TWI356897B - - Google Patents

Download PDF

Info

Publication number
TWI356897B
TWI356897B TW96148575A TW96148575A TWI356897B TW I356897 B TWI356897 B TW I356897B TW 96148575 A TW96148575 A TW 96148575A TW 96148575 A TW96148575 A TW 96148575A TW I356897 B TWI356897 B TW I356897B
Authority
TW
Taiwan
Prior art keywords
wave
gps
module
spectrum
sea surface
Prior art date
Application number
TW96148575A
Other languages
Chinese (zh)
Other versions
TW200928303A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW96148575A priority Critical patent/TW200928303A/en
Publication of TW200928303A publication Critical patent/TW200928303A/en
Application granted granted Critical
Publication of TWI356897B publication Critical patent/TWI356897B/zh

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

1356897 九、發明說明: 【發明所屬之技術領域】 本發明係為-種GPS海面波動觀測方法,尤指一種適用於海 . 上偵測水粒子運動速度,進而取得水面波動資料之方法。 【先前技術】 #,習知觀測並取得海域之相浪資訊,係湘浮體設有 觀測裝置而進行觀測。該觀測裝置係運用習知加速度器觀測波 φ '良’係依據波浪分析理論,分析加速度、東西向與南北向傾角時 序列資無得舰㈣料。引践理鱗,浮體題隨著波浪表 面運動’才得収確制則變化。惟此f知技術所制之浮體 必須限定為碟型浮體才能使觀漸果_最佳,而不能使用其它 型態之浮體。 再者,習知觀測技術係運用加速度器觀測波浪。惟在觀測時 該加速度器會產生雜訊,使該加速度器所輸出之加速度時序列數 鲁據依據波浪刀析理論計算出力σ速度譜,再經由頻率四次方倒數 轉換為水位譜,進而得到波高、週期資料。同時加速度譜雜訊也 同時經過頻率四次方倒數轉換後,令低頻處雜訊被放大之倍率較 咼頻處為大,進而得到錯誤的水位譜。 習知技術亦有利用RTK_GPS量測海面水位變化。當利用 ,RTK_GPS時’使用兩部以上之GPS接收器.,並將其中一部設立在已 '知位置=固定點稱為GPS基準站,該GPS基準站以接收到的觀測 資料計算大氣縣(獅層、對流層延遲)與财誤差造成的影 5 響’並透過地面無線電或電m將誤差改正值傳送至其他各 =PS接收器,即時解算出接收器與基準站位置之相對向量求 传冋精度之位置#^然而RTK GPS在使㈣有其限制即當基 準站與接收g之間的輯增加,域誤絲料改變,使得接收 器只能距絲準站約㈣公里才能達到公分級精度。因此,利用 RTK GPS測波系統只能應用於沿海海域,將此技術應用於深海區 域,量測精度將大幅下降。 有鑑於此,吾等發明人為解決習知觀測技術所產生之問題, 在經過不斷設計及改良後而有未發明之問世。 【發明内容】 羞是本發明提供-種GPS海面波動觀測方法,其目的在於使 設於浮體之觀測裝置不受GPS基準站之限制及低讎訊之干擾, 於任何海域猶海©波動㈣,且只需作為祕之浮體能隨波浪 水粒子運動,亦不限定浮體之型態,即可獲得準確的海面變動資 訊。 為此實現上述之發明目的,本發明係為一種Gps海面波動觀 ’則方法,其方法包含:GPS模組偵測取得χ軸向、γ轴向及2軸向 之波浪運動迷度變化量,並轉換輸出波浪運動速度時序列,由分 析處理模_除運祕度時序_含之低頻雜,保留真正屬於 波/良之運動速度時序列,並將該運動逮度時序列應用傅立葉轉換 分析法,並配合波浪理論推算取得迷度譜、一維水位譜、示性波 面、平均週期及方向波譜等波浪資料。 1356897 依據上述之構想,其中該GPS海面波動觀測方法更包含:速声 譜、一維水赠、示性波高、平均職及方向波鮮波^料: 该分析處理模組編碼為資料字串,並將該資料字串儲存於儲存模 1依據上述之構想,其中該儲械組係為硬式磁碟機或以打她 記憶卡、Compact Flash記憶卡為記錄媒體之讀卡機。 依據上述之構想,其中該GPS海面波動觀測方法更包含:嗲分 析處理模組輸出該資料字串給傳輸模組,由該傳輸單元以無ϋ 輸方式將該資料字串傳送給遠端基地台。 依據上述之構想,其t爾倾·_為鱗電機、GSM數據機、 GPRS數據機或衛星傳輸裝置。 【實施方式】 、關於本發明之技術手段,_—健實施例配合圖式於下文 進行詳細說明Μ牟供鈞上深入了解並認同本發明。 首先,請參閱第-圖所示,係為本發明Gps海面波動觀測方 法較佳實施麻賴。於本健實施财,_測方法必須藉由 設於浮體·之觀測裝们00實施。該觀測裝置⑽係包含有奶 模組Η)、分析處理模組2G、館存模組3G、傳輸模組4G以及電力 模組50。其中: 該奶模經10設有全球定位系統(Giobai Positioning SySteffl,GPS)。該GPS模組10與該分析處, 用以當該浮體細在預定觀測海域漂浮時,即時侧該浮體· 7 1356897 .之X轴向、γ軸向及Z軸向之水粒子速度變化,並同時對應輸出該 二軸向之運動速度時相給該分析處職組2G^該X轴向在 本例中是預設為東西向,即GPS模組10偵測東西向之水粒子速度 變化。該Y軸向在本例中是預設為南北向,即GPS模組1G偵測南 北向之水粒子速賴化。該Z轴向在本财是職為垂直於海平 面之方向,即GPS模組1〇偵測水位垂直速度變化。 . 該分析處理模組2〇與該GPS模組1〇、儲存模組3〇、傳輸模 鲁組40為電性連接。該分析處理模組2〇以分析處理軟體分析計算 由該GPS模組1〇傳送之運動速度時序列作為輸入值,經處理運算 後得出水粒子在X軸向、γ轴向及Z軸向之速度譜、水位譜、示性 波高、平均週期及方向波譜等波浪資料,並將該等波浪資料經編 竭轉換為資料字串,同時輸出給該傳輸模組4G及該儲存模組30。 該儲存模組30係接收該分析處理模組2〇輸出之資料字串, _並儲存該資料字串。該儲存模組30係為硬式磁碟機,或以Flash 記憶卡、Compact Flash記憶卡為記錄媒體之讀卡機。 該傳輸模組4〇係接收該分析處理模組2〇輸出之資料字串。 該傳輸模組40即以無線傳輸方式傳送給遠端基地台。該傳輸模組 如係為無線電機、GSM數據機、GPRS數據機或衛星傳輸裝置。 該電力模組40與該GPS模組10、分析處理模組2〇、儲存模 組30及傳輸模組40為電性連接,用以提供該等模組1〇 ' 2〇、3〇 所需之電源。 8 1356897 如第二圖所示’當該觀測裳置100設於該浮體謂,並被置放 於預定觀測海域時,該浮體㈣面漂浮並隨著波浪水粒子運 動’同時該分析處理模組2〇在預設之時間週期定時啟動該Gps模 組10與該傳輸魅40,使該GPS模組1〇即時制該海域之水粒 子在X軸向、Y轴向及2軸向之速度變化,並同時對應輸出該三轴 之運動速度時序列給該分析處理模組2〇進行分析運算。 如第三圖所示,該分析處理模組20之分析運算步驟如下: 步驟-S歡該分減理漁2G轉三㈣絲子運動速度 B寺序列。該GPS模組1〇偵測取得X軸向、γ轴向及z轴向之水粒 子速度物理量’並傳送運動逮度時序列給該分析處理模組。該 分析處理敝20似鮮速度物理量做為運算處理之輸入值。 步驟二S2GG:該分析處理触2Q在對三躺絲?運動速度 時序列進行運算前,會先行判斷是否有GPS訊號偏移⑽抑㈣1356897 IX. Description of the Invention: [Technical Field] The present invention relates to a GPS sea surface fluctuation observation method, and more particularly to a method for detecting the velocity of water particles on the sea and then obtaining water surface fluctuation data. [Prior Art] #, The observation and acquisition of the sea wave information of the sea area, the observation of the Xiangbu floating body with observation devices. The observation device uses the conventional accelerometer to observe the wave φ 'good' system according to the wave analysis theory, and analyzes the acceleration, east-west and north-south inclination when the sequence is free of the ship (four) material. According to the practice of scales, the floating body problem changes with the wave surface movement. However, the floating body made by the technology must be limited to a dish-shaped floating body in order to make the observations _ optimal, and other types of floating bodies cannot be used. Furthermore, conventional observation techniques use accelerometers to observe waves. However, during the observation, the accelerometer generates noise, so that the sequence of the acceleration time outputted by the accelerometer is calculated according to the wave knife analysis theory, and then converted into the water level spectrum by the frequency quadratic reciprocal, thereby obtaining Wave height, cycle data. At the same time, the acceleration spectrum noise is also subjected to the frequency quadratic reciprocal conversion, so that the frequency of the low frequency noise is amplified larger than the frequency, and the wrong water level spectrum is obtained. Conventional techniques also use RTK_GPS to measure sea level changes. When using RTK_GPS, 'use more than two GPS receivers. And set one of them to the known location=fixed point is called GPS reference station. The GPS reference station calculates the atmospheric county based on the received observation data ( The lion layer and tropospheric delay) and the error caused by the financial error are transmitted to the other =PS receivers through the terrestrial radio or the electric m, and the relative vector of the receiver and the base station is calculated instantaneously. Position of accuracy #^ However, RTK GPS has (4) its limit, that is, when the base station and the receiving g increase, the domain error is changed, so that the receiver can only reach about four kilometers from the wire queuing station to achieve the public classification accuracy. . Therefore, the RTK GPS wave measurement system can only be applied to coastal waters, and this technology can be applied to deep sea areas, and the measurement accuracy will be greatly reduced. In view of this, our inventors have solved the problems caused by the conventional observation techniques and have not been invented after continuous design and improvement. SUMMARY OF THE INVENTION Shame is a GPS sea surface fluctuation observation method provided by the present invention, and the purpose thereof is to make the observation device provided on the floating body not subject to the limitation of the GPS reference station and the interference of the low frequency signal, and fluctuate in any sea area (4) And as a secret floating body can move with the wave water particles, and does not limit the shape of the floating body, you can get accurate information on sea surface changes. To achieve the above object of the present invention, the present invention is a method for Gps sea surface fluctuation, and the method includes: the GPS module detects the amount of change in the wave motion of the χ axial direction, the γ axis, and the 2 axial direction, And converting the output wave motion speed time sequence, the analysis processing mode _ the removal of the secret time sequence _ containing the low frequency miscellaneous, retaining the sequence of the true wave/good motion velocity, and applying the Fourier transform analysis method to the motion capture time sequence, And with the wave theory, the wave data such as the diurnal spectrum, the one-dimensional water level spectrum, the indicative wave surface, the average period and the direction spectrum are obtained. 1356897 According to the above concept, the GPS sea surface fluctuation observation method further comprises: a speed sound spectrum, a one-dimensional water gift, a display wave height, an average position and a direction wave fresh wave material: the analysis processing module is coded as a data string, And storing the data string in the storage module 1 according to the above concept, wherein the storage group is a hard disk drive or a card reader that uses her memory card and a Compact Flash memory card as a recording medium. According to the above concept, the GPS sea surface fluctuation observation method further comprises: the analysis processing module outputs the data string to the transmission module, and the transmission unit transmits the data string to the remote base station in a non-transmission manner. . According to the above concept, it is a scale motor, a GSM data machine, a GPRS data machine or a satellite transmission device. [Embodiment] The technical means of the present invention will be described in detail below with reference to the drawings, and the present invention will be further understood and recognized. First, please refer to the figure-picture, which is the preferred implementation of the Gps sea surface fluctuation observation method of the present invention. In the implementation of the money, the method must be implemented by the observation device 00 set in the floating body. The observation device (10) includes a milk module (Η), an analysis processing module 2G, a library module 3G, a transmission module 4G, and a power module 50. Among them: The milk mold has a global positioning system (Giobai Positioning SySteffl, GPS). The GPS module 10 and the analysis portion are configured to change the water particle velocity of the X-axis, the γ-axis, and the Z-axis of the floating body when the floating body is finely floating in a predetermined observation sea area. And simultaneously outputting the two-axis motion speed phase to the analysis service group 2G^ The X-axis is preset to the east-west direction in this example, that is, the GPS module 10 detects the east-west water particle velocity. Variety. In this example, the Y-axis is preset to be north-south, that is, the GPS module 1G detects the north-south water particle velocity dependence. The Z-axis is in the direction perpendicular to the sea level, that is, the GPS module detects the vertical velocity change of the water level. The analysis processing module 2 is electrically connected to the GPS module 1 , the storage module 3 , and the transmission module 40 . The analysis processing module 2 uses the analysis processing software to calculate the motion velocity time sequence transmitted by the GPS module 1 as an input value, and after processing, the water particles are obtained in the X axis, the γ axis, and the Z axis. Wave data such as velocity spectrum, water level spectrum, indicative wave height, average period and direction spectrum are compiled, and the wave data is compiled into a data string and output to the transmission module 4G and the storage module 30 at the same time. The storage module 30 receives the data string outputted by the analysis processing module 2, and stores the data string. The storage module 30 is a hard disk drive or a card reader using a flash memory card or a Compact Flash memory card as a recording medium. The transmission module 4 receives the data string output by the analysis processing module 2〇. The transmission module 40 is transmitted to the remote base station by wireless transmission. The transmission module is a radio, a GSM modem, a GPRS modem or a satellite transmission. The power module 40 is electrically connected to the GPS module 10, the analysis processing module 2, the storage module 30, and the transmission module 40, and is configured to provide the modules 1〇' 2〇, 3〇 The power supply. 8 1356897 As shown in the second figure, 'When the observation slot 100 is set in the floating body and placed in the predetermined observation sea, the floating body (four) surface floats and moves with the wave water particles' and the analysis processing The module 2 starts the Gps module 10 and the transmission charm 40 at a preset time period, so that the GPS module 1 〇 instantaneously produces water particles in the sea area in the X axis, the Y axis, and the 2 axis. The speed changes, and at the same time, the analysis processing module 2〇 is analyzed and operated corresponding to the output of the three-axis motion speed. As shown in the third figure, the analysis and calculation steps of the analysis processing module 20 are as follows: Step-S Huan the division of the fishing 2G to three (four) filament movement speed B temple sequence. The GPS module 1 detects and acquires the physical quantity of the water particle velocity in the X-axis, the γ-axis, and the z-axis and transmits the sequence of the motion capture to the analysis processing module. The analysis process 敝20 looks like the fresh speed physical quantity as the input value of the arithmetic processing. Step 2 S2GG: Does the analysis process touch 2Q in the pair of lying wires? Movement speed Before the sequence is calculated, it will first determine whether there is a GPS signal offset (10) (4)

Loss)。所謂GPS訊號偏移(GPS Signal Loss),指當GPS衛星發 生偏移或訊號無法接收時,GPS模組1G所輸出之水粒子運動速度 時序列則會出現-整段往上或往下偏移的現象(Gps抑㈣Loss). The so-called GPS signal loss (GPS Signal Loss) means that when the GPS satellite is offset or the signal cannot be received, the sequence of water particle motion speed output by the GPS module 1G will appear - the entire segment is shifted upwards or downwards. Phenomenon (Gps (4)

Loss)。當該分析處理模組20運用移動平均法偵測判斷運動速度 時序列有GPS 號偏移時,則進入齡Gps訊號偏移之程序。反 之,則該分析處理模組20即對該等運動時序列進行波浪資訊之分 析運算。 步驟三S300 :當該分析處理模組20判斷運動速度時序列有 9 1356897 GPS訊號偏移時’則該分析處理模組2()進一步將其,而保留 真正屬於波浪速度的峨,即針對該滅進行波浪資訊之 -算。 ··· 轉四議:於此步驟中,該分析處理模組20對三轴向之運 =速度時序顺運算處理取得速度譜。_波浪中水位的變動具 定常性(stationary)、統—性(erg()dic)及高__咖_ ㈣謂)’難時壯與郎上的麟性[致。將波狗視為 無限多個㈣振巾i、頻率、她及人做_餘弦函數疊加來表 示,如下式: 7(X,#)= 吨一(θ> + _>卜娜 + 〜} ( S4-1) 其中,7卜,兄0為波形函數,此函數與位置及時間有關,力為 成份波頻率、〇對應^的波數,H人射波的波向Ά為 對應於鮮及波向的振幅及相位。當本較佳實關之雜2〇〇完 • 全跟隨、海面移動標浮,則該觀測震置100戶斤觀測Ζ轴向之速度F:可 以由(S4-1)式對時間微分1次而得: V^yAx=y=, = ΣΧ(2^ )αΰ sin(2^;.i + £..) ( S4-2 ) y=i /-1 ’ κ(ο之自相關函數(aut〇-correlationfunction)定義如下 式所示: ' =)κ W· Vz (t + ^ (S4-3) 其中r為時距,則波譜密度函數可由自相關函數的傅立葉轉換 1356897 求得,其為舰在某辭範_所含之能量 〜⑺=2 [ ^WexpG,2折)办 其中/為頻率,心⑺為Z軸向之 (S4_4) 上轉換函數(2心得-維水位物,如軸向之速祕 (Q4-5 ) 步驟五S500 ··於此步驟中,該分析處理模組20對三軸向之運 動速度時序料理取㈣向分布函數,㈣得到方向波 譜Γ交錯她綠⑽ 之傅立倾換’交錯相關函數从)的定義如下: ^7 ^Μ^λί+τ^ί (S5-1) 上式中外)代表波形函數,峨表稽延時間則交錯 下式獲得: 么⑺=£ά匆w 上 (S5-2) 將交錯譜以複數形式表示為如下所示: W,,.(/) (S5_3) 其中’训稱為同位譜’ α⑺稱為轉向譜。藉由交錯譜_ 與方向波譜办θ)具有如下式所示之關係: 7 φΜ)= le'ihCu 'S{f,e)de (S5-4) 當該模組10觀測該浮體200位於海面定點位置之χ轴 向、Y軸向及Z轴向之水粒子運動速度則交錯譜可為下式表示: 1356897 ,~π (S5-5) 當該GPS模組l〇觀測波面之χ軸向、γ軸 速度時,係可得出六組交錯譜,並將六 °,以向之_ 彳尨* > 錯谱分別代入(S«Sw 式後,再以有限傅利葉級數法,假設方向分布 、U5'3) 限階數的傅利葉級數,如下列所示: 5 β 乂展開成有 办,· α。⑺+ &⑺c咖θ 4 (/)如μ 再以GPS模組10觀測所得之三軸 瓜6) 式解至二階,各項之係數分別以下^^8^代入 «〇(/)Loss). When the analysis processing module 20 detects the motion speed by using the moving average method to detect the motion speed, the sequence has a GPS number offset, and then enters the program of the age Gps signal offset. In contrast, the analysis processing module 20 performs the analysis of the wave information for the motion time series. Step 3: S300: When the analysis processing module 20 determines the motion speed, the sequence has 9 1356897 GPS signal offset, then the analysis processing module 2 () further reserves the 峨, which is true to the wave speed, that is, Destroy the wave information - count. ··· Turn to the fourth discussion: In this step, the analysis processing module 20 obtains the velocity spectrum for the three-axis operation = speed timing smoothing process. _ The change of the water level in the wave has a stationary, erg () dic) and a high __ _ _ (four) said ‘the time is difficult to grow with the lining of Lang’s. Think of the wave dog as an infinite number of (four) vibrating towel i, frequency, her and people doing _ cosine function superposition to represent, as follows: 7 (X, #) = t one (θ > _ > gt; + + ( S4-1) Among them, 7 Bu, brother 0 is a waveform function, this function is related to position and time, the force is the component wave frequency, the wave number corresponding to ^, and the wave direction of the H human wave corresponds to the fresh wave The amplitude and phase of the direction. When the best of the two is completed, the whole is followed, and the sea surface is moved, the observation is shocked by 100 kilograms. The velocity of the axis is F: can be obtained by (S4-1) The formula differentiates the time by one time: V^yAx=y=, = ΣΧ(2^)αΰ sin(2^;.i + £..) ( S4-2 ) y=i /-1 ' κ(ο The autocorrelation function (aut〇-correlationfunction) is defined as follows: ' =) κ W· Vz (t + ^ (S4-3) where r is the time interval, then the spectral density function can be transformed by the Fourier transform of the autocorrelation function 1356897 Obtained, it is the energy contained in the ship's vocabulary _ ~ (7) = 2 [ ^ WexpG, 2 fold) where / for the frequency, the heart (7) for the Z axis (S4_4) up conversion function (2 experience - dimensional Water level, such as axial speed secret (Q4-5) Step 5 S500 ·· In the step, the analysis processing module 20 defines the (four) direction distribution function for the three-axis motion speed timing, and (four) obtains the direction spectrum Γ interleaving her green (10), which is defined as follows: ^7 ^Μ^λί+τ^ί (S5-1) The above formula represents the waveform function, and the table protraction time is obtained by interleaving: (7)=£ά匆w (S5-2) The interlaced spectrum is in the plural form It is expressed as follows: W,,.(/) (S5_3) where 'training is the isotope' α(7) is called the steering spectrum. By the interleaved spectrum _ and the directional spectrum θ), the relationship is as follows: 7 φ Μ) = le 'ihCu 'S{f, e) de (S5-4) When the module 10 observes that the floating body 200 is located The velocity of the water particles moving in the axial direction, the Y-axis and the Z-axis at the fixed point position on the sea surface can be expressed as follows: 1356897, ~π (S5-5) When the GPS module observes the axis of the wavefront For the γ-axis velocity, six sets of staggered spectra can be obtained, and six degrees are substituted into the _ 彳尨* > error spectrum (S«Sw type, then finite Fourier series method, hypothesis Direction distribution, U5'3) The Fourier series of the order number, as shown below: 5 β 乂 expands into the existing, · α. (7) + & (7) c coffee θ 4 (/) such as μ and then the GPS module 10 to observe the three-axis melon 6) to the second order, the coefficients of each of the following ^ ^ 8 ^ into the « 〇 (/)

Cn(f) (2πί)2π α丨(,)-么(/) {2nffnh a2(f)~ ^22(/)-^3(/) (2φ)2π (/)- ^3(/) (2<)2 忒 hif) = 2C23 ⑺ {2φ)2π CS5-7a) (S5-7b) (S5-7c) (S5-7d) CS5-7e) 其中^為水深,&以下式計算 c22(f)+c33(f) i Cu(f) 方向譜可視為一維能譜與方向分佈函數之内積 5(/,θ) = μ/)4(θ|/) C S5~8) (S5'9) 12 丄糊97 丄糊97 又 其中Μ/)為一維波譜;乃⑷|乃為波浪能量的方向 切為如下叙絲.· _ (S5,) 5(/) = 1 S{Le)de = Cu{f)K27tff=a0{f)n 又〇(θ|/)為如下式之表示: 娜。sf (Θ-馨•❶夸—,侧}⑼⑴ 其中,η(/)、(/)代表波浪方向分佈寬度。⑽ 凌浪傳遞&切方向。 2(/)代表 算取:於此_,該分析處理馳2G _步驟四運 如下後,^水位譜推算示性波高HS與平均週期L, (S6-1) (S6-2) ^ =4.004 = ν^〇7^7 則所。和分別為水位譜能量之零次矩與二次矩 2 ===柯麟後,㈣轉量紐最大處賴應之料 1當該分析處理模組2G經由上述之程序運算出速度譜、水位 :、不性波平均週期及方向波譜等波浪資料後,該分析處理 字=20即將將讀之波浪資料進行編碼為資料字串,並將該資料 同時輪出於該儲存模、组3〇儲存備查及該傳輸模組4〇。該傳輸 、、、且4〇接收咐料字串後’即以無線傳輸方式將資料字串傳送給 13 傳送 之資 遂端基地台。該遠端基輸卩將所接收到由該觀測裝置卿 2料字串經運算處理轉換為專業人員可直接判讀或記錄 綜上所述可得知’本㈣具打浙叙優點: 本翻GPS海面波_财法係·奶“分析取得X轴 動向Μ軸向(南北向)及2軸向(上下向)之水粒子運 林·料,崎到波㈣料。只要浮體能隨著波浪水粒 =運動即可,科受浮_紅_。再者,本發明之方法藉由 ,並配合以波浪理論為基礎之分析方法,而無需架設奶 基準站,即能精確取得波浪資訊,且亦無低頻雜訊之干擾問題。 综觀上述’本發明就其整體之組合及特徵而言,既未曾見諸 於同類產品巾,巾請前絲見公開,誠已符合專槪之法定要件, 菱依法提出發明專利申請。 惟以上所述者,僅為本發明之較佳實_,當不能以此限定本 ☆實知之範圍,即大凡依本發明申請專利範圍及發明說明書内 乍之等效變化與修飾’皆應仍屬本發料利之涵蓋範圍内。 【圖式簡單說明】 加第-圖係本發明GPS海面波動觀測方法較佳實施例之觀測震置 木構方塊®。說明觀測裝!之架構關係。 “第圖係本發明GPS海面波動觀測方法較佳實施例之觀測裒置 設於浮體’而浮體漂浮於海面之使·態示意圖。 第二嶋本發明GPS海面波練财法触實細之分析處理 1356897 模組之分析處理流程圖。 【主要元件符號說明】 100-----觀測裝置 10―― —GPS模組 20------分析處理模組 30—— 一-儲存單元 40------傳輸模組Cn(f) (2πί)2π α丨(,)-么(/) {2nffnh a2(f)~ ^22(/)-^3(/) (2φ)2π (/)- ^3(/) ( 2<)2 忒hif) = 2C23 (7) {2φ)2π CS5-7a) (S5-7b) (S5-7c) (S5-7d) CS5-7e) where ^ is the water depth, &the following formula calculates c22(f ) +c33(f) i Cu(f) direction spectrum can be regarded as the inner product of one-dimensional energy spectrum and direction distribution function 5(/, θ) = μ/)4(θ|/) C S5~8) (S5'9 12 丄97 97 paste 97 and Μ/) is a one-dimensional spectrum; (4)| is the direction of the wave energy is cut as follows: _ (S5,) 5(/) = 1 S{Le)de = Cu{f)K27tff=a0{f)n Further 〇(θ|/) is expressed as follows: Na. Sf (Θ-馨•❶夸—, 侧}(9)(1) where η(/), (/) represents the width of the wave direction distribution. (10) Linglang transmission & cut direction. 2 (/) represents calculation: here _, After the analysis and processing of 2G _ step four operations, the water level spectrum estimates the high wave HS and the average period L, (S6-1) (S6-2) ^ =4.004 = ν^〇7^7. It is the zeroth moment and the second moment of the water level spectrum energy. 2 === Ke Lin, (4) The maximum value of the transfer amount is 1 when the analysis processing module 2G calculates the velocity spectrum and water level through the above program: After the wave data such as the averaging period and the directional spectrum, the analysis processing word=20 will encode the read wave data into a data string, and the data will be stored at the same time for the storage model, group 3, and for future reference. The transmission module is configured to transmit the data string to the asset base station of the 13 transmission by wireless transmission after receiving the data string. The remote base station Received by the observing device, the data string is converted into a professional to be directly interpreted or recorded by the operator. Advantages: This is the GPS sea surface wave _ financial law system and milk "analysis to obtain the X-axis dynamic Μ axial (north-south direction) and 2 axial (up and down) water particles transport forest materials, Saki to wave (four) material. As long as The floating body can move with the wave water particles = the movement is subject to the floating _ red _. Moreover, the method of the present invention can be accurately performed by using the wave theory-based analysis method without erecting the milk base station. Obtaining wave information, and there is no interference problem of low-frequency noise. Looking at the above-mentioned invention, in terms of its overall combination and characteristics, it has never seen the same kind of product towel, and the towel is open to the public. In the case of the statutory requirements, the company filed an invention patent in accordance with the law. However, the above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the patent application scope and invention specification according to the present invention. The equivalent variation and modification of the internal enthalpy should still be within the scope of the present disclosure. [Simplified illustration] Adding the first picture is the observation of the GPS sea surface fluctuation observation method of the preferred embodiment of the present invention. ®. Explain the observation pack! The relationship between the architecture and the preferred embodiment of the GPS sea surface fluctuation observation method of the present invention is that the observation device is disposed on the floating body and the floating body floats on the sea surface. Analysis and processing flow chart of 1356897 module. [Main component symbol description] 100-----observation device 10---GPS module 20------ analysis processing module 30 - one - Storage unit 40 - Transmission module

Claims (1)

1356897 • 十、申請專利範圍: 1. 一種GPS海面波動觀測方法,其方法包含: GPS模組伽取得x轴向、Y轴向及Z軸向之波浪·變化 量,並轉換輪出波浪運動速度時賴,砂析處賴域除運動 速度時序列内含之低頻雜訊,保留真正屬於波浪之運動速度時序 列’並運鱗度時序列細傅立_換分析法並配: 理論推算取得速度譜、—維水位譜、雜波高平均週期及方向 波谱等波浪資料。 2. 如申叫專利範圍第1項所述之gps海面波動觀測方法其中該 GPS海面波動觀測方法更包含: 〇 速度譜、一維水位譜、示性波高、平均週期及方向波譜等波 浪資料經該分析處理模組編碼為資料字串,並將該資料字串儲存 於儲存模組。 3. 如申請專利範圍第2項所述之GPS海面波動觀測方法,其中該 儲存模組係為硬式磁碟機,或以FlashK憶卡、c〇mpact Flash記 憶卡為記錄媒體之讀卡機。 4. 如申請專利範圍第2項所述之GPS海面波動觀測方法,其中該 GPS海面波動觀測方法更包含: 該分析處理模組輸出該資料字串給傳輸模組,由該傳輸單元以 無線傳輸方式將該資料字串傳送給遠端基地台。 5·如申請專利範圍第4項所述之GPS海面波動觀測方法,其中該 1356897 傳輸模組係為無線電機、GSM數據機、GPRS數據機或衛星傳輸裝置。1356897 • X. Patent application scope: 1. A GPS sea surface wave observation method, the method includes: the GPS module gamma obtains the wave·variation amount of the x-axis, the Y-axis and the Z-axis, and converts the wave movement speed of the wheel Time Lai, the low-frequency noise contained in the sequence of the Lai domain in addition to the speed of the sand, retaining the sequence of the motion velocity of the wave, and the sequence of the fine-grained _ _ analysis method with: theoretical calculation of the speed Wave data such as spectrum, dimension water level spectrum, clutter high average period and direction spectrum. 2. For example, the gps sea surface wave observation method described in the first paragraph of the patent scope includes the GPS sea surface wave observation method including: 〇 velocity spectrum, one-dimensional water level spectrum, indicative wave height, average period and direction spectrum, etc. The analysis processing module is encoded as a data string, and the data string is stored in the storage module. 3. The GPS sea surface fluctuation observation method described in claim 2, wherein the storage module is a hard disk drive, or a card reader using a FlashK memory card and a c〇mpact Flash memory card as a recording medium. 4. The GPS sea surface fluctuation observation method according to claim 2, wherein the GPS sea surface fluctuation observation method further comprises: the analysis processing module outputs the data string to the transmission module, and the transmission unit wirelessly transmits The method transmits the data string to the remote base station. 5. The GPS sea surface fluctuation observation method described in claim 4, wherein the 1356897 transmission module is a radio, a GSM data machine, a GPRS data machine or a satellite transmission device. 1717
TW96148575A 2007-12-19 2007-12-19 Observation method for sea-level wave fluctuation by using GPS TW200928303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96148575A TW200928303A (en) 2007-12-19 2007-12-19 Observation method for sea-level wave fluctuation by using GPS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96148575A TW200928303A (en) 2007-12-19 2007-12-19 Observation method for sea-level wave fluctuation by using GPS

Publications (2)

Publication Number Publication Date
TW200928303A TW200928303A (en) 2009-07-01
TWI356897B true TWI356897B (en) 2012-01-21

Family

ID=44863989

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96148575A TW200928303A (en) 2007-12-19 2007-12-19 Observation method for sea-level wave fluctuation by using GPS

Country Status (1)

Country Link
TW (1) TW200928303A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140137664A1 (en) * 2011-06-26 2014-05-22 The Regents Of The University Of California Inexpensive instrument for measuring wave exposure and water velocity
TWI486557B (en) * 2014-03-28 2015-06-01 Cing Jhe Huang Methods and systems for monitoring the water surface elevations of the ocean
CN106597010B (en) * 2017-02-14 2023-02-14 珠江水利委员会珠江水利科学研究院 Wave direction measuring device and method based on GPS

Also Published As

Publication number Publication date
TW200928303A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US7613072B2 (en) System and method for determining directional and non-directional fluid wave and current measurements
Bencivenga et al. The Italian data buoy network (RON)
JP2003302221A (en) Gps wave height, current direction and current speed measuring device and gps wave height, current direction and current speed measuring system
US7352651B2 (en) System and method for determining directional and non-directional fluid wave and current measurements
JP3455167B2 (en) Wave information measurement method and device using large floating body
Veras Guimarães et al. A surface kinematics buoy (SKIB) for wave–current interaction studies
CN102023010B (en) MEMS (micro-electromechanical system)-based wavelet field multisensor information fusion system and fusion method
Noble et al. On the longshelf structure and dynamics of subtidal currents on the eastern United States continental shelf
US11567227B2 (en) Multi-mode dispersion energy imaging device and method for a four-component marine interface wave of an ocean bottom seismometer
CN106990402A (en) A kind of navigation X-band radar wave group detection method based on Wave Theory
TWI356897B (en)
CN103293521A (en) Method for detecting water depth of offshore sea by X-band radar
CN108362269B (en) Wave measurement system and method based on navigation mark body
US10429538B1 (en) Underwater electromagnetic field measurement that factors in ocean dynamics
CN103115625A (en) Method and system for measuring transverse and longitudinal oscillating and heaving movement of floating body
Rabault et al. Measurements of waves in landfast ice using inertial motion units
CN115451921A (en) Wave-tide-flow synchronous observation method, equipment, medium and terminal for whole sea area
CN105066967A (en) MEMS motion sensor based wave measurement method
Nowroozi et al. Deep ocean current and its correlation with the ocean tide off the coast of northern California
Bjørnestad et al. Lagrangian measurements of orbital velocities in the surf zone
Morison Seasonal variations in the West Spitsbergen Current estimated from bottom pressure measurements
Beardsley A comparison of the vector‐averaging current meter and new Edgerton, Germeshausen, and Grier, Inc., vector‐measuring current meter on a surface mooring in Coastal Ocean Dynamics Experiment 1
CN109724644A (en) A kind of environmental data collecting method, system, computer installation and storage medium
Carandell et al. Impact on the wave parameters estimation of a kinetic energy harvester embedded into a drifter
Young Design and analysis of an ocean current turbine performance assessment system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees