-21 Polyester resin sheet for solar cell, laminate formed by using the same, protective sheet inside the solar cell and module thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95109532A TWI374548B (en) 2006-03-21 2006-03-21 Polyester resin sheet for solar cell, laminate formed by using the same, protective sheet inside the solar cell and module thereof

Publications (2)

Publication Number Publication Date
TW200737530A TW200737530A (en) 2007-10-01
TWI374548B true TWI374548B (en) 2012-10-11

Family

ID=48093254

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95109532A TWI374548B (en) 2006-03-21 2006-03-21 Polyester resin sheet for solar cell, laminate formed by using the same, protective sheet inside the solar cell and module thereof

Country Status (1)

Country Link
TW (1) TWI374548B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118353A1 (en) * 2010-03-23 2011-09-29 東洋アルミニウム株式会社 Solar-cell backside protection sheet and solar-cell module provided with same

Also Published As

Publication number Publication date
TW200737530A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
KR101056464B1 (en) Polyester resin sheet for solar cell, Laminated product using it, Solar cell back protection sheet, and module
KR101610990B1 (en) Polyester film, laminated film, and solar-cell back sheet and solar cell both including same
JP5102392B2 (en) Laminated polyester film for solar cell back surface protective film
JP2006270025A (en) Solar battery and thermoplastic resin sheet therefor
WO2009125701A1 (en) Thermoplastic resin sheet for solar battery, method for manufacturing thermoplastic resin sheet, and solar battery
KR101727766B1 (en) Biaxially oriented polyester film
JP2008166338A (en) Solar cell module and sheet for sealing rear face of same
KR20080053469A (en) Encapsulation film for photovoltaic module and photovoltaic module
JP2002026354A (en) Film for sealing rear surface of solar cell and solar cell using the same
EP2704209A2 (en) Back sheet for solar cell module and solar cell module including same
JP2007118267A (en) Thermoplastic polyester sheet for solar cell
JP2008085270A (en) Film for sealing rear surface of solar cell
JP5505018B2 (en) Polyester film, solar cell backsheet using the same, and reflector for LED light source.
JP2008311680A (en) Film for sealing solar cell backside, and solar cell utilizing the same
TWI374548B (en) Polyester resin sheet for solar cell, laminate formed by using the same, protective sheet inside the solar cell and module thereof
JP5729828B2 (en) POLYESTER RESIN SHEET FOR SOLAR CELL, LAMINATED PRODUCT USING SAME, SOLAR CELL BACK PROTECTIVE SHEET, AND MODULE
WO2018034117A1 (en) Laminate, solar cell rear surface protection sheet using same, and solar cell module
JP5768862B2 (en) POLYESTER RESIN SHEET FOR SOLAR CELL, LAMINATED PRODUCT USING SAME, SOLAR CELL BACK PROTECTIVE SHEET, AND MODULE
JP2013055270A (en) Laminate sheet and solar cell using the same
JP2018083873A (en) Polyester film, and solar cell back sheet and solar cell comprising the same
JP2017135138A (en) Backside protection sheet for solar battery module
JP2013016864A (en) Film for backside sealing of solar cell and solar cell using the same