TWI344221B - Gan light-emitting diode and method for manufacturing the same - Google Patents

Gan light-emitting diode and method for manufacturing the same Download PDF

Info

Publication number
TWI344221B
TWI344221B TW95148605A TW95148605A TWI344221B TW I344221 B TWI344221 B TW I344221B TW 95148605 A TW95148605 A TW 95148605A TW 95148605 A TW95148605 A TW 95148605A TW I344221 B TWI344221 B TW I344221B
Authority
TW
Taiwan
Prior art keywords
layer
gallium nitride
emitting diode
type
light
Prior art date
Application number
TW95148605A
Other languages
Chinese (zh)
Other versions
TW200828619A (en
Inventor
Kuo Hui Yu
Yucheng Yang
Chengta Kuo
Shih Chang Shei
Chiming Huang
Shiwei Yeh
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW95148605A priority Critical patent/TWI344221B/en
Publication of TW200828619A publication Critical patent/TW200828619A/en
Application granted granted Critical
Publication of TWI344221B publication Critical patent/TWI344221B/en

Links

Landscapes

  • Led Devices (AREA)

Description

1344221 九、赞%說明二 【發明所屬之技術領域 本發明是有關於一種發光二極體及其製造方法,且特別 是有關於一種氮化鎵(GaN)發光二極體及其製造方法。 【先前技術】 近年來,為了提升發光二極體之亮度,而研究發展出一 些不同之發光二極體結構與製作技術。舉例而言,一種常見 鲁的技術係在發光二極體之磊晶結構上再額外設置一層窗戶 層’以利注入電流擴散,進而達到提高發光二極體元件之發 光免度的效果。然而,加設窗戶層的方式可能會產生窗戶層 與其他蟲晶材料層之間的不匹配,而導致元件之使用壽命縮 減;或者’受限於窗戶層之成長溫度太高,導致窗戶層可能 需要藉由多次成長的方式才能獲得所需厚度,進而造成發光 二極體元件之製作時間與成本的增加。 另一種提升發光亮度之常見技術係在發光磊晶結構上或 籲磊晶材料層之間,再利用磊晶方式成長一層n型電流阻隔 (Current Blocking)層。由於此η型電流阻隔層與其下方之ρ 型磊晶層之間會產生一 ρη接面,而可阻止電流通過,藉以將 注入電流橫向擴展’進而達到提高發光二極體之亮度的目 的然而,這樣的製程方式會增加磊晶製程的複雜度,且會 降低磊aa層之磊晶品質,而導致發光二極體之效能下降。 【發明内容】 6 1344221 因此,本發明之目的就是在提供一種氮化鎵發光二極 體,其P型電極墊下方設有絕緣電流阻隔層,以使從p型電 極注入發光磊晶結構之電流朝P型電極墊外側橫向擴展如 此—來,可有效改善主動層所發出之光受到p型電極墊遮蔽 的現象,而可有效提升發光二極體之光取出率,進一步提高 發光二極體之發光亮度。 本發明之另一目的疋在提供一種氮化鎵發光二極體,其p 型電極墊之底層設有尚反射率金屬材料層,可將主動層射向p 籲型電極墊之光予以反射,進而提高光取出率。 本發明之又一目的是在提供一種氮化鎵發光二極體之製 造方法,其設於p型電極墊下方之電流阻隔層係由絕緣介電 .材料所組成,可利用非磊晶方式製作,因此可降低磊晶製程 之複雜度’大幅提高製程之可靠度。 本發明之再一目的是在提供一種氮化鎵發光二極體之製 造方法,在完成發光磊晶結構之磊晶製程後,可利用一般沉 積技術製作電流阻隔層以及後續結構層,例如透明接觸層, 鲁而無需再進行磊晶程序。因此,不僅可降低整體製程之複雜 性,更可透過沉積製程來控制發光二極體之元件效能。 根據本發明之上述目的,提出一種氮化鎵發光二極體, 至V包括:一基板;一 n型半導體層設於基板上;一主動層 。又於η型半導體層之第一部分上,並暴露出〇型半導體層之 第一 4为’ 一 ρ型半導體層設於主動層上;一絕緣電流阻隔 層°又於°卩分之Ρ型半導體層上;一透明接觸層設於絕緣電流 阻^層與Ρ型半導體層上,並完全覆蓋住絕緣電流阻隔層; 7 1344221 P里電極塾§又於部分之透明接觸層上,且位於絕緣電流阻 層之上方’以及一 n型電極墊設於η型半導體層之第二部 分上。 依照本發明一較佳實施例,上述絕緣電流阻隔層之材料 為絕緣介電材料,例如二氧化矽(Si02)、氮化矽(Si3N4)、三氧 化二鋁(ai2〇3)、二氧化鈦(Ti〇2)等。 根據本發明之目的,提出一種氮化鎵發光二極體之製造 方法,至少包括:形成一 n型半導體層於一基板上;形成一 鲁主動層於η型半導體層之第一部分上,並暴露出η型半導體 層之第二部分;形成一 Ρ型半導體層於主動層上;形成一絕 緣電流阻隔層於部分之ρ型半導體層上;形成一透明接觸層 於絕緣電流阻隔層與ρ型半導體層i,並完全覆蓋住絕緣電 流阻隔層;形成一 p型電極墊於部分之透明接觸層上,且位 於絕緣電流阻隔層之上方;以及形成一 n型電極墊於η型半 導體層之第二部分上。 依照本發明一較佳實施例,上述形成η型半導體層之步 鲁驟、形成主動層之步驟與形成ρ型半導體層之步驟係利用磊 晶技術,而形成絕緣電流阻隔層之步驟係利用非磊晶沉積技 術,例如化學氣相沉積(CVD)技術或電子束(£ beam)沉積技 術。 【實施方式】 本發明揭露一種氮化鎵發光二極體及其製造方法,可利 用一般沉積技術來製作電流阻隔層’因此可有效提升發光一 8 1344221 極體之亮度與效能,且製程簡單易於實施,而可提高製程可 在度與良率。為了使本發明之敘述更加詳盡與完備,可參照 下列描述並配合第1圖至第5圖之圖式。 °月參照第1圖至第5圖’其係繪示依照本發明一較佳實 施例的一種氮化鎵發光二極體之製程剖面圖。在本示範實施 例中,製作氮化鎵發光二極體時,先提供基板1〇〇,其中基板 1〇〇之材料可例如為藍寶石(Sapphire)或碳化矽(SiC)。接下 來,利用例如液相磊晶法(LPE)、氣相蟲晶法(VPE)、有機金 _屬氣相磊晶法(MOVPE)及分子束磊晶法(MBE),磊晶成長n型 半導體層102於基板1〇〇上》η型半導體層1〇2之材料為η型 氮化鎵系列(GaN-based)材料,例如氮化鎵(GaN)、氮化銦鋁鎵 (InAlGaN)、氮化鋁鎵(AiGaN)、氮化鋁(AiN)或氮化銦(Μ)。 再利用例如液相蟲晶法、氣相義晶法、有機金屬氣相蟲晶法 及分子束磊晶法,磊晶成長主動層1〇4覆蓋在n型半導體層 102上。在本發明之一實施例中,主動層1〇4可包括多重量^ 井(MQW)結構。接著,利用例如液相蟲晶法、氣相蟲晶法、 鲁有機金屬氣相磊晶法及分子束磊晶法,磊晶成長ρ型半導體 層106覆蓋在主動層104上。ρ型半導體層1〇6之材料為ρ型 氮化鎵系列材料’例如氮化鎵、氮化銦鋁鎵、氮化鋁鎵 '氮 化紹或氮化銦。其中,η型半導體層1〇2、主動層1〇4與ρ型 半導體層106之堆疊構成發光磊晶結構。待完成ρ型;導體 層106之蟲晶成長後,利用例如乾式姓刻技術,移除部分 型半導體層106以及部分之主動層1〇4,直至暴露出^型半導 體層1〇2的一部分1〇8。其中,為確保製程可靠度,通常部分 9 1344221 ^ η型半導體層1〇2亦會遭到移除,如第1圖所示。在一實 施例中,可利用感應耦合電漿(Icp)蝕刻或反應式離子蝕刻 (RIE)技術,來進行上述磊晶層之蝕刻。 。接著,利用非磊晶之沉積技術,例如化學氣相沉積技術 或電子束沉積技術,形成絕緣電流阻隔層丨丨〇於P型半導體 層106之部分表面上,如第2圖所示。絕緣電流阻隔層no 之材料可採用絕緣介電材料,例如二氧化矽、氮化矽三氧 化二鋁、與二氧化鈦。在一實施例中,絕緣電流阻隔層110 鲁之厚度實質介於50人至5000人之間。由於絕緣電流阻隔層11〇 為絕緣層,因此可阻擋電流之流通。 在本發明中,由於絕緣電流阻隔層i丨〇非為磊晶層因 •此可降低磊晶製程之複雜度,更可透過控制沉積製程的製程 條件’來控制元件效能。 接下末利用例如化學氣相沉積技術或物理氣相沉積技 術形成透明接觸層丨i 2覆蓋在絕緣電流阻隔層丨丨〇與p型半導 體層106上,其中透明接觸層112將整個絕緣電流阻隔層11〇 鲁元王覆蓋住’如第3圖所示。透明接觸層112之材料可選用 透明氧化材料,例如氧化銦錫(IT〇)、氧化鎘錫(CT〇)、氧化 辞(ZnO)、氧化銦(In〇)、氧化錫(Sn〇)、氧化銅紹、 氧化銅鎵(CuGa02)或氧化锶銅(SrCu2〇2)。 隨後’利用例如蒸鍍方式形成p型電極墊114以及η型 電極墊116分別位於部分之透明接觸層112與11型半導體層 1〇2之暴露部分108上。ρ型電極墊114與η型電極墊ιΐ6均 可為金屬堆疊結構,其中此金屬堆疊結構可為單一金屬層結 1344221 構,或者可包括二層金屬層或者二層以上之金屬層。在一實 施例中,形成P型電極墊114時,可先形成金屬材料層122 於絕緣電流阻隔層Π 〇上方之部分透明接觸層i丨2上,再形成 金屬材料層124覆蓋堆疊在金屬材料層122上如第4圖所 示。其中,金屬材料層122之材料較佳係採用高反射率金屬, 例如銀m、鈦、銘、金或其合金,以利將主動層 104朝p型電極塾114所發出之光予以反射。在本發明中,p 型半導體I 106之表面的光子反射率較佳係控制在小於2〇 % 。在本發明之一較佳實施例中,絕緣電流阻隔層丨丨〇位於p 型電極墊114之正下方,且ρ型電極墊"4之面積較佳係小於 或等於絕緣電流阻隔層11〇之面積,如第4圖所示9 在本發明中,Ρ型電極墊114之下方設有絕緣電流阻隔層 11〇,再加上ρ型電極墊114與絕緣電流阻隔層11〇之間夾設 有透明接觸層112,因此當電流經由Ρ型電極》114注入磊晶 結構時,受到絕緣電流阻隔$ u〇之阻擋,在透明接觸層ιΐ2 中朝P型電極塾1 1 4下方之絕緣電流阻隔層丨} G流動之電流會 轉朝絕緣電流阻隔層11〇之外側而橫向擴展,再流向下方之 主動層104。如此—來,藉由絕緣電流阻隔層1 1 0之阻擋以及 透明接觸| 112的傳導,可使注入電流有效分散。此外,由 於P型電極墊1U通常不透光’因而會擋住主動層1〇4朝向p 型電極墊U4所發出之光,因此藉由在P型電極墊114之下方 設置絕緣電流阻隔層11G可減少—電極墊114下方產生無效 ’而更可增加有效發光區之電流密度,進而可增強發光 效祀。再者P型電極塾"4中所設.置之金屬材料層122 1344221 之材料係採用高反射率金屬,更可將射向p型電極墊"4底 部之光予以反射,以進一步提高元件之光取出率。 — 完成P型電極墊丨14與„型電極墊116之製作後,如第5 圖所示,可依產品需求選擇性地形成保護I 118覆蓋在部分 之P型電極塾114、部分之0型電極塾116、透明接觸層^ 之暴露部分、p型半導體層1G6、主動層1G4以及η型半導體 層102上,而完成氮化鎵發光二極體12〇之製作。其中,保 護層118之材料可例如為二氧切。保護層U8需暴露出部分 之Ρ型電極墊U4與部分之„型電極墊116,以利氮化鎵發光 一極體120與外部電路電性連接。 由上述本發明較佳實施例可知,本發明之—優點就是因 為本發明之氮化鎵發光二極體的ρ型電極墊下方設有絕緣電 流阻隔層,以使從ρ型電極注入發光磊晶結構之電流朝ρ型 電極墊外側橫向擴展,因此可有效改善主動層所發出之光受 到ρ型電極墊遮蔽的現象,而可有效提升發光二極體之光2 出率,進一步達到提高發光二極體之發光亮度的目的。 由上述本發明較佳實施例可知,本發明之另一優點就是 因為本發明之氮化鎵發光二極體的Ρ型電極墊之底層設有高 反射率金屬材料層,因此可將主動層射向Ρ型電極墊底部之 光予以反射,進一步提高發光二極體元件之光取出率。 由上述本發明較佳實施例可知,本發明之又一優點就是 因為在本發明之氮化鎵發光二極體之製造方法中,設於ρ型 電極墊下方之電流阻隔層係由絕緣介電材料所組成,可利用 非蟲晶方式製作,因此可降低磊晶製程之複雜度,大幅提高 12 1344221 製程之可靠度與良率。 由上述本發明較佳實施例可知,本發明之再一優點就是 因為在本發明之氮化鎵發光二極體之製造方法中,於完成發 光蟲晶結構之i晶製程後’可利用—般沉積技術製作電流阻 隔層以及後續結構層’而無需再進Μ晶程序。因此,不僅 可降低整體製程之複雜性’更可透過沉積製程來控制發光二 極體之元件效能。 雖然本發明已以-較佳實施例揭露如上,然:其並非用以 限定本發明,任何在此技術領域中具有通常知識者在不脫 離本發明之精神和範圍内,當可作各種之更動與_飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖至帛5圖係、續·示依照本發明一較佳實施例的一種 氮化鎵發光二極體之製程剖面圖。 鲁【主要元件符號說明】 102 : η型半導體層 106 : ρ型半導體層 110 :絕緣電流阻隔層 I M : ρ型電極墊 II 8 :保護層 1 22 :金屬材料層 100 .基板 104 ··主動層 108 :曝露部分 Π 2 :透明接觸層 11 6 : η型電極墊 1 2 0 .