TWI345904B - Optimal weights for mmse space-time equalizer of multicode cdma system - Google Patents

Optimal weights for mmse space-time equalizer of multicode cdma system Download PDF

Info

Publication number
TWI345904B
TWI345904B TW095121238A TW95121238A TWI345904B TW I345904 B TWI345904 B TW I345904B TW 095121238 A TW095121238 A TW 095121238A TW 95121238 A TW95121238 A TW 95121238A TW I345904 B TWI345904 B TW I345904B
Authority
TW
Taiwan
Prior art keywords
receiver
equalizer
antennas
code
vector
Prior art date
Application number
TW095121238A
Other languages
Chinese (zh)
Other versions
TW200721752A (en
Inventor
Byoung-Hoon Kim
Manuel Flury
Xiaoxia Zhang
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/284,601 external-priority patent/US8780957B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200721752A publication Critical patent/TW200721752A/en
Application granted granted Critical
Publication of TWI345904B publication Critical patent/TWI345904B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0897Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Description

1345904 九、發明說明: 【發明所屬之技術領域】 本發明大體係關於劃碼多重近接(CDMA)通信系統,且更 特定而言,係關於用於多輸入多輸出(MIM0)多重碼CDMa 系統之線性最小均方誤差(MMSE)空間時間等化器。 【先前技術】 在無線通信糸統中’若干使用者共用在一共同頻譜内之 一通道。為避免由於若干使用者同時在該通信通道上傳輸 資訊所引起的衝突,需要有關於向使用者分配可用通道容 里之一些規則。已藉由各種形式之多向近接協定達成了使 用者對通信通道進行存取的規則。一種形式之協定稱作劃 碼多重近接(CDMA)。除了提供對有限容量之通道的多向近 接分配外,一協定亦可提供其他功能。舉例而言,一協定 可k供使用者彼此間的隔離、限制使用者間之干擾,及藉 由增加非預期性接收器之截取與解碼之難度來提供安全性 (亦稱作低截取可能性)。 在CDMA系統中,藉由編碼信號使每一信號與其他使用 者的信號隔灕《將資訊信號專門編碼成一傳輸信號。知道 使用者之編碼序列的預期接收器可解碼該傳輸信號以接收 資訊。由編碼來展開資訊信號頻譜,致使經編碼之傳輸信 號的頻寬遠大於該資訊信號的原始頻寬。為此,cDMA係 一種”展頻”編碼。跨通道頻寬展開每一使用者之信號的能 量,致使每一使用者之信號對於其他使用者表現為雜訊。 只要解碼程序能夠達成足夠的信號雜訊比,則可恢復該信 112034.doc 1345904 號中的資訊,(預期使用者的信號與其他使用者信號之"雜 訊"的隔離)。影響使用者之信號的資訊恢復的其他因素在 此環境中對於每一用戶為不同情形,諸如,衰落、遮蔽, 及多路徑。遮蔽為中斷傳輸器與接收器間之信號傳輸路徑 的實體對象所導致的干擾,實體對象例如較大的建築物。 夕路徑為號失真,其發生係起因於信號跨越不同長度之 多條路徑且在不同時間到達接收器。多路徑亦稱作通信通 道的"時間分散”。同相接收之信號彼此加強,且在接收器 處產生較強的信號,而異相接收之信號產生較弱或衰落信 號。多路徑衰落亦可隨時間改變。舉例而言,在移動車輛 載運之通信裝置中,多路徑衰落之量可急速改變。 為提供防止有害路徑效應之分集及改良效能,可使用多 重傳輸與接收天線。若傳輸與接收天線間的傳輸路徑為線 性獨立的(意即,在一路徑上之傳輸並未形成為在其他路徑 上之該等傳輸的線性組合,在某種程度上其一般為真實情 況)’則當天線之數目增加時,正確接收傳輸信號的可能性 亦增加。一般地,當傳輸與接收天線之數目増加時,分集 增加且效能-改良。在多輸人多輸出(MIM。)系統中使用在傳 輸器與接收器處之多重天線的用法。 若在傳輸器或接收器處可用多重天線,則可使用諸如空 間多工及編碼重複使用之技術來增加+值流量。藉由編碼 重複使用,經分配而用於傳輸之每—通道可調變^高達Μ 個獨立資料流’其中Μ為傳輸天線的數目。共用 之資料流基於其空間特徵加以區別,此需要具有至少_ 112034.doc 1345904 天線的接收器。原則上’使用編碼重複使用之峰值流量為 藉由單個天線可達成之速率的Μ倍》 在ΜΙΜΟ多重碼CDMA系統中,若空間時間等化器使用最 小化等化器輸出晶片序列之均方誤差的最小均方誤差 (MMSE)加權向量,則在不同傳輸天線中之相同展頻碼的重 複使用會降級等化效能。不同於多路徑干擾及背景雜訊成 分,CDMA解展頻器使流間干擾成分失真。如此會降級先 前技術ΜΙΜΟ系統的效能。 因此,在此項技術中需要用於多輸入多輸出(μιμ〇)多重 碼CDMA系統之增強型晶片級線性空間時間等化器,在該 CDMA系統中可在不同傳輸天線令重複使用展頻碼。 【發明内容】 在一態樣令,CDMA接收器包含一空間時間等化器,其 可經操作連接至接收天線,其中該空間時間等化器應用一 加權向量,該加權向量包含為一展頻因子之一函數的係數。 在另一態樣中,CDMA接收器包含一具有等化係數之空 間時間等化器及-解展頻器,其中該等等化係'數至少部分 地為一展頻泪子之一函數。 在又一態樣中,一方法包含經由複數個接收天線接收複 數個信號’其中來自每—接收天線之該所接收的信號包含 傳輸自一傳輸裝置之一或多個信號的組合;及藉由一具有 糸數之加權向量來處理該信號,以產生複數個位元流,其 中該等係數至少部分地為展頻碼重複使用之一函數。 在進一步之態樣中,CDMA接收器包含等化構件,其經 112034.doc 1345904 操作連接至接收天線,其中該等化構件應用一加權向量, 該加權向量包含為一展頻因子之一函數的係數;及解展頻 構件’其經操作連接至該等化構件,其中該解展頻構件將 等化度量序列分成複數個調變符號序列。 【實施方式】 本文使用詞語"例示性"來表示"用作一實例、例子或說 明’’。本文描述為"例示性"之任何實施例未必解釋為比其他 實施例更佳或有利。1345904 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a coded multiple proximity (CDMA) communication system and, more particularly, to a multiple input multiple output (MIM0) multiple code CDMa system. Linear minimum mean square error (MMSE) spatial time equalizer. [Prior Art] In a wireless communication system, a number of users share a channel in a common spectrum. In order to avoid conflicts caused by the simultaneous transmission of information by several users on the communication channel, some rules regarding the allocation of available channel contents to the user are required. The rules for users to access communication channels have been reached by various forms of multi-directional proximity protocols. One form of agreement is called coded multiple proximity (CDMA). In addition to providing multi-directional proximity allocation to channels of limited capacity, an agreement may provide additional functionality. For example, an agreement can provide for user isolation, limit user interference, and provide security by increasing the difficulty of intercepting and decoding the unintended receiver (also known as low intercept probability). ). In CDMA systems, each signal is separated from other users' signals by an encoded signal that "codes the information signal into a transmission signal. The intended receiver that knows the user's code sequence can decode the transmitted signal to receive the information. The information signal spectrum is spread by encoding such that the bandwidth of the encoded transmission signal is much larger than the original bandwidth of the information signal. To this end, cDMA is a "spread frequency" code. The cross-channel bandwidth spreads the energy of each user's signal, causing each user's signal to behave as a noise to other users. As long as the decoding program is able to achieve a sufficient signal-to-noise ratio, the information in the letter 112034.doc 1345904 (the isolation of the user's signal from the "noise" of other user signals) can be restored. Other factors that affect the recovery of information about the user's signals are different situations for each user in this environment, such as fading, shadowing, and multipathing. Masking is caused by physical objects that interrupt the signal transmission path between the transmitter and the receiver, such as larger buildings. The eve path is a number distortion that occurs because the signal spans multiple paths of different lengths and arrives at the receiver at different times. Multipath is also known as the "time dispersion" of communication channels. Signals received in phase are enhanced with each other and produce stronger signals at the receiver, while signals received out of phase produce weaker or fading signals. Multipath fading can also follow Time change. For example, in a communication device carried by a mobile vehicle, the amount of multipath fading can be rapidly changed. To provide diversity and improved performance against harmful path effects, multiple transmission and reception antennas can be used. The transmission paths are linearly independent (that is, the transmission on one path is not formed as a linear combination of the transmissions on other paths, to some extent it is generally true). As the number increases, the probability of correctly receiving the transmitted signal also increases. Generally, when the number of transmitting and receiving antennas increases, the diversity increases and the performance-improvement is used in the multi-input multiple-output (MIM.) system. Use with multiple antennas at the receiver. If multiple antennas are available at the transmitter or receiver, use such as spatial multiplexing Coding reuse techniques to increase + value traffic. By code reuse, each channel used for transmission is tuned to up to 独立 independent data streams, where Μ is the number of transmit antennas. Based on its spatial characteristics, this requires a receiver with at least _ 112034.doc 1345904 antenna. In principle, 'peak traffic using code reuse is twice the rate achievable by a single antenna'. ΜΙΜΟMulti-code CDMA system If the spatial time equalizer uses a minimum mean square error (MMSE) weighting vector that minimizes the mean squared error of the wafer sequence, the reuse of the same spreading code in different transmission antennas will be degraded and equalized. Performance. Unlike multipath interference and background noise components, the CDMA despreader distorts the inter-stream interference components. This degrades the performance of prior art systems. Therefore, it is required in this technology for multiple-input multiple-output ( Ιιμ〇) Enhanced wafer level linear space time equalizer for multicode CDMA systems, which can be used in different transmission antennas in the CDMA system A spread spectrum code is used. [Invention] In one aspect, a CDMA receiver includes a spatial time equalizer operatively coupled to a receive antenna, wherein the spatial time equalizer applies a weight vector, the weighting The vector includes a coefficient that is a function of one of the spreading factors. In another aspect, the CDMA receiver includes a spatial time equalizer having a equalization coefficient and a despreader, wherein the equalization is 'number At least in part, a function of a spread tear. In another aspect, a method includes receiving a plurality of signals via a plurality of receive antennas, wherein the received signal from each of the receive antennas comprises a transmission from a transmission a combination of one or more signals of the device; and processing the signal by a weight vector having a number of turns to produce a plurality of bit streams, wherein the coefficients are at least partially a function of the repeated use of the spreading code. In a further aspect, the CDMA receiver includes an equalization component operatively coupled to the receive antenna via 112034.doc 1345904, wherein the equalization component applies a weight vector that is a function of one of the spreading factors a coefficient; and a despreading component 'operatingly coupled to the equalizing component, wherein the despreading component divides the equalized metric sequence into a plurality of modulated symbol sequences. [Embodiment] The word "exemplary" is used herein to mean "serving as an example, instance or illustration'. Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments.

