TWI363444B - Anode of lithium-ion battery, method of making the same and lithium-ion battery using the same - Google Patents

Anode of lithium-ion battery, method of making the same and lithium-ion battery using the same Download PDF

Info

Publication number
TWI363444B
TWI363444B TW096140313A TW96140313A TWI363444B TW I363444 B TWI363444 B TW I363444B TW 096140313 A TW096140313 A TW 096140313A TW 96140313 A TW96140313 A TW 96140313A TW I363444 B TWI363444 B TW I363444B
Authority
TW
Taiwan
Prior art keywords
ion battery
carbon nanotube
negative electrode
lithium ion
nanotube film
Prior art date
Application number
TW096140313A
Other languages
Chinese (zh)
Other versions
TW200919804A (en
Inventor
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096140313A priority Critical patent/TWI363444B/en
Publication of TW200919804A publication Critical patent/TW200919804A/en
Application granted granted Critical
Publication of TWI363444B publication Critical patent/TWI363444B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

1363444 六、 [0001] [0002] [0003] [0004] . 1100:年.06月 28 B發明說明: 【發明所屬之技術領域】 本發明涉及一種鋰離子電池負極及其製備方法以及應用 該鐘離子電池負極的链離子電池,尤其涉及一種基於奈 米碳管的鋰離子電池負極及其製備方法以及應用該鋰離 子電池負極的裡離子電池。 【先前技術】 鋰離子電池係一種新型的綠色化學電源,與傳統的鎳鎘 電池、鎳氫電池相比具有電壓高、壽命長、能量密度大 的優點。自1990年日本索尼公司推出第一代鋰離子電池 後,它已經知到迅速發展並廣泛用於各種可携式設備。 先前的鐘離子電池通常包括正極、負極、隔膜和電解液 四個部分。常見的鋰離子電池的正極材料通常選自含鋰 的活性化合物,負極材料則選自碳系材料。充電時,加 在電池兩極的電勢迫使正極的化合物釋出鋰離子,嵌入 負極分子排列呈片層結構的碳中。放電時,鋰離子則從 片層結構的碳中析出,重新和正極的化合物結合。 由此可見,負極活性材料係決定鋰離子電池性能的重要 因素之一。一種好的負極活性材料應具有以下特點:比 能量高;充放電反應可逆性好;與電解液和粘結劑的相 容性好;比表面積小(<l〇m2/g),真密度高 (>2. Og/cm3);嵌鋰過程中尺寸和機械穩定性好;資源 豐备,锅格低廉;在空氣中穩定、無毒副作用等。目前 ’碳材料被廣泛用作雜子電池的負極材料,這些材料 的優點係比容量高(200 mAh/g~43〇 mAh/g),循環效 096140313 表單編號A0101 第4頁/共24頁 1003231543-0 13634441363444 VI. [0001] [0002] [0003] . 1100: Year. June 28 B. Description of the Invention: [Technical Field] The present invention relates to a lithium ion battery anode, a preparation method thereof, and an application thereof The ion battery of the negative electrode of the ion battery, in particular, relates to a lithium ion battery negative electrode based on a carbon nanotube and a preparation method thereof, and a lithium ion battery using the negative electrode of the lithium ion battery. [Prior Art] Lithium-ion battery is a new type of green chemical power source, which has the advantages of high voltage, long life and high energy density compared with conventional nickel-cadmium batteries and nickel-hydrogen batteries. Since Sony introduced the first generation of lithium-ion batteries in 1990, it has been rapidly developed and widely used in a variety of portable devices. Previous clock ion batteries typically included four parts, a positive electrode, a negative electrode, a separator, and an electrolyte. The cathode material of a common lithium ion battery is usually selected from a lithium-containing active compound, and the anode material is selected from a carbon-based material. At the time of charging, the potential applied to the two poles of the battery forces the compound of the positive electrode to release lithium ions, and is embedded in the carbon in which the negative electrode molecules are arranged in a sheet structure. At the time of discharge, lithium ions are precipitated from the carbon of the sheet structure and recombined with the compound of the positive electrode. Thus, the negative active material is one of the important factors determining the performance of the lithium ion battery. A good negative active material should have the following characteristics: high specific energy; good reversibility of charge and discharge reaction; good compatibility with electrolyte and binder; small specific surface area (<l〇m2/g), true density High (> 2. Og/cm3); good size and mechanical stability during lithium insertion; abundant resources, low pot size; stable in air, no toxic side effects, etc. At present, 'carbon materials are widely used as negative electrode materials for hetero-cell batteries. The advantages of these materials are high specific capacity (200 mAh/g~43〇mAh/g), cycle efficiency 096140313 Form No. A0101 Page 4 / Total 24 Page 1003231543 -0 1363444

100年.06月28日修正替Θ頁 率高(>95%),循環壽命'長。目前採用的碳負極材料有 石墨、乙炔黑、微珠碳、石油焦、碳纖維、裂解聚合物 和裂解碳等。 [0005] 然而,碳材料的種類、製備方法和熱處理溫度不同時, 均會導致負極材料組成和結構上的差異,進而引起鋰離 子嵌入行為與性能的差異。先前技術中,通常使用天然 石墨作為鋰離子電池負極材料。純的天然石墨作為鋰離 子電池負極材料時具有比容量高(可達到370 mAh/ g〜430 mAh/g)、價格低廉、來源豐富的優點。然而, 使用天然石墨的鋰離子電池負極也存在首次充放電效率 低,循環性能差,對電解液選擇性高的缺點。這主要係 由於石墨的表面結構特點使得首次嵌鋰過程中所形成的 純化膜(Solid Electrolyte Interface,SEI)具 有不均勻性和脆性。這些缺點限制了這種負極活性材料 在鋰離子電池中的廣泛應用。 [0006] 奈米碳管(carbon nanotube, CNT)係近年來發現的一 • 種新型碳系材料,由單層或多層的石墨片狀結構捲曲而 成。奈米碳管的層間距為0. 34奈米,略大於石墨的層間 距,有利於鋰離子的嵌入和脫出。奈米碳管作鋰離子電 池負極材料,鋰離子不僅可嵌入中空管内,而且可嵌入 到層間的縫隙之中,具有嵌入深度小、過程短,嵌入位 置多等優點。已有報導採用奈米碳管製作的鋰離子電池 負極(請參見,Effects of synthesis condition of graphitic nanocarbon tube on anodic property of Li-ion rechargeable battery, Journal 096140313 表單編號 A0101 第 5 頁/共 24 頁 1003231543-0 1363444 100年.06月28日核正替換頁 of power source, V97-98, P129-132 (2001))。 [0007] 然而,目前採用奈米碳管製作的鋰離子電池負極,通常 係將奈米碳管和粘接劑混合均勻後塗覆於集電體上製得 。由於粘結劑的影響,不能充分的利用奈米碳管的表面 微孔結構,這限制了負極對鋰離子的吸附能力。而且, 使用該負極的鋰離子電池也存在首次充放電效率低,循 環性能差,且對電解液選擇性高的缺點。 [0008] 有鑒于此,提供一種具有較高充放電效率,循環性能好 ,且對電解液選擇性不高的鋰離子電池負極及其製備方 · 法以及應用該鋰離子電池負極的鋰離子電池實為必要。 【發明内容】 [0009] 一種鋰離子電池負極,該鋰離子電池負極包括一奈米碳 管薄膜,該奈米碳管薄膜為由多個奈米碳管組成的自支 撐結構,所述奈米碳管膜中奈米碳管之排列方向為各向 同性或沿不同方向擇優取向排列,所述奈米碳管薄膜通 過擠壓一奈米碳管陣列的方法製備,且多個奈米碳管平 行于奈米碳管薄膜表面。 ® [0010] 所述的奈米碳管薄膜中含有大量的微孔結構,微孔孔徑 小於1微米。 [0011] 所述的奈米碳管薄膜厚度為1微米至1毫米。 [0012] 所述的鋰離子電池負極,進一步包括一集電體,上述奈 米碳管薄膜設置於該集電體表面。 [0013] 所述的奈米碳管薄膜通過凡德瓦爾力與集電體緊密結合 096140313 表單編號A0101 第6頁/共24頁 1003231543-0 1363444 100年.06月28日修正替Θ頁 [0014] 所述的集電體為金屬基板。 [0015] 所述的金屬為銅、金、銀或銦。 [0016] 一種鋰離子電池負極的製備方法,包括以下步驟:提供 一奈米碳管陣列形成於一基底;提供一集電體,將該集 電體覆蓋於上述的奈米碳管陣列上;擠壓上述覆蓋有集 電體的奈米碳管陣列,形成一包括奈米碳管的雙層結構 ,從而得到一鋰離子電池負極。 [0017] 所述的奈米碳管陣列的高度大於100微米。 [0018] 所述的施壓裝置為一平面壓頭或滚軸狀壓頭。 [0019] 所述的擠壓覆蓋有集電體的奈米碳管陣列的過程為採用 平面壓頭沿垂直於上述奈米碳管陣列生長的基底的方向 擠壓。 [0020] 所述的擠壓覆蓋有集電體的奈米碳管陣列的過程為採用 滚軸狀壓頭沿某一固定方向碾壓。 [0021] 所述的擠壓覆蓋有集電體的奈米碳管陣列的過程為採用 滚軸狀壓頭沿不同方向碾壓。 ^ [0022] 所述的鋰離子電池負極的製備方法,可以提供一施壓裝 置直接擠壓上述奈米碳管陣列,形成一奈米碳管薄膜, 從而得到一鋰離子電池負極。 [0023] 所述的鋰離子電池負極的製備方法,進一步包括,將該 奈米碳管薄膜直接壓製於一集電體表面或採用導電膠將 該奈米碳管薄膜粘結於集電體表面,從而得到一鋰離子 電池負極。 096140313 表單編號 Α0101 第 7 頁/共 24 頁 1003231543-0 1363444 [0024] 100年.06月28日俊正春換頁]: 所述的鋰離子電池負極的製備方法,進一步包括,將該 奈米碳管薄膜切割成預定的尺寸和形狀,形成預定尺寸 和形狀的鋰離子電池負極。 [0025] 一種鋰離子電池,其包括:一殼體及置於殼體内的正極 ,負極,電解液和隔膜。其中,電解液置於殼體内,正 極與負極置於電解液中,隔膜置於正極與負極之間,並 將殼體内部空間分為兩部分,正極與隔膜及負極之間保 持間隔。該鋰離子電池中,所述的負極包括一奈米碳管 薄膜,該奈米碳管薄膜為由多個奈米碳管組成的自支撐 結構,所述奈米碳管膜中奈米碳管之排列方向為各向同 性或沿不同方向擇優取向排列,且該多個奈米碳管平行 于所述的奈米碳管薄膜表面。 [0026] 所述的正極材料為鋰或含鋰的過渡金屬氧化物。 [0027] 所述的電解液包括碳酸乙烯酯、二乙基碳酸酯及六氟磷 酸鋰,其中,六氟磷酸鋰溶於碳酸乙烯酯和二乙基碳酸 酯的混合溶劑中。 [0028] 所述的電解液中碳酸乙烯酯和二乙基碳酸酯的體積比為 1:1° [0029] 所述的隔膜材料為聚烯烴。 [0030] 相較于先前技術,所述的鋰離子電池負極包括奈米碳管 薄膜。該奈米碳管薄膜中,奈米碳管平行于奈米碳管薄 膜表面,奈米碳管為沿各向同性或一固定方向擇優取向 或不同方向擇優取向排列。而且,該奈米碳管薄膜中含 有大量的微孔結構和極大的比表面積,這有利於充分的 096140313 表單編號Α0101 第8頁/共24頁 1003231543-0 1363444 100年06月28日修jE替 利用奈米碳管的表面微孔結構,吸附更多的鋰離子。故 ’該鐘離子電池負極可有效增加鋰離子的嵌入量,可改 善首次嵌鋰過程中所形成的鈍化膜的穩定性,且對電解 液的選擇性不高。奈米碳管薄膜具有優良的導電性能。 由於奈米碳管陣列中奈米碳管生長均勻,因而所製備的 不米碳官薄臈中的奈米碳管分散均勻使得該奈米碳管 薄膜具有較好的機械強度和韌性。另外,該製備鋰離子 電池負極的方法工序簡單,易於實際應用。且,依據施 加壓力方式的不同,可控制奈米碳管薄臈中奈米碳管為 * A各向同性或-固定方向擇優取向或不同方向擇優取向 排列。 【實施方式】 _1]以下將結合附圖對本技術方案作進—步的詳細說明。 _2]請參閱in,本技術方案實施例提供一種經離子電池負極 10,該鋰離子電池負極10包括一集電體12和一由集電體 12支撐的奈米碳管薄膜14。該集電體12可為一金屬基板 Φ ’優選為銅泊。該奈米碳管薄膜14設置於集電體12表面 。該奈米碳管薄膜14係、直接|製於集電體12表面或採用 導電勝枯結於集電體表面。該奈求碳管薄膜14為由多個 $米碳s組成的自支樓結構,且該多個奈米碳管平行于 所述的奈米碳管薄膜14表面。該奈米碳管薄膜14中,奈 米碳管為沿各向同性或一固定方向擇優取向或不同方向 擇優取向排列。該奈米碳管薄膜14中奈米碳管之間通過 凡德瓦爾力相互吸引,緊密結合,形成由多個奈米碳管 組成的自支#結構,使得該奈米碳管薄膜14具有很好的 096140313 表單编號Α0101 第9頁/共24頁 1003231543-0 1363444 100年06月Σ8日修正菩&頁 韌性,可以用來製作各種形狀的鋰離子電池負極。該奈 米碳管薄膜14中含有大量的微孔結構,微孔孔徑小於1微 米,使得該奈米碳管具有極大的比表面積。可以理解, 本實施例中鋰離子電池負極10中的集電體12為可選擇的 結構,即,本實施例中的鋰離子電池負極10可僅包括奈 米碳管薄膜14。由於奈米碳管薄膜14本身已經具有一定 的自支撐性及穩定性,而且,奈米碳管本身具有優良的 導電性能,實際應用時,可直接將該奈米碳管薄膜14用 於鋰離子電池負極10。 [0033] 本實施例中,該奈米碳管薄膜14的寬度可為1厘米〜10厘 米,該奈米碳管薄膜14的厚度為1微米〜2毫米。可以理解 ,本實施例中該奈米碳管薄膜14可根據實際應用切割成 預定的尺寸(如切割成8毫米x8毫米)和形狀,以利於組 裝成微型的鋰離子電池,擴大其應用範圍。 [0034] 請參閱圖2,本技術方案實施例還進一步提供一種鋰離子 電池負極的製備方法,其具體包括以下步驟: [0035] 步驟一:提供一奈米碳管陣列形成於一基底,優選地, 該陣列為超順排奈米碳管陣列。 [0036] 本實施例提供的奈米碳管陣列為單壁奈米碳管陣列、雙 壁奈米碳管陣列及多壁奈米碳管陣列中的一種。其製備 方法採用化學氣相沈積法,其具體步驟包括:(a)提供 一平整基底,該基底可選用P型或N型矽基底,或選用形 成有氧化層的矽基底,本實施例優選為採用4英寸的矽基 底;(b)在基底表面均勻形成一催化劑層,該催化劑層 096140313 表單编號A0101 第10頁/共24頁 1003231543-0 1363444100 years. On June 28th, the replacement page rate was high (>95%), and the cycle life was 'long. Currently used carbon anode materials are graphite, acetylene black, microbead carbon, petroleum coke, carbon fiber, cracked polymer and cracked carbon. [0005] However, when the type of carbon material, the preparation method, and the heat treatment temperature are different, the composition and structure of the anode material are different, which causes a difference in lithium ion intercalation behavior and performance. In the prior art, natural graphite is generally used as a negative electrode material for lithium ion batteries. Pure natural graphite has the advantages of high specific capacity (up to 370 mAh/g to 430 mAh/g), low cost and abundant source as a negative electrode material for lithium ion batteries. However, the lithium ion battery negative electrode using natural graphite also has the disadvantages of low initial charge and discharge efficiency, poor cycle performance, and high selectivity to the electrolyte. This is mainly due to the surface structure of graphite, which makes the Solid Electrolyte Interface (SEI) formed during the first lithium intercalation process have unevenness and brittleness. These shortcomings limit the widespread use of such negative active materials in lithium ion batteries. [0006] A carbon nanotube (CNT) is a novel carbon-based material discovered in recent years, which is formed by a single-layer or multi-layered graphite sheet structure. The layer spacing of the carbon nanotubes is 0.34 nm, which is slightly larger than the interlayer spacing of graphite, which facilitates the insertion and extraction of lithium ions. The carbon nanotube is used as the anode material of the lithium ion battery. The lithium ion can be embedded not only in the hollow tube, but also embedded in the gap between the layers, and has the advantages of small embedding depth, short process, and multiple embedding positions. A negative electrode of a lithium ion battery fabricated using a carbon nanotube has been reported (see, Effects of graph of synthesis of graphitic nanocarbon tube on anodic property of Li-ion rechargeable battery, Journal 096140313 Form No. A0101 Page 5 of 24 1003231543- 0 1363444 100 years. June 28th Nuclear replacement page of power source, V97-98, P129-132 (2001)). [0007] However, the negative electrode of a lithium ion battery currently fabricated using a carbon nanotube is usually prepared by uniformly mixing a carbon nanotube and a binder and applying it to a current collector. Due to the influence of the binder, the surface microporous structure of the carbon nanotubes cannot be fully utilized, which limits the adsorption capacity of the negative electrode for lithium ions. Further, the lithium ion battery using the negative electrode has a drawback that the first charge and discharge efficiency is low, the cycle performance is poor, and the selectivity to the electrolyte is high. [0008] In view of the above, a lithium ion battery anode having high charge and discharge efficiency, good cycle performance, and low selectivity to an electrolyte, and a method for preparing the same, and a lithium ion battery using the anode of the lithium ion battery are provided. It is really necessary. SUMMARY OF THE INVENTION [0009] A lithium ion battery anode, the lithium ion battery anode comprises a carbon nanotube film, the carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes, the nano The arrangement of the carbon nanotubes in the carbon nanotube film is isotropic or aligned in different directions. The carbon nanotube film is prepared by extruding a carbon nanotube array, and the plurality of carbon nanotubes are prepared. Parallel to the surface of the carbon nanotube film. ® [0010] The carbon nanotube film contains a large number of microporous structures having a pore diameter of less than 1 micron. [0011] The carbon nanotube film has a thickness of 1 micrometer to 1 millimeter. [0012] The lithium ion battery negative electrode further includes a current collector, and the carbon nanotube film is disposed on the surface of the current collector. [0013] The carbon nanotube film is closely combined with the current collector by van der Waals force 096140313 Form No. A0101 Page 6 / Total 24 Page 1003231543-0 1363444 100 years. June 28th revised replacement page [0014] The current collector is a metal substrate. [0015] The metal is copper, gold, silver or indium. [0016] A method for preparing a negative electrode of a lithium ion battery, comprising the steps of: providing a carbon nanotube array formed on a substrate; providing a current collector, covering the current collector on the carbon nanotube array; The carbon nanotube array covered with the current collector is extruded to form a two-layer structure including a carbon nanotube, thereby obtaining a lithium ion battery negative electrode. [0017] The height of the carbon nanotube array is greater than 100 microns. [0018] The pressing device is a planar indenter or a roller-shaped indenter. [0019] The process of extruding the carbon nanotube array covered with the current collector is performed by using a planar indenter in a direction perpendicular to the substrate grown by the carbon nanotube array. [0020] The process of extruding the carbon nanotube array covered with the current collector is to use a roller-shaped indenter to be rolled in a certain fixed direction. [0021] The process of extruding the carbon nanotube array covered with the current collector is to be rolled in different directions using a roller-shaped indenter. [0022] The method for preparing a negative electrode of a lithium ion battery can provide a pressing device to directly extrude the carbon nanotube array to form a carbon nanotube film, thereby obtaining a lithium ion battery negative electrode. [0023] The method for preparing a negative electrode of a lithium ion battery, further comprising: directly pressing the carbon nanotube film on a surface of a current collector or bonding the carbon nanotube film to a surface of the current collector by using a conductive adhesive; Thereby obtaining a negative electrode of a lithium ion battery. 096140313 Form No. 1010101 Page 7 of 24 1003231543-0 1363444 [0024] 100 years. June 28th Jun Chunchun page change]: The preparation method of the lithium ion battery negative electrode further includes the carbon nanotube The film is cut into a predetermined size and shape to form a lithium ion battery negative electrode of a predetermined size and shape. [0025] A lithium ion battery comprising: a housing and a positive electrode, a negative electrode, an electrolyte and a separator disposed in the housing. The electrolyte is placed in the casing, the positive electrode and the negative electrode are placed in the electrolyte, the separator is placed between the positive electrode and the negative electrode, and the internal space of the casing is divided into two parts, and the positive electrode is spaced apart from the separator and the negative electrode. In the lithium ion battery, the negative electrode comprises a carbon nanotube film, the carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes, and the carbon nanotube film is composed of a carbon nanotube The alignment direction is isotropic or preferentially oriented in different directions, and the plurality of carbon nanotubes are parallel to the surface of the carbon nanotube film. [0026] The positive electrode material is lithium or a lithium-containing transition metal oxide. [0027] The electrolyte solution includes ethylene carbonate, diethyl carbonate, and lithium hexafluorophosphate, wherein lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate. [0028] The volume ratio of ethylene carbonate to diethyl carbonate in the electrolyte is 1:1° [0029] The separator material is a polyolefin. [0030] Compared to the prior art, the lithium ion battery negative electrode includes a carbon nanotube film. In the carbon nanotube film, the carbon nanotubes are parallel to the surface of the carbon nanotube film, and the carbon nanotubes are arranged in a preferred orientation in an isotropic or a fixed direction or a preferred orientation in a different direction. Moreover, the carbon nanotube film contains a large amount of microporous structure and a large specific surface area, which is advantageous for the full 096140313 form number Α 0101 page 8 / total 24 page 1003231543-0 1363444 100 years June 28 repair jE for The surface microporous structure of the carbon nanotubes is used to adsorb more lithium ions. Therefore, the negative electrode of the ion battery can effectively increase the insertion amount of lithium ions, and can improve the stability of the passivation film formed during the first lithium insertion process, and the selectivity to the electrolyte is not high. The carbon nanotube film has excellent electrical conductivity. Due to the uniform growth of the carbon nanotubes in the carbon nanotube array, the uniformity of the carbon nanotubes in the prepared carbon nanotubes makes the carbon nanotube film have better mechanical strength and toughness. In addition, the method for preparing a negative electrode of a lithium ion battery is simple in process and easy to be practically applied. Moreover, depending on the mode of application of the pressure, the carbon nanotubes in the carbon nanotubes can be controlled to be oriented in the direction of *A isotropic or -fixed orientation or preferred orientation in different directions. [Embodiment] _1] The present technical solution will be described in detail below with reference to the accompanying drawings. _2] Please refer to in, the embodiment of the present invention provides an ion battery negative electrode 10 comprising a current collector 12 and a carbon nanotube film 14 supported by the current collector 12. The current collector 12 may be a metal substrate Φ ' preferably copper. The carbon nanotube film 14 is provided on the surface of the current collector 12. The carbon nanotube film 14 is directly/made on the surface of the current collector 12 or is electrically connected to the surface of the current collector. The carbon nanotube film 14 is a self-supporting structure composed of a plurality of carbon nanotubes, and the plurality of carbon nanotubes are parallel to the surface of the carbon nanotube film 14. In the carbon nanotube film 14, the carbon nanotubes are arranged in a preferred orientation in a isotropic or a fixed direction or a preferred orientation in a different direction. The carbon nanotube film 14 in the carbon nanotube film 14 is mutually attracted by the van der Waals force, and is closely combined to form a self-supporting structure composed of a plurality of carbon nanotubes, so that the carbon nanotube film 14 has a very large Good 096140313 Form No. 1010101 Page 9 / Total 24 Page 1003231543-0 1363444 100 years of June 修正 8th revised Boon & page toughness, can be used to make lithium-ion battery negatives of various shapes. The carbon nanotube film 14 contains a large number of microporous structures having a pore diameter of less than 1 micrometer, so that the carbon nanotube has a large specific surface area. It can be understood that the current collector 12 in the negative electrode 10 of the lithium ion battery in the embodiment is of an optional structure, that is, the lithium ion battery negative electrode 10 in the present embodiment may include only the carbon nanotube film 14. Since the carbon nanotube film 14 itself has certain self-supporting property and stability, and the carbon nanotube itself has excellent electrical conductivity, in practical application, the carbon nanotube film 14 can be directly used for lithium ion. Battery negative 10 . [0033] In this embodiment, the carbon nanotube film 14 may have a width of 1 cm to 10 cm, and the carbon nanotube film 14 has a thickness of 1 μm to 2 mm. It can be understood that in the present embodiment, the carbon nanotube film 14 can be cut into a predetermined size (e.g., cut into 8 mm x 8 mm) and shape according to practical applications, so as to facilitate assembly into a miniature lithium ion battery, and expand its application range. [0034] Please refer to FIG. 2, the embodiment of the present technical solution further provides a method for preparing a negative electrode of a lithium ion battery, which specifically includes the following steps: [0035] Step 1: providing a carbon nanotube array formed on a substrate, preferably Ground, the array is a super-sequential carbon nanotube array. [0036] The carbon nanotube array provided in this embodiment is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. The preparation method adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or a germanium substrate formed with an oxide layer, which is preferably in this embodiment. Using a 4 inch tantalum substrate; (b) uniformly forming a catalyst layer on the surface of the substrate, the catalyst layer 096140313 Form No. A0101 Page 10 / Total 24 Page 1003231543-0 1363444

100年:06月28日梭正替換頁 材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組 合的合金之一;(c)將上述形成有催化劑層的基底在 700〜900°C的空氣中退火約30分鐘~90分鐘.;(d)將處 理過的基底置於反應爐中,在保護氣體環境下加熱到 500〜74(TC,然後通入碳源氣體反應約5~30分鐘,生長 得到奈米碳管陣列,其高度大於100微米。該奈米碳管陣 列為多個彼此平行且垂直於基底生長的奈米碳管形成的 純奈米碳管陣列。該奈米碳管陣列與上述基底面積基本 相同。通過上述控制生長條件,該超順排奈米碳管陣列 中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆 粒等。 [0037] 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質 較活潑的碳氫化合物,本實施例優選的碳源氣為乙炔; 保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體 為氬氣。 [0038] 可以理解,本實施例提供的奈米碳管陣列不限於上述製 • 備方法。 [0039] 步驟二:提供一集電體12,將該集電體12覆蓋於所述的 奈米碳管陣列上。 [0040] 本實施例中,該集電體12選自金屬基板。其中金屬可以 為銀、銦、金、銅等金屬中的一種。本實施例中優選的 集電體12為銅箔。該集電體12的面積與奈米碳管陣列面 積基本相同,將上述集電體12覆蓋於所述的奈米碳管陣 列上,由於奈米碳管具有很好的粘性,故上述集電體12 096140313 表單編號A0101 第11頁/共24頁 1003231543-0 1363444 100年.06月28日修正替换頁 可以比較牢固地粘附於奈米碳管陣列上。 [0041] 步驟三:擠壓上述覆蓋有集電體12的奈米碳管陣列,形 成一奈米碳管雙層結構,從而得到一鋰離子電池負極10 〇 [0042] 上述擠壓覆蓋有集電體12的奈米碳管陣列的過程通過一 施壓裝置進行。 [0043] 該施壓裝置施加一定的壓力於上述覆蓋有集電體12的奈 米碳管陣列上。施壓的過程中,奈米碳管陣列在壓力的 作用下會與生長的基底分離,從而形成由多個奈米碳管 1 組成的具有自支撐結構的奈米碳管薄膜14,且多個奈米 碳管基本上與集電體12表面平行。其中,奈米碳管薄膜 14與上述集電體12之間通過凡德瓦爾力緊密結合。本實 施例中,施壓裝置為一壓頭,壓頭表面光滑,壓頭的形 狀及擠壓方向決定製備的奈米碳管薄膜14中的奈米碳管 的排列方式。具體地,當採用平面壓頭沿垂直於上述奈 米碳管陣列生長的基底的方向擠壓時,可獲得奈米碳管 ( 沿各向同性排列的奈米碳管薄膜14 (請參閱圖3);當採 用滚軸狀壓頭沿某一固定方向擇優碾壓時,可獲得奈米 碳管沿該固定方向擇優取向排列的奈米碳管薄膜14 (請 參閱圖4);當採用滾轴狀壓頭沿不同方向碾壓時,可獲 得奈米碳管沿不同方向取向排列的奈米碳管薄膜14。 [0044] 可以理解,當採用上述不同方式擠壓覆蓋有集電體12的 奈米碳管陣列時,奈米碳管會在壓力的作用下傾倒,並 與相鄰的奈米碳管通過凡德瓦爾力相互吸引、連接形成 096140313 表單編號A0101 第12頁/共24頁 1003231543-0 1363444 100年.06月28日修正替換頁 由多個奈米碳管組成的具有自支撐結構的奈米碳管薄膜 14。該多個奈米碳管與前述集電體12表面基本平行並沿 各向同性或一固定方向擇優取向或不同方向擇優取向排 列。另外,在壓力的作用下,奈米碳管陣列會與生長的 基底分離,從而使得到的鋰離子電池負極10容易與基底 脫離。 [0045] 本技術領域技術人員應明白,上述奈米碳管陣列的傾倒 程度(傾角)與壓力的大小有關,壓力越大,傾角越大 。該製備的鋰離子電池負極10的厚度取決於奈米碳管陣 列的高度、集電體12的厚度及壓力大小。奈米碳管陣列 的高度越大、集電體12越厚而施加的壓力越小,則製備 的鋰離子電池負極10的厚度越大;反之,奈米碳管陣列 的高度越小、集電體12越薄而施加的壓力越大,則製備 的鋰離子電池負極10的厚度越小。 [0046] 進一步,本實施例中,也可以先直接用施壓裝置施加一 定的壓力於上述奈米碳管陣列。並採用步驟三所述的壓 製方法壓製奈米碳管陣列,奈米碳管會在壓力的作用下 傾倒形成具有自支撐結構的奈米碳管薄膜14。請參閱圖5 ,為本發明實施例製備的奈米碳管薄膜14的宏觀照片, 該奈米碳管薄膜14的直徑為10厘米。然後再提供一集電 體12,將該奈米碳管薄膜14直接壓製於集電體12表面或 採用導電膠將該奈米碳管薄膜14粘結於集電體12表面, 從而得到一鋰離子電池負極10。可以理解,本實施例中 ,由於奈米碳管薄膜14本身已經具有一定的自支撐性及 穩定性,且,奈米碳管本身具有優良的導電性能,故, 096140313 表單編號A0101 第13頁/共24 .頁 1003231543-0 1363444 100:年.06月28日核正辞換頁 在實際應用時,可直接將該奈米碳管薄膜14用於鋰離子 電池負極。 [0047] 本技術領域技術人員應明白,本實施例中,該奈米碳管 薄膜14還可根據實際需要,切割成任意形狀或尺寸,可 應用於微型鋰離子電池,有利於擴大其應用範圍。 [0048] 本實施例製備的奈米碳管薄膜14中,奈米碳管平行于奈 米碳管薄膜14表面,奈米碳管為沿各向同性或一固定方 向擇優取向或不同方向擇優取向排列。奈米碳管薄膜14 中含有大量的微孔結構,微孔孔徑小於1微米,使得該奈 米碳管具有極大的比表面積。而且,該奈米碳管薄膜14 中不含有任何粘結劑,這有利於充分的利用奈米碳管的 表面微孔結構,吸附更多的鋰離子。 [0049] 另外,本實施例通過施壓裝置直接施壓于奈米碳管陣列 製備的奈米碳管薄膜14,由於奈米碳管陣列中奈米碳管 生長均勻,因而可使得奈米碳管在製備的奈米碳管薄膜 14中分散均勻,具有較好的機械強度和韌性。 [0050] 本實施例中,採用施壓裝置直接施加壓力于奈米碳管陣 列的方式製備奈米碳管薄膜14,方法簡單。依據施加壓 力方式的不同可使奈米碳管薄膜14中奈米碳管為各向同 性或沿一個方向擇優取向或多個方向擇優取向排列。 [0051] 請參見圖6,本技術方案實施例進一步提供一種應用上述 鋰離子電池負極的鋰離子電池500,其包括:一殼體502 及置於殼體502内的正極504,負極506,電解液508和隔 膜510,其中,所述的負極506為採用上述方法製備的鋰 096140313 表單编號 A0101 第 14 頁/共 24 頁 1003231543-0 1363444 子電池負極。該鐘離子電池5GG中,電解 體5〇2内,正極504與負極506置於電解液508中。障'戏 、置於正極504與負極5〇6之間,並將殼體5〇2内部外 刀為兩部分。正極504與負極506分別置於隔膜51〇^間 正極504與隔膜510及負極506與隔膜510之間保持二 正極504包括—正極集電體512與-層正極材料51/隔 負極5〇6包括一負極集電體518與-奈米碳管薄膜516。100 years: On June 28th, the shuttle is replacing one of the alloys of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof; (c) the substrate on which the catalyst layer is formed is at 700. Annealing in air at ~900 ° C for about 30 minutes to 90 minutes. (d) The treated substrate is placed in a reaction furnace and heated to 500 to 74 (TC, and then passed through a carbon source gas reaction in a protective gas atmosphere). About 5 to 30 minutes, a nanotube array is grown to a height greater than 100 microns. The array of carbon nanotubes is a plurality of arrays of pure carbon nanotubes formed by carbon nanotubes that are parallel to each other and perpendicular to the substrate. The carbon nanotube array has substantially the same area as the above substrate. The super-sequential carbon nanotube array contains substantially no impurities, such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions. [0037] In the embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is Argon. [0038] The carbon nanotube array provided in this embodiment is not limited to the above-mentioned manufacturing method. [0039] Step 2: A current collector 12 is provided, and the current collector 12 is covered on the carbon nanotube array. [0040] In this embodiment, the current collector 12 is selected from a metal substrate, wherein the metal may be one of metals such as silver, indium, gold, copper, etc. The preferred current collector 12 in this embodiment is a copper foil. The area of the current collector 12 is substantially the same as the area of the carbon nanotube array, and the current collector 12 is covered on the carbon nanotube array. Since the carbon nanotube has good viscosity, the current collector is 12 096140313 Form No. A0101 Page 11 of 24 1003231543-0 1363444 100 years. On June 28, the revised replacement page can be firmly adhered to the carbon nanotube array. [0041] Step 3: Squeeze the above cover The carbon nanotube array having the current collector 12 forms a carbon nanotube double layer structure, thereby obtaining a lithium ion battery anode 10 〇 [0042] The above-described carbon nanotube array extruded with the current collector 12 The process is carried out by a pressure applying device. [0043] The pressure applying device applies a certain amount Applying to the above-mentioned carbon nanotube array covered with the current collector 12. During the pressing process, the carbon nanotube array is separated from the grown substrate by pressure, thereby forming a plurality of carbon nanotubes 1 A carbon nanotube film 14 having a self-supporting structure is formed, and a plurality of carbon nanotubes are substantially parallel to the surface of the current collector 12. Among them, the carbon nanotube film 14 and the current collector 12 are passed between the van der Waals Valli is closely combined. In this embodiment, the pressing device is an indenter, the surface of the indenter is smooth, and the shape and extrusion direction of the indenter determine the arrangement of the carbon nanotubes in the prepared carbon nanotube film 14. Specifically, when a planar indenter is pressed in a direction perpendicular to the substrate grown by the above-described carbon nanotube array, a carbon nanotube (the isotropically arranged carbon nanotube film 14 is obtained) (see FIG. 3). When the roller-shaped indenter is preferentially rolled in a certain fixed direction, the carbon nanotube film 14 in which the carbon nanotubes are preferentially aligned along the fixed direction can be obtained (refer to FIG. 4); when the roller is used; When the pressure head is rolled in different directions, the carbon nanotube film 14 in which the carbon nanotubes are aligned in different directions can be obtained. [0044] It can be understood that when the current collector 12 is covered by the different manner described above, When the carbon nanotube array is used, the carbon nanotubes are poured under the pressure and are attracted to and connected with the adjacent carbon nanotubes through the van der Waals force to form 096140313 Form No. A0101 Page 12 / Total 24 Page 1003231543- 0 1363444 100. On June 28, the replacement page is a carbon nanotube film 14 having a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes are substantially parallel to the surface of the current collector 12 and Orientation along the isotropic or fixed direction or not In addition, under the action of pressure, the carbon nanotube array is separated from the grown substrate, so that the obtained lithium ion battery negative electrode 10 is easily detached from the substrate. [0045] Those skilled in the art should understand that The degree of tilting (inclination) of the above-mentioned carbon nanotube array is related to the magnitude of the pressure, and the larger the pressure, the larger the inclination angle. The thickness of the negative electrode 10 of the prepared lithium ion battery depends on the height of the carbon nanotube array and the current collector 12 Thickness and pressure. The higher the height of the carbon nanotube array, the thicker the collector 12 is, the smaller the pressure applied, the greater the thickness of the prepared lithium ion battery anode 10; conversely, the carbon nanotube array The smaller the height, the thinner the current collector 12 is, and the greater the pressure applied, the smaller the thickness of the prepared lithium ion battery negative electrode 10. [0046] Further, in this embodiment, it is also possible to directly apply a certain pressure device directly. The pressure is applied to the above-mentioned carbon nanotube array, and the carbon nanotube array is pressed by the pressing method described in the third step, and the carbon nanotubes are poured under pressure to form a self-supporting structure. The carbon nanotube film 14. Referring to Fig. 5, a macro photograph of a carbon nanotube film 14 prepared according to an embodiment of the present invention, the carbon nanotube film 14 having a diameter of 10 cm, and then a current collector 12 is provided. The carbon nanotube film 14 is directly pressed onto the surface of the current collector 12 or the carbon nanotube film 14 is bonded to the surface of the current collector 12 by using a conductive paste, thereby obtaining a lithium ion battery negative electrode 10. It is understood that In the embodiment, since the carbon nanotube film 14 itself has a certain self-supporting property and stability, and the carbon nanotube itself has excellent electrical conductivity, 096140313 Form No. A0101 Page 13 of 24 1003231543-0 1363444 100: Year. June 28th, when the actual application, the carbon nanotube film 14 can be directly used for the negative electrode of the lithium ion battery. [0047] It should be understood by those skilled in the art that in the embodiment, the carbon nanotube film 14 can be cut into any shape or size according to actual needs, and can be applied to a miniature lithium ion battery, which is advantageous for expanding the application range thereof. . [0048] In the carbon nanotube film 14 prepared in this embodiment, the carbon nanotubes are parallel to the surface of the carbon nanotube film 14, and the carbon nanotubes are preferentially oriented in an isotropic or a fixed direction or a preferred orientation in different directions. arrangement. The carbon nanotube film 14 contains a large number of microporous structures having a pore diameter of less than 1 μm, so that the carbon nanotubes have an extremely large specific surface area. Moreover, the carbon nanotube film 14 does not contain any binder, which is advantageous for sufficiently utilizing the surface microporous structure of the carbon nanotube to adsorb more lithium ions. [0049] In addition, in this embodiment, the carbon nanotube film 14 prepared by the carbon nanotube array is directly pressed by the pressing device, and the carbon nanotubes in the carbon nanotube array are uniformly grown, thereby enabling the nanocarbon to be made. The tube is uniformly dispersed in the prepared carbon nanotube film 14, and has good mechanical strength and toughness. [0050] In the present embodiment, the carbon nanotube film 14 is prepared by directly applying pressure to the carbon nanotube array by a pressure applying device, and the method is simple. The carbon nanotubes in the carbon nanotube film 14 may be oriented in an isotropic manner or in a preferred orientation in one direction or a plurality of orientations depending on the manner in which the pressure is applied. Referring to FIG. 6 , an embodiment of the present technical solution further provides a lithium ion battery 500 using the above lithium ion battery negative electrode, comprising: a housing 502 and a positive electrode 504 disposed in the housing 502, a negative electrode 506, and electrolysis. The liquid 508 and the separator 510, wherein the negative electrode 506 is lithium 096140313 prepared by the above method. Form No. A0101 Page 14 of 24 1003231543-0 1363444 Sub-cell negative electrode. In the ion battery 5GG, the positive electrode 504 and the negative electrode 506 are placed in the electrolytic solution 508 in the electrolytic body 5?. The barrier is placed between the positive electrode 504 and the negative electrode 5〇6, and the outer blade of the housing 5〇2 is divided into two parts. The positive electrode 504 and the negative electrode 506 are respectively disposed between the positive electrode 504 and the separator 510 and between the negative electrode 506 and the separator 510, and the second positive electrode 504 is included. The positive electrode current collector 512 and the positive electrode material 51/the negative electrode 5〇6 are included. A negative current collector 518 and a carbon nanotube film 516.

正極接線端520與負極接線端522分別連接於正極集電體 512與負極集電體518頂端。The positive electrode terminal 520 and the negative electrode terminal 522 are connected to the positive electrode current collector 512 and the negative electrode current collector 518, respectively.

_本貫施例中’上述正極5()4、隔膜51Q和電解液⑽沒有 特別限制。對本實施例製備的链離子電池500進行充放電 性能測試。其中’正極材料514優選為鐘金屬或含裡的過 渡金屬氧化物,隔膜51〇材料優選為聚稀烴,電解液5〇8 優選為溶於碳酸乙_ (Ethylene carb_te,E〇 和二乙基碳酸醋(Diethyl Carb〇nate,DE〇 (體積 比為1:1)混合溶劑中濃度為i摩爾/升的六氟磷酸链( UPF6)。本實施例鐘離子電池5〇〇在應用時,對應的正 極材料514、隔膜510和電解液5Q8可選擇為其他材料。 _請參閱下表’為測量方便,本實施例以包括5〇微克奈米 碳管薄膜516的㈣子電池負極5()6組裝餘離子電池 5〇〇後進行充放電測試,結果表明:本實施例链離子電池 5〇〇具有較高的充放電效率和比容量,且該鋰離子電池 500具有良好的循環充放電性能❶其中,該鋰離子電池 500的首次充放電效率大於140%,為149 8%,首次放電 容量大於700mAh/g,為764mAh/g。經過u次循環後, 096140313 表單編號A0101 第15頁/共24頁 1003231543-0 1363444 100年.06月28日核正替換頁 該鋰離子電池500的充電循環容量保持率為90%。 表1鋰離子電池500的充放電循環性能 循環次數 充電(mAh) 放電(mAh) 效率U) 1 0 0. 1094 0 2 0. 0255 0.0382 149. 8 3 0.0270 0.0321 118. 5 4 0. 0252 0.0293 116.2 5 0.0242 0.0277 114. 1 6 0. 0241 0.0271 112. 3 7 0. 0236 0.0264 111.6 8 0. 0234 0. 026 110, 8 9 0. 023 0. 0259 110.3 10 0. 0227 0.0257 109. 1 11 0. 0229 0.0259 109.6 12 0. 0226 0.0254 108 13 0. 0227 0 0 綜上所述,本發明確已符合發明專利之要件,遂依法提 # [0054] 表1鋰離子電池500的充放電循環性能 [0055] 循環次數 充電(mAh) 放電(mAh) 效率(%) 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0056] 圖1係本技術方案實施例的鋰離子電池負極的結構示意圖 〇 [0057] 圖2係本技術方案實施例的鋰離子電池負極的製備方法的 096140313 表單編號 A0101 第 16 頁/共 24 頁 1003231543-0 1363444 ; 1 100年.06月28日核正替換頁 流程示意圖。 [0058] 圖3係本技術方案實施例製備的各向同性奈米碳管薄膜的 掃描電鏡照片。 [0059] 圖4係本技術方案實施例製備的擇優取向奈米碳管薄膜的 掃描電鏡照片。 [0060] 圖5係本技術方案實施例製備的奈米碳管薄膜的照片。 [0061] 圖6係本技術方案實施例的鋰離子電池的結構示意圖。 • [0062] 【主要元件符號說明】 鋰離子電池負極:10 [0063] 集電體:12 [0064] 奈米碳管薄膜:14 [0065] 鋰離子電池:500 [0066] 壳體:502 [0067] • [0068] 正極:504 負極:5 0 6 [0069] 電解液:508 [0070] 隔膜:510 [0071] 正極集電體:512 [0072] 正極材料:514 [0073] 奈米碳管薄膜:516 096140313 表單編號A0101 第17頁/共24頁 1003231543-0 1363444 . _ .100年.06月28日修正_頁| [0074] 負極集電體:518 [0075] 正極接線端:520 [0076] 負極接線端:522 096140313 表單编號A0101 第18頁/共24頁 1003231543-0The above positive electrode 5 () 4, the separator 51Q and the electrolytic solution (10) are not particularly limited. The chain ion battery 500 prepared in this example was subjected to charge and discharge performance tests. Wherein the positive electrode material 514 is preferably a bell metal or a transition metal oxide, the separator 51 is preferably a polyhydrocarbon, and the electrolyte 5 8 is preferably dissolved in ethylene carbonate (Ethylene carb_te, E 〇 and diethyl Carbonate vinegar (Diethyl Carb〇nate, DE 〇 (volume ratio 1:1) mixed solvent concentration of i mol / liter of hexafluorophosphate chain (UPF6). In this embodiment, the clock ion battery 5 〇〇 when applied, corresponding The positive electrode material 514, the separator 510, and the electrolyte 5Q8 may be selected as other materials. _Refer to the following table 'For the convenience of measurement, the present embodiment is a negative electrode 5 () 6 of the (four) sub-cell including 5 〇 microgram of carbon nanotube film 516. The charge and discharge test was carried out after assembling the residual ion battery for 5 ,. The results show that the chain ion battery of the present embodiment has high charge and discharge efficiency and specific capacity, and the lithium ion battery 500 has good cycle charge and discharge performance. The first charge and discharge efficiency of the lithium ion battery 500 is greater than 140%, which is 149 8%, and the first discharge capacity is greater than 700 mAh/g, which is 764 mAh/g. After u cycles, 096140313 Form No. A0101 Page 15 of 24 Page 1003231543-0 1363444 100 On June 28th, the replacement cycle of the lithium ion battery 500 has a charge cycle capacity retention rate of 90%. Table 1 Charge and discharge cycle performance of the lithium ion battery 500 Cycle number charge (mAh) Discharge (mAh) Efficiency U) 1 0 0. 1094 0 2 0. 0255 0.0382 149. 8 3 0.0270 0.0321 118. 5 4 0. 0252 0.0293 116.2 5 0.0242 0.0277 114. 1 6 0. 0241 0.0271 112. 3 7 0. 0236 0.0264 111.6 8 0. 0234 0 026 110, 8 9 0. 023 0. 0259 110.3 10 0. 0227 0.0257 109. 1 11 0. 0229 0.0259 109.6 12 0. 0226 0.0254 108 13 0. 0227 0 0 In summary, the invention has indeed met the invention The requirements of the patent, 遂法提# [0054] Table 1 Lithium-ion battery 500 charge and discharge cycle performance [0055] Cycle number charge (mAh) discharge (mAh) efficiency (%) Patent application. However, the above mentioned only The present invention is not intended to limit the scope of the invention, and equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0056] FIG. 1 is a schematic view showing the structure of a negative electrode of a lithium ion battery according to an embodiment of the present invention. FIG. 2 is a method for preparing a negative electrode of a lithium ion battery according to an embodiment of the present invention. 096140313 Form No. A0101 Page 16 of 24 1003231543-0 1363444; 1 100 years. June 28th, the schematic diagram of the replacement page flow. 3 is a scanning electron micrograph of an isotropic carbon nanotube film prepared by an embodiment of the present technical solution. 4 is a scanning electron micrograph of a preferred orientation carbon nanotube film prepared by an embodiment of the present technical solution. [0060] FIG. 5 is a photograph of a carbon nanotube film prepared by an embodiment of the present technical solution. 6 is a schematic structural view of a lithium ion battery according to an embodiment of the present technical solution. • [0062] [Main component symbol description] Lithium-ion battery negative electrode: 10 [0063] Current collector: 12 [0064] Nano carbon nanotube film: 14 [0065] Lithium-ion battery: 500 [0066] Housing: 502 [ 0067] • [0068] Positive electrode: 504 Negative electrode: 5 0 6 [0069] Electrolyte: 508 [0070] Separator: 510 [0071] Positive electrode collector: 512 [0072] Cathode material: 514 [0073] Carbon nanotube Film: 516 096140313 Form No. A0101 Page 17 of 24 1003231543-0 1363444 . _ .100 years. June 28th amendment _ page | [0074] Negative current collector: 518 [0075] Positive terminal: 520 [ 0076] Negative terminal: 522 096140313 Form No. A0101 Page 18 of 24 1003231543-0

Claims (1)

1363444 100年06月28日俊正替換ΐ 七、申請專利範圍: 1 . 一種链離子電池負極,該鐘離子電池負極包括一奈米碳管 涛膜’其改良在於’該奈米碳管薄膜為由多個奈米碳管組 , 成的自支擇結構,且該多個奈米碳管平行于所述奈米碳管 薄膜表面。 如申凊專利範圍第1項所述的鐘離子電池負極,其中,所 述的奈米碳管薄膜中之奈米碳管排列方向為各向同性或沿 固疋方向擇優取向排列或沿不同方向擇優取向排列。 ® .如申清專利範圍第1項所述的經離子電池負極,其中,所 述的奈米碳管薄膜中包括孔徑小於丨微米的微孔結構。 4. 如申請專利範圍第1項所述的鋰離子電池負極,其中,所 述的奈米碳管薄膜厚度為1微米至1毫米。 5. 如申請專利範圍第1項所述的鋰離子電池負極,其中,進 '步包括一集電體,所述的奈米碳管薄膜設置在該集電體 表面。 g .如申請專利範圍第5項所述的鋰離子電池負極,其中,所 修 述的奈米碳管薄膜通過凡德瓦爾力與集電體緊密結合或通 過導電膠與集電體緊密結合。 7.如申請專利範圍第5項所述的鋰離子電池負極,其中,所 述的集電體為金屬基板。 8 一種如申請專利範圍第1項所述的鋰離子電池負極的製備 方法,其包括以下步驟: 提供一奈米碳管陣列形成於一基底; 提供一施壓裝置,擠壓上述奈米碳管陣列,形成_奈米碳 管薄膜,從而得到一链離子電池負極。 〇9614〇313 I單蝙號A0101 第19頁/共24 . 頁 1003231543-0 10 11 12 13 Η 15 . 16 . 096140313 列 表單編號Α0101 1100年.06月28 —梭正替私_ .如申請專利範圍第8項所述的鋰離子電池負極的製備方法 ,其中,所述的奈米碳管陣列的高度大於1〇〇微米。 .如申請專利範圍第8項所述的鋰離子電池負極的製備方法 ’其中,所述的施壓裝置為一平面壓頭。 .如申請專利範圍第8項所述的鋰離子電池負極的製備方法 ,其中,所述的施壓裝置為一滾軸狀壓頭。 .如申請專利範圍第10項所述的鐘離子電池負極的製備方法 ’其中,所述的擠壓奈米碳管陣列的過程為採用平面壓頭 沿垂直於上述奈米碳管陣列生長的基底的方向擠壓。 .如申請專利範圍第11項所述的鐘離子電池負極的製備方法 φ ’其中’所述的擠壓奈米碳管陣列的過程為採用滾軸狀壓 頭沿某一固定方向碾壓。 •如申請專利範圍第11項所述的鐘離子電池負極的製備方法 ’其中,所述的擠!奈米碳管陣列的過程為採用滾抽狀壓 頭沿不同方向礙壓β .如申請專利範圍第8項所述的經離子電池負極的製備方法 ’其中,進一步包括以下步驟: 提供一集電體; φ 將該奈米碳管薄膜直接壓製於該集電體表面或採用導電膠 將該奈米碳管薄膜钻結於集電體表面,從而得到一鐘離子 電池負極。 如申請專利範圍第8項所述的链離子電池負極的製備方法 ,其中,進一步包括以下步驟: 提供一集電體; 將該集電體覆蓋於上述的奈米碳管陣列上; 採用上述施壓裝置擠壓上述覆蓋有集電體的奈米碳管陣 第20頁/共24頁 1003231543-0 1363444 100年.06月28曰修正替換頁 ,從而得到一鋰離子電池負極。 17 .如申請專利範圍第8項所述的鋰離子電池負極的製備方法 ,其中,進一步包括:將該奈米碳管薄膜切割成預定的尺 寸和形狀,形成一預定尺寸和形狀的鋰離子電池負極。 18 . —種包括如申請專利範圍第1項所述的鋰離子電池負極的 鋰離子電池,其包括:一殼體及置於殼體内的正極,負極 ,電解液和隔膜,其中,電解液置於殼體内,正極與負極 置於電解液中,隔膜置於正極與負極之間,並將殼體内部 空間分為兩部分,正極與隔膜及負極之間保持間隔,其改 良在於,所述的負極包括一奈米碳管薄膜,該奈米碳管薄 膜為由多個奈米碳管組成的自支撐結構,且多個奈米碳管 平行于奈米碳管薄膜表面。 19 .如申請專利範圍第18項所述的鋰離子電池,其中,所述的 正極材料為鋰或含鋰的過渡金屬氧化物。 20.如申請專利範圍第18項所述的鋰離子電池,其中,所述的 電解液包括碳酸乙烯酯、二乙基碳酸酯及六氟磷酸鋰。 21 .如申請專利範圍第20項所述的鋰離子電池,其中,所述的 電解液中碳酸乙烯酯和二乙基碳酸酯的體積比為1:1。 22 .如申請專利範圍第18項所述的鋰離子電池,其中,所述的 隔膜材料為聚烯烴。 23 .如申請專利範圍第18項所述的鋰離子電池,其中,所述的 鋰離子電池的首次充放電效率大於140%,首次放電容量 大於700mAh/g。 096140313 表單編號A0101 第21頁/共24頁 1003231543-01363444 On June 28, 100, Junzheng replaced ΐ VII. Patent application scope: 1. A negative electrode of a chain ion battery, the negative electrode of the ion battery includes a carbon nanotube membrane, and the improvement is based on the thin carbon nanotube film. a plurality of carbon nanotubes formed into a self-supporting structure, and the plurality of carbon nanotubes are parallel to the surface of the carbon nanotube film. The anode of the ion battery according to claim 1, wherein the arrangement of the carbon nanotubes in the carbon nanotube film is isotropic or aligned in a solid orientation or in different directions. Preferred orientation. The ion battery negative electrode according to claim 1, wherein the carbon nanotube film comprises a microporous structure having a pore diameter smaller than 丨 micron. 4. The lithium ion battery negative electrode according to claim 1, wherein the carbon nanotube film has a thickness of from 1 micrometer to 1 millimeter. 5. The lithium ion battery negative electrode according to claim 1, wherein the step comprises a current collector, and the carbon nanotube film is disposed on the surface of the current collector. The lithium ion battery negative electrode according to claim 5, wherein the modified carbon nanotube film is tightly bonded to the current collector by a van der Waals force or tightly bonded to the current collector by a conductive paste. 7. The lithium ion battery negative electrode according to claim 5, wherein the current collector is a metal substrate. 8 The method for preparing a negative electrode of a lithium ion battery according to claim 1, comprising the steps of: providing a carbon nanotube array formed on a substrate; providing a pressure applying device for extruding the carbon nanotube The array forms a thin film of carbon nanotubes to obtain a negative electrode of a chain ion battery. 〇9614〇313 I Single bat number A0101 Page 19 of 24 Page 1003231543-0 10 11 12 13 Η 15 . 16 . 096140313 List number Α 0101 1100. 06 28 — Shuttle is private _ . The method for preparing a negative electrode of a lithium ion battery according to Item 8, wherein the height of the carbon nanotube array is greater than 1 μm. The method for producing a negative electrode of a lithium ion battery according to claim 8, wherein the pressing device is a planar indenter. The method for preparing a negative electrode of a lithium ion battery according to claim 8, wherein the pressing device is a roller-shaped indenter. The method for preparing a negative electrode of a battery ion battery according to claim 10, wherein the process of extruding the carbon nanotube array is a substrate grown by a planar indenter perpendicular to the array of carbon nanotubes. Squeeze in the direction. The method for preparing a negative electrode of a battery ion battery according to the invention of claim 11, wherein the process of extruding the carbon nanotube array is performed by rolling a roller in a fixed direction. • A method of preparing a negative electrode of a clock ion battery as described in claim 11 of the invention, wherein the extrusion is performed! The process of the carbon nanotube array is to use a roll-shaped indenter to block the β in different directions. The method for preparing an ion-exchanged cell negative electrode according to claim 8 includes further comprising the steps of: providing a current collection Φ The carbon nanotube film is directly pressed onto the surface of the current collector or the carbon nanotube film is drilled on the surface of the current collector by using a conductive paste, thereby obtaining a negative electrode of the ion battery. The method for preparing a negative electrode of a chain ion battery according to claim 8 , further comprising the steps of: providing a current collector; covering the current collector on the carbon nanotube array; The pressing device presses the above-mentioned carbon nanotube array covered with the current collector on page 20/24 pages 1003231543-0 1363444 100 years. 06 months 28曰 correction replacement page, thereby obtaining a lithium ion battery negative electrode. The method for preparing a negative electrode of a lithium ion battery according to claim 8, wherein the method further comprises: cutting the carbon nanotube film into a predetermined size and shape to form a lithium ion battery of a predetermined size and shape. negative electrode. 18. A lithium ion battery comprising a negative electrode of a lithium ion battery according to claim 1, comprising: a casing and a positive electrode disposed in the casing, a negative electrode, an electrolyte and a separator, wherein the electrolyte Placed in the casing, the positive electrode and the negative electrode are placed in the electrolyte, the separator is placed between the positive electrode and the negative electrode, and the internal space of the casing is divided into two parts, and the gap between the positive electrode and the separator and the negative electrode is maintained, and the improvement is The negative electrode includes a carbon nanotube film which is a self-supporting structure composed of a plurality of carbon nanotubes, and a plurality of carbon nanotubes are parallel to the surface of the carbon nanotube film. The lithium ion battery according to claim 18, wherein the positive electrode material is lithium or a lithium-containing transition metal oxide. 20. The lithium ion battery of claim 18, wherein the electrolyte comprises ethylene carbonate, diethyl carbonate, and lithium hexafluorophosphate. The lithium ion battery according to claim 20, wherein a volume ratio of ethylene carbonate to diethyl carbonate in the electrolyte is 1:1. The lithium ion battery of claim 18, wherein the separator material is a polyolefin. The lithium ion battery according to claim 18, wherein the lithium ion battery has a first charge and discharge efficiency of more than 140% and an initial discharge capacity of more than 700 mAh/g. 096140313 Form No. A0101 Page 21 of 24 1003231543-0
TW096140313A 2007-10-26 2007-10-26 Anode of lithium-ion battery, method of making the same and lithium-ion battery using the same TWI363444B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096140313A TWI363444B (en) 2007-10-26 2007-10-26 Anode of lithium-ion battery, method of making the same and lithium-ion battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096140313A TWI363444B (en) 2007-10-26 2007-10-26 Anode of lithium-ion battery, method of making the same and lithium-ion battery using the same

Publications (2)

Publication Number Publication Date
TW200919804A TW200919804A (en) 2009-05-01
TWI363444B true TWI363444B (en) 2012-05-01

Family

ID=44727232

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096140313A TWI363444B (en) 2007-10-26 2007-10-26 Anode of lithium-ion battery, method of making the same and lithium-ion battery using the same

Country Status (1)

Country Link
TW (1) TWI363444B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633292B (en) * 2012-08-22 2016-06-15 清华大学 Lithium ion battery negative

Also Published As

Publication number Publication date
TW200919804A (en) 2009-05-01

Similar Documents

Publication Publication Date Title
CN101409337B (en) Lithium ion battery cathode, preparation method thereof and lithium ion battery applying the same
CN101420021B (en) Positive pole of lithium ion cell and preparation method thereof
Liu et al. Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications
CN108963187B (en) Silicon-carbon cathode, preparation method thereof, lithium ion battery and electric vehicle
US20090098453A1 (en) Anode of lithium battery, method for fabricating the same, and lithium battery using the same
TW201248983A (en) Cathode of lithium ion battery and lithium ion battery
JP6363280B2 (en) Lithium-sulfur battery diaphragm and lithium-sulfur battery
Zhang et al. Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries
CN103633292A (en) Lithium ion battery anode
WO2009142924A2 (en) Intercalation electrode based on ordered graphene planes
US9923193B2 (en) Cathode of lithium-ion battery
TWI474544B (en) Anode of lithium-ion battery, method of making the same and lithium-ion battery using the same
Xia et al. In‐situ growth of ultrathin sulfur microcrystal on MXene‐based 3D matrice for flexible lithium–sulfur batteries
Ye et al. Uniquely Arranged Graphene‐on‐Graphene Structure as a Binder‐Free Anode for High‐Performance Lithium‐Ion Batteries
CN106450196A (en) Silicon-based material for lithium-ion battery anodes and preparation method of silicon-based material
CN103545531B (en) Lithium ion battery
Wang et al. Electrochemical properties of carbon nanocoils and hollow graphite fibers as anodes for rechargeable lithium ion batteries
Sun et al. Coral-inspired nanoengineering design for long-cycle and flexible lithium-ion battery anode
Prasankumar et al. Functional carbons for energy applications
Gao et al. High-performance lithium battery driven by hybrid lithium storage mechanism in 3D architectured carbonized eggshell membrane anode
Chi et al. High‐Performance Flexible Asymmetric Supercapacitors Facilitated by N‐doped Porous Vertical Graphene Nanomesh Arrays
Song et al. The strategy of achieving flexibility in materials and configuration of flexible lithium‐ion batteries
JP2004221425A (en) Electrode and its manufacturing method, electrochemical element, electrochemical capacitor, battery and electrochemical sensor
Li et al. Carbon nanofiber interlayer: a highly effective strategy to stabilize silicon anodes for use in lithium-ion batteries
TWI363444B (en) Anode of lithium-ion battery, method of making the same and lithium-ion battery using the same