氮化鎵發光二極體 124 :金屬材料層 13BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a light-emitting diode and a method of fabricating the same, and more particularly to a gallium nitride (GaN) light-emitting diode and a method of fabricating the same. [Prior Art] In recent years, in order to improve the brightness of light-emitting diodes, research has been made to develop a variety of different light-emitting diode structures and fabrication techniques. For example, a common technology is to additionally provide a window layer on the epitaxial structure of the light-emitting diode to facilitate the diffusion of the current, thereby improving the light-emitting efficiency of the light-emitting diode element. However, the addition of a window layer may result in a mismatch between the window layer and other layers of cryptic material, resulting in a reduction in the useful life of the component; or 'constrained by the growth temperature of the window layer being too high, resulting in a possible window layer It is necessary to obtain the required thickness by a plurality of growth methods, thereby causing an increase in the production time and cost of the light-emitting diode element. Another common technique for improving the luminance of light is to form an n-type current blocking layer on the luminescent epitaxial structure or between the layers of the epitaxial material. Since the n-type current blocking layer and the p-type epitaxial layer below it generate a ρη junction, the current can be prevented from passing, thereby laterally expanding the injection current, thereby achieving the purpose of improving the brightness of the light-emitting diode. Such a process method will increase the complexity of the epitaxial process, and will reduce the epitaxial quality of the lei layer, resulting in a decrease in the performance of the luminescent diode. SUMMARY OF THE INVENTION 6 1344221 Accordingly, an object of the present invention is to provide a gallium nitride light-emitting diode having an insulating current blocking layer under the P-type electrode pad to inject a current from the p-type electrode into the light-emitting epitaxial structure. The lateral expansion to the outside of the P-type electrode pad can effectively improve the phenomenon that the light emitted by the active layer is shielded by the p-type electrode pad, thereby effectively improving the light extraction rate of the light-emitting diode and further improving the light-emitting diode. Luminous brightness. Another object of the present invention is to provide a gallium nitride light-emitting diode, wherein a bottom layer of a p-type electrode pad is provided with a layer of a reflective metal material, which can reflect the light of the active layer toward the p-type electrode pad. Further, the light extraction rate is increased. Another object of the present invention is to provide a method for fabricating a gallium nitride light-emitting diode, wherein the current blocking layer disposed under the p-type electrode pad is composed of an insulating dielectric material and can be fabricated by non-elevation. Therefore, the complexity of the epitaxial process can be reduced, which greatly improves the reliability of the process. A further object of the present invention is to provide a method for fabricating a gallium nitride light-emitting diode. After completing the epitaxial process of the light-emitting epitaxial structure, a current deposition technique can be used to form a current blocking layer and a subsequent structural layer, such as transparent contact. Layer, Lu does not need to perform the epitaxial process. Therefore, not only the complexity of the overall process can be reduced, but also the component performance of the light-emitting diode can be controlled through a deposition process. According to the above object of the present invention, a gallium nitride light emitting diode is provided, which comprises: a substrate; an n-type semiconductor layer disposed on the substrate; and an active layer. And on the first portion of the n-type semiconductor layer, and exposing the first 4 of the germanium-type semiconductor layer to be 'a p-type semiconductor layer is disposed on the active layer; and an insulating current blocking layer is further divided into a germanium semiconductor a transparent contact layer is disposed on the insulating current blocking layer and the germanium-type semiconductor layer, and completely covers the insulating current blocking layer; 7 1344221 P-electrode is further on a portion of the transparent contact layer and is located at the insulating current Above the resist layer' and an n-type electrode pad are disposed on the second portion of the n-type semiconductor layer. According to a preferred embodiment of the present invention, the insulating current blocking layer is made of an insulating dielectric material such as cerium oxide (SiO 2 ), cerium nitride (Si 3 N 4 ), aluminum oxide (ai 2 〇 3 ), and titanium dioxide (Ti). 〇 2) and so on. According to an object of the present invention, a method for fabricating a gallium nitride light-emitting diode includes at least: forming an n-type semiconductor layer on a substrate; forming a Lu active layer on the first portion of the n-type semiconductor layer, and exposing Forming a second portion of the n-type semiconductor layer; forming a germanium-type semiconductor layer on the active layer; forming an insulating current blocking layer on the portion of the p-type semiconductor layer; forming a transparent contact layer on the insulating current blocking layer and the p-type semiconductor Layer i, and completely covering the insulating current blocking layer; forming a p-type electrode pad on a portion of the transparent contact layer and above the insulating current blocking layer; and forming an n-type electrode pad on the second layer of the n-type semiconductor layer Partially. According to a preferred embodiment of the present invention, the step of forming the n-type semiconductor layer, the step of forming the active layer, and the step of forming the p-type semiconductor layer are performed by epitaxial technology, and the step of forming the insulating current blocking layer is utilized. Epitaxial deposition techniques, such as chemical vapor deposition (CVD) techniques or electron beam (£ beam) deposition techniques. [Embodiment] The present invention discloses a gallium nitride light-emitting diode and a manufacturing method thereof, which can form a current blocking layer by using a general deposition technique, thereby effectively improving the brightness and performance of the light-emitting body, and the process is simple and easy. Implementation can improve the process availability and yield. In order to make the description of the present invention more detailed and complete, reference is made to the following description in conjunction with the drawings of Figures 1 through 5. Referring to Figures 1 through 5, a process cross-sectional view of a gallium nitride light-emitting diode in accordance with a preferred embodiment of the present invention is shown. In the exemplary embodiment, when the gallium nitride light-emitting diode is fabricated, the substrate 1 is first provided, and the material of the substrate 1 can be, for example, sapphire or tantalum carbide (SiC). Next, epitaxial growth n-type is performed by, for example, liquid phase epitaxy (LPE), vapor phase crystallography (VPE), organic gold-based vapor phase epitaxy (MOVPE), and molecular beam epitaxy (MBE). The semiconductor layer 102 is on the substrate 1 》 the material of the n-type semiconductor layer 1 〇 2 is an n-type GaN-based material, such as gallium nitride (GaN), indium aluminum gallium nitride (InAlGaN), Aluminum gallium nitride (AiGaN), aluminum nitride (AiN) or indium nitride (yttrium). The epitaxial growth active layer 1 4 is overlaid on the n-type semiconductor layer 102 by, for example, a liquid phase crystal method, a gas phase crystal method, an organometallic gas phase crystal method, and a molecular beam epitaxy method. In an embodiment of the invention, the active layer 1〇4 may comprise a multi-weight (MQW) structure. Next, the epitaxially grown p-type semiconductor layer 106 is overlaid on the active layer 104 by, for example, a liquid phase crystal method, a gas phase crystal method, a Lu organic metal vapor phase epitaxy method, and a molecular beam epitaxy method. The material of the p-type semiconductor layer 1 〇 6 is a p-type gallium nitride series material such as gallium nitride, indium aluminum gallium nitride, aluminum gallium nitride 'nitride or indium nitride. The n-type semiconductor layer 1 〇 2, the active layer 1 〇 4 and the p-type semiconductor layer 106 are stacked to form a light-emitting epitaxial structure. After the p-type of the conductor layer 106 is grown, the partial semiconductor layer 106 and a portion of the active layer 1〇4 are removed by, for example, dry-type etching, until a portion of the semiconductor layer 1〇2 is exposed. 〇 8. Among them, in order to ensure process reliability, usually part of the 1 1344221 ^ η-type semiconductor layer 1 〇 2 will also be removed, as shown in Figure 1. In one embodiment, the epitaxial layer etch can be performed using inductively coupled plasma (Icp) etching or reactive ion etching (RIE) techniques. . Next, an insulating current blocking layer is formed on a portion of the surface of the P-type semiconductor layer 106 by a non-elevation deposition technique such as a chemical vapor deposition technique or an electron beam deposition technique, as shown in Fig. 2. The material of the insulating current barrier layer no may be an insulating dielectric material such as hafnium oxide, tantalum nitride, and titanium dioxide. In one embodiment, the thickness of the insulating current barrier layer 110 is substantially between 50 and 5,000. Since the insulating current blocking layer 11 is an insulating layer, the flow of current can be blocked. In the present invention, since the insulating current blocking layer i is not an epitaxial layer, the complexity of the epitaxial process can be reduced, and the device performance can be controlled by controlling the process conditions of the deposition process. Next, a transparent contact layer 丨i 2 is formed over the insulating current blocking layer 丨丨〇 and the p-type semiconductor layer 106 by, for example, a chemical vapor deposition technique or a physical vapor deposition technique, wherein the transparent contact layer 112 blocks the entire insulating current. Layer 11 is covered by the King of Lu, as shown in Figure 3. The transparent contact layer 112 may be made of a transparent oxidizing material such as indium tin oxide (IT〇), cadmium tin oxide (CT〇), oxidized (ZnO), indium oxide (In〇), tin oxide (Sn〇), and oxidized. Copper, copper oxide gallium (CuGa02) or yttrium copper oxide (SrCu2〇2). Subsequently, the p-type electrode pad 114 and the n-type electrode pad 116 are formed by, for example, vapor deposition, respectively, on the exposed portion 108 of the portion of the transparent contact layer 112 and the 11-type semiconductor layer 1〇2. Both the p-type electrode pad 114 and the n-type electrode pad ι 6 may be a metal stack structure, wherein the metal stack structure may be a single metal layer 1344221 structure, or may include two metal layers or two or more metal layers. In an embodiment, when the P-type electrode pad 114 is formed, a metal material layer 122 may be formed on a portion of the transparent contact layer i丨2 above the insulating current blocking layer ,, and then a metal material layer 124 is formed to be overlaid on the metal material. Layer 122 is shown in Figure 4. The material of the metal material layer 122 is preferably a high reflectivity metal such as silver m, titanium, indium, gold or an alloy thereof to reflect the light emitted by the active layer 104 toward the p-type electrode 114. In the present invention, the photon reflectance of the surface of the p-type semiconductor I 106 is preferably controlled to be less than 2%. In a preferred embodiment of the present invention, the insulating current barrier layer is located directly under the p-type electrode pad 114, and the area of the p-type electrode pad "4 is preferably less than or equal to the insulating current blocking layer 11〇 The area is as shown in Fig. 4. In the present invention, the insulating current blocking layer 11 is disposed under the Ρ-type electrode pad 114, and the p-type electrode pad 114 is interposed between the insulating layer and the insulating current blocking layer 11 There is a transparent contact layer 112, so when the current is injected into the epitaxial structure via the Ρ-type electrode 114, it is blocked by the insulation current blocking, and the insulating current is blocked in the transparent contact layer ι2 toward the P-type electrode 塾1 1 4 The current flowing in the layer 丨G will turn to the outside of the insulating current blocking layer 11〇 and expand laterally, and then flow to the active layer 104 below. In this way, the injection current can be effectively dispersed by the blocking of the insulating current blocking layer 110 and the conduction of the transparent contact |112. In addition, since the P-type electrode pad 1U is generally opaque and thus blocks the light emitted from the active layer 1〇4 toward the p-type electrode pad U4, the insulating current blocking layer 11G can be disposed under the P-type electrode pad 114. Reducing - ineffective generation under the electrode pad 114 can increase the current density of the effective illuminating region, thereby enhancing the luminescent effect. Furthermore, the material of the metal material layer 122 1344221 provided in the P-type electrode 塾"4 is a high-reflectivity metal, and the light incident on the bottom of the p-type electrode pad"4 can be further reflected to further improve The light extraction rate of the component. — After the fabrication of the P-type electrode pad 14 and the „type electrode pad 116 is completed, as shown in FIG. 5, the protection I 118 can be selectively formed according to the product requirements, and the partial P-type electrode 塾 114, part of the type 0 The electrode 塾 116, the exposed portion of the transparent contact layer, the p-type semiconductor layer 1G6, the active layer 1G4, and the n-type semiconductor layer 102 are formed to complete the fabrication of the gallium nitride light-emitting diode 12, wherein the material of the protective layer 118 For example, the protective layer U8 needs to expose a portion of the 电极-type electrode pad U4 and a portion of the TYPE electrode pad 116 to electrically connect the GaN light-emitting diode 120 to an external circuit. According to the preferred embodiment of the present invention, the advantage of the present invention is that an insulating current blocking layer is disposed under the p-type electrode pad of the gallium nitride light-emitting diode of the present invention to inject luminescent epitaxial from the p-type electrode. The current of the structure is laterally expanded toward the outside of the p-type electrode pad, so that the light emitted by the active layer can be effectively shielded by the p-type electrode pad, and the light output rate of the light-emitting diode can be effectively improved, thereby further improving the light-emitting second. The purpose of the brightness of the polar body. According to the preferred embodiment of the present invention, another advantage of the present invention is that since the bottom layer of the 电极-type electrode pad of the gallium nitride light-emitting diode of the present invention is provided with a high-reflectivity metal material layer, the active layer can be launched. The light at the bottom of the 电极-type electrode pad is reflected to further increase the light extraction rate of the light-emitting diode element. According to the preferred embodiment of the present invention, another advantage of the present invention is that in the method for fabricating the gallium nitride light-emitting diode of the present invention, the current blocking layer disposed under the p-type electrode pad is insulated by dielectric. The material consists of non-worm crystals, which reduces the complexity of the epitaxial process and greatly improves the reliability and yield of the 12 1344221 process. According to the preferred embodiment of the present invention, a further advantage of the present invention is that, in the method for fabricating the gallium nitride light-emitting diode of the present invention, it is available after the completion of the i-crystal process of the luminescent crystal structure. The deposition technique creates a current barrier layer and a subsequent structural layer' without the need for a twinning process. Therefore, not only can the complexity of the overall process be reduced, but the component performance of the light-emitting diode can be controlled through a deposition process. The present invention has been disclosed in the above-described preferred embodiments, which are not intended to limit the invention, and any one of ordinary skill in the art can make various changes without departing from the spirit and scope of the invention. The scope of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 5 are a cross-sectional view showing a process of a gallium nitride light-emitting diode according to a preferred embodiment of the present invention. Lu [Major component symbol description] 102: n-type semiconductor layer 106: p-type semiconductor layer 110: insulating current blocking layer IM: p-type electrode pad II 8: protective layer 1 22: metal material layer 100. substrate 104 · active layer 108: exposed portion Π 2 : transparent contact layer 11 6 : n-type electrode pad 1 2 0 . gallium nitride light-emitting diode 124: metal material layer 13

Claims (1)

1. 一種氮化鎵發光體,至少 P丨丨月今在」: 一 Γ1型半導體層,設於該_±; 導陳靖败♦嫩,纖‘型半 一 P型半導體層,設於該主動層上; -絕緣電組_,直接辦雜之卿鮮導麟表面上; -透·_ ’設贿絕輯組闕與鄭鮮輸^ 覆蓋住該絕緣電流阻隔層; M7C± - P,塾,觸分之該透明細層上,且位於該絕緣電流阻 曰之上方、中該P型電極墊至少包括财堆疊在該透明接_1 以及一第二金屬材料層’且該第-金屬_蝴為』 一 η型電極墊,設於該n型半導體層之該第二部分上。 1 2.如申請專利細第丨項所述之氮化嫁發光 料為藍寶石或碳化石夕。 ㈣__ i 其中該订型半導 科為η型氮化鎵系列材料。 4.如申請專利範圍第1項所述之氮化鎵發光二, 1344221 其中該η型半導體層之材料為n型氮化鎵(GaN)、n型氮化 銦鋁鎵(InAlGaN)、η型氮化鋁鎵(Α丨GaN)、η型氮化鋁(αιν) 或η型氮化姻(InN)。 5·如申請專利範圍帛i項所述之氮化鎵發光二極體, 其中該P型半導體層之材料為p型氮化錄系列材料。 6·如申請專利範圍第1項所述之氤化鎵發光二極體, 鲁其中該P型半導體層之材料為p型氮化鎵、p型氮化銦鋁 錄、P型氮化紹鎵、P型氮化在呂或 7.如申。月專利範圍第i項所述之氮化鎵發光二極體, 其中該主動層包括一多重量子井結構。 8 ·如申請專利範圍第 其中該絕緣電流阻隔層之 1項所述之氮化鎵發光二極體 材料為絕緣介電材料。 9.如申請專利範圍第 其中該絕緣電流阻隔層之 1項所述之氮化鎵發光二極體 材料為二氧化矽。 10.如申請專利範圍 其中該絕緣電流阻隔層之 化鈦。 第1項所述之氮化鎵發光二極體, 材料為氮化矽、三氧化二鋁或二氧 15 1344221 u·如申請專利範圍第丨項所述之氮化鎵發光二極體, 其中該絕緣電流阻隔層之厚度實質介於5 〇人至5 〇 〇 〇人之間。 12,如申請專利範圍第i項所述之氮化鎵發光二極體, 其中該透明接觸層之材料係選自於由氧化銦錫、氧化編錫' 氧化鋅、氧化銦、氧化錫、氧化銅鋁、氧化銅鎵以及氧化锶 鋼所組成之一族群。 1 3,如申請專利範圍第丨項所述之氮化鎵發光二極體, 其中該第一金屬材料層之材料係選自於由銀、鋁、鉻、鎳、 執、鉑、金及其合金所組成之一族群。 14.如申請專利範圍第丨項所述之氮化鎵發光二極體, 其中遠P型半導體層表面的光子反射率小於20% 。 1 5.如申請專利範圍第I項所述之氮化鎵發光二極體, 其中該絕緣電流阻隔層位於該P型電極塾之正下方。 16. 如申請專利範圍第ι5項所述之氮化鎵發光二極 體,其中該p型電極墊之面積小於該絕緣電流阻隔層之面 積。 17. 如申請專利範圍第15項所述之氮化鎵發光二極 趙’其中該P型電極墊之面積等於該絕緣電流阻隔層之面 16 1344221 第09Ή…-申請_和丨範 18·如申請專利範圍第1項所述之氮化鎵發光^體,更至少包括一 保護層覆蓋在部分之該P型電極墊、部分之該n型電極墊、該透明接觸層之 暴露部分、該P型半導體層、該主動層以及該η型半導體層上。 19.如申請專利範圍第18項所述之氮化鎵發光二極體,其中該保護 層之材科為二氧化梦。 > 2〇· 一種氮化鎵發光二&體之製造方法,至少包括: 形成一η型半導體層於一基板上; 道姊麻形成一主動層於該11型半導麟之一第一部分上,並暴露出該η型半 導體層之一第二部分; 形成一ρ型半導體層於該主動層上; 直接形成一絕緣電流阻隔層於部分之該Ρ型半導體層表面上; 成—透明接觸層於該絕緣電流阻隔層與該Ρ型半導上,並完全 胃絕緣電流阻隔層; 恳ρ 胃透@接觸層上,錄於該絕緣電流阻隔 方,其中形成該P型電極墊之步驟至少包括: 靖上,針金屬材料層 以 形成謂-錢材觸找料上; 17 丄344221 及 形成一 η型電極墊於該η型半導體層之該第二部分上。 2 1 ·如申請專利範圍第20項所述之氮化鎵發光二極體 之製造方法’其中形成該η型半導體層之步驟、形成該主動 層之步驟與形成該Ρ型半導體層之步驟係利用一磊晶技術。 22·如申請專利範圍第20項所述之氮化鎵發光二極體 之製造方法’其中該基板之材料為藍寶石或碳化矽。 23·如申請專利範圍第20項所述之氮化鎵發光二極體 之製造方法’其中該η型半導體層之材料為η型氮化鎵系列 材料。 24.如申請專利範圍第2〇項所述之氮化鎵發光二極體 之製造方法’其中該η型半導體層之材料為η型氮化鎵、η 型氣化銦链鎵、η型氮化鋁鎵、η型氮化鋁或η型氮化銦。 25·如申請專利範圍第2〇項所述之氮化鎵發光二極體 之製造方法’其中該ρ型半導體層之材料為ρ型氮化鎵系列 材料D 26.如申請專利範圍第2〇項所述之氮化鎵發光二極體 之製造方法,其中該ρ型半導體層之材料為ρ型氮化鎵、ρ 18 1344221 銘或P型氮化銦 型氮化銦鋁鎵、p型氮化鋁鎵、p型氮化 制2土7.如申請專利範圍第2〇項所述之氮化錄發光二極體 之心方法,其中該主動層包括-多重量子井結構。 制I8.如申請專利範圍第20項所述之氮化鎵發光二極體 之A方法’其中形成該絕緣電流阻隔層之步驟係利用化學 乳相 >儿積技術或電子束沉積技術’且形成該絕緣電流阻隔層 之步驟係利用非磊晶技術。 29·如中請專利範圍第2G項所述之氮化鎵發光二極體 之製造方法,#中該絕緣電流阻隔層之材料為絕材 料。 3〇.如申請專利範圍第2〇項所述之氮化鎵發光二極體 之製造方法,其中該絕緣電流阻隔層之村料為二氧化石夕。 31·如申請專利範圍第2〇項所述之氮化鎵發光二極體 之製造方法’其中該絕緣電流阻隔層之材料為氛化石夕、三氧 化二鋁或二氧化鈦。 如中請專利範圍第2G項所述之氮化鎵發光二極體 =製化方法’其中形成該透明接觸層之步驟係利用化學氣相 沉積技術或物理氣相沉積技術。 19 丄J丄 33.如申請專利範圍第2〇項 之製违方> 、斤述之氮化鎵發光二極體 方法,其中錢明接觸層之材料係選自於由氧化姻 錫、氧化鎘錫 '氧化鋅、氧化銦、氧 ^ 銅鎵以及氧化1¾銅所組成之—族群。 1化銅铭、氧化 34·如中請專利範㈣2G項所述之氮化鎵發光二極體 之”法’其中該第一金屬材料層之材料係選自於由銀、 錢^ H、金及其合金所组成之-族群。 35·如中請專利範圍第2Q項所述之氮化鎵發光二極體 之裂造方法’其中肖p型半導體層表面的光子反射率小於 2〇% ° 36.如申請專利範圍第20項所述之氮化鎵發光二極體 -f 裂邊方法’其中該絕緣電流阻隔層位於該p型電極塾之正 〇 3止如申。月專利|巳圍帛36項所述之氮化嫁發光二極體 么氟 其中。玄P型電極塾之面積小於該絕緣電流阻隔 詹 面積 面積 3=.如_請專利範圍第%項所述之i化鎵發光二極體 么製扭方法,其中該P型電極墊之面積等於該絕緣電流阻隔 詹 20 1344221 39.如申請專利範圍第20項所述之氮化鎵發光二極體 之製造方法,其中該絕緣電流阻隔層之厚度實質介於5〇A 至5000A之間。 40. 如申請專利範圍第20項所述之氮化鎵發光二極體 之製造方法,更至少包括形成一保護層覆蓋在部分之該P 型電極墊、部分之該η型電極墊、該透明接觸層之暴露部 分、該ρ型半導體層、該主動層以及該η型半導體層上。 41. 如申請專利範圍第40項所述之氮化鎵發光二極體 之製造方法,其中該保護層之材料為二氧化矽。1. A gallium nitride illuminant, at least P 丨丨 在 ” ” ” ” ” ” ” ” ” Γ Γ : : : : : : : : : : : : : : : : ; ; ; ; ; ; ; ; ; ; ; , On the active layer; - Insulated power group _, directly on the surface of the fresh guide lining; - 透 · _ 'Breaking the set of 阙 and Zheng Xian lose ^ cover the insulation current barrier layer; M7C ± - P,塾, on the transparent fine layer of the touch, and above the insulating current blocking, the P-type electrode pad includes at least a stack of the transparent interface _1 and a second metal material layer and the first metal An n-type electrode pad is disposed on the second portion of the n-type semiconductor layer. 1 2. The nitriding luminescent material described in the patent application sapphire is sapphire or carbon carbide. (4) __ i The custom-made semiconductor is an n-type GaN series material. 4. The gallium nitride light-emitting diode according to claim 1, wherein the material of the n-type semiconductor layer is n-type gallium nitride (GaN), n-type indium aluminum gallium nitride (InAlGaN), n-type Aluminum gallium nitride (yttrium GaN), n-type aluminum nitride (αιν) or n-type nitrided (InN). 5. The gallium nitride light-emitting diode according to claim ,i, wherein the material of the P-type semiconductor layer is a p-type nitride recording material. 6. The gallium arsenide light-emitting diode according to claim 1, wherein the material of the P-type semiconductor layer is p-type gallium nitride, p-type indium aluminum nitride, and p-type nitrided gallium. P-type nitriding in Lu or 7. Such as Shen. The gallium nitride light-emitting diode according to item (i) of the patent of the present invention, wherein the active layer comprises a multiple quantum well structure. 8. The galvanic light-emitting diode material according to the first aspect of the invention, wherein the insulating current barrier layer is an insulating dielectric material. 9. The scope of claim 1 wherein the gallium nitride light-emitting diode material of the insulating current barrier layer is cerium oxide. 10. The scope of the patent application wherein the insulating current barrier layer is titanium. The gallium nitride light-emitting diode according to the first aspect, wherein the material is tantalum nitride, aluminum oxide or dioxane 15 1344221 u. The gallium nitride light-emitting diode according to the above-mentioned claim, wherein The thickness of the insulating current barrier layer is substantially between 5 〇 and 5 〇〇〇. 12. The gallium nitride light-emitting diode according to claim i, wherein the transparent contact layer is selected from the group consisting of indium tin oxide, oxidized tin-zinc oxide, indium oxide, tin oxide, and oxidation. A group consisting of copper aluminum, copper oxide gallium and yttria steel. The GaN light-emitting diode according to the above-mentioned claim, wherein the material of the first metal material layer is selected from the group consisting of silver, aluminum, chromium, nickel, platinum, gold and A group of alloys. 14. The gallium nitride light-emitting diode according to claim 2, wherein the photonic reflectance of the surface of the far P-type semiconductor layer is less than 20%. The gallium nitride light-emitting diode according to claim 1, wherein the insulating current blocking layer is located directly under the P-type electrode. 16. The gallium nitride light emitting diode of claim 1, wherein the area of the p-type electrode pad is smaller than the area of the insulating current blocking layer. 17. The gallium nitride emitting diode according to claim 15 wherein the area of the P-type electrode pad is equal to the surface of the insulating current blocking layer 16 1344221. The gallium nitride luminaire according to claim 1, further comprising at least a protective layer covering the P-type electrode pad, a portion of the n-type electrode pad, an exposed portion of the transparent contact layer, and the P On the semiconductor layer, the active layer, and the n-type semiconductor layer. 19. The gallium nitride light-emitting diode according to claim 18, wherein the material of the protective layer is a dream of oxidizing. < 2 〇 · A gallium nitride light-emitting two & body manufacturing method, comprising at least: forming an n-type semiconductor layer on a substrate; the track ramie forms an active layer in the first part of the type 11 semiconductor And exposing a second portion of the n-type semiconductor layer; forming a p-type semiconductor layer on the active layer; directly forming an insulating current blocking layer on a portion of the surface of the germanium-type semiconductor layer; forming a transparent contact Laying on the insulating current blocking layer and the Ρ-type semi-conducting layer, and completely insulating the current blocking layer; 恳ρ gastric penetration@contact layer, recorded on the insulating current blocking side, wherein the step of forming the P-type electrode pad is at least The method includes: Yasuda, a layer of a metal material for forming a so-called money material; 17 丄 344221 and forming an n-type electrode pad on the second portion of the n-type semiconductor layer. 2 1 . The method for manufacturing a gallium nitride light-emitting diode according to claim 20, wherein the step of forming the n-type semiconductor layer, the step of forming the active layer, and the step of forming the germanium-type semiconductor layer Use an epitaxial technology. 22. The method of manufacturing a gallium nitride light-emitting diode according to claim 20, wherein the material of the substrate is sapphire or tantalum carbide. The method of manufacturing a gallium nitride light-emitting diode according to claim 20, wherein the material of the n-type semiconductor layer is an n-type gallium nitride series material. 24. The method for fabricating a gallium nitride light-emitting diode according to the second aspect of the invention, wherein the material of the n-type semiconductor layer is n-type gallium nitride, n-type indium vapor chain indium gallium, and n-type nitrogen. Aluminum gallium, n-type aluminum nitride or n-type indium nitride. 25. The method of manufacturing a gallium nitride light-emitting diode according to the second aspect of the invention, wherein the material of the p-type semiconductor layer is a p-type gallium nitride series material D 26. As claimed in the second section The method for manufacturing a gallium nitride light-emitting diode according to the invention, wherein the material of the p-type semiconductor layer is p-type gallium nitride, ρ 18 1344221 or P-type indium nitride-type indium aluminum gallium nitride, p-type nitrogen A method of nitriding a light-emitting diode according to the second aspect of the invention, wherein the active layer comprises a multiple quantum well structure. The method A of the GaN light-emitting diode according to claim 20, wherein the step of forming the insulating current blocking layer is performed by using a chemical emulsion phase > chiral technique or electron beam deposition technique The step of forming the insulating current barrier layer utilizes a non-exfoliation technique. 29. The method for manufacturing a gallium nitride light-emitting diode according to the second aspect of the patent, wherein the material of the insulating current barrier layer is a material. 3. The method for manufacturing a gallium nitride light-emitting diode according to the second aspect of the invention, wherein the insulating current blocking layer is made of sulphur dioxide. The method of producing a gallium nitride light-emitting diode according to the second aspect of the invention, wherein the material of the insulating current blocking layer is a ceramsite, a alumina or a titania. The gallium nitride light-emitting diode described in the second aspect of the patent application is a method of forming the transparent contact layer by a chemical vapor deposition technique or a physical vapor deposition technique. 19 丄J丄33. For example, the method of claim 2, the galvanic light-emitting diode method, wherein the material of the Qianming contact layer is selected from the group consisting of oxidized agglomerated tin, oxidized A group of cadmium tin's zinc oxide, indium oxide, oxygen, copper gallium, and oxidized 13⁄4 copper. 1 铜铜铭, Oxidation 34 · For example, the method of the galvanic light-emitting diode described in the 2G item, wherein the material of the first metal material layer is selected from the group consisting of silver, money, H, and gold. And the group of the alloys thereof. 35. The method for cracking a gallium nitride light-emitting diode according to the second aspect of the patent scope, wherein the photon reflectance of the surface of the Schiffon type semiconductor layer is less than 2〇% ° 36. The gallium nitride light-emitting diode-f-cracking method according to claim 20, wherein the insulating current blocking layer is located at the positive electrode of the p-type electrode, such as the application of the patent.帛36 items of the nitrided light-emitting diodes, wherein the area of the mysterious P-type electrode is smaller than the area of the insulating current barrier, and the area of the area is 3=. The method of manufacturing a GaN gallium illuminator according to claim 20, wherein the insulating method is the same as the method of manufacturing the gallium nitride luminescent diode according to claim 20, wherein the insulating method is The thickness of the current blocking layer is substantially between 5 〇A and 5000 A. The method for manufacturing a gallium nitride light-emitting diode according to claim 20, further comprising forming a protective layer covering a portion of the P-type electrode pad, a portion of the n-type electrode pad, and the transparent contact layer. And a method of manufacturing the gallium nitride light-emitting diode according to claim 40, wherein the material of the protective layer is Ceria. 21twenty one
TW95148605A 2006-12-22 2006-12-22 Gan light-emitting diode and method for manufacturing the same TWI344221B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95148605A TWI344221B (en) 2006-12-22 2006-12-22 Gan light-emitting diode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95148605A TWI344221B (en) 2006-12-22 2006-12-22 Gan light-emitting diode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200828619A TW200828619A (en) 2008-07-01
TWI344221B true TWI344221B (en) 2011-06-21

Family

ID=44817700

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95148605A TWI344221B (en) 2006-12-22 2006-12-22 Gan light-emitting diode and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI344221B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447940B (en) * 2008-07-15 2014-08-01 Lextar Electronics Corp Light emitting diode chip and fabricating method thereof
TW201238083A (en) * 2011-03-08 2012-09-16 Genesis Photonics Inc Light emitting diode structure

Also Published As

Publication number Publication date
TW200828619A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
TWI377697B (en) Method for growing a nitride-based iii-v group compound semiconductor
US6958494B2 (en) Light emitting diodes with current spreading layer
TWI711186B (en) Method for manufacturing deep ultraviolet light emitting element
JP6811293B1 (en) Semiconductor light emitting element and manufacturing method of semiconductor light emitting element
US20040135166A1 (en) Light-emitting device and method of fabricating the same
JP7049186B2 (en) Manufacturing method of semiconductor light emitting device and semiconductor light emitting device
JP2004146593A (en) Semiconductor light emitting device
US20140197374A1 (en) Method for manufacturing a nitride semiconductor light emitting device and nitride semiconductor light emitting device manufactured thereby
US11289624B2 (en) Control of p-contact resistance in a semiconductor light emitting device
US6946372B2 (en) Method of manufacturing gallium nitride based semiconductor light emitting device
JP2020087964A (en) Semiconductor light emitting device and manufacturing method thereof
JP2000091637A (en) Manufacture of semiconductor light emitting element
JP2005011857A (en) Nitride semiconductor light emitting device
JP3767863B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5130436B2 (en) GaN-based semiconductor light-emitting device and manufacturing method thereof
JP5776021B2 (en) Nitride-based semiconductor device and light source
TWI344221B (en) Gan light-emitting diode and method for manufacturing the same
KR100764450B1 (en) Flip chip type nitride semiconductor light emitting diode
JP4751093B2 (en) Semiconductor light emitting device
KR20110043823A (en) Semiconductor light emitting device
JP2007142345A (en) Nitride semiconductor light-emitting element
JP2006128389A (en) Nitride semiconductor device and manufacturing method therefor
KR101124470B1 (en) Semiconductor light emitting device
Simeonov et al. Bonding of nitride based LEDs on tin oxide templates for advanced optoelectronic devices
JP2007142336A (en) Nitride semiconductor element