圖1A為通信系統1 〇的圖,通信系統丨〇支持許多使用者且 能夠實施本發明之至少若干態樣及實施例。系統1〇為各自 又到對應基地台4服務之諸多單元2a至2g提供通信。該等單 元以達成覆蓋預期區域之方式來組織。例如,該覆蓋區域 可界疋為終端機6之使用者可達成特定服務級(G〇s)之區 域。覆蓋區域中的終端機6可為固定的或活動的,且一般由1A is a diagram of a communication system 1 that supports a number of users and is capable of implementing at least some aspects and embodiments of the present invention. The system 1 provides communication for a plurality of units 2a to 2g each serving to the corresponding base station 4. These units are organized in such a way as to reach the expected area. For example, the coverage area may be defined as the area in which the user of the terminal 6 can reach a particular service level (G〇s). The terminal 6 in the coverage area may be fixed or active, and generally

主基地台提供服務。對於每一活動的終端機,來自其他 基地台及終端機之傳輸代表潛在干擾。 如圖1A中之所示,各種終端機6分散於整個系統中。終端 機6包含一處理裝置8 ^處理裝置8的實例包括(但不僅限於) 處理器、程式邏輯,或代表資料及指令的其他基層組態。 在其他實施例中,該等處理器可包含控制器電路、處理器 電路處理器、通用單晶片或多晶片微處理器、數位信號 處理器、嵌入式微處理器、微控制器等。 在任何特 與至少一個 定時刻,在下行鏈路及上行鏈路上每一終端機6 且可能為多個基地台4通信,其視(例如)是否採 J12034.doc 用"軟交遞"或該終端機是否經設計及經操作以同時或按序 自多個基地台接收多傳輸而定。下行鏈路表示自基地台至 終端機之傳輸,且上行鏈路表示自終端機至基地台之傳輸。 在圖1A中,基地台4a在下行鏈路上將資料傳輸至終端機 6a及6j,基地台4b將資料傳輸至終端機6b及6j,基地台4c 將資料傳輸至終端機6c等。在圖1A中,具有箭頭的實線指 示自基地台至終端機的資料傳輸。具有箭頭的虛線指示終 端機正自基地台接收導頻信號,但並無資料傳輸。為簡潔 起見,圖1A中未展示上行鏈路通信。 可基於美國專利申請案序列號09/532,492中揭示之題為 "HIGH EFFICIENCY, HIGH PERFORMANCE COMMUNICATIONS SYSTEM EMPLOYING MULTI-C ARRIER MODULATION"(2000年3月22曰申請)的通信系 統;或美國專利申請案序列號〇8/963,386中揭示之題為 "METHOD AND APPARATUS FOR HIGH RATE PACKET DATA TRANSMISSION"的系統來設計系統10,該等專利申 請案均已讓與本發明之受讓人,且以引用的方式併入本文 中。亦可將凉統10設計為支持一或多個CDMA標準(諸如, IS-95標準、寬頻CDMA(W-CDMA)標準、其他標準,或其 組合)的CDMA系統。 在系統10中,許多終端機共用一共同資源,即,總操作 頻寬W。為在特定終端機處達成預期的效能等級,需要將 來自其他傳輸的干擾降低至一可接受的等級。同樣,為在 特定操作頻寬下以高資料速率進行可靠的傳輸,需要在特 112034.doc •10· 1345904 定的載波對雜訊加干擾比(c/i)等級或高於該等級進行操 作。習知地,藉由將可用總資源劃分成各自被分配至一特 定單元之小部分,來達成干擾降低及所需C/i達成。 舉例而言,可將總操作頻寬w劃分成N個相等的操作頻帶 (意即,B = W/N)’且可將每一單元分配至該N個頻帶中的一 者。週期性地重複使用該等頻帶,以達成較高的頻譜效率。 對於諸如文圖1A支持之重複使用模式的7單元重複使用模 式,單元2a可分配得第一頻帶,單元2b可分配得第二頻帶 通k系統通常經設計以符合許多系統要求,其可包括(例 如),服務品質(QOS)、覆蓋性,及效能要求。通常將服務 品質定義為覆蓋區域中的每一終端機在規定的百分比時間 内能夠達成指定的最小平均位元率。 藉由在傳輸器及接收器兩者中使用多重天線,多輸入多 輸出(ΜΙΜΟ)傳輸技術的新近發展預示了在未來無線通信 系統中的大流量增益。可將ΜΙΜΟ技術併入至各種調變及多 向近接方案令,諸如,MIM〇_CDMA、多輸入多輸出正交 分頻多工(ΜΊΜΟ-OFDM)等。 在3G CDMA標準中之高速封包資料通道(諸如,高速下行 鍵路共用通道(HS-DSCH)及前向鏈路封包資料通道 (F-PDCH)等)通常使用多通道化編碼,諸如華許(冒^^)碼, 其具有固定展頻因子(SF)以在較短訊框間隔内傳輸及接收 較大里的資訊資料。視當前封包的資料速率而定,基地台 (BS)可自可用通道化編碼中選出許多編碼,以供給對應數 112034.doc 1345904 目的調變符號。當MIMO-CDMA系統支持經由多重傳輸天 線的多重傳輸流時,對應BS通常將相同的通道化編碼重複 使用於不同天線。除非在MIMO-CDMA情境中另行設計, 否則傳輸天線中的編碼重複使用會引起行動台(MS)空間時 間等化器的嚴重損壞。 ΜΙΜΟ多重碼CDMA的系統模型 圖1B為包括傳輸器部分1〇2及接收器部分1〇4之MIM〇多The main base station provides services. For each active terminal, transmissions from other base stations and terminals represent potential interference. As shown in FIG. 1A, various terminal sets 6 are dispersed throughout the system. Terminal 6 includes a processing device 8 . Examples of processing device 8 include, but are not limited to, a processor, program logic, or other base layer configuration that represents data and instructions. In other embodiments, the processors may include controller circuits, processor circuit processors, general purpose single or multi-chip microprocessors, digital signal processors, embedded microprocessors, microcontrollers, and the like. Each terminal 6 and possibly multiple base stations 4 communicate on the downlink and uplink at any particular time and at least one time, depending on whether, for example, J12034.doc is used with "soft handover" Whether the terminal is designed and operated to receive multiple transmissions from multiple base stations simultaneously or sequentially. The downlink represents the transmission from the base station to the terminal, and the uplink represents the transmission from the terminal to the base station. In Fig. 1A, the base station 4a transmits data to the terminals 6a and 6j on the downlink, and the base station 4b transmits the data to the terminals 6b and 6j, and the base station 4c transmits the data to the terminal 6c and the like. In Fig. 1A, a solid line with an arrow indicates data transmission from the base station to the terminal. A dashed line with an arrow indicates that the terminal is receiving pilot signals from the base station, but no data is transmitted. For the sake of brevity, uplink communication is not shown in Figure 1A. A communication system entitled "HIGH EFFICIENCY, HIGH PERFORMANCE COMMUNICATIONS SYSTEM EMPLOYING MULTI-C ARRIER MODULATION" (application filed March 22, 2000) disclosed in U.S. Patent Application Serial No. 09/532,492; or U.S. Patent Application System 10 is disclosed in the system entitled "METHOD AND APPARATUS FOR HIGH RATE PACKET DATA TRANSMISSION", as disclosed in Serial No. 8/963,386, the disclosure of which is incorporated herein by reference. The manner is incorporated herein. The luminaire 10 can also be designed as a CDMA system that supports one or more CDMA standards, such as the IS-95 standard, the Wideband CDMA (W-CDMA) standard, other standards, or a combination thereof. In system 10, a number of terminals share a common resource, i.e., a total operating bandwidth W. In order to achieve the desired level of performance at a particular terminal, interference from other transmissions needs to be reduced to an acceptable level. Similarly, in order to perform reliable transmission at a high data rate for a specific operating bandwidth, it is necessary to operate at or above the carrier-to-interference plus interference ratio (c/i) level specified in 112034.doc •10· 1345904. . Conventionally, interference reduction and required C/i achievement are achieved by dividing the total available resources into small portions that are each assigned to a particular unit. For example, the total operating bandwidth w can be divided into N equal operating bands (i.e., B = W/N)' and each cell can be assigned to one of the N bands. These bands are periodically reused to achieve higher spectral efficiency. For a 7-unit reuse pattern such as the reuse pattern supported by Figure 1A, unit 2a may be assigned a first frequency band and unit 2b may be assigned a second frequency band. The k-system is typically designed to meet a number of system requirements, which may include ( For example), quality of service (QOS), coverage, and performance requirements. Service quality is typically defined as the ability to achieve a specified minimum average bit rate for each terminal in the coverage area for a specified percentage of time. With the use of multiple antennas in both transmitters and receivers, recent developments in MIMO transmission technology have predicted large traffic gains in future wireless communication systems. The ΜΙΜΟ technology can be incorporated into various modulation and multi-directional proximity schemes, such as MIM〇_CDMA, multiple-input multiple-output orthogonal frequency division multiplexing (ΜΊΜΟ-OFDM), and the like. High-speed packet data channels in the 3G CDMA standard (such as High-Speed Downlink Shared Channel (HS-DSCH) and Forward Link Packet Data Channel (F-PDCH), etc.) usually use multi-channel coding, such as Hua Xu ( A ^^) code having a fixed spreading factor (SF) to transmit and receive larger information in a shorter frame interval. Depending on the data rate of the current packet, the base station (BS) can select a number of codes from the available channelization codes to supply the corresponding modulation symbols for the number 112034.doc 1345904. When a MIMO-CDMA system supports multiple transport streams via multiple transmission antennas, the corresponding BS typically reuses the same channelized coding for different antennas. Unless otherwise designed in the MIMO-CDMA scenario, code reuse in the transmit antenna can cause severe damage to the mobile station (MS) space time equalizer.***Multi-code CDMA system model Figure 1B shows the MIM including the transmitter part 1〇2 and the receiver part 1〇4

重媽CDMA系統1 〇〇之實施例的方塊圖。在下列論述中,展 頻因子表示為577 » 傳輸器部分102包括編碼器1〇6、映射器1〇8、解多工器 110、複數個展頻器112,及複數個傳輸天線114,傳輸天線 Π4的數目為μ,且分配至每一傳輸天線114之正交展頻碼的 數目為《/(J $ 57?)。 接收器部分104包括複數個接收天線116、最小均方誤差 (MMSE)空間時間等化器118、複數個解展頻器12〇、多工器A block diagram of an embodiment of the GM CDMA system. In the following discussion, the spreading factor is expressed as 577. The transmitter portion 102 includes an encoder 1〇6, a mapper 1〇8, a demultiplexer 110, a plurality of spreaders 112, and a plurality of transmit antennas 114, transmission antennas. The number of Π4 is μ, and the number of orthogonal spreading codes assigned to each of the transmission antennas 114 is "/(J$57?). Receiver portion 104 includes a plurality of receive antennas 116, a minimum mean square error (MMSE) spatial time equalizer 118, a plurality of despreaders 12A, and a multiplexer

122、解映射器124’及解碼器126。接收天線ιΐ6的數目為ν, 且分配至每一接收天線116之解展頻器12〇的數目為 奶,其-對應於分配至每一傳輸天線u4之展頻器⑴的 數m熟習此項技術者瞭解,可將本线述之空間時 間等化器118應用於一般MIMO-CDMA系統。 術語編碼H、解碼器、速率匹配器、交錯器、解交錯器 映:器、解映射器、展頻器、解展頻器及空間時間等曰化 為思欲具有其一般意義的廣義術語。此外,編碼器可為) 以將一信號(諸如,位元流)或資料自—形式編碼成另_形3 112034.doc 12 (諸如,編碼成適於傳輸、儲存或 法。-般地,可在軟體或硬體尹建媽形式)的裝置或方 -程式、演算法、方法或在 碼盗,例如,藉由 知編碼器之相反操作的裝置,立構解码盗可為實 資訊。 ’、4為碼以使可擷取原始 逮率匹配器可為將資料流之速 率的裝置或方法。舉例而 70羊調整至預期速 可詷h t 〇在傳輪器中’逮率匹配 了調整位凡率以匹配傳輸器之能力旱匹配器 匹配器可執行相反過程。 接收盗中,速率 交錯器可為以非鄰招^太斗 方法。-般地,二;::資增加效能之*置或 鮮乂錯态可實施交錯器的相 鄰接方,列交錯資料,以使其更易於作處理Γ,以 映射H可為㈣—組位元且將其轉 裝置或方法。解映射哭π變捋號之 如,將單雙1 般實施映射器之相反操作(諸 將早-調變符號轉換成一組位元)的裝置或方法。 展頻器可為藉由_m1u^ “ #由因子增加所傳輸信號之頻寬,使其超 -、。。訊仏號頻寬之裝置或方法。解展頻器可為一般實施 展頻器之相反操作且減小所接收信號之頻寬的裝置或方 法舉例而吕,解展頻器可將所接收信號的頻寬減小至立 資訊頻寬。 〃 工間時間等化器可為將空間及時間之定比及組合提供至 仏號之裝置或方法。舉例而言,空間時間等化器可空間 及時間地定比及組合—所接收的信號,以恢復原始信號。 參看圖1B,編碼器1〇6接收源位元序列128。在編碼器1〇6122, demapper 124' and decoder 126. The number of receiving antennas ι 6 is ν, and the number of despreaders 12 分配 assigned to each receiving antenna 116 is milk, which corresponds to the number of frequency spreaders (1) assigned to each transmitting antenna u4. The skilled person understands that the spatial time equalizer 118 of this line can be applied to a general MIMO-CDMA system. The term code H, decoder, rate matcher, interleaver, deinterlacer: decoder, demapper, spreader, despreader, and space time are generalized terms that have a general meaning in mind. Furthermore, the encoder may be) to encode a signal (such as a bit stream) or data from a form to another _form 3 112034.doc 12 (such as encoding for transmission, storage or law.) A device or a program, a program, an algorithm, a method, or a code piracy in the form of a software or hardware, may be used to construct a decoding device, for example, by means of a device that operates on the opposite side of the encoder. ', 4 is a code so that the original capture rate matcher can be a device or method for rateing the data stream. For example, 70 sheep can be adjusted to the expected speed. 逮h t 〇 In the wheel finder, the catch rate matches the ability to adjust the bit rate to match the transmitter. The dry matcher can perform the reverse process. In the case of receiving theft, the rate interleaver can be a non-neighboring method. - In general, two;:: increase the efficiency of the * set or the error state can implement the interleaving neighbors, column interleaved data, so that it is easier to handle, to map H can be (four) - group The bit is transferred to the device or method. De-mapping a device or method that performs the opposite operation of the mapper (the conversion of early-modulated symbols into a set of bits). The spreader can be a device or method for increasing the bandwidth of the transmitted signal by the factor of _m1u^"# by the factor. The spread spreader can be a general implementation of the spreader. For example, the device or method for reducing the bandwidth of the received signal can reduce the bandwidth of the received signal to the vertical information bandwidth. 〃 The inter-time equalizer can be The spatial and temporal ratios and combinations are provided to the device or method of the nickname. For example, the spatial time equalizer can spatially and temporally compare and combine the received signals to recover the original signal. Referring to Figure 1B, Encoder 1〇6 receives source bit sequence 128. At encoder 1〇6

112034.doc -13· 1345904 中編碼、速率匹配(意即,穿孔或重複)及交錯每一訊框中的 源位7C序列128,且在映射器1〇8中將其映射至調變符號序 列(例如,四相移位鍵控(QPSK)、16點正交幅度調變 (16Q AM)等繼而,在解多工器uo中將該調變符號序列解 多工成個流之Μ個組,其令經由第w個傳輸天線114來傳輸 第m組。在展頻器112中藉由/個展頻碼展開每組中的j個 流,其中第個展頻碼等於第/個通道化編碼(例如,展頻因 子的正交碼、準正交碼,或華許碼)與85的偽隨機攪拌碼 的乘積。每組通常重複使用相同集合的j個展頻碼,且每一 傳輸天線II4通常使用相同的傳輸功率,但本發明並不限於 此等特定情形。 在經過多維多路徑衰落通道後,所傳輸的信號到達該# 個接收天線116’其中MMSE空間時間晶片等化器】丨8對應於 該Μ個傳輸天線114’將所接收的信號分成M個組的等化軟 度量序列。繼而,在解展頻器12〇中,等於該^/個展頻碼之 共輕的該/個解展頻碼將每組等化軟度量序列分成j個軟解 調變符號序列’其每一者對應於該組中的一正交華許通 道。在多'工ϋ 122中將所形成之/χΜ解調變符號序列多工成 單一流,且在解映射器124中將其解映射成諸如對數似然比 (LLR)序列之序列。在解碼器126中解交錯、反相速率匹配 及解碼該序列,以將原始源位元序列恢復為經解碼的位元 130。 圖2Α為包括傳輸器部分2〇2及接收器部分2〇4之Μιμ〇多 重碼CDMA系統200之實施例的方塊圖。在下列論述中,展 112034.doc •14· 1345904 頻因子表示為SF。 傳輸器部分202包括複數個編碼器206、複數個映射器 208、複數個解多工器21〇、複數個展頻器ιΐ2,及複數個傳 輸天線U4。傳輸天線114的數目為从,且分配至每一傳輸天 線114之展頻碼的數目為jysw)。 接收器部分204包括複數個接收天線116、最小均方誤差 (MMSE):間時間等化器118、複數個解展頻器12。、複數個 夕工器222、複數個解映射器224,及複數個解碼器226。接 收天線116之數目為#,且分配至每—接收天線ιΐ6之解展頻 器120的數目為斯奶,其對應於分配至每一傳輸天線ιΐ4 之展頻器112的數目。 每一編碼器206接收用於編碼器2〇6之源位元序列128。每 一訊框中的源位元序列128在其對應的編碼器2〇6中進行編 碼、速率匹配(意即,穿孔或重複)及交錯,且在其對應的映 射器208中映射至調變符號序列(例如,QPSK、16QAM等)。 繼而,該調變符號序列在其對應的解多工器21〇中解多工成 個流之-組,其中經由第_傳輸天線114傳輸第她。在 展頻器112中’藉由,展頻碼來展開每組中的讀流,其中 第7·個展頻碼等於第y個通道化編碼(例如,展頻因子的正 交碼、準正交碼,或華許碼)與83偽隨機攪拌碼的乘積。每 組通常重複使用相同集合的J個展頻碼,且每一傳輸天線 "4通常使用相同的傳輸功率’但本發明並不㈣此等特定 的情形。 在經過多維多路徑衰^通道後,所傳輸的信號到達㈣ U2034.doc -15· 1345904 個接收天線116’其中MMSE空間時間晶片等化器118對應於 該Μ個傳輸天線114,將所接收的信號分成μ個組的等化軟 度量序列。繼而,在解展頻器120中,等於該j個展頻碼之112034.doc -13· 1345904 Encoding, rate matching (ie, puncturing or repetition) and interleaving the source bit 7C sequence 128 in each frame, and mapping it to the modulation symbol sequence in mapper 1〇8 (eg, four-phase shift keying (QPSK), 16-point quadrature amplitude modulation (16Q AM), etc., then the modulating symbol sequence is demultiplexed into a set of streams in the demultiplexer uo , which causes the mth group to be transmitted via the wth transmit antenna 114. The j streams in each group are spread by the spreader code in the spreader 112, wherein the first spread code is equal to the first channelized code ( For example, the product of the spreading factor's orthogonal code, quasi-orthogonal code, or Huaxu code) and the pseudo-random stirring code of 85. Each group typically reuses the same set of j spreading codes, and each transmission antenna II4 is usually The same transmission power is used, but the present invention is not limited to these specific cases. After passing through the multi-dimensional multipath fading channel, the transmitted signal reaches the # receiving antenna 116' where the MMSE space time wafer equalizer 丨8 corresponds Equalization of the received signals into M groups for the one transmission antenna 114' a soft metric sequence. Then, in the despreader 12A, the set of equalized soft metric sequences equal to the sum of the soft metric sequences is divided into j soft demodulation symbol sequences. Each of them corresponds to an orthogonal huaxu channel in the group. The formed / χΜ demodulated symbol sequence is multiplexed into a single stream in a multi-process 122 and will be in the demapper 124 It is demapped into a sequence such as a Log Likelihood Ratio (LLR) sequence. Deinterleaving, inverting rate matching, and decoding the sequence in decoder 126 to restore the original source bit sequence to decoded bit 130. 2 is a block diagram of an embodiment of a 〇μμ multi-code CDMA system 200 including a transmitter portion 2〇2 and a receiver portion 2〇4. In the following discussion, the exhibition 112034.doc •14· 1345904 frequency factor is expressed as SF The transmitter portion 202 includes a plurality of encoders 206, a plurality of mappers 208, a plurality of demultiplexers 21A, a plurality of spreaders ι2, and a plurality of transmission antennas U4. The number of transmission antennas 114 is slaved and allocated. The number of spreading codes to each of the transmission antennas 114 is jysw). The receiver portion 204 includes a plurality of receive antennas 116, a minimum mean square error (MMSE): an inter-time equalizer 118, and a plurality of despreaders 12. A plurality of multiplexers 222, a plurality of demappers 224, and a plurality of decoders 226. The number of receiving antennas 116 is #, and the number of despreaders 120 assigned to each of the receiving antennas ι 6 is s milk, which corresponds to the number of spreaders 112 assigned to each of the transmitting antennas ι 4 . Each encoder 206 receives a source bit sequence 128 for the encoder 2〇6. The source bit sequence 128 in each frame is encoded, rate matched (ie, punctured or repeated) and interleaved in its corresponding encoder 2〇6, and mapped to modulation in its corresponding mapper 208. A sequence of symbols (eg, QPSK, 16QAM, etc.). In turn, the sequence of modulated symbols is demultiplexed into a set of streams in its corresponding demultiplexer 21A, wherein the first is transmitted via the first transmit antenna 114. In the spreader 112, the read stream in each group is expanded by a spreading code, wherein the 7th spreading code is equal to the yth channelized coding (eg, orthogonal code of the spreading factor, quasi-orthogonal The product of the code, or Huaxu code, and the 83 pseudo-random stirring code. Each group typically reuses the same set of J spreading codes, and each transmission antenna "4 typically uses the same transmission power' but the invention does not (4) such specific circumstances. After passing through the multi-dimensional multipath fading channel, the transmitted signal arrives at (4) U2034.doc -15·1345904 receiving antennas 116', wherein the MMSE space time chip equalizer 118 corresponds to the one of the transmitting antennas 114, and the received The signal is divided into μ groups of equalized soft metric sequences. Then, in the de-spreader 120, it is equal to the j spread codes.

共輛的該個解展頻碼將每組等化軟度量序列分成j個軟解 調變符號序列,其每一者對應於該組中的一正交華許通 道。所得的Μ個解調變符號序列中之每一者在其對應的多 工器222中多工成單一流,且在其對應的解映射器224中解 映射成諸如對數似然比(LLR)序列之序列。該Μ個序列中的 每一者在其對應的解碼器226中進行解交錯、反相速率匹配 及解碼’以將原始源位元序列恢復為經解碼的位元230。 在一實施例中,在MMSE空間時間等化之後The despreading code of the common vehicle divides each set of equalized soft metric sequences into j soft modulating symbol sequences, each of which corresponds to an orthogonal huaxu channel in the group. Each of the resulting ones of the demodulated symbol sequences is multiplexed into a single stream in its corresponding multiplexer 222 and demapped in its corresponding demapper 224 to, for example, a log likelihood ratio (LLR). The sequence of sequences. Each of the sequences is deinterleaved, inverted rate matched, and decoded' in its corresponding decoder 226 to recover the original source bit sequence to decoded bit 230. In an embodiment, after the MMSE space time is equalized

CDMA系統1〇〇、2〇〇的軟度量序列包括五個成分:預期1 號;一或多個準時流間干擾(或不同傳輸天線信號中的尋 音)’其將相同展頻碼重複使用為預期信號;一或多個準κ μ間干擾,其並不將該相同展頻碼重複使用為該預期右 號;’―或多個多路徑干擾(意即’總服務單元信號成分,事 準時)’及者景雜訊(其他單元干擾、熱雜訊等)。 丄該等準時則干擾:在藉由解”過程重複使用該預其 信號的展頻碼之情況下,則保持完整;或在未藉由解展海 j私重複使用該預期信號的展頻碼之情況下,則遭廢棄。 糟由SF因子粗略抑制多路徑干擾及背景雜訊。 ρ圖2B為空間時間等化器118之實施例的方塊圖。該空間㈣ ’等化器118包含對應於M個傳輸天線114之Μ個等化叩-庫250(記怜座m1寻化。己‘II 心庫功,在此m = 〇、丨、…、Μ_1)β每一記憶庫& H2034.doc • 16· 1345904 包含對應於N個接收天線1162n個濾波器252(濾波器n,在 此η-0、1、…、Ν-1),及加法器254。該等濾波器252具有 濾' 波係數 VHm,n opt,其中 m = 0、1、2、…、Μ-1,且 η = 〇、 1、2、…、,且每一濾波器252產生一經濾波的輸出信 號母一記憶庫250自該Ν個接收天線116中之每一者接收一 k號’且在對應的濾波器252中處理該信號。加法器254將 自每一記憶庫250中之每一濾波器252的經濾波輸出信號相 加,以產生一等化度量序列256。 關注等化記憶庫0 250a,對於第j個濾波器(在記憶庫〇 中,j = 〇、1、…、N-1 ,其具有濾波係數Vh〇,』〇ρτ),濾波 器j的輸入端連接至第j個接收天線,且濾波器j的輸出端連 接至加法器254a的輸入端。 舉例而έ ’在具有遽波係數VH〇, 〇 〇PT之等化記憶庫〇 25〇a 中之濾波器0 252a的輸入端連接至接收天線on 6a,且滤波 器0 252a的輸出端連接至加法器254a的輸入端。同樣地,具 有濾波係數νΗ(),Ν·10ΡΤ2濾波器N-1 252b的輸入端連接至接 收天線N-1 116b’且濾波器N-1 252b的輸出端連接至加法器 254a的輸入端。 在加法器254a中將自區塊0 250a中之濾波器n(n = 〇、 1、...、N-1)之該等輸出相加,以產生等化度量序列,即序 歹】0 256a ° 同樣地’將每一區塊m 250(在此m = 0、1、…、Μ-1)中之 Ν個濾波器252的該Ν個經濾波的輸出相加,以產生μ個等化 度量序列256。 112034.doc •17- 自導頻彳S號汁算如在等式8中進一步描述之通道係數h, 及雜訊共方差Rn。使用計算得的通道係數h,及雜訊共方差 Rn來。十具濾波係數V m, ^ 0PT,其中m = 〇、I、]、…、Μ·1 且 η = 0、1、2、…、Ν-1。 在另一實施例中,在處理器8中將等化器118建構為軟體。 圖3為說明多重碼CDMA接收系統104、204之一實施例之 操作的流程圖300。在一實施例中,多重碼(:£)]^八接收系統 104、204在一連續迴路中操作,該迴路始於"起始"塊,且 止於”結束"塊。在區塊31〇中,等化器118接收導頻符號序 列。在區塊312中,等化器118使用該等導頻符號計算等化 器係數》 在區塊3 14中,接收系統丨〇4、2〇4經由天線〖i 6接收一信 號。在區塊316中,使用等化係數在等化器118中等化所接 收的信號。等化器118處理該等所接收的信號,以產生等化 度量序列256。 在區塊318中,藉由解展頻器12〇處理等化度量序列256, 以產生解調變符號序列。 準時流間干擾的存在使傳統的晶片級MMSE等化器為非 最佳的’此係因為其未考慮到解展頻效應。在μιμ〇 CDMA 應用中,在雜訊空間之非最佳方向中控制傳統晶片級河河把 權重,此使得降級解碼效能。此外,單輸入單輸出(SIS〇) 多重碼CDMA中MMSE權重最佳化的解展頻效應並不改變 權重(或控制方向)’除了不同的定比因子以外。假定解映射 器124、224再定比軟解調變符號,則在SIS〇多重碼cDma 112034.doc -18- 1345904 中解碼效能不受影響。 通常,當用於每一流之展頻碼的數目增加時,最佳mmse 權重(其將解展頻效應考慮在内)與非最佳河^^沾權重之間 的間隙減少,此係因為準時流間干擾的解展頻增益將被所 用展頻碼之數目因子粗略折扣,如以下之論述。 用於ΜΙΜΟ多重碼CDMA之線性MMSE等化器權重 在ΜΙΜΟ多重碼CDMA中的傳統晶片級MMSE權重最佳化 傳統MMSE空間時間晶片等化器對應於μ個傳輸天線 114 ’將所接收的信號分成等化軟度量序列之从個組。繼而 由多工器122、222、解映射器124、224及解碼器126、226 來處理該等序列’以分別產生經解碼的位元13〇、23〇。 在以下對傳統晶片級MMSE權重最佳化的論述中,多路 徑延遲展頻之跨度為個晶片長,等化器的跨度為五個晶片 長’且接收器每個晶片取用/>個樣本(意即,超取樣因子為 户)。另外 ’ U)(/ = 〇、1、…、Z-1; « = 〇、1、..·、#_ 1 ; 讲- 〇、1、…、M-1 ; P = 〇、1、…、第w個傳輸天線 114與第《個接收天線丨16之間的通道係數,其對應於第/個晶 片延遲及晶另的第p個樣本。在晶片時間A之第m個傳輸天線 114的晶片信號由心〜㈨表示,其中卻〜㈨丨2] = 1及 <為每一傳 輸天線114的平均晶片能量。 定義The soft metric sequence of the CDMA system 1〇〇, 2〇〇 includes five components: expected No. 1; one or more on-time inter-stream interference (or seeks in different transmission antenna signals), which reuses the same spreading code Is the expected signal; one or more quasi-κ μ interferences, which do not reuse the same spreading code as the expected right number; 'or multiple multipath interferences (meaning 'total service unit signal components, things On time) 'and the scene noise (other unit interference, thermal noise, etc.).丄 准 则 则 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 准 准 准 准 准 准 准 准 准 准 准 准 准Then, it is discarded. The SF factor roughly suppresses multipath interference and background noise. Figure 2B is a block diagram of an embodiment of the spatial time equalizer 118. The space (4) 'equalizer 118 contains the corresponding M传输 等 等 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库 库16· 1345904 includes filters 252 corresponding to N receive antennas 1162 (filter n, here η-0, 1, ..., Ν-1), and adder 254. These filters 252 have filtered 'wave coefficients VHm,n opt, where m = 0, 1, 2, ..., Μ-1, and η = 〇, 1, 2, ..., and each filter 252 produces a filtered output signal from a memory bank 250 Each of the one receive antennas 116 receives a k-' and processes the signal in a corresponding filter 252. The adder 254 will be from each memory The filtered output signals of each of the filters 252 are summed to produce an equalized metric sequence 256. Focus on the equalization memory 0 250a, for the jth filter (in the memory bank, j = 〇, 1, ..., N-1 having a filter coefficient Vh 〇, 〇 τ ττ), the input of the filter j is connected to the jth receive antenna, and the output of the filter j is connected to the input of the adder 254a. For example, the input of the filter 0 252a in the equalization memory 〇25〇a having the chopping coefficient VH〇, 〇〇PT is connected to the receiving antenna on 6a, and the output of the filter 0 252a is connected to The input of the adder 254a. Similarly, with the filter coefficient ν Η (), the input of the N 10 ΡΤ 2 filter N-1 252b is connected to the receiving antenna N-1 116b' and the output of the filter N-1 252b is connected to The input of adder 254a. The outputs of filter n (n = 〇, 1, ..., N-1) in block 0 250a are summed in adder 254a to produce an equalization metric The sequence, ie, the sequence 歹 0 256a ° likewise 'will each filter m 252 of each block m 250 (here m = 0, 1, ..., Μ-1) The filtered outputs are summed to produce a μ equalization metric sequence 256. 112034.doc • 17- Self-pilot 彳S number juice is calculated as channel coefficient h further described in Equation 8, and noise The variance Rn is calculated using the calculated channel coefficient h and the noise common variance Rn. Ten filter coefficients V m, ^ 0PT, where m = 〇, I, ], ..., Μ·1 and η = 0, 1. 2, ..., Ν-1. In another embodiment, the equalizer 118 is constructed as a software in the processor 8. 3 is a flow diagram 300 illustrating the operation of one embodiment of a multi-code CDMA receiving system 104, 204. In one embodiment, the multiple code (:£)] eight receiving systems 104, 204 operate in a continuous loop starting at a "start" block and ending at an "end" block. In block 31, the equalizer 118 receives the pilot symbol sequence. In block 312, the equalizer 118 uses the pilot symbols to calculate the equalizer coefficients. In block 314, the receiving system 丨〇4, 2〇4 receives a signal via antenna [i 6]. In block 316, the received signal is normalized in equalizer 118 using equalization coefficients. Equalizer 118 processes the received signals to produce equalization. The metric sequence 256. In block 318, the equalization metric sequence 256 is processed by the despreader 12 to generate a demodulated variable symbol sequence. The presence of on-time inter-stream interference causes the conventional wafer-level MMSE equalizer to be non- The best 'this is because it does not take into account the spread-spreading effect. In the μιμ〇 CDMA application, the traditional wafer-level rivers are weighted in the non-optimal direction of the noise space, which makes the decoding performance degraded. Single-input single-output (SIS〇) MMSE weight optimization in multi-code CDMA The frequency effect does not change the weight (or control direction) 'except for different scaling factors. Assuming the demapper 124, 224 is more than the soft demodulation variable, then the SIS 〇 multiple code cDma 112034.doc -18- Decoding performance is unaffected in 1345904. Typically, when the number of spreading codes used for each stream increases, the optimal mmse weight (which takes into account the spread-spreading effect) and the non-optimal river weight The gap is reduced because the despread gain of the on-time inter-stream interference will be roughly discounted by the number of spreading codes used, as discussed below. The linear MMSE equalizer weight for multi-code CDMA is in the multi-code Conventional Wafer Level MMSE Weight Optimization in CDMA The conventional MMSE space time wafer equalizer corresponds to the μ transmission antennas 114 'dividing the received signals into groups of equalized soft metric sequences. Then by the multiplexer 122, 222, demappers 124, 224 and decoders 126, 226 to process the sequences ' to generate decoded bits 13, 分别, 23, respectively. In the following discussion of conventional wafer level MMSE weight optimization, Path delay exhibition The span is one wafer length, the span of the equalizer is five wafer lengths' and the receiver takes /> samples per wafer (ie, the oversampling factor is household). In addition, 'U) (/ = 〇 , 1, ..., Z-1; « = 〇, 1, .., #_ 1 ; Speak - 〇, 1, ..., M-1; P = 〇, 1, ..., the wth transmission antenna 114 and The channel coefficient between the receiving antennas 16 corresponds to the first wafer delay and the pth sample of the crystal. The wafer signal of the mth transmitting antenna 114 at the wafer time A is represented by a heart ~ (nine), Wherein ~(9)丨2] = 1 and < is the average wafer energy per transmission antenna 114. definition

Xm(k) = CT: (Χπ(Λ) Xm(A: + l)…、(灸 + £+ K)]T (1) 為第m個傳輸天線114之(£ + IW)維的晶片向量,其自指數女 跨至/:+五+L-2»同樣,讓〜⑷及〜〆Α;)為第„個接收天線 112034.doc -19· 1345904 處關於第A:個晶片之第;7個樣本之所接收樣本及其背景雜訊 成分。 另外,定義 y„(k) = [yn,〇(k)-γη^{h)-yn〇(k + E-1) - (k + E- 1)]T (2) 及 nn (k) Ξ [»„,〇 (A:) · · · nnJ>_x {k)··· nn0 (k + E-{) «n^_, (k + E-\)]T (3)Xm(k) = CT: (Χπ(Λ) Xm(A: + l)..., (moxibus + £+ K)]T (1) is the (£ + IW) dimension of the mth transmission antenna 114 , from the index female to /: + five + L-2» Similarly, let ~ (4) and ~ 〆Α;) for the „th receiving antenna 112034.doc -19· 1345904 on the A: the first wafer; The sample received by 7 samples and its background noise component. In addition, the definition y„(k) = [yn,〇(k)-γη^{h)-yn〇(k + E-1) - (k + E- 1)]T (2) and nn (k) Ξ [»„,〇(A:) · · · nnJ>_x {k)··· nn0 (k + E-{) «n^_, ( k + E-\)]T (3)

為第《個接收天線11 6處/維的所接收樣本向量及對應的背 景雜訊向量,則 y〇W' 'η0>0 ...Η "x〇W ' • η〇(Λ) · Ά). • · ♦ · ...η uvv-w-i· _ΧΑ/-1 (众)_ + J^N-\ (^). 在等式4中,心^表示在第m個傳輸天線114與第”個接收天線 116之間的咫χβ + Ι-l)多路徑通道矩陣,且給定為 • · • · • ♦ …办”.…⑼ H«,》s '·· . (5)For the received sample vector of the first receiving antenna and the corresponding background noise vector, then y〇W' 'η0>0 ...Η "x〇W ' • η〇(Λ) Ά). • · ♦ · ...η uvv-wi· _ΧΑ/-1 (众)_ + J^N-\ (^). In Equation 4, the heart ^ is indicated at the mth transmission antenna 114咫χβ + Ι-l between the "receiving antennas 116" multipath path matrix, and given as · · • · • ♦ ...do"....(9) H«,"s '·· . (5)

Λ ”,m,0(厶-1) ... /^0 ⑼ « _ · - K,m,P-X{L-\) ... /,nm,_,(〇)_ 此外’定義為见P£維的總體所接 收樣本之向量,定義n(_[n<)WrniWr...n^iW7y為见p丑維的總體 老景雜訊向量’定義Rn Ξ£:[η(λ:)η(Α;)Η]為的雜訊共方差 矩陣,及定義 Η〇λ^ Η H〇,〇 Η Ξ thohi •••^αυ^+ζ.-ιη] Ξ : _Η"-ι,〇 112034.doc ·20· (6) 1345904 為Λ^:χΜ(£ + Ι-1)的總體多路徑通道矩陣》則對於具有d個晶 片之目標延遲之第m個傳輸天線晶片流,最小化 五[丨''^(幻-4(々+ ^))丨2]之最佳晶片級線性1^148£加權向量<變為 HH^+Rj^a.h” ”,m,0(厶-1) ... /^0 (9) « _ · - K,m,PX{L-\) ... /,nm,_,(〇)_ Also 'defined as see The vector of the received samples of the P£ dimension, defining n(_[n<)WrniWr...n^iW7y as the overall old-spectrum noise vector of the p-dimensional dimension' defines Rn Ξ£:[η(λ:) η(Α;)Η] is the noise covariance matrix, and defines Η〇λ^ Η H〇,〇Η Ξ thohi •••^αυ^+ζ.-ιη] Ξ : _Η"-ι,〇112034 .doc ·20· (6) 1345904 is the total multipath channel matrix of Λ^:χΜ(£ + Ι-1), which minimizes the mth transmit antenna wafer stream with a target delay of d wafers [丨''^(幻-4(々+^))丨2]The best wafer level linear 1^148£ weighting vector< becomes HH^+Rj^ah

miE+L-iy+D ⑺ 如上所述,其中自一導頻信號計算該等通道矩陣係數 藉由應用矩陣求逆引理,等式7可重寫為:miE+L-iy+D (7) As described above, wherein the channel matrix coefficients are calculated from a pilot signal. By applying a matrix inversion lemma, Equation 7 can be rewritten as:

( 1 ) _ 1 XCrx^m(£+Z,-l)+£) l + SNR h. \ 、m、chtp) M(E+L-\)-\ +R„ i*m(E+L-\)+Djs〇 (8) 其中等化器輸出晶片SNR為( 1 ) _ 1 XCrx^m(£+Z,-l)+£) l + SNR h. \ , m, chtp) M(E+L-\)-\ +R„ i*m(E+L -\)+Djs〇(8) where the equalizer output chip SNR is

SNR m,chipSNR m,chip

m(£+i-l)+D fXW+R” i*m(E+L-\)+D,i^0 h.m(£+i-l)+D fXW+R” i*m(E+L-\)+D,i^0 h.

丨(£+厶-l)+D丨(£+厶-l)+D

此外,等化器輸出軟晶片度量變為 xm(k + D) = yvHmy(k) = [ΜΛ + £〇 + 雑訊] (10) 當藉由C#)(其中|Cy(A)|2=l))表示第j個展頻碼(或第』個華許In addition, the equalizer output soft-wafer metric becomes xm(k + D) = yvHmy(k) = [ΜΛ + £〇+ 雑 ]] (10) when by C#) (where |Cy(A)|2= l)) indicates the jth spreading code (or the first huaxu

碼與共同攪拌碼之乘積)時,解展頻器12〇(其十展頻因子為 的輸出%符號變為 以⑻=古|^^+<(幻,)=0、1、2、…、Λ1 (11) 其中A*表示A的共軛複數。解映射器124再定比及轉換輸出 軟符號為對於符號指數《、編碼指數;.及傳輸天線指數所之位 元值。 在對解碼器126、226之觀察下,等式⑺賴麗加權向 量並非為最佳,此係因為是在未考慮解展頻器⑽中之準時 112034.doc •21 - 1345904 流間干擾之顯著性質的情況下進行了最佳化β ΜΙΜΟ多重碼CDMA之增強型晶片級MMSE加權向量 以下論述在解展頻前等化所接收之信號的ΜΙΜΟ多重碼 CDMA系統《空間時間等化器應用具有為展頻因子之函數 的係數之加權向量。 考慮傳輸晶片值〜⑷由《/個正交通道成分構成,意即, = (12) 其中4㈨為對應於第m個傳輸天線114之第y·個展頻碼的晶 片成分(其中邵< ⑷丨2] = 1)) ’在等式(11)中該解展頻器輸出符 號度量ζ»之SNR可為When the product of the code and the common stirring code), the despreader 12〇 (the output % symbol of the ten spreading factor is changed to (8)=古|^^+<(幻,)=0, 1, 2 ..., Λ 1 (11) where A* denotes the conjugate complex number of A. The demapper 124 re-ratio and convert the output soft symbols to the bit values for the symbol index ", the coding index; and the transmission antenna index. Under the observation of the decoders 126, 226, the Riley weight vector of equation (7) is not optimal, because it does not consider the significant nature of the inter-stream interference 112034.doc • 21 - 1345904 in the despreader (10). Enhanced wafer-level MMSE weighting vector optimized for β ΜΙΜΟ multi-code CDMA. The following discusses the ΜΙΜΟ multi-code CDMA system that equalizes the received signal before despreading. The space time equalizer application has spread spectrum. The weighting vector of the coefficient of the function of the factor. Considering that the transmitted wafer value ~(4) is composed of "/one orthogonal channel components, that is, = (12) where 4 (nine) is the yth spreading code corresponding to the mth transmission antenna 114 Wafer composition (where Shao < (4) 丨 2] = 1)) 'In equation (11) Spread spectrum output symbol metric [zeta] >> The SNR may be

(E+L-\)+D M(E+L-l)-\ ·Σσ'ΜΓ+ Rn i^m{E+L~\)+D,i=0 h(E+L-\)+D M(E+L-l)-\ ·Σσ'ΜΓ+ Rn i^m{E+L~\)+D,i=0 h

m(E+L-\)+D (13) 注意該正交解展頻應該相對於晶片SNR引入增益因子 及/損耗因子》m(E+L-\)+D (13) Note that the orthogonal solution spread spectrum should introduce a gain factor and/or loss factor relative to the wafer SNR.

然而,在編碼重複使用的ΜΙΜΟ多重碼CDMA系統1〇〇 中’解展頻器輸出符號的實際SNR變得比等式(13)的低,此 係因為在解i頻過程中準時流間干擾表現為與多路徑干擾 或背景雜訊不同。此外,在對解碼器126、226之觀察下, 等式(7)的MMSE加權向量並非為最佳,此係因為是在未考 慮解展頻器120中之準時流間干擾之顯著性質的情況下進 行了最佳化。因此,如以下進一步論述,等式(13)的§NR 在實踐中難以達成。 參看等式(4)-(6)及等式(1〇)-(12),由加權向量 對於第w 112034.doc •22· 1345904 個傳輸天線流)等化且由第y個解展頻碼解展頻之軟解 調變符號可寫為: 餐 p(^i-D+〇(n)hp(f+i-i)+〇 + YJaxdi{n)\iq+njd(n) 9*p(E+L-\y¥〇 p«〇,l,. (14) 其中第一及第二項分別代表信號及干擾成分。更特定而 、()中的 ^n(£+i-l)+z>(”) ^p(E+L~\)+D ⑻及〇)分別代表解展However, in the coded repetitive ΜΙΜΟmulticode CDMA system, the actual SNR of the despreader output symbol becomes lower than that of equation (13) because of the on-time inter-stream interference during the solution of the i-frequency. Behaves differently than multipath interference or background noise. Moreover, the MMSE weighting vector of equation (7) is not optimal under the observation of decoders 126, 226 because it is not considered the significant nature of the on-time inter-stream interference in de-spreader 120. Optimized underneath. Therefore, as discussed further below, the §NR of equation (13) is difficult to achieve in practice. See equations (4)-(6) and equations (1〇)-(12), equalized by the weight vector for the w 112034.doc •22· 1345904 transmit antenna streams and spread by the yth solution The soft demodulation variable symbol of the code solution spread spectrum can be written as: meal p(^i-D+〇(n)hp(f+ii)+〇+ YJaxdi{n)\iq+njd(n) 9*p(E +L-\y¥〇p«〇,l,. (14) The first and second terms represent the signal and interference components respectively. More specific, ^(£+il)+z> ” ^p(E+L~\)+D (8) and 〇) respectively represent the exhibition

頻後之預期符號成分、使用第/個展頻碼的準時流間干擾成 分,及多路徑干擾成分。不使用第y個展頻碼的準時流間干 擾成分在解展頻過程中消失。相反,使用第^•個展頻碼之準 時流間干擾成分由於解展頻而具有5^展頻增益,如預期信 號成分所作。解展頻操作不會改變多路徑干擾成分及背景 雜訊成分(在等式(14)中由表示)的共方差。 在對解碼器126、226之觀察下,最佳MMSE加權向量 應最小化£[丨⑻丨2](即,應相對於目標符號實施The expected symbol component after the frequency, the on-time inter-flow interference component using the first spreading code, and the multipath interference component. The on-time inter-stream interference component that does not use the yth spreading code disappears during the despreading process. In contrast, the on-time inter-channel interference component using the first spreading code has a 5^ spreading gain due to the despreading frequency, as the expected signal component does. The despreading operation does not change the covariance of the multipath interference component and the background noise component (represented by equation (14)). Under the observation of decoders 126, 226, the optimal MMSE weighting vector should be minimized by £[丨(8)丨2] (ie, should be implemented relative to the target symbol)

最小化)’且因此其變為 U〇pt m(£+l^l)+〇 ^SF 2l L-raxhMinimize)' and therefore it becomes U〇pt m(£+l^l)+〇 ^SF 2l L-raxh

r^H p(£+Z,-l)+〇11 p{E+L-l)+D g^p(E+L-\)+D p=〇X...M-\ (15) 藉由應用矩陣求逆引理,可將依展頻因子而定的mmse 加權向量重寫為 112034.doc •23· 1345904r^H p(£+Z,-l)+〇11 p{E+Ll)+D g^p(E+L-\)+D p=〇X...M-\ (15) by Apply the matrix inversion lemma, and rewrite the mmse weight vector according to the spreading factor to 112034.doc •23· 1345904

1 义-! SF1 meaning -! SF

-~ - X J~~T^x^m(£+L-l)+D Σ ~Γ^piE+L-lHD*1 p(£+L-l)+D + Σσ】**Χ+R 、i +J、J p*mtp^O J 9%ψ+/4ΐΥ° (16) 第m個傳輸天線114之第_/·個編碼的解展頻器輸出符號 SNR變為 SNRiZ^,=-~ - XJ~~T^x^m(£+Ll)+D Σ ~Γ^piE+L-lHD*1 p(£+Ll)+D + Σσ]**Χ+R, i +J, J p*mtp^OJ 9%ψ+/4ΐΥ° (16) The output symbol SNR of the _/·th code of the mth transmission antenna 114 becomes SNRiZ^,=

SF »»(£+£-!)+0 Σ p*m,p"i〇SF »»(£+£-!)+0 Σ p*m,p"i〇

J p^E+L—\^+D p(f+£—1)+0 +κJ p^E+L—\^+D p(f+£—1)+0 +κ

q*p(E+L-\)+D fli(f+i—1)+〇 (17)q*p(E+L-\)+D fli(f+i-1)+〇 (17)

等式(13)及(17)藉由SF/J因子展示,等式(17)之準時干擾 成分的方差比等式(13)的方差較大。因此等式(丨7)中可達成 之SNR比等式(13)之預期SNIM氏,除非將獨立的SF編碼分配 至資料傳輸,且該等傳輸天線114對其進行充分重複使用 (意即’ J=SF)。在實踐中,經分配及經重複使用之編碼的 數目通常由於依資料速率而定的展頻碼分配(例如,較低資 料速率時較_小數目的編碼,及較高資料速率時較大數目的 編碼)、控制通道、音頻通道的存在等,而小於SF。等式(8) 及(16)展示’歸因於準時流間干擾成分之功率因子SF/J的差 異,在待由解映射器124、224及解碼器126、226使用之軟 符號等級中,傳統晶片級最佳化MMSE加權向量並非為最 佳。傳統晶片級MMSE加權向量低估了準時流間干擾成分, 因為其未將解展頻效應考慮在内,且因此在非最佳方向中 112034.doc -24 - 1345904 進仃控制。因此,在一實施例中,使用等式(8)的加權向量, 實際苻號SNR變得甚至低於等式(17),其遠離等式(13)的上 限0 來玉 备0人減少供多重天線重複使用之展頻碼的數目時, 等式(16)中之MIMO-CDMA最佳化MMSE加權向量與等式 (8)中之傳統加權向量間的效能間隙變得較大。 在獲得增強型晶片級等化器丨丨8中,使用圖丨及圖2的系統 杈型,其中多重天線114重複使用相同的展頻碼且所有天 線114及編碼使用近似相同量的傳輸功率。 參看等式(8)及等式(16),改變加權向量之控制方向的成 分為準時流間干擾。因此,在不存在流間干擾之SISO多重 碼CDMA系統中,傳統晶片級MMSE加權向量及增強型 MMSE加權向量在相同方向中進行控制(亦即,其於信號空 間中對準)。然而,該等加權向量的定比可能不同。定比因 子為SNR的函數,且若解映射器124、224能夠精確地再定 比輸入軟符號以得到公正的評估,則傳統晶片級mmse加權 向量及增強型MMSE加權向量具有近似相同的解碼效能。 在ΜΙΜΟ多重碼CDMA中增強型等化器對任意功率及編碼 分配情形之—一般化 在產生用於ΜΙΜΟ多重碼CDMA接收器1〇4、204之增強型 晶片級MMSE加權向量中,在等式(12)_(17)中,假定所有M 個傳輸天線114重複使用相同的^/個展頻碼,且總體傳輸 晶片能量經平等劃分且被分配至由傳輸天線114及展頻碼 分開的個流。同等地,假定流中的每一者具有的 a日片月b 。在此部分中,任意編碼及功率分配情形將實際 112034-doc -25- 1345904 劃碼多工導頻、控制及音頻通道及不 在考慮在内》 平等的功率分配之存Equations (13) and (17) are shown by the SF/J factor, and the variance of the on-time interference component of equation (17) is larger than the variance of equation (13). Thus the SNR achievable in equation (丨7) is the expected SNIM of equation (13) unless separate SF codes are assigned to the data transmission and the transmission antennas 114 are fully re-used (ie ' J=SF). In practice, the number of assigned and re-used codes is usually due to the spread of the spreading code depending on the data rate (eg, a lower data rate than a smaller number of codes, and a higher number at a higher data rate) The encoding), the control channel, the presence of the audio channel, etc., and less than SF. Equations (8) and (16) show 'differences in the power factor SF/J due to the on-time inter-flow interference component, among the soft symbol levels to be used by the demappers 124, 224 and decoders 126, 226, Traditional wafer level optimized MMSE weighting vectors are not optimal. The traditional wafer-level MMSE weighting vector underestimates the on-time inter-stream interference component because it does not take into account the despreading effect and is therefore in the non-optimal direction 112034.doc -24 - 1345904. Therefore, in an embodiment, using the weighting vector of equation (8), the actual apostrophe SNR becomes even lower than equation (17), which is far from the upper limit of equation (13). When the number of spread spectrum codes used by the multiple antennas is repeated, the performance gap between the MIMO-CDMA optimized MMSE weighting vector in Equation (16) and the conventional weighting vector in Equation (8) becomes larger. In obtaining an enhanced wafer level equalizer 丨丨8, the system 丨 of Figure 2 and Figure 2 is used, wherein the multiple antennas 114 reuse the same spreading code and all antennas 114 and encoding use approximately the same amount of transmission power. Referring to equations (8) and (16), the variation of the control direction of the weight vector is changed to just-time inter-stream interference. Thus, in a SISO multiple code CDMA system where there is no inter-stream interference, the conventional wafer level MMSE weighting vector and the enhanced MMSE weighting vector are controlled in the same direction (i.e., they are aligned in the signal space). However, the ratios of the weighted vectors may differ. The scaling factor is a function of SNR, and if the demappers 124, 224 are able to accurately rescale the input soft symbols for a fair evaluation, the conventional wafer level mmse weighting vector and the enhanced MMSE weighting vector have approximately the same decoding performance. . In the case of ΜΙΜΟ multi-code CDMA, the enhanced equalizer for any power and code allocation situation - generalized in the generation of enhanced chip-level MMSE weighting vectors for ΜΙΜΟ multi-code CDMA receivers 1 〇 4, 204, in the equation In (12)-(17), it is assumed that all M transmission antennas 114 repeatedly use the same ^/sss spreading code, and the overall transmission wafer energy is equally divided and distributed to streams separated by the transmission antenna 114 and the spreading code. . Equally, assume that each of the streams has a day of the month b. In this section, the arbitrary coding and power allocation scenarios will be actual 112034-doc -25-1345904 coded multiplexed pilot, control and audio channels and not considered in the "equal power allocation"

此’將Θ定義為分配至第彷 、Μ-1)及展頻因子SF之第j·個 個傳輸天線114〇 = 〇、 編碼(/· = 0、1、…、M-1)This is defined as the jth transmission antenna 114 分配 = 〇, code (/· = 0, 1, ..., M-1) assigned to the first imitation, Μ-1) and the spreading factor SF.

的晶片能量’其包括分配至第y·個編禚 7螂崎之所有可能子碼樹(若 其正用於第w個天線m中)之晶片能量的總和。若第讲個傳 輸天線114並未使用第個編碼,則&等於〇。如上所述用 於MIMO多重碼CDMA之增強型晶片級⑽犯加權向量的結 果對於特殊情形有效,其中 £j=H/j> w = 〇,l5...M-l;y = 〇jUJ_1 1 0, m = 0,\,...Μ -l;y = + _! (^8)The wafer energy 'which includes the sum of the wafer energies assigned to all possible subcode trees of the y y 螂 螂 螂 螂 ( ( ( ( ( ( ( ( 。 。 。 。 。 。 。 。 。 。 。 。 。 If the first transmission antenna 114 does not use the first code, & is equal to 〇. The result of the weighting vector for the enhanced wafer level (10) for MIMO multicode CDMA as described above is valid for special cases, where £j = H / j > w = 〇, l5...Ml; y = 〇jUJ_1 1 0, m = 0,\,...Μ -l;y = + _! (^8)

且傳輸功率分配至資料傳輸β在一實施例中,無控制通 道或導頻通道與ΜΙΜΟ資料流同時共用該傳輸功率。由7二表 示第w個傳輸天線114的總體傳輸晶片能量,其包括所有通 道,諸如資料、導頻、控制通道等,且定義& s g 7二,第y m=0 個編碼及第w個傳輸流之最佳MMSE加權向量能以用 於等式(15)的方式得出,其變為And the transmission power is distributed to the data transmission. In one embodiment, the uncontrolled channel or pilot channel shares the transmission power with the data stream. The total transmitted wafer energy of the wth transmission antenna 114 is represented by 7.2, which includes all channels, such as data, pilot, control channel, etc., and defines & sg 7 2, ym=0 encoding and w transmission The best MMSE weighting vector of the stream can be derived in the way of equation (15), which becomes

w(£+Z.-l)+Dw(£+Z.-l)+D

Y^SF-E p=0Y^SF-E p=0

h UH p11 p(E*L-\)+D n p(£+I-i)+D XChX+R„h UH p11 p(E*L-\)+D n p(£+I-i)+D XChX+R„

q^p(E+L-\)+D (19) 此外’應用矩陣求逆引理,等效加權向量變為 = mJ,opt ( \ 1 卜續二。,J x^[SF-E i^m(E+L~\)+D ZSFEJpb y.t1Q^p(E+L-\)+D (19) In addition, 'apply matrix inversion lemma, the equivalent weight vector becomes = mJ, opt ( \ 1 卜续二., J x^[SF-E i ^m(E+L~\)+D ZSFEJpb y.t1

p{E+L-\)+D ° p(E+L-\)+Dp{E+L-\)+D ° p(E+L-\)+D

+ +R” q^p(E+L^l)+D (20) 112034.doc -26· 1345904 其中第w個傳輸天線ii4之第y個編碼的解展頻器輸出符號 SNR變為 SNRi二, (21) 1)+Ό^/»(£+L—l)+D ^ ΣοΧ+r”+ +R" q^p(E+L^l)+D (20) 112034.doc -26· 1345904 where the yth coded despreader output symbol SNR of the wth transmission antenna ii4 becomes SNRi II , (21) 1)+Ό^/»(£+L—l)+D ^ ΣοΧ+r”

p*m,p^Op*m,p^O

q^p(E+L^l)+〇 P»〇XQ^p(E+L^l)+〇 P»〇X

如圖4中之說明,針對各種晶片SNR值,比較傳統等化器 (傳統型EQ)與增強型等化器(增強型EQ)間之區塊錯誤率 (BLER)效能的模擬值(五W〇)。針對4個傳輸(或M=4)天線 114及4個接收(或N=4)天線116的情況進行該等模擬。根據 3GPP HSDPA HS-DSCH規格組態編碼、速率匹配、交錯、 群集映射及接收器配對物。在HS-DSCH中,晶片速率為3 84 Mcps ’訊框長度(或區塊長度)為2 ms, «SF為16,及對於每一 天線114,每訊框每展頻碼之調變符號的數目為48〇。在模 擬中’將調變群集固定至QPSK。因此,使用t/個展頻碼經 由4個天線114在訊框中進行傳輸之經編碼位元的總數目為 384 0«/»該4個傳輸天線114經設定以使用相同集合的j個展 頻碼,且相巧量的傳輸晶片能量五C/W經平均劃分而分配至 每一天線114的該J個編碼通道。 為簡潔起見’在該模擬中未模仿負載通道(例如,共同導 頻通道、控制通道、音頻通道等)。因此,總體3§傳輸晶片 月t·里/or等於HS-DSCH晶片能量五c。在3GPP HSDpA規格中 之渦輪碼(turbo code)用於編碼,且編碼速率經由該模擬保 持在,力1 /3。將載波頻率設定為2GHz。藉由功率頻譜密度 112034.doc •27- 1345904 • %之空間無關白高斯隨機過程來模仿4個接收天線116時之 •‘ 背景雜訊成分。在模擬中使用具有通道係數及雜訊共方差 之完全同步及完全評估之晶片隔離式等化器118(意即,將 超取樣因子P設定為1)。當多路徑延遲跨越Z個晶片時,將 空間時間等化器時間跨度£及目標延遲乃設定為個晶片 及2£-1個晶片。 圖4展示標準SCM鏈路級描述之3 km/h車輛A模型(6個路 徑' 2度的68角展度、35度的MS角展度、1〇波長之BS天線 間隔、0.5波長之MS天線間隔)中之單編碼重複使用的BlER 效能。將對應的資訊資料速率設定至64〇 kbps,且編碼位元 的數目為3840。在單編碼情形中,如圖4中的說明,在丨〇-2 之區塊錯誤率(BLER)下,存在約3 dB的增益。 觀測到當編碼數目增加時,自增強型等化器的增益減 少。當編碼數目接近時,準時流間干擾組分與(16)之多 路徑干擾及背景雜訊組分之間的功率平衡變得更接近於(8) # 之傳統等化器的功率平衡。從而,對於15個編碼的改良比 對於單編碼的改良小。 傳統晶片級MMSE加權向量(8)提供比在不同傳輸天線 114中重複使用相同編碼之Mim〇多重碼cdma之增強型 MMSE加權向量(16 )小的作辨·拙4 ;J 琥雜訊比。如吾人在(8)與(16) 之比較中所見,該兩個加描士曰# ^丄 加獾向置甚至在補償定比因子後仍 在不同方向中進行控制。在—容奸 κ把例中,準時流間干擾為 關鍵成分。因此,考慮到解屎相& Α 』鮮展頻效應之增強型MMSE加權向 量較佳。 112034.doc -28, 1345904 熟習此項技術者將瞭解,可使用各種不同技術及方法中 的任一者來表示該等資訊及信號。例如,可用電壓、電流、 電磁波、磁場或粒子、光學場或粒子或其任何組合來表示 可以上所有描述中所參考的資料、指令、命令、資訊、信 號、位元、符號及晶片。As shown in Figure 4, the analog value of the block error rate (BLER) performance between the conventional equalizer (conventional EQ) and the enhanced equalizer (enhanced EQ) is compared for various wafer SNR values (five W 〇). These simulations are performed for the case of 4 transmission (or M=4) antennas 114 and 4 reception (or N=4) antennas 116. Coding, rate matching, interleaving, cluster mapping, and receiver counterparts are configured according to the 3GPP HSDPA HS-DSCH specification. In HS-DSCH, the chip rate is 3 84 Mcps 'frame length (or block length) is 2 ms, «SF is 16, and for each antenna 114, each frame has a modulation symbol for each spreading code. The number is 48〇. In the simulation, the modulation cluster is fixed to QPSK. Therefore, the total number of coded bits transmitted in the frame via the four antennas 114 using t/slot spread codes is 384 0 «/» The four transmit antennas 114 are set to use the same set of j spread codes And a tangible amount of transfer wafer energy five C/W is equally divided and distributed to the J code channels of each antenna 114. For the sake of brevity, load channels (e.g., common pilot channels, control channels, audio channels, etc.) are not mimicked in this simulation. Therefore, the overall 3 § transfer wafer month t·里/or is equal to the HS-DSCH wafer energy five c. The turbo code in the 3GPP HSDpA specification is used for encoding, and the coding rate is maintained at this force by a factor of 1/3. The carrier frequency is set to 2 GHz. • The background noise component of the four receive antennas 116 is mimicked by a spatially independent white Gaussian random process with a power spectral density of 112034.doc • 27-1345904. A fully isolated and fully evaluated wafer isolated equalizer 118 having channel coefficients and noise covariance is used in the simulation (i.e., the oversampling factor P is set to 1). When the multipath delay spans Z wafers, the spatial time equalizer time span and target delay are set to one wafer and two £-1 wafers. Figure 4 shows the 3 km/h vehicle A model described in the standard SCM link level (6 paths '68 degree spread of 2 degrees, MS angular spread of 35 degrees, BS antenna spacing of 1 〇 wavelength, MS of 0.5 wavelength) Single-code reusable BlER performance in antenna spacing). The corresponding information rate is set to 64 〇 kbps, and the number of coded bits is 3840. In the single coding case, as illustrated in Figure 4, there is a gain of about 3 dB at a block error rate (BLER) of 丨〇-2. It is observed that as the number of codes increases, the gain of the self-enhanced equalizer decreases. When the number of codes is close, the power balance between the on-time inter-flow interference component and the multipath interference and background noise components of (16) becomes closer to the power balance of the conventional equalizer of (8) #. Thus, the improvement ratio for the 15 codes is smaller for the improvement of the single code. The conventional wafer level MMSE weighting vector (8) provides a smaller resolution than the enhanced MMSE weighting vector (16) of the Mim〇 multiple code cdma that reuses the same code in different transmission antennas 114; . As we can see in the comparison between (8) and (16), the two additions of the 曰 曰 丄 丄 丄 丄 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾 獾In the case of 容 , , punctual interflow disturbance is a key component. Therefore, the enhanced MMSE weighted vector is considered to have a good effect on the unfolding phase & 』 』 fresh spread spectrum effect. 112034.doc -28, 1345904 Those skilled in the art will appreciate that any of a variety of different techniques and methods can be used to represent such information and signals. For example, data, instructions, commands, information, signals, bits, symbols, and wafers that may be referenced in all descriptions may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.

熟習此項技術者將進一步瞭解可將結合本文揭示之該等 實施例所描述之各種說明性邏輯塊、模組、電路及演算法 步驟建構為電子硬體、電腦軟體或兩者的組合。為了清楚 說明硬體與軟體之此互換性,各種說明性組件、區塊、模 組、電路及步驟在上文中已根據各自的功能性進行了一般 描述。將該功能性建構為硬體或是軟體將視特定應用及對 於整個系統的設計約束而定。熟練的技術人員可針對每一 特定應用以不同方式建構所述功能性,但該等建構決策不 應解釋為會導致背離本發明之範嗜。Those skilled in the art will further appreciate that the various illustrative logic blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein can be constructed as electronic hardware, computer software, or a combination of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their respective functionality. Constructing this functionality as hardware or software will depend on the particular application and design constraints imposed on the overall system. The skilled artisan can construct the described functionality in a different manner for each particular application, but such construction decisions should not be construed as causing a departure from the scope of the invention.

可藉由通用處理器、數位信號處理器(DSp)、特殊應用; 體電路(ASIC)、場可程式化閘陣列(FpGA)或旨在執行本, 所述之功能的其他可程式化邏輯裝置、離散閘或電晶體全 輯、離散硬體組件或其任何組合,來建構或執行結$本j 所揭示之該等實施例所描述的各種說明性邏輯塊、模組^ 電路。通用處理器可為一微處理器、習知處理器、控:二 微控制器狀態機等。亦可將—處理器建構為計算裝置之自 合’例如…DSP與-微處理器之組合、複數個:處理考·’ 結合一DSP核心之一或多個微處理器, , 及任何其他該組態 〇 口本文所揭不之該等實施例所描述 田4之方法或演算法纪 112034.doc -29- 1345904 步驟可直接包含於硬體中、由一處理器執行的軟體模組 中,或兩者之組合中。軟體模組可駐留於隨機存取記憶體 (RAM)、快閃記憶體、唯讀記憶體(R〇M)、可擦可程式唯讀 記憶體(EPROM)、電子可擦可程式唯讀$憶體(EEpR〇M)、 暫存器、硬碟、抽取式碟片、緊密光碟·唯讀記憶體 (CD ROM) ’或此項技術巾已知的任何其他形 < 的儲存媒體 中。將一儲存媒體耦接至處理器,使得該處理器可自該儲 存媒體讀取資訊,及將資訊寫入該儲存媒體。在替代方案 中,該儲存媒體可整合於該處理器中。該處理器與儲存媒 體可駐留於一 ASIC中。該ASIC可駐留於一使用者終端機 中。在替代方案中,該處理器與儲存媒體可作為離散組件 駐留於一使用者終端機中。 該等模Μ可包括(但不僅限於)下列諸項中的任一者··軟體 或硬體組件,諸如,軟體物件導向式軟體組件、類別組件 及任務組件、處理序、方法、功能、屬性、步驟、程序、 程式晶片段、驅動器、韌體、微碼、電路、資料、資料庫、 資料結構、表、陣列或變數。 提供所揭—示之實施例的先前說明,以使任何熟習此項技 術者能夠製造或使用本發明。對於熟習此項技術者,對此 等實施例之各種修改為極其明顯的,且在不背離本發明之 精神或範疇的情況下,可將本文定義之一般原理應用於其 他實施例中。因此,本發明並不意欲限制於本文所示之該 等實施例,而應符合與本文所揭示之該等原理及新穎特徵 一致的最廣泛範疇。 112034.doc •30- 1345904 【圖式簡單說明】 圖1A為通信系統之圖,其支持許多使用者且能夠實施本 發明之至少若干態樣及實施例。 圖1B為ΜΙΜΟ多重碼CDMA系統之一實施例的方塊圖。 圖2A為ΜΙΜΟ多重碼CDMA系統之另一實施例的方塊圖。 圖2B為MMSE空間時間等化器之一實施例的方塊圖。 圖3為說明多重碼CDMA系統之一實施例之操作的流程 圖。 圖4為使用1編碼重複使用及3 km/h車輛A多路徑通道模 型之本發明一實施例的各種晶片-信號雜訊比(SNR)值之區 塊錯誤率的圖表。 【主要元件符號說明】 2A-2G 單元 4A-4G 基地台 6A-6J 終端機 8 處理器 10 通信系統 100 - ΜΙΜΟ多重碼CDMA系統 102 傳輸器部分 104 接收器部分 106 編碼器 108 映射器 110 解多工器 112 展頻器 112034.doc 1345904By means of a general purpose processor, digital signal processor (DSp), special application; body circuit (ASIC), field programmable gate array (FpGA) or other programmable logic device intended to perform the functions described herein , discrete gate or transistor full set, discrete hardware components, or any combination thereof, to construct or execute the various illustrative logic blocks, modules, circuits described in the embodiments disclosed in the present disclosure. The general purpose processor can be a microprocessor, a conventional processor, a control, a second microcontroller state machine, and the like. The processor can also be constructed as a self-contained computing device, such as a combination of a DSP and a microprocessor, a plurality of: processing a test, combining one or more microprocessors of a DSP core, and any other The method or algorithm described in the embodiments described herein may be directly included in a hardware module executed by a processor, or In combination of the two. The software module can reside in random access memory (RAM), flash memory, read-only memory (R〇M), erasable programmable read-only memory (EPROM), and electronic erasable programmable read-only Remembrance (EEpR〇M), scratchpad, hard drive, removable disc, compact disc/read only memory (CD ROM) 'or any other form of storage medium known to the technical towel. A storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium. In the alternative, the storage medium can be integrated into the processor. The processor and storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor and storage medium may reside as discrete components in a user terminal. Such modules may include, but are not limited to, any of the following: software or hardware components, such as software object oriented software components, category components and task components, processing procedures, methods, functions, attributes , steps, programs, program fragments, drivers, firmware, microcode, circuits, data, libraries, data structures, tables, arrays, or variables. The previous description of the embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to the embodiments are obvious to those skilled in the art, and the general principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention is not intended to be limited to the embodiments shown herein, but the broadest scope of the principles and novel features disclosed herein. 112034.doc • 30- 1345904 [Brief Description of the Drawings] Figure 1A is a diagram of a communication system that supports many users and is capable of implementing at least some aspects and embodiments of the present invention. 1B is a block diagram of one embodiment of a multi-code CDMA system. 2A is a block diagram of another embodiment of a multi-code CDMA system. 2B is a block diagram of one embodiment of an MMSE space time equalizer. Figure 3 is a flow diagram illustrating the operation of one embodiment of a multi-code CDMA system. 4 is a graph of block error rates for various wafer-to-signal noise ratio (SNR) values for an embodiment of the present invention using a one-code reuse and a 3 km/h vehicle A multipath channel model. [Main component symbol description] 2A-2G unit 4A-4G base station 6A-6J terminal unit 8 processor 10 communication system 100 - ΜΙΜΟ multi-code CDMA system 102 transmitter portion 104 receiver portion 106 encoder 108 mapper 110 Worker 112 spreader 112034.doc 1345904

114 傳輸天線 116 接收天線 116a 接收天線 116b 接收天線 118 最小均方誤差空間時間等化器 120 解展頻器 122 多工器 124 解映射器 126 解碼器 128 源位元序列 130 經解碼的位元 200 ΜΙΜΟ多重碼CDMA系統 202 傳輸器部分 204 接收器部分 206 編碼is 208 映射器 210 解多工器 222 — 多工器 224 解映射器 226 解碼器 230 經解碼的位元 250 等化記憶庫 250a 等化記憶庫 252 濾波器 112034.doc -32- 1345904 252a 遽波器 252b 遽波器 254 加法器 254a 加法器 256 等化度量序列 256a 等化度量序列 112034.doc -33 -114 transmit antenna 116 receive antenna 116a receive antenna 116b receive antenna 118 minimum mean square error space time equalizer 120 despreader 122 multiplexer 124 demapper 126 decoder 128 source bit sequence 130 decoded bit 200 ΜΙΜΟMulticode CDMA System 202 Transmitter Portion 204 Receiver Section 206 Encoding is 208 Mapper 210 Demultiplexer 222 - Multiplexer 224 Demapper 226 Decoder 230 Decoded Bits 250 Equalize Memory 250a Equalize Memory 252 Filter 112034.doc -32- 1345904 252a Chopper 252b Chopper 254 Adder 254a Adder 256 Equalization metric sequence 256a Equalization metric sequence 112034.doc -33 -

Claims (1)

1345904 第095121238號專利申請案 j------- --- 中文申請專利範圍替換本(98年11月) I年月日€王入 98.1 ί. &quot;。____: '十、申請專利範圍: 1. 一種CDMA接收器,其包含: . 一空間時間等化器,其可經操作連接至接收天線,其 中該空間時間等化器應用一加權向量,該加權向量包含 為一展頻因子之一函數及藉由考慮展頻碼重複使用所獲 得的係數。 2. 如請求項1之接收器,其中該等化器對應於複數個傳輸天 $ 線產生複數組等化度量序列。 3. 如請求項2之接收器,其進一步包含: 複數個接收天線,其重複使用至少一個展頻碼自該複 數個傳輸天線接收信號;及 複數個解展頻器,其可經操作連接至該空間時間等化 器,其中該等解展頻器將每組之該等化度量序列分成複 數個調變符號序列。 4. 如請求項1之接收器,其中該加權向量包含一依展頻因子 φ 而定的MMSE加權向量。 5. 如請求項1之接收器,其中該接收器包含一 ΜΙΜΟ單一碼 CDMA接收器。 6. 如請求項1之接收器,其中該接收器包含一ΜΙΜΟ多重碼 CDMA接收器。 7. 如請求項1之接收器,其中該等化器包含一最小均方誤差 (MMSE)等化器。 8. 一種CDMA接收器,其包含: 一空間時間等化器,其具有偕同複數個係數之一加權 112034-981130.doc 9. 向量;及 二解展頻器’其中該等係數至少部分地為-展頻因子 之-函數及藉由考慮展頻碼重複使用所獲得。 如請求項8之接收器,其中該接收器包含一麵〇單一瑪 CDMA接收器。 10·如請求項8之接收器 CDMA接收器。 11_如請求項8之接收器 (MMSE)等化器。 ,其中該接收器包含一ΜΙΜΟ多重碼 ,其中該等化器包含一最小均方誤差 12. —種處理一通信系統中信號之方法,其包含: 經由複數個接收天線接收複數個信號,其中來自每一 接收天線之該所接收的信號包含傳輸自—傳輸器裝置之 一或多個信號的組合;及 藉由—具有係數之加權向量處理該信號,以產生複數 個位元流,其中該等係數至少部分地為展頻因子之一函 數及藉由考慮展頻碼重複使用所獲得。 13. 如請求項12之方法,其中該處理該信號包含藉由一空間 時間等化器產生複數個晶片序列。 14. 如凊求項12之方法,其中該加權向量為一最小均方誤差 (MMSE)加權向量。 15.如請求項12之方法,其中接收複數個信號包含經由該複 數個接收天線接收該複數個信號,其中來自每一接收天 線之該所接收的信號包含傳輸自複數個傳輸天線之一或 多個信號的該組合。 Π 2034-981130.doc 1345904 16. 如請求項15之方法’其中處理該信號包含藉由該具有係 數之加權向量處理該信號,以對應於該複數個傳輸天線 產生複數組等化度量序列。 17. 如凊求項16之方法,其進一步包含將每組之該等等化度 量序列分成複數個調變符號序列。 18. -種無線裝置’其包含—根據請求項以方法接收資訊 的接收器。 19. 一種CDMA接收器,其包含: 上等化構件,其可經操作連接至複數個接收天線,其中 該等化構件應用-加權向量’該加權向量包含為一展頻 因子之函數及藉由考慮展頻碼重複使用所獲得的複數 個係數;及 解展頻構件,其可經操作連接至該等化構件,直中該 解展頻構件將複數個等化度量序列分成複數個調變符號 序列。1345904 Patent application No. 095121238 j------- --- Chinese patent application scope replacement (November 1998) I year, month, day, king, 98.1 ί. &quot;. ____: 'X. Patent Application Range: 1. A CDMA receiver comprising: a spatial time equalizer operatively coupled to a receive antenna, wherein the spatial time equalizer applies a weight vector, the weighting The vector contains a function that is a function of a spreading factor and a coefficient obtained by considering the repeated use of the spreading code. 2. The receiver of claim 1, wherein the equalizer generates a complex array equalization metric sequence corresponding to the plurality of transmission days. 3. The receiver of claim 2, further comprising: a plurality of receive antennas that repeatedly use at least one spread spectrum code to receive signals from the plurality of transmit antennas; and a plurality of despreaders that are operatively coupled to The spatial time equalizer, wherein the despreaders divide each of the set of equalized metric sequences into a plurality of modulated symbol sequences. 4. The receiver of claim 1, wherein the weighting vector comprises an MMSE weighting vector dependent on a spreading factor φ. 5. The receiver of claim 1, wherein the receiver comprises a single code CDMA receiver. 6. The receiver of claim 1, wherein the receiver comprises a multi-code CDMA receiver. 7. The receiver of claim 1, wherein the equalizer comprises a minimum mean square error (MMSE) equalizer. 8. A CDMA receiver, comprising: a spatial time equalizer having one of a plurality of coefficients weighted 112034-981130.doc 9. a vector; and a second despreader 'where the coefficients are at least partially - The function of the spreading factor is obtained by considering the repeated use of the spreading code. The receiver of claim 8, wherein the receiver comprises a single-chip CDMA receiver. 10. The receiver CDMA receiver of claim 8. 11_ Receiver (MMSE) equalizer as in claim 8. Wherein the receiver comprises a plurality of codes, wherein the equalizer comprises a minimum mean square error 12. A method of processing a signal in a communication system, comprising: receiving a plurality of signals via a plurality of receive antennas, wherein The received signal of each receive antenna comprises a combination of one or more signals transmitted from the transmitter device; and the signal is processed by a weight vector having coefficients to generate a plurality of bit streams, wherein The coefficients are at least partially a function of one of the spreading factors and are obtained by considering the repeated use of the spreading code. 13. The method of claim 12, wherein processing the signal comprises generating a plurality of wafer sequences by a spatial time equalizer. 14. The method of claim 12, wherein the weighting vector is a minimum mean square error (MMSE) weighting vector. 15. The method of claim 12, wherein receiving the plurality of signals comprises receiving the plurality of signals via the plurality of receive antennas, wherein the received signal from each of the receive antennas comprises transmitting one or more of the plurality of transmit antennas This combination of signals. 16. The method of claim 15 wherein processing the signal comprises processing the signal by the weighted vector having a coefficient to generate a complex array equalization metric sequence corresponding to the plurality of transmission antennas. 17. The method of claim 16, further comprising dividing the sequence of equalization metrics for each group into a plurality of modulation symbol sequences. 18. A wireless device&apos; comprising - a receiver that receives information in a method according to a request. 19. A CDMA receiver, comprising: an equalization component operatively coupled to a plurality of receive antennas, wherein the equalization component applies a weight vector comprising the weighted vector as a function of a spreading factor and by Considering a plurality of coefficients obtained by repeated use of the spread spectrum code; and a despreading component that is operatively coupled to the equalizing component, wherein the despreading component divides the plurality of equalized metric sequences into a plurality of modulated symbols sequence. 20. 如請求項19之接收器,其中該 輸天線產生複數組等化度量序 等化構件對應於複數個傳 列。 21.如請求項19之接收器,其中 電路經組態以應用該加權向 數0 該等化構件包含一電路,該 里,該加權向量包含該等係 23.如請求項19之接收器 其中該解展頻構件包含—電路 112034-981130.doc 1345904 这電路經組態以將該等等化声旦皮S1、 ^ _ 寻化度里序列分成該複數個調變 符號序列。 24. 如請求項19之接收器1中該解展頻構件包含一處理 盗,該處理n經組態以將該等等化度量序列分成該複數 個調變符號序列。 25. 如請求項19之接收器,盆 其進一步包含一接收構件,該接 收構件用於重複使用至少一個屎 v 個展頻碼自複數個傳輸天線 接收信號。 26. 如-月求項20之接收g,其中該等化構件包含對應於該複 數個傳輸天線之複數組據波器。 27·如請求項26之接收器,苴中备έ索冰。。 兵Τ母組濾波為包含複數個濾波 器’其對應於該錢個接收天線且可經操作連接至該等 接收天線,每一濾波器產生一經濾波的輸出。 28. 如請求項27之接收器, 29. 如請求項27之接收器, 3〇.如請求項29之接收器 其中該等濾波器包含二維濾波器。 其中母組渡波器包含一添加構件。 其中該添加構件將該組遽波器中 之忒荨經;慮波的輸出相加,以產生該等化度量序列。 112034-981130.doc20. The receiver of claim 19, wherein the transmitting antenna produces a complex array equalization metric equalization means corresponding to the plurality of hashes. 21. The receiver of claim 19, wherein the circuitry is configured to apply the weighting to the number 0. The equalizing means comprises a circuit, wherein the weighting vector comprises the system 23. The receiver of claim 19 The despreading component includes a circuit 112034-981130.doc 1345904. The circuit is configured to divide the sequence of the equalized acoustic S1, ^ _ degree of homing into the plurality of modulated symbol sequences. 24. The descrambling component of receiver 1 of claim 19 includes a hacker, the process n being configured to divide the equal metric sequence into the plurality of modulating symbol sequences. 25. The receiver of claim 19, further comprising a receiving component for repeatedly receiving signals from the plurality of transmitting antennas using at least one of the plurality of spreading codes. 26. The receive g of the -month item 20, wherein the equalization means comprises a complex array data filter corresponding to the plurality of transmit antennas. 27. If the receiver of claim 26 is available, 苴 έ 。 。. . The corps is filtered to include a plurality of filters </ RTI> corresponding to the money receiving antennas and operatively coupled to the receiving antennas, each filter producing a filtered output. 28. The receiver of claim 27, 29. The receiver of claim 27, 3. The receiver of claim 29, wherein the filters comprise a two-dimensional filter. The parent group waver includes an additive member. Wherein the adding means adds the enthalpy in the set of choppers; the output of the wave is added to produce the equalized metric sequence. 112034-981130.doc
TW095121238A 2005-11-21 2006-06-14 Optimal weights for mmse space-time equalizer of multicode cdma system TWI345904B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/284,601 US8780957B2 (en) 2005-01-14 2005-11-21 Optimal weights for MMSE space-time equalizer of multicode CDMA system

Publications (2)

Publication Number Publication Date
TW200721752A TW200721752A (en) 2007-06-01
TWI345904B true TWI345904B (en) 2011-07-21

Family

ID=39469929

Family Applications (2)

Application Number Title Priority Date Filing Date
TW095121238A TWI345904B (en) 2005-11-21 2006-06-14 Optimal weights for mmse space-time equalizer of multicode cdma system
TW098143726A TW201015928A (en) 2005-11-21 2006-06-14 Optimal weights for MMSE space-time equalizer of multicode CDMA system

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW098143726A TW201015928A (en) 2005-11-21 2006-06-14 Optimal weights for MMSE space-time equalizer of multicode CDMA system

Country Status (5)

Country Link
EP (1) EP1938465A4 (en)
JP (3) JP5745748B2 (en)
KR (1) KR101019397B1 (en)
CN (1) CN101310450B (en)
TW (2) TWI345904B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923377B2 (en) 2011-05-13 2014-12-30 Nokia Corporation Methods and devices for receipt of imbalanced transmission signal
US9166855B2 (en) * 2013-03-11 2015-10-20 Sony Corporation MIMO communication method, MIMO transmitting device, and MIMO receiving device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777910A (en) * 1996-11-19 1998-07-07 Thomson Multimedia S.A. Sparse equalization filter adaptive in two dimensions
US7095814B2 (en) * 2000-10-11 2006-08-22 Electronics And Telecommunications Research Institute Apparatus and method for very high performance space-time array reception processing using chip-level beamforming and fading rate adaptation
KR100803115B1 (en) * 2001-06-07 2008-02-14 엘지전자 주식회사 Method for processing signal in WCDMA with adaptive antenna array, System for the same
US7359466B2 (en) * 2001-08-24 2008-04-15 Lucent Technologies Inc. Signal detection by a receiver in a multiple antenna time-dispersive system
US20030142762A1 (en) 2002-01-11 2003-07-31 Burke Joseph P. Wireless receiver method and apparatus using space-cover-time equalization
US7302238B2 (en) * 2003-04-25 2007-11-27 Samsung Electronics Co., Ltd. Transmit diversity system, method and computer program product
US7356073B2 (en) * 2003-09-10 2008-04-08 Nokia Corporation Method and apparatus providing an advanced MIMO receiver that includes a signal-plus-residual-interference (SPRI) detector
US7780886B2 (en) * 2003-10-21 2010-08-24 Certainteed Corporation Insulation product having directional facing layer thereon and method of making the same
WO2005074147A1 (en) * 2004-01-30 2005-08-11 Universite Laval Multi-user adaptive array receiver and method
US7324583B2 (en) * 2004-02-13 2008-01-29 Nokia Corporation Chip-level or symbol-level equalizer structure for multiple transmit and receiver antenna configurations

Also Published As

Publication number Publication date
JP5722407B2 (en) 2015-05-20
CN101310450B (en) 2016-03-09
CN101310450A (en) 2008-11-19
KR20080069266A (en) 2008-07-25
EP1938465A2 (en) 2008-07-02
JP5512627B2 (en) 2014-06-04
JP2014053927A (en) 2014-03-20
JP2009516986A (en) 2009-04-23
TW201015928A (en) 2010-04-16
TW200721752A (en) 2007-06-01
JP2012095295A (en) 2012-05-17
KR101019397B1 (en) 2011-03-07
JP5745748B2 (en) 2015-07-08
EP1938465A4 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
US8780957B2 (en) Optimal weights for MMSE space-time equalizer of multicode CDMA system
US7864877B2 (en) Data transmission in communication system by disabling radiation patterns
CN104981987B (en) Device and method for dynamically changing downlink mimo configuration
RU2437225C2 (en) Structure of feedback channel for communication systems with multiple inputs and multiple outputs
KR100889883B1 (en) Method and detector for a novel channel quality indicator for space­time encoded ???? spread spectrum systems in frequency selective channels
US7809072B2 (en) Transmitter and receiver for use in a relay network, and system and method for performing transmission and reception using the same
ES2357161T3 (en) DESIGN OF A FEEDBACK CHANNEL FOR COMMUNICATION SYSTEMS OF MULTIPLE INPUTS, MULTIPLE OUTPUTS.
UA75405C2 (en) Method for data transmission (variants); communication system with several inputs and outputs; base station (variants) and a terminal of the system
Grant et al. Per-antenna-rate-control (PARC) in frequency selective fading with SIC-GRAKE receiver
US7536198B1 (en) System and method for multiple input multiple output wireless transmission
TWI345904B (en) Optimal weights for mmse space-time equalizer of multicode cdma system
US8553803B2 (en) Estimation of the signal to interference and noise ratio (SINR) in multiple input multiple output (MIMO) systems
Rossi et al. Power randomization for iterative detection over random-access fading channels
US9054858B2 (en) Transmission and detection in multiple-antenna transmission systems
Reynolds et al. Interference suppression and diversity exploitation for multiantenna CDMA with ultra-low complexity receivers
US20040240378A1 (en) Method of spread space-spectrum multiple access
JP4709211B2 (en) Transmission system, transmission method, reception system, and reception method
EP1502367B1 (en) Data transmission method, and system
US9954574B2 (en) Spreading sequence system for full connectivity relay network
Bastos et al. Performance of extended space-time coding techniques for MIMO MC-CDMA systems
RAVINDRABABU et al. Performance Improvement and Complexity Reduction in Multi-user Detection Using Partial Pre-coding Techniques
Imran Resource allocation for cooperative broadcasting in w-cdma networks
Sandhya A STUDY ON SIMILARITY JOIN IN HETEROGENEOUS INFORMATION NETWORK USING PATH BASED ALGORITHM
Chang et al. Reduced-rank antenna selection for MIMO DS-CDMA channels
Semenov SINR estimation for MIMO D-TxAA scheme

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees