TWI358801B - Light source module and manufacturing method there - Google Patents

Light source module and manufacturing method there Download PDF

Info

Publication number
TWI358801B
TWI358801B TW096151141A TW96151141A TWI358801B TW I358801 B TWI358801 B TW I358801B TW 096151141 A TW096151141 A TW 096151141A TW 96151141 A TW96151141 A TW 96151141A TW I358801 B TWI358801 B TW I358801B
Authority
TW
Taiwan
Prior art keywords
substrate
light
emitting diode
light source
source module
Prior art date
Application number
TW096151141A
Other languages
Chinese (zh)
Other versions
TW200929463A (en
Inventor
Wen Jang Jiang
Original Assignee
Foxsemicon Integrated Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxsemicon Integrated Tech Inc filed Critical Foxsemicon Integrated Tech Inc
Priority to TW096151141A priority Critical patent/TWI358801B/en
Publication of TW200929463A publication Critical patent/TW200929463A/en
Application granted granted Critical
Publication of TWI358801B publication Critical patent/TWI358801B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Description

1358801 100年.06月29日按正#»頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種光源模組及其製造方法,尤其涉及一種 具有散熱裝置之且採用發光二極體(Light-Emi tting Diode ’簡稱LED)作為光源之光源模組及其製造方法。 【先前技術】 [0002] 由於LED具有發光效率高、耗能少等優點而越來越多地被 運用至各種照明裝置。請參見Daniel A. Steigerwald 等人於文獻IEEE Journal on Selected T〇pics in1358801 100年.06月29日正正#»Page 6、Invention Description: [Technical Field] [0001] The present invention relates to a light source module and a method of fabricating the same, and more particularly to a heat sink having illumination A light source module (Light-Emitting Diode) is used as a light source module and a method of manufacturing the same. [Prior Art] [0002] LEDs are increasingly being applied to various lighting devices due to their advantages of high luminous efficiency and low energy consumption. See Daniel A. Steigerwald et al. in the IEEE Journal on Selected T〇pics in

Quantum Electronics, Vol. 8, No. 2,March/Quantum Electronics, Vol. 8, No. 2, March/

April 2002 中之 Illuminati〇n with Solid State Lighting Technology— 文。 [0003] 由於發光二極體於使用過程中之穩定性容易受周圍溫度 之影響,如,當溫度過高時,發光二極體之發光強度容 易發生衰減,並導致其使用壽命變短。 [0004] 目前採用LED作為光源之光源模組,需要設置一散熱裝置 對LED進行散熱。 [0005] 有鑒於此,提供一種具有良好散熱效果之具有散熱裝置 之光源模組實為必要。 【發明内容】 [0006] 本發明提供一種光源模組,其包括至少一發光二極鱧晶 片與一熱電致冷器。該熱電致冷器具有一熱端基板、一 冷端基板以及若干設置於該熱端基板與冷端基板間之熱 電致冷單元,該冷端基板具有一第一表面與一相對之第 096151141 表單編號A0101 第4頁/共16頁 1003231587-0 1358,801 _··_ 10tf年:06月妁日修正_頁 二表面,該發光二極體晶片設置於該第一表面,該若干 熱電致冷單元設置於該第二表面。每個該熱電致冷單元 包括一 Ρ型半導體元件與Ν型半導體元件。該光源模組進-—步具有一散熱器’該散熱器與該熱端基板熱連接。 [0007] 本發明還提供一種該光源模組之製造方法,其包括以下 步驟: [0008] (1)於一第一基板一表面生長形成若千個發光二極體晶片 9 [0009] (2)將該若干個發光二極體晶片從該第一基板之表面移植 至該冷端基板之第一表面; [0010] (3)於該冷端基板上布導電線路; [0011] (4)於該冷端基板之第二表面依次設置該若干熱電致冷單 元與熱端基板; [0012] (5)封裝該若干個發光二極體晶片; [0013] (6)提供一散熱器,將其與該熱端基板熱連接。 [0014] 本發明提供之光源模組,採用熱電致冷器對發光二極體 晶片進行主動散熱’發光二極體晶片設置於該熱電致冷 器之冷端基板,提高二者間熱耦合效率。且’本發明提 供之該光源模組之製造方法,係將外延生長之發光二極 體晶片從外延生長之襯底移植至該冷端基板’提高其二 者間熱搞合效率。 【實施方式】 [0015] 下面將結合圖式對本發明作進一步之詳細說明。 096151141 表單編號Α0101 第5頁/共16頁 1003231587-0 1358801 1GO年.06月29日修正镑換頁 [0016] 請參閱圖1,為本發明提供之一種光源模組30 ’其包括至 少一光源32與一熱電致冷器33。該熱電致冷器33包括一 熱端基板35、一冷端基板31以及若干設置於該熱端基板 35與冷端基板31間之熱電致冷單元330。該冷端基板31 具有一第一表面311與一相對之第二表面312,該發光二 極體晶片321設置於該第一表面311,若干熱電致冷單元 330設置於該第二表面312。 [0017] 該光源32為一封裝好之發光二極體’其包括一發光二極 體晶片321、封裝該發光二極體晶片321之一封裝體322 與一導電線323。該冷端基板32之第一表面鋪設有導電 線路313,該導電線323電連接該發光二極體晶片321與 該導電線路313以使得該發光二極體晶片321電連接至外 部電源裝置。 [0018] 優選地,該LED光源模組30進一步包括一散熱器34,其具 有若干散熱鰭片341。該散熱器34與該熱電致冷器31之熱 端基板35熱連接,具體地,該散熱器34直接設置於該熱 端基板35之表面。 [0019] 優選地,該熱電致冷器33具有若干個熱電致冷單元330, 該熱電致冷單元330包括一P型半導體元件331與一N型半 導體元件332。 [0020] 該P型半導體331與N型半導體元件332藉由第一電極片 333a電連接,且其分別藉由第二電極片333b與第三電極 片333c連接至一直流電源上。該第一電極片333a貼敷於 該第二表面312,使得該熱電致冷器33設置於該第二表面 096151141 表單編號A0101 第6頁/共16頁 1003231587-0 1358801 100年.06月29日核正^頁 312且與該冷端基板31熱連接/ [0021] 該第一電極片333a、第二電極片333b與第三電極片333c 均採用導電性與導熱性均佳之銅等金屬製成。 [0022] 優選地,該P型半導體331與N型半導體元件332分別為摻 雜有其他元素之Bi -Te系、Sb-Te系、Bi-Se系、Pb-Te 系、Ag-Sb-Te 系、Si-Ge 系、Fe-Si 系、Mn-Si 系或 Cr-Si系化合物半導體之固態塊體(Sol id-State Cube) ο [0023] 優選地,該Bi-Te系化合物為Bi9Teq。 L 〇 [0024] 該若干個熱電致冷單元330成陣列式排列於該第二表面 312,優選地,該若干個熱電致冷單元330串聯至該直流 電源,且,該陣列兩端之兩個半導體元件分別連接至該 直流電源之兩極,使得,由於載流子之傳輸作用,該熱 電致冷單元330熱流方向為從該光源31方向至散熱器34。 [0025] 優選地,該若干個熱電致冷單元330均勻間隔地分佈於該 冷端基板之第二表面312。 [0026] 可以理解,該若干熱電致冷單元330也可分別連接至若干 個直流電源或並聯到一直流電源,進而對該光源32進行 散熱。 [0027] 優選地,該冷端基板31與熱端基板35均為絕緣性與導熱 性具佳之陶瓷基板。可以理解,該冷端基板31還可為表 面鍍有二氧化矽(Si02)之半導體矽基板或表面經過陽極 氧化處理之鋁複合基板等。該半導體矽基板與鋁複合基 096151141 表單編號A0101 第7頁/共16頁 1003231587-0 1358801 [0028] [0029] [0030] [0031] [0032] 096151141 100年06月29日核正替換頁 板均具有絕緣與導熱性能良好之特性,同樣可用以作為 發光二極體晶片321與熱電致冷單元33〇間之冷端基板31 〇 請參閱圖2至圖7,為製造該光源模組3〇之一系列步驟之 示意圖。該光源模組30具體製造方法為: 於一第一基板30a上生長形成若干個發光二極體晶片321 t 優選地,該第一基板30a為藍寶石基板、碳化矽基板、三 五知化合物基半導體(Η-vGroup Compound based Semi conductor )基板或二六族化合物基半導體(n -yjIlluminati〇n with Solid State Lighting Technology in April 2002. [0003] Since the stability of the light-emitting diode during use is easily affected by the ambient temperature, for example, when the temperature is too high, the light-emitting intensity of the light-emitting diode is easily attenuated, and the service life thereof is shortened. [0004] At present, an LED is used as a light source module of a light source, and a heat sink is required to dissipate heat from the LED. In view of the above, it is necessary to provide a light source module having a heat dissipating device having a good heat dissipation effect. SUMMARY OF THE INVENTION [0006] The present invention provides a light source module including at least one light emitting diode chip and a thermoelectric cooler. The thermoelectric cooler has a hot end substrate, a cold end substrate, and a plurality of thermoelectric cooling units disposed between the hot end substrate and the cold end substrate, the cold end substrate having a first surface and an opposite 096151141 form number A0101 Page 4 of 16 page 1003231587-0 1358, 801 _··_ 10tf year: June 2nd revision _ page 2 surface, the light-emitting diode chip is disposed on the first surface, the plurality of thermoelectric cooling units Set on the second surface. Each of the thermoelectric cooling units includes a 半导体-type semiconductor element and a Ν-type semiconductor element. The light source module has a heat sink in the step - the heat sink is thermally connected to the hot end substrate. [0007] The present invention further provides a method for fabricating the light source module, comprising the following steps: [1] (1) growing a plurality of light emitting diode chips 9 on a surface of a first substrate [0009] (2) Transmitting the plurality of light emitting diode chips from the surface of the first substrate to the first surface of the cold end substrate; [0010] (3) laying a conductive line on the cold end substrate; [0011] (4) The plurality of thermoelectric cooling units and the hot end substrate are sequentially disposed on the second surface of the cold end substrate; [0012] (5) encapsulating the plurality of light emitting diode wafers; [0013] (6) providing a heat sink, It is thermally coupled to the hot end substrate. [0014] The light source module provided by the present invention uses a thermoelectric cooler to actively dissipate the light emitting diode chip. The light emitting diode chip is disposed on the cold end substrate of the thermoelectric cooler to improve the thermal coupling efficiency therebetween. . Further, the method for manufacturing the light source module according to the present invention is to transfer the epitaxially grown light-emitting diode wafer from the epitaxially grown substrate to the cold-end substrate to improve the heat-combining efficiency between the two. [Embodiment] The present invention will be further described in detail below with reference to the drawings. 096151141 Form No. 101 0101 Page 5 / Total 16 Page 1003231587-0 1358801 1GO Year. June 29th Revision Pound Change [0016] Please refer to FIG. 1 , which is a light source module 30 ′′ including at least one light source 32 . With a thermoelectric cooler 33. The thermoelectric cooler 33 includes a hot end substrate 35, a cold end substrate 31, and a plurality of thermoelectric cooling units 330 disposed between the hot end substrate 35 and the cold end substrate 31. The cold-end substrate 31 has a first surface 311 and an opposite second surface 312. The LED chip 321 is disposed on the first surface 311, and the plurality of thermoelectric cooling units 330 are disposed on the second surface 312. The light source 32 is a packaged light-emitting diode 211 which includes a light-emitting diode chip 321 , a package body 322 encapsulating the light-emitting diode chip 321 , and a conductive line 323 . The first surface of the cold-end substrate 32 is provided with a conductive line 313 electrically connected to the LED chip 321 and the conductive line 313 to electrically connect the LED chip 321 to the external power supply device. [0018] Preferably, the LED light source module 30 further includes a heat sink 34 having a plurality of heat dissipation fins 341. The heat sink 34 is thermally connected to the hot end substrate 35 of the thermoelectric cooler 31. Specifically, the heat sink 34 is directly disposed on the surface of the hot end substrate 35. Preferably, the thermoelectric cooler 33 has a plurality of thermoelectric cooling units 330, and the pyroelectric cooling unit 330 includes a P-type semiconductor element 331 and an N-type semiconductor element 332. The P-type semiconductor 331 and the N-type semiconductor device 332 are electrically connected by the first electrode sheet 333a, and are connected to the DC power source by the second electrode sheet 333b and the third electrode sheet 333c, respectively. The first electrode sheet 333a is applied to the second surface 312 such that the thermoelectric cooler 33 is disposed on the second surface 096151141. Form No. A0101 Page 6 / Total 16 Page 1003231587-0 1358801 100. June 29 The positive electrode page 312 is thermally connected to the cold end substrate 31. [0021] The first electrode sheet 333a, the second electrode sheet 333b and the third electrode sheet 333c are made of metal such as copper having good conductivity and thermal conductivity. . [0022] Preferably, the P-type semiconductor 331 and the N-type semiconductor element 332 are respectively Bi-Te-based, Sb-Te-based, Bi-Se-based, Pb-Te-based, Ag-Sb-Te doped with other elements. A solid block of a Si-Ge system, an Fe-Si system, a Mn-Si system or a Cr-Si compound semiconductor. [0023] Preferably, the Bi-Te compound is Bi9Teq. L 〇 [0024] The plurality of thermoelectric cooling units 330 are arranged in an array on the second surface 312. Preferably, the plurality of thermoelectric cooling units 330 are connected in series to the DC power source, and two ends of the array are The semiconductor elements are respectively connected to the two poles of the direct current power source such that the heat flow direction of the pyroelectric cooling unit 330 is from the direction of the light source 31 to the heat sink 34 due to the transfer of carriers. [0025] Preferably, the plurality of thermoelectric cooling units 330 are evenly spaced apart on the second surface 312 of the cold end substrate. It can be understood that the plurality of thermoelectric cooling units 330 can also be respectively connected to a plurality of DC power sources or connected in parallel to the DC power source to further dissipate the light source 32. [0027] Preferably, the cold end substrate 31 and the hot end substrate 35 are both ceramic substrates having excellent insulation and thermal conductivity. It is to be understood that the cold-end substrate 31 may be a semiconductor germanium substrate whose surface is plated with cerium oxide (SiO 2 ) or an aluminum composite substrate whose surface is anodized. The semiconductor germanium substrate and aluminum composite 096151141 Form No. A0101 Page 7 / Total 16 pages 1003231587-0 1358801 [0028] [0030] [0032] 096151141 June 29, 100 nuclear replacement page board Both of them have the characteristics of good insulation and thermal conductivity, and can also be used as the cold-end substrate 31 between the light-emitting diode chip 321 and the thermoelectric cooling unit 33. Referring to FIG. 2 to FIG. 7, the light source module 3 is manufactured. A schematic diagram of a series of steps. The light source module 30 is specifically manufactured by: forming a plurality of light emitting diode chips 321 t on a first substrate 30a. Preferably, the first substrate 30a is a sapphire substrate, a tantalum carbide substrate, and a bismuth compound semiconductor. (Η-vGroup Compound based Semi conductor) substrate or a hexa-compound-based semiconductor (n -yj

Group Compound based Semiconductor)基板。具體 地,該步驟(1)為於該第—基板3〇a上採用外延 (Epitaxy)生長之方法形成該若干發光二極體晶片32j β 可以理解’該發光二極體晶片32丨為未封裝之半導體器件 〇 (2)將該若干發光二極體晶片321移植至該冷端基板31之 第^一表面311, 具體地,將該生長形成有若干發光二極體晶片321之第一 基板31翻轉’將該若干發光二極體晶片321熱連接至該冷 端基板31之一第一表面311,優選地,用導熱膠或共晶金 屬(eutectic metal)將該若干發光二極體晶片321黏貼 於該冷端基板31之第一表面311。 後採用雷射剝離(Laser Lift-off)或姓刻研磨之方法 將該第/基板321去除,使得該若干發光二極體晶片321 表單编號A0101 第8頁/共16頁 1003231587-0 [0033] 1358801 [0034] [0035] [0036] [0037] [0038] [0039] [0040] 100年06角29.日 移植至該冷端基板之第—表面31卜該雷射祕之方法與 蝕刻研磨之方法均為本領域内已知之基底去除之方法。 (3) 於該冷端基板31之第一表面311上舖設該導電線路 313 ; 優選地,於該步驟(3)之後,進行如下操作:於該第一表 面311塗敷一保護層314,該保護層314將該發光二極體 晶片321及導電線路313與外部隔離。優選地,該保護層 314為一層黑蠟。 (4) 於β亥冷端基板31之第二表面312設置若干熱電致冷單 元330 ; 可以理解,可繼續設置該熱端基板35使得該熱端基板35 與該若干熱電致冷單元330熱連接。 (5) 封裝該若干個發光二極體晶片。 可以理解’先去除該保護層314,後封裝該若干發光二極 體晶片。該封裝為本領域内已知之發光二極體晶片之封 裝方法,具體地’該封裝包括於發光二極體晶片上製造 電極、打線(wire-bonding)與封裝(Encapsulation) 。可以理解’該打線(wire-bonding)為提供一導電線 323將該發光二極體晶片321之電極電連接至.該導電線路 313 ’優選地’該導電線323為金線(Gold Wire)。該導 電線323、發光二極體晶片321與封裝體(Encapsulant) 構成該光源3 2。 (6) 提供一散熱器34,將其與該若干熱電致冷單元330熱 096151141 表單編號A0101 第9頁/共16頁 1003231587-0 1358801 [0041] [0042] [0043] [0044] [0045] [0046] [0047] ΙΟϋ年.06月29日孩正 連接β 該步驟(6)之具體方法為··將該散熱器34設置於該熱端基 板35之一表面且與該若干熱電致冷單元330相對設置。 本發明實施例提供之光源模組30,採用熱電致冷器33對 發光二極體晶片321進行主動散熱,且發光二極體晶片 321與該熱電致冷單元330共用〆冷端基板31,提高其熱 耦合效率。且,本發明提供製造該光源模組30之方法, 其利用雷射剝離等手段將外延生長之發光二極體晶片321 移植至提供之冷端基板31上,實現該發光晶片321與熱電 致冷單元330共用一冷端基板31 ’提南其二者間熱搞合效 率〇 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式’自不能以此限制本案之申請專利範固。舉凡熟♦I 案技藝之人士援依本發明之精神所作之等效修錦戍變化 ’皆應涵蓋於以下申請專利範圍内。 -【圖式簡單說明】 圖1係本發明實施例提供之光源模組之結構示 ^、惠圖。 圖2 - 7係製造圖1提供之光源模組之一系列歩膝 夕鄉之示意圖 【主要元件符號說明】 光源模組:30 熱電致冷器:33 096151141 表單坞珑A0101 第10頁/共16頁 1003231587-0 1358801 , 100年.06月29日修正 [0048] 冷端基板:31 [0049] Ν型半導體元件:332 • [0050] 散熱器:34 ' [0051] Ρ型半導體元件:331 [0052] 熱端基板:35 [0053] 熱電致冷單元:330 [0054] 第一表面:311 [0055] 第一電極片:333a [0056] 第二表面:312 [0057] 第三電極片:333c [0058] 光源:3 2 [0059] 第二電極片:333b [0060] 熱端基板:35 [0061] 發光二極體晶片:321 [0062] 散熱鰭片:341 [0063] 導電線:323 [0064] 導電線路:313 [0065] 封裝體:322 [0066] 第一基板:30a 096151141 表單編號A0101 第11頁/共16頁 1003231587-0 1358801 [0067]保護層:314 100年.06月29日修正转^百 096151141 表單編號A0101 第12頁/共16頁 1003231587-0Group Compound based Semiconductor) substrate. Specifically, the step (1) is to form the plurality of light-emitting diode chips 32j by epitaxial growth on the first substrate 3A. It can be understood that the light-emitting diode chip 32 is unpackaged. The semiconductor device (2) transplants the plurality of light-emitting diode chips 321 to the first surface 311 of the cold-end substrate 31, specifically, the first substrate 31 on which the plurality of light-emitting diode wafers 321 are grown. Flip 'thermally connecting the plurality of light emitting diode chips 321 to one of the first surfaces 311 of the cold end substrate 31, preferably, the plurality of light emitting diode chips 321 are pasted with a thermal conductive paste or a eutectic metal On the first surface 311 of the cold end substrate 31. The first/substrate 321 is removed by laser lift-off or surname grinding, so that the plurality of light-emitting diode chips 321 form number A0101 page 8 / total 16 pages 1003231587-0 [0033 [0036] [0040] [0040] [0040] 100 years 06 corner 29. Day transplanted to the first surface of the cold end substrate 31 surface method and etching The methods of milling are all methods of substrate removal known in the art. (3) laying the conductive line 313 on the first surface 311 of the cold-end substrate 31. Preferably, after the step (3), performing the following operation: applying a protective layer 314 to the first surface 311, The protective layer 314 isolates the light-emitting diode wafer 321 and the conductive line 313 from the outside. Preferably, the protective layer 314 is a layer of black wax. (4) a plurality of thermoelectric cooling units 330 are disposed on the second surface 312 of the β-cold end substrate 31. It can be understood that the hot end substrate 35 can be continuously disposed such that the hot end substrate 35 is thermally connected to the plurality of thermoelectric cooling units 330. . (5) Encapsulating the plurality of light emitting diode chips. It will be understood that the protective layer 314 is first removed and the plurality of light emitting diode wafers are packaged. The package is a method of packaging a light-emitting diode wafer known in the art, and in particular, the package includes electrode fabrication, wire-bonding and encapsulation on a light-emitting diode wafer. It can be understood that the wire-bonding is to provide a conductive line 323 to electrically connect the electrode of the LED chip 321 to the conductive line 313'. Preferably, the conductive line 323 is a gold wire. The light guide wire 323, the light emitting diode chip 321 and the package (Encapsulant) constitute the light source 32. (6) A heat sink 34 is provided to heat the plurality of thermoelectric cooling units 330. 096151141 Form No. A0101 Page 9/16 pages 1003231587-0 1358801 [0041] [0044] [0044] [0045] [0047] [0047] On the 29th of the next year, the child is connected to β. The specific method of the step (6) is that the heat sink 34 is disposed on one surface of the hot end substrate 35 and is thermally cooled with the plurality of thermoelectric substrates. Unit 330 is relatively set. The light source module 30 of the embodiment of the present invention uses the thermoelectric cooler 33 to actively dissipate the light emitting diode chip 321 , and the light emitting diode chip 321 and the pyroelectric cooling unit 330 share the cold end substrate 31 , thereby improving Its thermal coupling efficiency. Moreover, the present invention provides a method for manufacturing the light source module 30 by implanting the epitaxially grown light-emitting diode chip 321 onto the provided cold-end substrate 31 by means of laser lift-off or the like to realize the light-emitting chip 321 and thermoelectric cooling. The unit 330 shares a cold-end substrate 31', and the heat-combining efficiency between the two is summarized. The present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the patent application of the present invention. Any change in the spirit of the invention in accordance with the spirit of the present invention shall be covered by the following patents. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural diagram and a diagram of a light source module according to an embodiment of the present invention. Figure 2 - 7 is a schematic diagram of one of the series of light source modules provided in Figure 1. [Main component symbol description] Light source module: 30 Thermoelectric cooler: 33 096151141 Form dock A0101 Page 10 of 16 Page 1003231587-0 1358801, 100 years. June 29th correction [0048] Cold-end substrate: 31 [0049] Ν-type semiconductor component: 332 • [0050] Heat sink: 34 ' [0051] Ρ-type semiconductor component: 331 [ 0052] hot end substrate: 35 [0053] thermoelectric cooling unit: 330 [0054] first surface: 311 [0055] first electrode sheet: 333a [0056] second surface: 312 [0057] third electrode sheet: 333c [0058] Light source: 3 2 [0059] Second electrode sheet: 333b [0060] Hot end substrate: 35 [0061] Light-emitting diode wafer: 321 [0062] Heat sink fin: 341 [0063] Conductive wire: 323 [ 0064] Conductive line: 313 [0065] Package: 322 [0066] First substrate: 30a 096151141 Form number A0101 Page 11 / Total 16 pages 1003231587-0 1358801 [0067] Protective layer: 314 100 years. June 29 Correction to turn ^ 096151141 Form No. A0101 Page 12 / Total 16 Page 1003231587-0

Claims (1)

1358801 100年.06月29日修正替&頁 七、申請專利範圍: 1 . 一種光源模組之製造方法,其包括以下步驟: (1) 提供一第一基板,於該第一基板之一表面生長形成至 少一發光二極體晶片; (2) 將該至少一發光二極體晶片貼附於一第二基板之一第 一表面,並移除該第一基板; (3) 於該第二基板之第一表面形成導電線路; (4) 於該冷端基板之一與第一表面相對之第二表面上依次 設置若干熱電致冷單元與一第三基板,該第二基板、若干 熱電致冷單元與第三基板構成一熱電致冷器; (5) 封裝該若干個發光二極體晶片。 2 .如申請專利範圍第1項所述之光源模組之製造方法,其中 ,該第一基板為藍寶石基板、碳化矽基板、三五族化合物 基半導體基板或二六族化合物基半導體基板,該生長形成 發光二極體晶片之方法為外延生長。 3 .如申請專利範圍第1項所述之光源模組之製造方法,其中 ,該冷端基板為表面鍍有二氧化矽之半導體矽基板、表面 經過陽極氧化處理之鋁複合基板或電絕緣且導熱之陶瓷基 板。 , 4 .如申請專利範圍第1項所述之光源模組之製造方法,其中 ,採用雷射剝離或蝕刻研磨之方法將該第一基板移除。 096151141 表單編號Α0101 第13頁/共16頁 1003231587-01358801 100 years. June 29th revision & page 7, patent application scope: 1. A method of manufacturing a light source module, comprising the following steps: (1) providing a first substrate, one of the first substrates Forming at least one light-emitting diode wafer by surface growth; (2) attaching the at least one light-emitting diode wafer to a first surface of a second substrate, and removing the first substrate; (3) a first surface of the second substrate is formed with a conductive line; (4) a plurality of thermoelectric cooling units and a third substrate are sequentially disposed on a second surface of the cold end substrate opposite to the first surface, the second substrate and the plurality of thermoelectrics The refrigeration unit and the third substrate form a thermoelectric cooler; (5) encapsulating the plurality of light emitting diode chips. The method of manufacturing a light source module according to the first aspect of the invention, wherein the first substrate is a sapphire substrate, a tantalum carbide substrate, a tri-five compound-based semiconductor substrate or a bi-family-based semiconductor substrate, The method of growing a light-emitting diode wafer is epitaxial growth. 3. The method of manufacturing a light source module according to claim 1, wherein the cold end substrate is a semiconductor germanium substrate coated with cerium oxide on the surface, an aluminum composite substrate having an anodized surface or electrically insulated. A thermally conductive ceramic substrate. 4. The method of manufacturing a light source module according to claim 1, wherein the first substrate is removed by laser stripping or etching. 096151141 Form No. Α0101 Page 13 of 16 1003231587-0
TW096151141A 2007-12-31 2007-12-31 Light source module and manufacturing method there TWI358801B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096151141A TWI358801B (en) 2007-12-31 2007-12-31 Light source module and manufacturing method there

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096151141A TWI358801B (en) 2007-12-31 2007-12-31 Light source module and manufacturing method there

Publications (2)

Publication Number Publication Date
TW200929463A TW200929463A (en) 2009-07-01
TWI358801B true TWI358801B (en) 2012-02-21

Family

ID=44864489

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096151141A TWI358801B (en) 2007-12-31 2007-12-31 Light source module and manufacturing method there

Country Status (1)

Country Link
TW (1) TWI358801B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649179B2 (en) 2011-02-05 2014-02-11 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
US20230052136A1 (en) * 2021-08-13 2023-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Thermoelectric cooling of semiconductor devices

Also Published As

Publication number Publication date
TW200929463A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
CN101465347A (en) Light source die set and method of manufacturing the same
CN101471337B (en) Light source die set with good radiating performance
US7759144B2 (en) Package for a semiconductor light emitting device
JP5040765B2 (en) Semiconductor device
EP2937908B1 (en) Transistor, heat sink structure thereof, and method for manufacturing the same
TWI549322B (en) Led component by integrating epitaxial structure and package substrate together and method of manufacturing the same
CN101477981A (en) Light source module and manufacturing process thereof
US20110133224A1 (en) Thermally optimised led chip-on-board module
TW201131830A (en) Light-emitting device package components
TWI549319B (en) Method and apparatus for fabricating phosphor-coated led dies
JP2007535803A (en) Thin film thermoelectric devices for power conversion and cooling
CN102194972B (en) Light-emitting device (LED) package component
TWI397989B (en) Light emitting element array
Zou et al. Vertical LEDs on rigid and flexible substrates using GaN-on-Si epilayers and Au-free bonding
TWI358801B (en) Light source module and manufacturing method there
US8222728B2 (en) Active solid heatsink device and fabricating method thereof
CN102214652B (en) LED (light emitting diode) packaging structure and preparation method thereof
KR101515319B1 (en) Light-emitting semiconductor component
Zhang et al. Research progress on packaging thermal management techniques of high power led
TW200933833A (en) Light source module and method for manufacturing the same
US20200028055A1 (en) Thermoelectric conversion device
WO2012071991A1 (en) Chip cooling structure
KR101138974B1 (en) Luminous element and method of manufacturing thereof
CN104157621A (en) Power semiconductor chip packaging heat conduction cover
KR101482050B1 (en) Light emitting element array

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees