TWI351682B - Acoustic device - Google Patents

Acoustic device Download PDF

Info

Publication number
TWI351682B
TWI351682B TW97123032A TW97123032A TWI351682B TW I351682 B TWI351682 B TW I351682B TW 97123032 A TW97123032 A TW 97123032A TW 97123032 A TW97123032 A TW 97123032A TW I351682 B TWI351682 B TW I351682B
Authority
TW
Taiwan
Prior art keywords
sounding
sounding device
electrode
carbon nanotube
carbon nanotubes
Prior art date
Application number
TW97123032A
Other languages
Chinese (zh)
Other versions
TW201002091A (en
Inventor
Kai-Li Jiang
Lin Xiao
Zhuo Chen
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97123032A priority Critical patent/TWI351682B/en
Publication of TW201002091A publication Critical patent/TW201002091A/en
Application granted granted Critical
Publication of TWI351682B publication Critical patent/TWI351682B/en

Links

Description

丄:)31⑽2 九、發明說明: 【發明所屬之技術領域】 尤其涉及一種基於奈米 本發明涉及一種發聲裝置 碳管的發聲裝置。 【先前技術】 發聲裝置-般由信號輸入裝置和發聲元件 信號輸入裝置輸人電信號給發聲元件,進而發、先丄:) 31(10) 2 IX. Description of the invention: [Technical field to which the invention pertains] In particular, the present invention relates to a sound generating device for a carbon tube of a sounding device. [Prior Art] The sounding device is generally input by the signal input device and the sounding device signal input device to the sounding component, and then the sounding device

;技術中的發聲元件—般爲—揚聲器。該揚聲器爲二種把 電以轉換成聲音信號的電聲器件。具體地,揚聲器可 :定範圍内的音頻電功率信號通過換能方式轉變爲失真小 並具有足够聲壓級的可聽聲音。 、 先前的揚聲器的種類报多,根據其工作原理,分爲: 電動式揚聲n、電磁式揚㈣、靜電式揚聲器及^式揚 聲器。雖然它們的工作方式不同,但一般均爲通過產生機 械振動推動周圍的空氣,使空氣介質産生波動從而實現‘‘電 # -力-聲,,之轉換。其中,電動式揚聲器的應用最爲廣泛。 請參閱圖1,先前的電動式揚聲器1〇〇通常由三部分 組成:音圈102、磁鐵104以及振膜106。音圈1〇2通常採 用通電導體,當音圈102中輸入一個音頻電流信號時,^ 圈102相當於一個載流導體。由於放在所述磁鐵1〇4産生 的磁場裏,根據载流導體在磁場中會受到力的作用而運動 的原理’音圈102會受到一個大小與音頻電流成正比、方 向隨音頻電流變化而變化的力。因此,音圈1〇2就會在所 述磁鐵104産生的磁場作用下產生振動,並帶動振膜1〇6 6 丄丄 振動,振膜1G6前後的空氣亦隨之振動,將電信號轉換成 聲波向四周輻射。然而,該電動式揚聲器1〇〇的結構較爲 複雜,且其必須在有磁的條件下工作。The sounding component of the technology is generally - the speaker. The speaker is an electroacoustic device that converts electricity into a sound signal. Specifically, the speaker can convert the audio electric power signal within a predetermined range into an audible sound having a small distortion and having a sufficient sound pressure level by the transducing mode. According to the working principle, the previous types of speakers are classified into: electric speaker n, electromagnetic speaker (four), electrostatic speaker and ^ speaker. Although they work in different ways, they generally push the surrounding air by generating mechanical vibrations, causing the air medium to fluctuate to achieve ‘‘electric #-force-sound, conversion. Among them, electric speakers are the most widely used. Referring to Fig. 1, the prior electric speaker 1 is usually composed of three parts: a voice coil 102, a magnet 104, and a diaphragm 106. The voice coil 1〇2 usually uses a current-carrying conductor, and when an audio current signal is input to the voice coil 102, the coil 102 corresponds to a current-carrying conductor. Due to the magnetic field generated by the magnet 1〇4, the principle of the motion of the current-carrying conductor in the magnetic field will be subject to the principle that the voice coil 102 will be proportional to the audio current and the direction will vary with the audio current. The power of change. Therefore, the voice coil 1〇2 generates vibration under the action of the magnetic field generated by the magnet 104, and drives the diaphragm 1〇6 6 丄丄 to vibrate, and the air before and after the diaphragm 1G6 also vibrates, converting the electrical signal into The sound waves radiate around. However, the structure of the electric speaker 1 is complicated, and it must operate under magnetic conditions.

自九十年代初以來,以奈米碳管(請參見Helical microtubules of graphitic carbon, Nature, Sumio Iijima, v〇l 354, P56(1991))爲代表的奈米材料以其獨特的結構和性質 引起了人們極大的關注。近幾年來,隨著奈米碳管及夺米 材料研究的不斷深人,其廣_制前景不斷顯現出來。、 例如,由於奈米碳管所具有的獨特的電磁學、光學、力學、 化學等性能,大量有關其在場發射電子源、傳感器、新型 光學材2、軟鐵磁材料等領域的應用研究不斷被報道。然 而,先前技術令却尚未發現奈米碳管用於聲學領域。 有鑒於此,提供一種結構簡單,可在無磁的條件下工 作的發聲裝置實為必要。 【發明内容】 ® 種發聲裝置,其包括:一信號輸入裝置;以及一發 聲元件,該發聲元件與所述信號輸入裝置的兩端電連接’· 其中,所述發聲元件爲一奈米碳管薄膜,該奈米碳管薄膜 ^括多個相互纏繞的奈米碳管,所述信號輸入裝置輪入電 t號”’。該不米破管薄膜,使該奈米碳管薄膜加熱周圍氣體 介質發出聲波。 ’ 相杈於先前技術,本技術方案所提供的發聲裝置具有 以下優點··其一,由於所述發聲裝置中的發聲元件僅包括 奈米碳管薄膜,無需磁鐵等其它複雜結構,故該發聲裝置 7 1351682 的結構較爲簡單,有利於降低該發聲裝置的成本。其二, 該發聲裝置利用輸入信號造成該發聲元件溫度變化,從而 使其周圍氣體介質迅速膨脹和收縮,進而發出聲波,無需 振膜,且該發聲元件組成的發聲裝置可在無磁的條件下工 作。其二,由於奈米碳管薄膜具有較小的熱容和大的比表 面積,且奈米碳管薄膜中的奈米碳管相互相互纏繞、均勻 分布,在輪入信號後,根據信號强度(如f流强度)的變 化,由至少一層奈米碳管薄膜組成的發聲元件可均句地加 熱周圍的氣體介質、迅速升降溫、產生周期性的溫度變化, 並和周圍氣體介質進行快速熱交換,使周圍氣體介質迅速 膨脹和收縮,發出人耳可感知的聲音,且所發出的聲音的 頻率範圍較寬(1Hz〜雌Hz)、發聲效果較好。 告 件厚度比較小時’例如小於職米,該發聲: 件具有較南的透明度,故所形成的發聲裝 ητ安裝在各種顯示裝置、手機顯示屏的顯S 相表面作爲㈣、空間㈣明發聲裝置。其四, ::不“官具有較好的機械强度和勒性,故由相互纏繞 :奈::::成的奈米碳管薄膜具有較好的機械强度= 借*太+ 乂好且具有較好的自支撑效果,從而有利於製 而方便地應用於各種領域。 裝置進 【實施方式】 置。以下將結合附圖詳細說明本技術方案實施例的發聲裝 8 1351682 睛參閱圖2’本技術方案第一實施例提供一種發聲裝 .置10,該發聲裝置10包括一信號輸入裝置12, 一發聲元 , 件14 ’ 一第一電極142以及一第二電極144。所述第一電 極142和第二電極144間隔設置,且與所述信號輸入裝置 12電連接。所述第一電極142和第二電極144可起到支撑 所述發聲元件14的作用。另外,所述第一電極ι42和第二 電極144通過外接導線149與所述信號輸入裝置12的兩端 電連接’用於將所述信號輸入裝置12中的信號輸入到所述 發聲元件14中。 所述發聲元件14包括一奈米碳管薄膜。該奈米碳管薄 膜爲一具有自支撑結構的奈米碳管薄膜。該奈米碳管薄膜 包括多個相互纏繞的奈米碳管,其掃描電鏡照片請參見圖 3。所述奈米碳管薄膜中,奈米碳管爲各向同性,均勻分布, 無規則排列。所述奈米碳管的長度大於1〇微米。所述奈米 碳管之間通過凡德瓦爾力相互吸引、纏繞,形成網絡狀結 _構’進而形成大量的微孔。該微孔的孔徑小於1〇微米。= 量微孔的存在可確保所述發聲元件14具有較大的比表面 積。所述奈米奴管可爲單壁奈米碳管、雙壁奈米碳管及多 壁奈米碳管中的一種或多種。所述單壁奈米碳管的直徑爲 0.5奈米〜50奈米,所述雙壁奈米碳管的直徑爲1〇奈米:5〇 奈米’所述多壁奈米碳管的直徑爲1.5奈米〜5〇奈米。所 述奈米奴管薄膜的長度及寬度不限,可根據實際需长事 備。所述奈米碳管薄膜的厚度爲0.5奈米〜1毫米。本技術 方案實施例中,所述奈米碳管薄膜的長度爲3厘米,寬$ 9 1351682 爲3厘米,厚度爲50奈米。另外,由於奈米碳管相互纏繞, 因此所述奈米碳管薄膜具有很好的韌性,可以彎曲折叠成 ,意形狀而不破裂。本技術方案實施例中的奈米碳管^ 爲-平面結構。當該奈米碳管薄膜組成的發聲元件W的厚 度比較小時,例如小於1〇微米,該發聲元件14具有較高 的透明度,故採用該發聲元件14的發聲裝置ig爲透明= 聲裝置10,可以直接安裝在各種顯示裝置、手機顯示屏的 顯不表面或油畫的表面作爲節省空間的透明發聲裳置1〇。 所述第一電極142和第二電極144由導電材料形成, 其具體形狀結構不限。具體地,所述第一電極Μ 妹144可選擇爲層狀、棒狀、塊狀或其它形狀。所0 =極142洋口第二電極144的材料可選擇爲金屬、導電勝、 、屬性奈米碳管、銦錫氧化物(ITQ)等。所述第 142和第二電極144用於香ϊ目λ匕 發聲元…間的電連=述:Γ入裝置12與所述 和第-㈣wr 所述第一電極142 到支撑所述發聲元件14的作用。所述 ^聲疋件14为別與所述第一電極142和第二電極144電連 接,並通過所述第一電極u 所述發聲元件14爲自支撑,所U 一 =144固定。由於 ,,,, 揮所述第一電極142和第二電極 ==固定在所述發聲元件14兩端或表:。本 技術方案實施财,所述第—電極m 棒狀金屬電極,所述第—電Μ ^ 一電極144為 置固定在所述發聲元件i ^ 一電極144間隔設 和第二電極m間隔設置,所H由於所述第一電極142 置所述毛聲TL件14應用於發聲裝 1351682 其時能接入一定的阻值避免短路現象産生。由於奈米碳 • s具有極大的比表面積,在凡德瓦爾力的作用下,該奈米 .碳官薄膜本身有很好的黏附性,故採用該至少— 管薄膜作發聲元件14時,所述第-電極142和第二電極 144與所述發聲元件14之間可以直接黏附固定,並形成很 好的電接觸。 士進一步地,所述第一電極142和第二電極144與所述 籲發聲元件14之間還可以進一步包括一導電黏結層、(圖未 不)。所述導電黏結層可設置於所述發聲元件14的表面。 所述導電黏結層在實現第一電極142和第二電極丄料與所 述發聲元件14電接觸的同時,還可以使所述第一電極142 和第二電極144與所述發聲元件14更好地固定。本實施例 中’所述導電黏結層爲一層銀膠。 可以理解,當所述發聲元件具有自支撑性能時,所述 第一電極142與第二電極144爲可選擇的結構。所述信號 鲁輸入裝置12可直接通過導線149或電極引線等方式與所述 發聲το件14電連接。另外,任何可實現所述信號輸入裝置 12與所述發聲元件14之間電連接的方式都在本技術方案 的保護範圍之内。 所述信號輸入裝置12輸入的信號包括交流電信號或 音頻電信號等。所述信號輸入裝置12通過導線149與所述 第一電極142和第二電極144電連接,並通過所述第一電 極142和第二電極144將信號輸入到所述發聲元件14中。 上述發聲裝置10在使用時,由於奈米碳管薄膜具有較 11 1351682 小的熱容和大的比表面積,且太半难其往 m且不水奴官溥膜中的奈米碳 相互纏繞、均句分布,在輸入信號後,根據信號强度= 電^强度)的變化,由至少一層奈米碳管薄㈣ 兀件u可均㈣加熱周圍的氣體介f、迅速升降溫= 周期性的溫度變化,並和周圍氣體介質進行快速熱交換, 使周圍氣體介質迅速膨脹和收縮,發出人 音,且所發出的聲音的頻率範圍較宽。本技術方ΐ實= 提供的發聲裝置1〇的發聲頻率範圍爲i赫兹里 (即lHZ〜1G()kHz)。故本技術方案實施例中,所述發聲元件 14的發聲原理爲“電_熱_聲”的轉換’具有廣泛的應用範 圍。另外’由於本技術方案實施例中的奈米碳管薄膜由多 固相互纏繞的奈求碳管組成,故該奈米碳管薄膜具有較好 的勒性和機械强度,所述奈米碳管薄膜可方便地製成各種 形狀和尺寸的發聲裝置,該發聲裝置可方便地應用於各種 :發聲的裝置中,如音響、手機、Mp3、Mp4、電視、計 算機等電子領域及其它發聲裝置中。 月> 閱圖4,本技術方案第二實施例提供一種發聲裝 置該發聲裝置2〇包括一信號輸入裝置22、一發聲元 第電極242、一第二電極244、一第三電極246 以及一第四電極248。 本技術方案第二實施例中的發聲裝置2〇與第一實施 例中的發聲裝置1G的結構基本相同,區別在於,本技術方 案第二實施例中的發聲裝置20包括四個電極,即第一電極 242、第二電極244、第三電極246和第四電極248。所述 12 1351682 第電極242、第二電極244、第三電極246和第四電極 ,248均爲棒狀金屬電極,且空間平行間隔言免置。所述發聲 ..凡件24環繞所述第—電極⑷、第二電極㈣、第三電極 246和第四電極24δ設置並與所述第一電極242、第二電極 244、第三電極246和第四電極248分別電連接,形成一環 形發聲το件2 4。任意兩個相鄰的電極均分別與所述信號輸 入裝置22的兩端電連接,以使位於相鄰電極之間的發聲元 籲件24接入輸入信號。具體地,先將不相鄰的兩個電極用導 線249連接後與所述信號輸入裝置22的一端電連接,剩下 的兩個電極用導線249連接後與所述信號輸入裝置22的另 一端電連接。本技術方案實施例中,可先將所述第一電極 242和第三電極246用導線249連接後與所述信號輸入裝 置22的-端電連接’再將所述第二電極244和第四電極 248用導線249連接後與所述信號輸入裝置22的另一端電 連接。上述連接方式可實現相鄰電極之間的發聲元件Μ _的並聯。並聯後的發聲元件24具有較小的電阻,可降低工 作電壓。且,上述連接方式可使所述發聲元件24具有較大 的輻射面積,且發聲强度得到增强,可實現環繞發聲效果。 另外,當所述發聲元件24的面積較大時,所述第三電極 246和第四電極248也可進一步起到支撑所述發聲元件 的作用。 可以理解,所述第一電極242、第二電極244、第三電 極246和第四電極248也可與所述發聲元件24設置在同一 平面内。所述設置在同一平面内的各電極的連接方式與上 13 1351682 述電極的逹接方式相同或相似β ^ 可以理解,本技術方案可設置多個電極,其數量不限, -只需確保任意兩個相鄰的電極均分別與所述信號輸入裝置 22的兩端電連接即可。 本技術方案實施例提供的發聲裝置具有以下優點:其 一,由於所述發聲裝置中的發聲元件僅包括奈米碳管薄 膜,無需磁鐵等其它複雜結構,故該發聲裝置的結構較爲 φ簡單,有利於降低該發聲裝置的成本。其二,該發聲裝置 利用輸入信號造成該發聲元件溫度變化,從而使其周圍氣 體介質迅速膨張和收縮,進而發出聲波,無需振膜,且故 該發聲元件組成的發聲裝置可在無磁的條件下工作。其 三,由於奈米碳管薄膜具有較小的熱容和大的比表面積, 且奈米碳管薄膜中的奈米碳管相互相互纏繞、均勾分布, 在輸入信號後,根據信號强度(如電流强度)的變化,由 至^一層奈米碳管薄膜組成的發聲元件可均句地加熱周圍 _的乳體介質、迅速升降溫、産生周期性的溫度變化,並和 2收縮’發出人耳可感知的聲音,且所發出的聲音的頻率 摩色圍較寬(1Hz〜ΐίΊηνχίΓ»、、议ϋ 一Since the early 1990s, nanomaterials represented by carbon nanotubes (see Helical microtubules of graphitic carbon, Nature, Sumio Iijima, v〇l 354, P56 (1991)) have been caused by their unique structure and properties. People have great concern. In recent years, with the deep research on carbon nanotubes and rice-removing materials, the prospects for its wide-ranging development have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications for field emission electron sources, sensors, new optical materials, and soft ferromagnetic materials continue to be studied. Was reported. However, prior art orders have not found carbon nanotubes for use in the field of acoustics. In view of this, it is necessary to provide a sound generating device which is simple in structure and can be operated under non-magnetic conditions. SUMMARY OF THE INVENTION A sounding device includes: a signal input device; and a sound emitting element electrically connected to both ends of the signal input device. Wherein the sound emitting element is a carbon nanotube a film, the carbon nanotube film comprises a plurality of intertwined carbon nanotubes, and the signal input device is electrically charged with a t"". The non-meter-breaking film allows the carbon nanotube film to heat the surrounding gaseous medium. Sound waves are emitted. 'In contrast to the prior art, the sounding device provided by the present technical solution has the following advantages. First, since the sounding element in the sounding device includes only a carbon nanotube film, and other complicated structures such as magnets are not required, Therefore, the structure of the sounding device 7 1351682 is relatively simple, which is advantageous for reducing the cost of the sounding device. Secondly, the sounding device uses the input signal to cause the temperature of the sounding element to change, thereby rapidly expanding and contracting the surrounding gas medium, thereby issuing Acoustic wave, no diaphragm is required, and the sounding device composed of the sounding element can work under non-magnetic conditions. Second, due to the carbon nanotube film It has a small heat capacity and a large specific surface area, and the carbon nanotubes in the carbon nanotube film are entangled and evenly distributed with each other. After the wheeling signal, according to the change of the signal intensity (such as the f flow intensity), At least one layer of carbon nanotube film composed of sound-emitting elements can uniformly heat the surrounding gas medium, rapidly rise and fall temperature, produce periodic temperature changes, and exchange heat with the surrounding gas medium to rapidly expand and contract the surrounding gas medium. It emits a sound that can be perceived by the human ear, and the frequency of the sound emitted is wider (1 Hz to female Hz), and the sounding effect is better. The thickness of the notification is relatively small, for example, less than the working meter, the sounding: the piece has a southerer Transparency, so the sounding device ητ is installed on the surface of the display S phase of various display devices and mobile phone displays as (4), space (four) sounding devices. Fourth, :: does not have a good mechanical strength and character, Therefore, it is intertwined: Nai:::: The carbon nanotube film has good mechanical strength = l * too + 乂 good and has a good self-supporting effect, which is beneficial to the system and convenient In various fields. The device is placed in an embodiment. The sounding device 8 1351682 of the embodiment of the present invention will be described in detail with reference to the accompanying drawings. The first embodiment of the present invention provides a sounding device 10. The sounding device 10 includes a signal input device 12, a sounding device. A first electrode 142 and a second electrode 144. The first electrode 142 and the second electrode 144 are spaced apart and electrically connected to the signal input device 12. The first electrode 142 and the second electrode 144 may function to support the sound emitting element 14. In addition, the first electrode ι 42 and the second electrode 144 are electrically connected to both ends of the signal input device 12 via an external lead 149 for inputting a signal in the signal input device 12 into the sound emitting element 14. . The sounding element 14 includes a carbon nanotube film. The carbon nanotube film is a carbon nanotube film having a self-supporting structure. The carbon nanotube film comprises a plurality of intertwined carbon nanotubes, and the scanning electron micrograph is shown in Fig. 3. In the carbon nanotube film, the carbon nanotubes are isotropic, uniformly distributed, and randomly arranged. The length of the carbon nanotubes is greater than 1 micron. The carbon nanotubes are attracted and entangled by the van der Waals force to form a network-like junction, thereby forming a large number of micropores. The pores have a pore size of less than 1 μm. = The presence of the micropores ensures that the sounding element 14 has a large specific surface area. The nanotube may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 50 nm, and the diameter of the double-walled carbon nanotube is 1 〇 nanometer: 5 〇 nanometer diameter of the multi-walled carbon nanotube For 1.5 nm ~ 5 〇 nano. The length and width of the nanotube film are not limited, and can be long-term according to actual needs. The carbon nanotube film has a thickness of 0.5 nm to 1 mm. In the embodiment of the technical solution, the carbon nanotube film has a length of 3 cm, a width of 9 9351682 of 3 cm, and a thickness of 50 nm. In addition, since the carbon nanotubes are intertwined with each other, the carbon nanotube film has excellent toughness and can be bent and folded into a shape without breaking. The carbon nanotubes in the embodiment of the technical solution are a planar structure. When the thickness of the sound generating element W composed of the carbon nanotube film is relatively small, for example, less than 1 μm, the sound emitting element 14 has a high transparency, so the sound generating device ig using the sound emitting element 14 is transparent = the acoustic device 10, It can be directly installed on the surface of various display devices, mobile phone display screens or oil painting surfaces as a space-saving transparent sounding skirt. The first electrode 142 and the second electrode 144 are formed of a conductive material, and the specific shape and structure thereof are not limited. Specifically, the first electrode sister 144 may be selected in the form of a layer, a rod, a block, or the like. The material of the second electrode 144 of the 0=pole 142 oceanic port may be selected from the group consisting of metal, conductive material, property carbon nanotube, indium tin oxide (ITQ) and the like. The 142th and second electrodes 144 are used for the electrical connection between the ϊ 匕 匕 声 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = The role. The sounding element 14 is electrically connected to the first electrode 142 and the second electrode 144, and the sounding element 14 is self-supporting through the first electrode u, and U==144 is fixed. Since the first electrode 142 and the second electrode == are fixed at both ends or the table of the sound emitting element 14. According to the technical solution, the first electrode m-bar-shaped metal electrode is disposed at an interval between the sound-emitting element i ^ and an electrode 144 and the second electrode m. Since the first electrode 142 is used for the sounding TL member 14 to be applied to the sounding device 13516682, it can be connected to a certain resistance value to avoid short circuit. Since nanocarbon s has a large specific surface area, the nano-carbon film itself has good adhesion under the action of van der Waals force, so when the at least tube film is used as the sounding element 14, The first electrode 142 and the second electrode 144 and the sound emitting element 14 can be directly adhered and fixed, and form a good electrical contact. Further, the first electrode 142 and the second electrode 144 and the sound-inducing element 14 may further include a conductive bonding layer (not shown). The conductive bonding layer may be disposed on a surface of the sound emitting element 14. The conductive bonding layer can further make the first electrode 142 and the second electrode 144 and the sound emitting element 14 better while achieving electrical contact between the first electrode 142 and the second electrode material and the sound emitting element 14. Ground fixed. In the embodiment, the conductive bonding layer is a layer of silver paste. It will be appreciated that the first electrode 142 and the second electrode 144 are of an alternative configuration when the sound emitting element has self-supporting properties. The signal input device 12 can be electrically connected to the sound generating member 14 directly through a wire 149 or an electrode lead or the like. In addition, any manner of achieving electrical connection between the signal input device 12 and the sound emitting element 14 is within the scope of the present technical solution. The signal input by the signal input device 12 includes an alternating current signal or an audio electric signal or the like. The signal input device 12 is electrically connected to the first electrode 142 and the second electrode 144 via a wire 149, and a signal is input to the sound emitting element 14 through the first electrode 142 and the second electrode 144. When the sounding device 10 is used, since the carbon nanotube film has a heat capacity smaller than 11 1351682 and a large specific surface area, it is too difficult for the nano carbon in the non-aqueous slave film to be intertwined with each other. The distribution of the average sentence, after the input signal, according to the change of signal strength = electric strength, by at least one layer of carbon nanotubes, thin (four), u can be (4) heating the surrounding gas, rapid rise and fall temperature = periodic temperature Changes, and rapid heat exchange with the surrounding gaseous medium, the surrounding gas medium rapidly expands and contracts, emits human voice, and the frequency of the sound emitted is wide. The technical method provides that the sounding frequency range of the sounding device 1〇 is iHz (i.e., lHZ~1G() kHz). Therefore, in the embodiment of the technical solution, the sounding principle of the sounding element 14 is "electric_thermal_sound" conversion" has a wide range of applications. In addition, since the carbon nanotube film in the embodiment of the present technical solution is composed of a multi-solid intertwined carbon nanotube, the carbon nanotube film has better character and mechanical strength, and the carbon nanotube The film can be conveniently made into sounding devices of various shapes and sizes, and the sounding device can be conveniently applied to various types of sounding devices, such as audio, mobile phones, Mp3, Mp4, television, computers and other electronic fields and other sounding devices. According to FIG. 4, a second embodiment of the present invention provides a sounding device. The sounding device 2 includes a signal input device 22, a sounding element electrode 242, a second electrode 244, a third electrode 246, and a The fourth electrode 248. The sounding device 2 in the second embodiment of the present invention has substantially the same structure as the sounding device 1G in the first embodiment, except that the sounding device 20 in the second embodiment of the present technical solution includes four electrodes, that is, the first An electrode 242, a second electrode 244, a third electrode 246, and a fourth electrode 248. The 12 1351682 first electrode 242, the second electrode 244, the third electrode 246, and the fourth electrode 248 are all rod-shaped metal electrodes, and the space is parallel and free. The sounding member 24 is disposed around the first electrode (4), the second electrode (four), the third electrode 246, and the fourth electrode 24δ and is coupled to the first electrode 242, the second electrode 244, and the third electrode 246. The fourth electrodes 248 are electrically connected, respectively, to form an annular utterance member 24. Any two adjacent electrodes are electrically coupled to both ends of the signal input device 22, respectively, such that the utterance element 24 located between adjacent electrodes is coupled to the input signal. Specifically, two electrodes that are not adjacent are first connected by wires 249 and then electrically connected to one end of the signal input device 22, and the remaining two electrodes are connected by wires 249 and the other end of the signal input device 22 Electrical connection. In the embodiment of the technical solution, the first electrode 242 and the third electrode 246 may be connected by a wire 249 and then electrically connected to the end of the signal input device 22, and then the second electrode 244 and the fourth electrode. The electrode 248 is connected by a wire 249 and is electrically connected to the other end of the signal input device 22. The above connection method can realize the parallel connection of the sounding elements _ _ between adjacent electrodes. The sounding elements 24 connected in parallel have a small resistance to lower the operating voltage. Moreover, the above-mentioned connection mode can make the sound-emitting element 24 have a large radiation area, and the sound-emitting intensity is enhanced, and the surrounding sound-sounding effect can be realized. Further, when the area of the sound emitting element 24 is large, the third electrode 246 and the fourth electrode 248 may further function to support the sound emitting element. It will be understood that the first electrode 242, the second electrode 244, the third electrode 246 and the fourth electrode 248 may also be disposed in the same plane as the sound emitting element 24. The connection manner of the electrodes disposed in the same plane is the same as or similar to the connection manner of the electrodes of the above 13 351 682. It is understood that the present technical solution can be provided with a plurality of electrodes, the number of which is not limited, - only need to ensure any Two adjacent electrodes are respectively electrically connected to both ends of the signal input device 22. The sounding device provided by the embodiment of the present technical solution has the following advantages: First, since the sounding element in the sounding device includes only the carbon nanotube film, and no other complicated structure such as a magnet is needed, the structure of the sounding device is relatively simple. It is beneficial to reduce the cost of the sounding device. Secondly, the sounding device uses the input signal to cause the temperature of the sounding element to change, so that the surrounding gas medium rapidly expands and contracts, thereby generating sound waves without a diaphragm, and thus the sounding device composed of the sounding element can be in a non-magnetic condition. Work under. Third, since the carbon nanotube film has a small heat capacity and a large specific surface area, and the carbon nanotubes in the carbon nanotube film are entangled with each other and are uniformly branched, after the input signal, according to the signal intensity ( Such as the change in current intensity), the sounding element composed of a layer of carbon nanotube film can uniformly heat the surrounding medium, rapidly rise and fall, produce periodic temperature changes, and shrink with 2 The sound that the ear can perceive, and the frequency of the sound emitted is wider (1Hz~ΐίΊηνχίΓ»,,

认1531咧度,故所形成的潑 周圍氣體介質進行快速熱交換,使周圍氣體介質迅速 ,故所形成的發聲裝置爲透明發聲裝置,可Recognizing the 1531 degree, the surrounding gas medium formed by the rapid exchange of heat to make the surrounding gas medium rapid, so the sound generating device formed is a transparent sounding device.

裝置。其四,由於奈 故由相互纏繞的奈米 反B、,且成的不米奴官薄膜具有較好的機械强度和勒性,耐 , =!生較好且自支撑效果較好,從而有利於製備由奈米碳管 '薄膜組成的各種形狀、尺寸的發聲袭置,進而方便地應用 於各種領域。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申4。惟’以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡習知本案技藝 φ =人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係先前技術中揚聲器的結構示意圖。 圖2係本技術方案第一實施例發聲裝置的結構示意 圖。 圖3係本技術方案第一實施例發聲裝置中奈米碳管 薄膜的掃描電鏡照片。 _ 圖4係本技術方案第二實施例發聲裝置的結構示意 圖。 【主要元件符號說明】 揚聲器 100 音圈 102 磁鐵 104 振膜 106 發聲裝置 10, 20 信號輸入裝置 12, 22 15 1351682 發聲元件 14, 24 第一電極 142, 242 第二電極 144, 244 導線 149, 249 第三電極 246 第四電極 248 _ 16Device. Fourthly, because of the reason, the nano-anti-B, which is intertwined with each other, has good mechanical strength and character, and has good self-supporting effect and good self-supporting effect. In the preparation of sound shapes of various shapes and sizes composed of a thin film of carbon nanotubes, it is conveniently applied to various fields. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic structural view of a speaker in the prior art. Fig. 2 is a schematic view showing the structure of a sound generating device of a first embodiment of the present technical solution. Fig. 3 is a scanning electron micrograph of a carbon nanotube film in the sound generating device of the first embodiment of the present technical solution. Fig. 4 is a schematic view showing the structure of a sound generating device of a second embodiment of the present technical solution. [Description of main component symbols] Speaker 100 Voice coil 102 Magnet 104 Diaphragm 106 Sounding device 10, 20 Signal input device 12, 22 15 1351682 Sounding element 14, 24 First electrode 142, 242 Second electrode 144, 244 Conductor 149, 249 Third electrode 246 fourth electrode 248 _ 16

Claims (1)

1351682 十、申請專利範園 1. 一種發聲裝置,其包括: Λ . 一信號輸入裝置;以及 發聲凡件,該發聲凡件與所述信號輸入裳i的兩端電 連接;其改良在於, 所述發聲7C件爲-奈米碳管薄膜,該奈米碳管薄膜包括 ^個相互料的奈米碳管,所述信號輸人裝置輸入電信 號給該奈米碳管薄膜,通過該奈米碳㈣膜加熱周圍氣 _ 體介質發出聲波。 2·如申請專利範圍第!項所述的發聲裝置,其中,所述奈 米碳管薄膜中的奈米碳管之間通過凡德瓦爾力相互吸 引、纏繞,形成網絡狀結構。 3·如!:專利範圍第1項所述的發聲裝置,其中,所述奈 米石反官薄膜中的奈米碳管各向同性,均句分布無規則 _ 4.如ΐ請專利範圍g i項所述的發聲裝置,其中,所述奈 米碳管薄膜包括孔徑小於1〇微米的微孔結構。 5·如申請專利範圍第1項所述的發聲裝置,其中,所述奈 米碳管薄臈的厚度爲0.5奈米〜i毫米。 6. 如申請專利範圍第1瑁 、 半的發聲裝置,其中’所述奈 #财的奈米碳管爲單壁奈米碳管、雙壁奈米碳 管及多壁奈米碳管中的—種或多種。 7. 如申請專利範圍第6項所述的發聲裝置,其中,所述單 i不米奴管的直徑爲〇 5奈米〜奈米所述雙壁奈米 17 丄乃1682 =,直從爲1·〇奈米〜5()奈米,所述多壁奈米碳管的 , 僅爲1.5奈米〜50奈米。 ' 8.=申請專利範圍第i項所述的發聲裝置,其中,所述發 裝置進^包括至少兩電#,該至少兩電⑬間隔設置 且與所述發聲元件電連接。 9. 如申請專利範圍第8項所述的發聲裝置,其中,所述至 少兩電極進一步通過導線與所述信號輸入裝置的兩 ^ 電連接。 10. 如申請專利範圍第9項所述的發聲裝置,其中,所述 發聲裝置包括多個電極,該多個電極間隔設置且均與所 述發聲元件電連接,且該多個電極中任意兩個相鄰的電 極刀別與所述信號輸入裝置的兩端電連接。 丄1·如申請專利範圍第8項所述的發聲装置,其中,所述 至少兩電極爲層狀、棒狀或塊狀。 12. 如申請專利範圍第8項所述的發聲裝置,其中,所述 鱗 電極的材料爲金屬、導電膠、金屬性奈米碳管或銦錫氧 化物。 13. 如申請專利範圍第8項所述的發聲裝置,其中,所述 發聲裝置進一步包括一導電黏結層設置在所述至少兩 電極和發聲元件之間。 14·如申請專利範圍第1項所述的發聲.襞置,其中,所述 仏號輸入裝置輸入的信號包括父流電信號或音頻電_ 號0 181351682 X. Patent application garden 1. A sounding device, comprising: Λ a signal input device; and a sounding device, the sounding device is electrically connected to both ends of the signal input skirt i; The sounding 7C piece is a carbon nanotube film, and the carbon nanotube film comprises a plurality of carbon nanotubes, and the signal input device inputs an electric signal to the carbon nanotube film through the nanometer. The carbon (four) film heats the surrounding gas _ body medium to emit sound waves. 2. If you apply for a patent range! The sound generating device according to the invention, wherein the carbon nanotubes in the carbon nanotube film are mutually attracted and entangled by a van der Waals force to form a network structure. 3·如! The sounding device according to claim 1, wherein the carbon nanotubes in the nano-striped anti-official film are isotropic, and the uniform sentence distribution is irregular _ 4. as described in the patent scope gi The sounding device, wherein the carbon nanotube film comprises a microporous structure having a pore diameter of less than 1 μm. 5. The sounding device according to claim 1, wherein the carbon nanotube thin layer has a thickness of 0.5 nm to 1 mm. 6. For example, in the first and second sounding devices of the patent scope, the 'nano carbon nanotubes of the nai are made up of single-walled carbon nanotubes, double-walled carbon nanotubes and multi-walled carbon nanotubes. One or more. 7. The sounding device according to claim 6, wherein the diameter of the single i-nucleus tube is 〇5 nm to nanometer, the double-walled nano-nano 17 is 1682 =, straight from 1 · 〇 nanometer ~ 5 () nanometer, the multi-walled carbon nanotubes, only 1.5 nm ~ 50 nm. 8. The sounding device of claim i, wherein the hair device comprises at least two electric lights, the at least two electric wires 13 being spaced apart and electrically connected to the sound emitting element. 9. The sounding device of claim 8, wherein the at least two electrodes are further electrically connected to the signal input device by wires. 10. The sounding device of claim 9, wherein the sounding device comprises a plurality of electrodes, the plurality of electrodes being spaced apart and electrically connected to the sound emitting element, and any two of the plurality of electrodes Adjacent electrode blades are electrically connected to both ends of the signal input device. The sounding device of claim 8, wherein the at least two electrodes are layered, rod-shaped or block-shaped. 12. The sounding device of claim 8, wherein the material of the scale electrode is a metal, a conductive paste, a metallic carbon nanotube or an indium tin oxide. 13. The sounding device of claim 8, wherein the sounding device further comprises a conductive bonding layer disposed between the at least two electrodes and the sound emitting element. 14. The sounding device of claim 1, wherein the signal input by the nickname input device comprises a parent galvanic signal or an audio signal _ number 0 18
TW97123032A 2008-06-20 2008-06-20 Acoustic device TWI351682B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97123032A TWI351682B (en) 2008-06-20 2008-06-20 Acoustic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97123032A TWI351682B (en) 2008-06-20 2008-06-20 Acoustic device

Publications (2)

Publication Number Publication Date
TW201002091A TW201002091A (en) 2010-01-01
TWI351682B true TWI351682B (en) 2011-11-01

Family

ID=44825073

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97123032A TWI351682B (en) 2008-06-20 2008-06-20 Acoustic device

Country Status (1)

Country Link
TW (1) TWI351682B (en)

Also Published As

Publication number Publication date
TW201002091A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
TWI500331B (en) Thermoacoustic device
US8553912B2 (en) Thermoacoustic device
TWI351680B (en) Acoustic device
CN101594563B (en) Sound generating device
JP5107964B2 (en) Thermoacoustic device
JP2010092852A (en) Lighting system
KR101217913B1 (en) Sound Emitting Device
JP2009296593A (en) Thermoacoustic device
CN101600139B (en) Sound producing device
JP5356992B2 (en) Thermoacoustic device
TWI351682B (en) Acoustic device
JP5107969B2 (en) Thermoacoustic device
TWI351681B (en) Acoustic device
JP5107970B2 (en) Thermoacoustic device
JP5107968B2 (en) Thermoacoustic device
JP5270466B2 (en) Thermoacoustic device
TWI353580B (en) Acoustic device
TWI353583B (en) Acoustic device
TWI353582B (en) Acoustic device
TWI353581B (en) Acoustic device
TWI352337B (en) Acoustic device
TWI383691B (en) Soft acoustic device
TWI397324B (en) Loudspeaker system